Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /*---------------------------------------------------------------------------+ |
| 2 | | poly_atan.c | |
| 3 | | | |
| 4 | | Compute the arctan of a FPU_REG, using a polynomial approximation. | |
| 5 | | | |
| 6 | | Copyright (C) 1992,1993,1994,1997 | |
| 7 | | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia | |
| 8 | | E-mail billm@suburbia.net | |
| 9 | | | |
| 10 | | | |
| 11 | +---------------------------------------------------------------------------*/ |
| 12 | |
| 13 | #include "exception.h" |
| 14 | #include "reg_constant.h" |
| 15 | #include "fpu_emu.h" |
| 16 | #include "fpu_system.h" |
| 17 | #include "status_w.h" |
| 18 | #include "control_w.h" |
| 19 | #include "poly.h" |
| 20 | |
| 21 | |
| 22 | #define HIPOWERon 6 /* odd poly, negative terms */ |
| 23 | static const unsigned long long oddnegterms[HIPOWERon] = |
| 24 | { |
| 25 | 0x0000000000000000LL, /* Dummy (not for - 1.0) */ |
| 26 | 0x015328437f756467LL, |
| 27 | 0x0005dda27b73dec6LL, |
| 28 | 0x0000226bf2bfb91aLL, |
| 29 | 0x000000ccc439c5f7LL, |
| 30 | 0x0000000355438407LL |
| 31 | } ; |
| 32 | |
| 33 | #define HIPOWERop 6 /* odd poly, positive terms */ |
| 34 | static const unsigned long long oddplterms[HIPOWERop] = |
| 35 | { |
| 36 | /* 0xaaaaaaaaaaaaaaabLL, transferred to fixedpterm[] */ |
| 37 | 0x0db55a71875c9ac2LL, |
| 38 | 0x0029fce2d67880b0LL, |
| 39 | 0x0000dfd3908b4596LL, |
| 40 | 0x00000550fd61dab4LL, |
| 41 | 0x0000001c9422b3f9LL, |
| 42 | 0x000000003e3301e1LL |
| 43 | }; |
| 44 | |
| 45 | static const unsigned long long denomterm = 0xebd9b842c5c53a0eLL; |
| 46 | |
| 47 | static const Xsig fixedpterm = MK_XSIG(0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa); |
| 48 | |
| 49 | static const Xsig pi_signif = MK_XSIG(0xc90fdaa2, 0x2168c234, 0xc4c6628b); |
| 50 | |
| 51 | |
| 52 | /*--- poly_atan() -----------------------------------------------------------+ |
| 53 | | | |
| 54 | +---------------------------------------------------------------------------*/ |
| 55 | void poly_atan(FPU_REG *st0_ptr, u_char st0_tag, |
| 56 | FPU_REG *st1_ptr, u_char st1_tag) |
| 57 | { |
| 58 | u_char transformed, inverted, |
| 59 | sign1, sign2; |
| 60 | int exponent; |
| 61 | long int dummy_exp; |
| 62 | Xsig accumulator, Numer, Denom, accumulatore, argSignif, |
| 63 | argSq, argSqSq; |
| 64 | u_char tag; |
| 65 | |
| 66 | sign1 = getsign(st0_ptr); |
| 67 | sign2 = getsign(st1_ptr); |
| 68 | if ( st0_tag == TAG_Valid ) |
| 69 | { |
| 70 | exponent = exponent(st0_ptr); |
| 71 | } |
| 72 | else |
| 73 | { |
| 74 | /* This gives non-compatible stack contents... */ |
| 75 | FPU_to_exp16(st0_ptr, st0_ptr); |
| 76 | exponent = exponent16(st0_ptr); |
| 77 | } |
| 78 | if ( st1_tag == TAG_Valid ) |
| 79 | { |
| 80 | exponent -= exponent(st1_ptr); |
| 81 | } |
| 82 | else |
| 83 | { |
| 84 | /* This gives non-compatible stack contents... */ |
| 85 | FPU_to_exp16(st1_ptr, st1_ptr); |
| 86 | exponent -= exponent16(st1_ptr); |
| 87 | } |
| 88 | |
| 89 | if ( (exponent < 0) || ((exponent == 0) && |
| 90 | ((st0_ptr->sigh < st1_ptr->sigh) || |
| 91 | ((st0_ptr->sigh == st1_ptr->sigh) && |
| 92 | (st0_ptr->sigl < st1_ptr->sigl))) ) ) |
| 93 | { |
| 94 | inverted = 1; |
| 95 | Numer.lsw = Denom.lsw = 0; |
| 96 | XSIG_LL(Numer) = significand(st0_ptr); |
| 97 | XSIG_LL(Denom) = significand(st1_ptr); |
| 98 | } |
| 99 | else |
| 100 | { |
| 101 | inverted = 0; |
| 102 | exponent = -exponent; |
| 103 | Numer.lsw = Denom.lsw = 0; |
| 104 | XSIG_LL(Numer) = significand(st1_ptr); |
| 105 | XSIG_LL(Denom) = significand(st0_ptr); |
| 106 | } |
| 107 | div_Xsig(&Numer, &Denom, &argSignif); |
| 108 | exponent += norm_Xsig(&argSignif); |
| 109 | |
| 110 | if ( (exponent >= -1) |
| 111 | || ((exponent == -2) && (argSignif.msw > 0xd413ccd0)) ) |
| 112 | { |
| 113 | /* The argument is greater than sqrt(2)-1 (=0.414213562...) */ |
| 114 | /* Convert the argument by an identity for atan */ |
| 115 | transformed = 1; |
| 116 | |
| 117 | if ( exponent >= 0 ) |
| 118 | { |
| 119 | #ifdef PARANOID |
| 120 | if ( !( (exponent == 0) && |
| 121 | (argSignif.lsw == 0) && (argSignif.midw == 0) && |
| 122 | (argSignif.msw == 0x80000000) ) ) |
| 123 | { |
| 124 | EXCEPTION(EX_INTERNAL|0x104); /* There must be a logic error */ |
| 125 | return; |
| 126 | } |
| 127 | #endif /* PARANOID */ |
| 128 | argSignif.msw = 0; /* Make the transformed arg -> 0.0 */ |
| 129 | } |
| 130 | else |
| 131 | { |
| 132 | Numer.lsw = Denom.lsw = argSignif.lsw; |
| 133 | XSIG_LL(Numer) = XSIG_LL(Denom) = XSIG_LL(argSignif); |
| 134 | |
| 135 | if ( exponent < -1 ) |
| 136 | shr_Xsig(&Numer, -1-exponent); |
| 137 | negate_Xsig(&Numer); |
| 138 | |
| 139 | shr_Xsig(&Denom, -exponent); |
| 140 | Denom.msw |= 0x80000000; |
| 141 | |
| 142 | div_Xsig(&Numer, &Denom, &argSignif); |
| 143 | |
| 144 | exponent = -1 + norm_Xsig(&argSignif); |
| 145 | } |
| 146 | } |
| 147 | else |
| 148 | { |
| 149 | transformed = 0; |
| 150 | } |
| 151 | |
| 152 | argSq.lsw = argSignif.lsw; argSq.midw = argSignif.midw; |
| 153 | argSq.msw = argSignif.msw; |
| 154 | mul_Xsig_Xsig(&argSq, &argSq); |
| 155 | |
| 156 | argSqSq.lsw = argSq.lsw; argSqSq.midw = argSq.midw; argSqSq.msw = argSq.msw; |
| 157 | mul_Xsig_Xsig(&argSqSq, &argSqSq); |
| 158 | |
| 159 | accumulatore.lsw = argSq.lsw; |
| 160 | XSIG_LL(accumulatore) = XSIG_LL(argSq); |
| 161 | |
| 162 | shr_Xsig(&argSq, 2*(-1-exponent-1)); |
| 163 | shr_Xsig(&argSqSq, 4*(-1-exponent-1)); |
| 164 | |
| 165 | /* Now have argSq etc with binary point at the left |
| 166 | .1xxxxxxxx */ |
| 167 | |
| 168 | /* Do the basic fixed point polynomial evaluation */ |
| 169 | accumulator.msw = accumulator.midw = accumulator.lsw = 0; |
| 170 | polynomial_Xsig(&accumulator, &XSIG_LL(argSqSq), |
| 171 | oddplterms, HIPOWERop-1); |
| 172 | mul64_Xsig(&accumulator, &XSIG_LL(argSq)); |
| 173 | negate_Xsig(&accumulator); |
| 174 | polynomial_Xsig(&accumulator, &XSIG_LL(argSqSq), oddnegterms, HIPOWERon-1); |
| 175 | negate_Xsig(&accumulator); |
| 176 | add_two_Xsig(&accumulator, &fixedpterm, &dummy_exp); |
| 177 | |
| 178 | mul64_Xsig(&accumulatore, &denomterm); |
| 179 | shr_Xsig(&accumulatore, 1 + 2*(-1-exponent)); |
| 180 | accumulatore.msw |= 0x80000000; |
| 181 | |
| 182 | div_Xsig(&accumulator, &accumulatore, &accumulator); |
| 183 | |
| 184 | mul_Xsig_Xsig(&accumulator, &argSignif); |
| 185 | mul_Xsig_Xsig(&accumulator, &argSq); |
| 186 | |
| 187 | shr_Xsig(&accumulator, 3); |
| 188 | negate_Xsig(&accumulator); |
| 189 | add_Xsig_Xsig(&accumulator, &argSignif); |
| 190 | |
| 191 | if ( transformed ) |
| 192 | { |
| 193 | /* compute pi/4 - accumulator */ |
| 194 | shr_Xsig(&accumulator, -1-exponent); |
| 195 | negate_Xsig(&accumulator); |
| 196 | add_Xsig_Xsig(&accumulator, &pi_signif); |
| 197 | exponent = -1; |
| 198 | } |
| 199 | |
| 200 | if ( inverted ) |
| 201 | { |
| 202 | /* compute pi/2 - accumulator */ |
| 203 | shr_Xsig(&accumulator, -exponent); |
| 204 | negate_Xsig(&accumulator); |
| 205 | add_Xsig_Xsig(&accumulator, &pi_signif); |
| 206 | exponent = 0; |
| 207 | } |
| 208 | |
| 209 | if ( sign1 ) |
| 210 | { |
| 211 | /* compute pi - accumulator */ |
| 212 | shr_Xsig(&accumulator, 1 - exponent); |
| 213 | negate_Xsig(&accumulator); |
| 214 | add_Xsig_Xsig(&accumulator, &pi_signif); |
| 215 | exponent = 1; |
| 216 | } |
| 217 | |
| 218 | exponent += round_Xsig(&accumulator); |
| 219 | |
| 220 | significand(st1_ptr) = XSIG_LL(accumulator); |
| 221 | setexponent16(st1_ptr, exponent); |
| 222 | |
| 223 | tag = FPU_round(st1_ptr, 1, 0, FULL_PRECISION, sign2); |
| 224 | FPU_settagi(1, tag); |
| 225 | |
| 226 | set_precision_flag_up(); /* We do not really know if up or down, |
| 227 | use this as the default. */ |
| 228 | |
| 229 | } |