Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * NAND flash simulator. |
| 3 | * |
| 4 | * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org> |
| 5 | * |
| 6 | * Copyright (C) 2004 Nokia Corporation |
| 7 | * |
| 8 | * Note: NS means "NAND Simulator". |
| 9 | * Note: Input means input TO flash chip, output means output FROM chip. |
| 10 | * |
| 11 | * This program is free software; you can redistribute it and/or modify it |
| 12 | * under the terms of the GNU General Public License as published by the |
| 13 | * Free Software Foundation; either version 2, or (at your option) any later |
| 14 | * version. |
| 15 | * |
| 16 | * This program is distributed in the hope that it will be useful, but |
| 17 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
| 19 | * Public License for more details. |
| 20 | * |
| 21 | * You should have received a copy of the GNU General Public License |
| 22 | * along with this program; if not, write to the Free Software |
| 23 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA |
| 24 | * |
| 25 | * $Id: nandsim.c,v 1.7 2004/12/06 11:53:06 dedekind Exp $ |
| 26 | */ |
| 27 | |
| 28 | #include <linux/config.h> |
| 29 | #include <linux/init.h> |
| 30 | #include <linux/types.h> |
| 31 | #include <linux/module.h> |
| 32 | #include <linux/moduleparam.h> |
| 33 | #include <linux/vmalloc.h> |
| 34 | #include <linux/slab.h> |
| 35 | #include <linux/errno.h> |
| 36 | #include <linux/string.h> |
| 37 | #include <linux/mtd/mtd.h> |
| 38 | #include <linux/mtd/nand.h> |
| 39 | #include <linux/mtd/partitions.h> |
| 40 | #include <linux/delay.h> |
| 41 | #ifdef CONFIG_NS_ABS_POS |
| 42 | #include <asm/io.h> |
| 43 | #endif |
| 44 | |
| 45 | |
| 46 | /* Default simulator parameters values */ |
| 47 | #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ |
| 48 | !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \ |
| 49 | !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \ |
| 50 | !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE) |
| 51 | #define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98 |
| 52 | #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39 |
| 53 | #define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */ |
| 54 | #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */ |
| 55 | #endif |
| 56 | |
| 57 | #ifndef CONFIG_NANDSIM_ACCESS_DELAY |
| 58 | #define CONFIG_NANDSIM_ACCESS_DELAY 25 |
| 59 | #endif |
| 60 | #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY |
| 61 | #define CONFIG_NANDSIM_PROGRAMM_DELAY 200 |
| 62 | #endif |
| 63 | #ifndef CONFIG_NANDSIM_ERASE_DELAY |
| 64 | #define CONFIG_NANDSIM_ERASE_DELAY 2 |
| 65 | #endif |
| 66 | #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE |
| 67 | #define CONFIG_NANDSIM_OUTPUT_CYCLE 40 |
| 68 | #endif |
| 69 | #ifndef CONFIG_NANDSIM_INPUT_CYCLE |
| 70 | #define CONFIG_NANDSIM_INPUT_CYCLE 50 |
| 71 | #endif |
| 72 | #ifndef CONFIG_NANDSIM_BUS_WIDTH |
| 73 | #define CONFIG_NANDSIM_BUS_WIDTH 8 |
| 74 | #endif |
| 75 | #ifndef CONFIG_NANDSIM_DO_DELAYS |
| 76 | #define CONFIG_NANDSIM_DO_DELAYS 0 |
| 77 | #endif |
| 78 | #ifndef CONFIG_NANDSIM_LOG |
| 79 | #define CONFIG_NANDSIM_LOG 0 |
| 80 | #endif |
| 81 | #ifndef CONFIG_NANDSIM_DBG |
| 82 | #define CONFIG_NANDSIM_DBG 0 |
| 83 | #endif |
| 84 | |
| 85 | static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE; |
| 86 | static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE; |
| 87 | static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE; |
| 88 | static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE; |
| 89 | static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY; |
| 90 | static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY; |
| 91 | static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY; |
| 92 | static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE; |
| 93 | static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE; |
| 94 | static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH; |
| 95 | static uint do_delays = CONFIG_NANDSIM_DO_DELAYS; |
| 96 | static uint log = CONFIG_NANDSIM_LOG; |
| 97 | static uint dbg = CONFIG_NANDSIM_DBG; |
| 98 | |
| 99 | module_param(first_id_byte, uint, 0400); |
| 100 | module_param(second_id_byte, uint, 0400); |
| 101 | module_param(third_id_byte, uint, 0400); |
| 102 | module_param(fourth_id_byte, uint, 0400); |
| 103 | module_param(access_delay, uint, 0400); |
| 104 | module_param(programm_delay, uint, 0400); |
| 105 | module_param(erase_delay, uint, 0400); |
| 106 | module_param(output_cycle, uint, 0400); |
| 107 | module_param(input_cycle, uint, 0400); |
| 108 | module_param(bus_width, uint, 0400); |
| 109 | module_param(do_delays, uint, 0400); |
| 110 | module_param(log, uint, 0400); |
| 111 | module_param(dbg, uint, 0400); |
| 112 | |
| 113 | MODULE_PARM_DESC(first_id_byte, "The fist byte returned by NAND Flash 'read ID' command (manufaturer ID)"); |
| 114 | MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)"); |
| 115 | MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command"); |
| 116 | MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command"); |
| 117 | MODULE_PARM_DESC(access_delay, "Initial page access delay (microiseconds)"); |
| 118 | MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds"); |
| 119 | MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)"); |
| 120 | MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanodeconds)"); |
| 121 | MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanodeconds)"); |
| 122 | MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)"); |
| 123 | MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero"); |
| 124 | MODULE_PARM_DESC(log, "Perform logging if not zero"); |
| 125 | MODULE_PARM_DESC(dbg, "Output debug information if not zero"); |
| 126 | |
| 127 | /* The largest possible page size */ |
| 128 | #define NS_LARGEST_PAGE_SIZE 2048 |
| 129 | |
| 130 | /* The prefix for simulator output */ |
| 131 | #define NS_OUTPUT_PREFIX "[nandsim]" |
| 132 | |
| 133 | /* Simulator's output macros (logging, debugging, warning, error) */ |
| 134 | #define NS_LOG(args...) \ |
| 135 | do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0) |
| 136 | #define NS_DBG(args...) \ |
| 137 | do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0) |
| 138 | #define NS_WARN(args...) \ |
| 139 | do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warnig: " args); } while(0) |
| 140 | #define NS_ERR(args...) \ |
| 141 | do { printk(KERN_ERR NS_OUTPUT_PREFIX " errorr: " args); } while(0) |
| 142 | |
| 143 | /* Busy-wait delay macros (microseconds, milliseconds) */ |
| 144 | #define NS_UDELAY(us) \ |
| 145 | do { if (do_delays) udelay(us); } while(0) |
| 146 | #define NS_MDELAY(us) \ |
| 147 | do { if (do_delays) mdelay(us); } while(0) |
| 148 | |
| 149 | /* Is the nandsim structure initialized ? */ |
| 150 | #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0) |
| 151 | |
| 152 | /* Good operation completion status */ |
| 153 | #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0))) |
| 154 | |
| 155 | /* Operation failed completion status */ |
| 156 | #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns)) |
| 157 | |
| 158 | /* Calculate the page offset in flash RAM image by (row, column) address */ |
| 159 | #define NS_RAW_OFFSET(ns) \ |
| 160 | (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column) |
| 161 | |
| 162 | /* Calculate the OOB offset in flash RAM image by (row, column) address */ |
| 163 | #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz) |
| 164 | |
| 165 | /* After a command is input, the simulator goes to one of the following states */ |
| 166 | #define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */ |
| 167 | #define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */ |
| 168 | #define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */ |
| 169 | #define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */ |
| 170 | #define STATE_CMD_READOOB 0x00000005 /* read OOB area */ |
| 171 | #define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */ |
| 172 | #define STATE_CMD_STATUS 0x00000007 /* read status */ |
| 173 | #define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */ |
| 174 | #define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */ |
| 175 | #define STATE_CMD_READID 0x0000000A /* read ID */ |
| 176 | #define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */ |
| 177 | #define STATE_CMD_RESET 0x0000000C /* reset */ |
| 178 | #define STATE_CMD_MASK 0x0000000F /* command states mask */ |
| 179 | |
| 180 | /* After an addres is input, the simulator goes to one of these states */ |
| 181 | #define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */ |
| 182 | #define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */ |
| 183 | #define STATE_ADDR_ZERO 0x00000030 /* one byte zero address was accepted */ |
| 184 | #define STATE_ADDR_MASK 0x00000030 /* address states mask */ |
| 185 | |
| 186 | /* Durind data input/output the simulator is in these states */ |
| 187 | #define STATE_DATAIN 0x00000100 /* waiting for data input */ |
| 188 | #define STATE_DATAIN_MASK 0x00000100 /* data input states mask */ |
| 189 | |
| 190 | #define STATE_DATAOUT 0x00001000 /* waiting for page data output */ |
| 191 | #define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */ |
| 192 | #define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */ |
| 193 | #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */ |
| 194 | #define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */ |
| 195 | |
| 196 | /* Previous operation is done, ready to accept new requests */ |
| 197 | #define STATE_READY 0x00000000 |
| 198 | |
| 199 | /* This state is used to mark that the next state isn't known yet */ |
| 200 | #define STATE_UNKNOWN 0x10000000 |
| 201 | |
| 202 | /* Simulator's actions bit masks */ |
| 203 | #define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */ |
| 204 | #define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */ |
| 205 | #define ACTION_SECERASE 0x00300000 /* erase sector */ |
| 206 | #define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */ |
| 207 | #define ACTION_HALFOFF 0x00500000 /* add to address half of page */ |
| 208 | #define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */ |
| 209 | #define ACTION_MASK 0x00700000 /* action mask */ |
| 210 | |
| 211 | #define NS_OPER_NUM 12 /* Number of operations supported by the simulator */ |
| 212 | #define NS_OPER_STATES 6 /* Maximum number of states in operation */ |
| 213 | |
| 214 | #define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */ |
| 215 | #define OPT_PAGE256 0x00000001 /* 256-byte page chips */ |
| 216 | #define OPT_PAGE512 0x00000002 /* 512-byte page chips */ |
| 217 | #define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */ |
| 218 | #define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */ |
| 219 | #define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */ |
| 220 | #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */ |
| 221 | #define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */ |
| 222 | #define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */ |
| 223 | |
| 224 | /* Remove action bits ftom state */ |
| 225 | #define NS_STATE(x) ((x) & ~ACTION_MASK) |
| 226 | |
| 227 | /* |
| 228 | * Maximum previous states which need to be saved. Currently saving is |
| 229 | * only needed for page programm operation with preceeded read command |
| 230 | * (which is only valid for 512-byte pages). |
| 231 | */ |
| 232 | #define NS_MAX_PREVSTATES 1 |
| 233 | |
| 234 | /* |
| 235 | * The structure which describes all the internal simulator data. |
| 236 | */ |
| 237 | struct nandsim { |
| 238 | struct mtd_partition part; |
| 239 | |
| 240 | uint busw; /* flash chip bus width (8 or 16) */ |
| 241 | u_char ids[4]; /* chip's ID bytes */ |
| 242 | uint32_t options; /* chip's characteristic bits */ |
| 243 | uint32_t state; /* current chip state */ |
| 244 | uint32_t nxstate; /* next expected state */ |
| 245 | |
| 246 | uint32_t *op; /* current operation, NULL operations isn't known yet */ |
| 247 | uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */ |
| 248 | uint16_t npstates; /* number of previous states saved */ |
| 249 | uint16_t stateidx; /* current state index */ |
| 250 | |
| 251 | /* The simulated NAND flash image */ |
| 252 | union flash_media { |
| 253 | u_char *byte; |
| 254 | uint16_t *word; |
| 255 | } mem; |
| 256 | |
| 257 | /* Internal buffer of page + OOB size bytes */ |
| 258 | union internal_buffer { |
| 259 | u_char *byte; /* for byte access */ |
| 260 | uint16_t *word; /* for 16-bit word access */ |
| 261 | } buf; |
| 262 | |
| 263 | /* NAND flash "geometry" */ |
| 264 | struct nandsin_geometry { |
| 265 | uint32_t totsz; /* total flash size, bytes */ |
| 266 | uint32_t secsz; /* flash sector (erase block) size, bytes */ |
| 267 | uint pgsz; /* NAND flash page size, bytes */ |
| 268 | uint oobsz; /* page OOB area size, bytes */ |
| 269 | uint32_t totszoob; /* total flash size including OOB, bytes */ |
| 270 | uint pgszoob; /* page size including OOB , bytes*/ |
| 271 | uint secszoob; /* sector size including OOB, bytes */ |
| 272 | uint pgnum; /* total number of pages */ |
| 273 | uint pgsec; /* number of pages per sector */ |
| 274 | uint secshift; /* bits number in sector size */ |
| 275 | uint pgshift; /* bits number in page size */ |
| 276 | uint oobshift; /* bits number in OOB size */ |
| 277 | uint pgaddrbytes; /* bytes per page address */ |
| 278 | uint secaddrbytes; /* bytes per sector address */ |
| 279 | uint idbytes; /* the number ID bytes that this chip outputs */ |
| 280 | } geom; |
| 281 | |
| 282 | /* NAND flash internal registers */ |
| 283 | struct nandsim_regs { |
| 284 | unsigned command; /* the command register */ |
| 285 | u_char status; /* the status register */ |
| 286 | uint row; /* the page number */ |
| 287 | uint column; /* the offset within page */ |
| 288 | uint count; /* internal counter */ |
| 289 | uint num; /* number of bytes which must be processed */ |
| 290 | uint off; /* fixed page offset */ |
| 291 | } regs; |
| 292 | |
| 293 | /* NAND flash lines state */ |
| 294 | struct ns_lines_status { |
| 295 | int ce; /* chip Enable */ |
| 296 | int cle; /* command Latch Enable */ |
| 297 | int ale; /* address Latch Enable */ |
| 298 | int wp; /* write Protect */ |
| 299 | } lines; |
| 300 | }; |
| 301 | |
| 302 | /* |
| 303 | * Operations array. To perform any operation the simulator must pass |
| 304 | * through the correspondent states chain. |
| 305 | */ |
| 306 | static struct nandsim_operations { |
| 307 | uint32_t reqopts; /* options which are required to perform the operation */ |
| 308 | uint32_t states[NS_OPER_STATES]; /* operation's states */ |
| 309 | } ops[NS_OPER_NUM] = { |
| 310 | /* Read page + OOB from the beginning */ |
| 311 | {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY, |
| 312 | STATE_DATAOUT, STATE_READY}}, |
| 313 | /* Read page + OOB from the second half */ |
| 314 | {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY, |
| 315 | STATE_DATAOUT, STATE_READY}}, |
| 316 | /* Read OOB */ |
| 317 | {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY, |
| 318 | STATE_DATAOUT, STATE_READY}}, |
| 319 | /* Programm page starting from the beginning */ |
| 320 | {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN, |
| 321 | STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, |
| 322 | /* Programm page starting from the beginning */ |
| 323 | {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE, |
| 324 | STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, |
| 325 | /* Programm page starting from the second half */ |
| 326 | {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE, |
| 327 | STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, |
| 328 | /* Programm OOB */ |
| 329 | {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE, |
| 330 | STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, |
| 331 | /* Erase sector */ |
| 332 | {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}}, |
| 333 | /* Read status */ |
| 334 | {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}}, |
| 335 | /* Read multi-plane status */ |
| 336 | {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}}, |
| 337 | /* Read ID */ |
| 338 | {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}}, |
| 339 | /* Large page devices read page */ |
| 340 | {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY, |
| 341 | STATE_DATAOUT, STATE_READY}} |
| 342 | }; |
| 343 | |
| 344 | /* MTD structure for NAND controller */ |
| 345 | static struct mtd_info *nsmtd; |
| 346 | |
| 347 | static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE]; |
| 348 | |
| 349 | /* |
| 350 | * Initialize the nandsim structure. |
| 351 | * |
| 352 | * RETURNS: 0 if success, -ERRNO if failure. |
| 353 | */ |
| 354 | static int |
| 355 | init_nandsim(struct mtd_info *mtd) |
| 356 | { |
| 357 | struct nand_chip *chip = (struct nand_chip *)mtd->priv; |
| 358 | struct nandsim *ns = (struct nandsim *)(chip->priv); |
| 359 | int i; |
| 360 | |
| 361 | if (NS_IS_INITIALIZED(ns)) { |
| 362 | NS_ERR("init_nandsim: nandsim is already initialized\n"); |
| 363 | return -EIO; |
| 364 | } |
| 365 | |
| 366 | /* Force mtd to not do delays */ |
| 367 | chip->chip_delay = 0; |
| 368 | |
| 369 | /* Initialize the NAND flash parameters */ |
| 370 | ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8; |
| 371 | ns->geom.totsz = mtd->size; |
| 372 | ns->geom.pgsz = mtd->oobblock; |
| 373 | ns->geom.oobsz = mtd->oobsize; |
| 374 | ns->geom.secsz = mtd->erasesize; |
| 375 | ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz; |
| 376 | ns->geom.pgnum = ns->geom.totsz / ns->geom.pgsz; |
| 377 | ns->geom.totszoob = ns->geom.totsz + ns->geom.pgnum * ns->geom.oobsz; |
| 378 | ns->geom.secshift = ffs(ns->geom.secsz) - 1; |
| 379 | ns->geom.pgshift = chip->page_shift; |
| 380 | ns->geom.oobshift = ffs(ns->geom.oobsz) - 1; |
| 381 | ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz; |
| 382 | ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec; |
| 383 | ns->options = 0; |
| 384 | |
| 385 | if (ns->geom.pgsz == 256) { |
| 386 | ns->options |= OPT_PAGE256; |
| 387 | } |
| 388 | else if (ns->geom.pgsz == 512) { |
| 389 | ns->options |= (OPT_PAGE512 | OPT_AUTOINCR); |
| 390 | if (ns->busw == 8) |
| 391 | ns->options |= OPT_PAGE512_8BIT; |
| 392 | } else if (ns->geom.pgsz == 2048) { |
| 393 | ns->options |= OPT_PAGE2048; |
| 394 | } else { |
| 395 | NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz); |
| 396 | return -EIO; |
| 397 | } |
| 398 | |
| 399 | if (ns->options & OPT_SMALLPAGE) { |
| 400 | if (ns->geom.totsz < (64 << 20)) { |
| 401 | ns->geom.pgaddrbytes = 3; |
| 402 | ns->geom.secaddrbytes = 2; |
| 403 | } else { |
| 404 | ns->geom.pgaddrbytes = 4; |
| 405 | ns->geom.secaddrbytes = 3; |
| 406 | } |
| 407 | } else { |
| 408 | if (ns->geom.totsz <= (128 << 20)) { |
| 409 | ns->geom.pgaddrbytes = 5; |
| 410 | ns->geom.secaddrbytes = 2; |
| 411 | } else { |
| 412 | ns->geom.pgaddrbytes = 5; |
| 413 | ns->geom.secaddrbytes = 3; |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | /* Detect how many ID bytes the NAND chip outputs */ |
| 418 | for (i = 0; nand_flash_ids[i].name != NULL; i++) { |
| 419 | if (second_id_byte != nand_flash_ids[i].id) |
| 420 | continue; |
| 421 | if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR)) |
| 422 | ns->options |= OPT_AUTOINCR; |
| 423 | } |
| 424 | |
| 425 | if (ns->busw == 16) |
| 426 | NS_WARN("16-bit flashes support wasn't tested\n"); |
| 427 | |
| 428 | printk("flash size: %u MiB\n", ns->geom.totsz >> 20); |
| 429 | printk("page size: %u bytes\n", ns->geom.pgsz); |
| 430 | printk("OOB area size: %u bytes\n", ns->geom.oobsz); |
| 431 | printk("sector size: %u KiB\n", ns->geom.secsz >> 10); |
| 432 | printk("pages number: %u\n", ns->geom.pgnum); |
| 433 | printk("pages per sector: %u\n", ns->geom.pgsec); |
| 434 | printk("bus width: %u\n", ns->busw); |
| 435 | printk("bits in sector size: %u\n", ns->geom.secshift); |
| 436 | printk("bits in page size: %u\n", ns->geom.pgshift); |
| 437 | printk("bits in OOB size: %u\n", ns->geom.oobshift); |
| 438 | printk("flash size with OOB: %u KiB\n", ns->geom.totszoob >> 10); |
| 439 | printk("page address bytes: %u\n", ns->geom.pgaddrbytes); |
| 440 | printk("sector address bytes: %u\n", ns->geom.secaddrbytes); |
| 441 | printk("options: %#x\n", ns->options); |
| 442 | |
| 443 | /* Map / allocate and initialize the flash image */ |
| 444 | #ifdef CONFIG_NS_ABS_POS |
| 445 | ns->mem.byte = ioremap(CONFIG_NS_ABS_POS, ns->geom.totszoob); |
| 446 | if (!ns->mem.byte) { |
| 447 | NS_ERR("init_nandsim: failed to map the NAND flash image at address %p\n", |
| 448 | (void *)CONFIG_NS_ABS_POS); |
| 449 | return -ENOMEM; |
| 450 | } |
| 451 | #else |
| 452 | ns->mem.byte = vmalloc(ns->geom.totszoob); |
| 453 | if (!ns->mem.byte) { |
| 454 | NS_ERR("init_nandsim: unable to allocate %u bytes for flash image\n", |
| 455 | ns->geom.totszoob); |
| 456 | return -ENOMEM; |
| 457 | } |
| 458 | memset(ns->mem.byte, 0xFF, ns->geom.totszoob); |
| 459 | #endif |
| 460 | |
| 461 | /* Allocate / initialize the internal buffer */ |
| 462 | ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL); |
| 463 | if (!ns->buf.byte) { |
| 464 | NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n", |
| 465 | ns->geom.pgszoob); |
| 466 | goto error; |
| 467 | } |
| 468 | memset(ns->buf.byte, 0xFF, ns->geom.pgszoob); |
| 469 | |
| 470 | /* Fill the partition_info structure */ |
| 471 | ns->part.name = "NAND simulator partition"; |
| 472 | ns->part.offset = 0; |
| 473 | ns->part.size = ns->geom.totsz; |
| 474 | |
| 475 | return 0; |
| 476 | |
| 477 | error: |
| 478 | #ifdef CONFIG_NS_ABS_POS |
| 479 | iounmap(ns->mem.byte); |
| 480 | #else |
| 481 | vfree(ns->mem.byte); |
| 482 | #endif |
| 483 | |
| 484 | return -ENOMEM; |
| 485 | } |
| 486 | |
| 487 | /* |
| 488 | * Free the nandsim structure. |
| 489 | */ |
| 490 | static void |
| 491 | free_nandsim(struct nandsim *ns) |
| 492 | { |
| 493 | kfree(ns->buf.byte); |
| 494 | |
| 495 | #ifdef CONFIG_NS_ABS_POS |
| 496 | iounmap(ns->mem.byte); |
| 497 | #else |
| 498 | vfree(ns->mem.byte); |
| 499 | #endif |
| 500 | |
| 501 | return; |
| 502 | } |
| 503 | |
| 504 | /* |
| 505 | * Returns the string representation of 'state' state. |
| 506 | */ |
| 507 | static char * |
| 508 | get_state_name(uint32_t state) |
| 509 | { |
| 510 | switch (NS_STATE(state)) { |
| 511 | case STATE_CMD_READ0: |
| 512 | return "STATE_CMD_READ0"; |
| 513 | case STATE_CMD_READ1: |
| 514 | return "STATE_CMD_READ1"; |
| 515 | case STATE_CMD_PAGEPROG: |
| 516 | return "STATE_CMD_PAGEPROG"; |
| 517 | case STATE_CMD_READOOB: |
| 518 | return "STATE_CMD_READOOB"; |
| 519 | case STATE_CMD_READSTART: |
| 520 | return "STATE_CMD_READSTART"; |
| 521 | case STATE_CMD_ERASE1: |
| 522 | return "STATE_CMD_ERASE1"; |
| 523 | case STATE_CMD_STATUS: |
| 524 | return "STATE_CMD_STATUS"; |
| 525 | case STATE_CMD_STATUS_M: |
| 526 | return "STATE_CMD_STATUS_M"; |
| 527 | case STATE_CMD_SEQIN: |
| 528 | return "STATE_CMD_SEQIN"; |
| 529 | case STATE_CMD_READID: |
| 530 | return "STATE_CMD_READID"; |
| 531 | case STATE_CMD_ERASE2: |
| 532 | return "STATE_CMD_ERASE2"; |
| 533 | case STATE_CMD_RESET: |
| 534 | return "STATE_CMD_RESET"; |
| 535 | case STATE_ADDR_PAGE: |
| 536 | return "STATE_ADDR_PAGE"; |
| 537 | case STATE_ADDR_SEC: |
| 538 | return "STATE_ADDR_SEC"; |
| 539 | case STATE_ADDR_ZERO: |
| 540 | return "STATE_ADDR_ZERO"; |
| 541 | case STATE_DATAIN: |
| 542 | return "STATE_DATAIN"; |
| 543 | case STATE_DATAOUT: |
| 544 | return "STATE_DATAOUT"; |
| 545 | case STATE_DATAOUT_ID: |
| 546 | return "STATE_DATAOUT_ID"; |
| 547 | case STATE_DATAOUT_STATUS: |
| 548 | return "STATE_DATAOUT_STATUS"; |
| 549 | case STATE_DATAOUT_STATUS_M: |
| 550 | return "STATE_DATAOUT_STATUS_M"; |
| 551 | case STATE_READY: |
| 552 | return "STATE_READY"; |
| 553 | case STATE_UNKNOWN: |
| 554 | return "STATE_UNKNOWN"; |
| 555 | } |
| 556 | |
| 557 | NS_ERR("get_state_name: unknown state, BUG\n"); |
| 558 | return NULL; |
| 559 | } |
| 560 | |
| 561 | /* |
| 562 | * Check if command is valid. |
| 563 | * |
| 564 | * RETURNS: 1 if wrong command, 0 if right. |
| 565 | */ |
| 566 | static int |
| 567 | check_command(int cmd) |
| 568 | { |
| 569 | switch (cmd) { |
| 570 | |
| 571 | case NAND_CMD_READ0: |
| 572 | case NAND_CMD_READSTART: |
| 573 | case NAND_CMD_PAGEPROG: |
| 574 | case NAND_CMD_READOOB: |
| 575 | case NAND_CMD_ERASE1: |
| 576 | case NAND_CMD_STATUS: |
| 577 | case NAND_CMD_SEQIN: |
| 578 | case NAND_CMD_READID: |
| 579 | case NAND_CMD_ERASE2: |
| 580 | case NAND_CMD_RESET: |
| 581 | case NAND_CMD_READ1: |
| 582 | return 0; |
| 583 | |
| 584 | case NAND_CMD_STATUS_MULTI: |
| 585 | default: |
| 586 | return 1; |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | /* |
| 591 | * Returns state after command is accepted by command number. |
| 592 | */ |
| 593 | static uint32_t |
| 594 | get_state_by_command(unsigned command) |
| 595 | { |
| 596 | switch (command) { |
| 597 | case NAND_CMD_READ0: |
| 598 | return STATE_CMD_READ0; |
| 599 | case NAND_CMD_READ1: |
| 600 | return STATE_CMD_READ1; |
| 601 | case NAND_CMD_PAGEPROG: |
| 602 | return STATE_CMD_PAGEPROG; |
| 603 | case NAND_CMD_READSTART: |
| 604 | return STATE_CMD_READSTART; |
| 605 | case NAND_CMD_READOOB: |
| 606 | return STATE_CMD_READOOB; |
| 607 | case NAND_CMD_ERASE1: |
| 608 | return STATE_CMD_ERASE1; |
| 609 | case NAND_CMD_STATUS: |
| 610 | return STATE_CMD_STATUS; |
| 611 | case NAND_CMD_STATUS_MULTI: |
| 612 | return STATE_CMD_STATUS_M; |
| 613 | case NAND_CMD_SEQIN: |
| 614 | return STATE_CMD_SEQIN; |
| 615 | case NAND_CMD_READID: |
| 616 | return STATE_CMD_READID; |
| 617 | case NAND_CMD_ERASE2: |
| 618 | return STATE_CMD_ERASE2; |
| 619 | case NAND_CMD_RESET: |
| 620 | return STATE_CMD_RESET; |
| 621 | } |
| 622 | |
| 623 | NS_ERR("get_state_by_command: unknown command, BUG\n"); |
| 624 | return 0; |
| 625 | } |
| 626 | |
| 627 | /* |
| 628 | * Move an address byte to the correspondent internal register. |
| 629 | */ |
| 630 | static inline void |
| 631 | accept_addr_byte(struct nandsim *ns, u_char bt) |
| 632 | { |
| 633 | uint byte = (uint)bt; |
| 634 | |
| 635 | if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) |
| 636 | ns->regs.column |= (byte << 8 * ns->regs.count); |
| 637 | else { |
| 638 | ns->regs.row |= (byte << 8 * (ns->regs.count - |
| 639 | ns->geom.pgaddrbytes + |
| 640 | ns->geom.secaddrbytes)); |
| 641 | } |
| 642 | |
| 643 | return; |
| 644 | } |
| 645 | |
| 646 | /* |
| 647 | * Switch to STATE_READY state. |
| 648 | */ |
| 649 | static inline void |
| 650 | switch_to_ready_state(struct nandsim *ns, u_char status) |
| 651 | { |
| 652 | NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY)); |
| 653 | |
| 654 | ns->state = STATE_READY; |
| 655 | ns->nxstate = STATE_UNKNOWN; |
| 656 | ns->op = NULL; |
| 657 | ns->npstates = 0; |
| 658 | ns->stateidx = 0; |
| 659 | ns->regs.num = 0; |
| 660 | ns->regs.count = 0; |
| 661 | ns->regs.off = 0; |
| 662 | ns->regs.row = 0; |
| 663 | ns->regs.column = 0; |
| 664 | ns->regs.status = status; |
| 665 | } |
| 666 | |
| 667 | /* |
| 668 | * If the operation isn't known yet, try to find it in the global array |
| 669 | * of supported operations. |
| 670 | * |
| 671 | * Operation can be unknown because of the following. |
| 672 | * 1. New command was accepted and this is the firs call to find the |
| 673 | * correspondent states chain. In this case ns->npstates = 0; |
| 674 | * 2. There is several operations which begin with the same command(s) |
| 675 | * (for example program from the second half and read from the |
| 676 | * second half operations both begin with the READ1 command). In this |
| 677 | * case the ns->pstates[] array contains previous states. |
| 678 | * |
| 679 | * Thus, the function tries to find operation containing the following |
| 680 | * states (if the 'flag' parameter is 0): |
| 681 | * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state |
| 682 | * |
| 683 | * If (one and only one) matching operation is found, it is accepted ( |
| 684 | * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is |
| 685 | * zeroed). |
| 686 | * |
| 687 | * If there are several maches, the current state is pushed to the |
| 688 | * ns->pstates. |
| 689 | * |
| 690 | * The operation can be unknown only while commands are input to the chip. |
| 691 | * As soon as address command is accepted, the operation must be known. |
| 692 | * In such situation the function is called with 'flag' != 0, and the |
| 693 | * operation is searched using the following pattern: |
| 694 | * ns->pstates[0], ... ns->pstates[ns->npstates], <address input> |
| 695 | * |
| 696 | * It is supposed that this pattern must either match one operation on |
| 697 | * none. There can't be ambiguity in that case. |
| 698 | * |
| 699 | * If no matches found, the functions does the following: |
| 700 | * 1. if there are saved states present, try to ignore them and search |
| 701 | * again only using the last command. If nothing was found, switch |
| 702 | * to the STATE_READY state. |
| 703 | * 2. if there are no saved states, switch to the STATE_READY state. |
| 704 | * |
| 705 | * RETURNS: -2 - no matched operations found. |
| 706 | * -1 - several matches. |
| 707 | * 0 - operation is found. |
| 708 | */ |
| 709 | static int |
| 710 | find_operation(struct nandsim *ns, uint32_t flag) |
| 711 | { |
| 712 | int opsfound = 0; |
| 713 | int i, j, idx = 0; |
| 714 | |
| 715 | for (i = 0; i < NS_OPER_NUM; i++) { |
| 716 | |
| 717 | int found = 1; |
| 718 | |
| 719 | if (!(ns->options & ops[i].reqopts)) |
| 720 | /* Ignore operations we can't perform */ |
| 721 | continue; |
| 722 | |
| 723 | if (flag) { |
| 724 | if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK)) |
| 725 | continue; |
| 726 | } else { |
| 727 | if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates])) |
| 728 | continue; |
| 729 | } |
| 730 | |
| 731 | for (j = 0; j < ns->npstates; j++) |
| 732 | if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j]) |
| 733 | && (ns->options & ops[idx].reqopts)) { |
| 734 | found = 0; |
| 735 | break; |
| 736 | } |
| 737 | |
| 738 | if (found) { |
| 739 | idx = i; |
| 740 | opsfound += 1; |
| 741 | } |
| 742 | } |
| 743 | |
| 744 | if (opsfound == 1) { |
| 745 | /* Exact match */ |
| 746 | ns->op = &ops[idx].states[0]; |
| 747 | if (flag) { |
| 748 | /* |
| 749 | * In this case the find_operation function was |
| 750 | * called when address has just began input. But it isn't |
| 751 | * yet fully input and the current state must |
| 752 | * not be one of STATE_ADDR_*, but the STATE_ADDR_* |
| 753 | * state must be the next state (ns->nxstate). |
| 754 | */ |
| 755 | ns->stateidx = ns->npstates - 1; |
| 756 | } else { |
| 757 | ns->stateidx = ns->npstates; |
| 758 | } |
| 759 | ns->npstates = 0; |
| 760 | ns->state = ns->op[ns->stateidx]; |
| 761 | ns->nxstate = ns->op[ns->stateidx + 1]; |
| 762 | NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n", |
| 763 | idx, get_state_name(ns->state), get_state_name(ns->nxstate)); |
| 764 | return 0; |
| 765 | } |
| 766 | |
| 767 | if (opsfound == 0) { |
| 768 | /* Nothing was found. Try to ignore previous commands (if any) and search again */ |
| 769 | if (ns->npstates != 0) { |
| 770 | NS_DBG("find_operation: no operation found, try again with state %s\n", |
| 771 | get_state_name(ns->state)); |
| 772 | ns->npstates = 0; |
| 773 | return find_operation(ns, 0); |
| 774 | |
| 775 | } |
| 776 | NS_DBG("find_operation: no operations found\n"); |
| 777 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 778 | return -2; |
| 779 | } |
| 780 | |
| 781 | if (flag) { |
| 782 | /* This shouldn't happen */ |
| 783 | NS_DBG("find_operation: BUG, operation must be known if address is input\n"); |
| 784 | return -2; |
| 785 | } |
| 786 | |
| 787 | NS_DBG("find_operation: there is still ambiguity\n"); |
| 788 | |
| 789 | ns->pstates[ns->npstates++] = ns->state; |
| 790 | |
| 791 | return -1; |
| 792 | } |
| 793 | |
| 794 | /* |
| 795 | * If state has any action bit, perform this action. |
| 796 | * |
| 797 | * RETURNS: 0 if success, -1 if error. |
| 798 | */ |
| 799 | static int |
| 800 | do_state_action(struct nandsim *ns, uint32_t action) |
| 801 | { |
| 802 | int i, num; |
| 803 | int busdiv = ns->busw == 8 ? 1 : 2; |
| 804 | |
| 805 | action &= ACTION_MASK; |
| 806 | |
| 807 | /* Check that page address input is correct */ |
| 808 | if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) { |
| 809 | NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row); |
| 810 | return -1; |
| 811 | } |
| 812 | |
| 813 | switch (action) { |
| 814 | |
| 815 | case ACTION_CPY: |
| 816 | /* |
| 817 | * Copy page data to the internal buffer. |
| 818 | */ |
| 819 | |
| 820 | /* Column shouldn't be very large */ |
| 821 | if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) { |
| 822 | NS_ERR("do_state_action: column number is too large\n"); |
| 823 | break; |
| 824 | } |
| 825 | num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; |
| 826 | memcpy(ns->buf.byte, ns->mem.byte + NS_RAW_OFFSET(ns) + ns->regs.off, num); |
| 827 | |
| 828 | NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n", |
| 829 | num, NS_RAW_OFFSET(ns) + ns->regs.off); |
| 830 | |
| 831 | if (ns->regs.off == 0) |
| 832 | NS_LOG("read page %d\n", ns->regs.row); |
| 833 | else if (ns->regs.off < ns->geom.pgsz) |
| 834 | NS_LOG("read page %d (second half)\n", ns->regs.row); |
| 835 | else |
| 836 | NS_LOG("read OOB of page %d\n", ns->regs.row); |
| 837 | |
| 838 | NS_UDELAY(access_delay); |
| 839 | NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv); |
| 840 | |
| 841 | break; |
| 842 | |
| 843 | case ACTION_SECERASE: |
| 844 | /* |
| 845 | * Erase sector. |
| 846 | */ |
| 847 | |
| 848 | if (ns->lines.wp) { |
| 849 | NS_ERR("do_state_action: device is write-protected, ignore sector erase\n"); |
| 850 | return -1; |
| 851 | } |
| 852 | |
| 853 | if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec |
| 854 | || (ns->regs.row & ~(ns->geom.secsz - 1))) { |
| 855 | NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row); |
| 856 | return -1; |
| 857 | } |
| 858 | |
| 859 | ns->regs.row = (ns->regs.row << |
| 860 | 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column; |
| 861 | ns->regs.column = 0; |
| 862 | |
| 863 | NS_DBG("do_state_action: erase sector at address %#x, off = %d\n", |
| 864 | ns->regs.row, NS_RAW_OFFSET(ns)); |
| 865 | NS_LOG("erase sector %d\n", ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift)); |
| 866 | |
| 867 | memset(ns->mem.byte + NS_RAW_OFFSET(ns), 0xFF, ns->geom.secszoob); |
| 868 | |
| 869 | NS_MDELAY(erase_delay); |
| 870 | |
| 871 | break; |
| 872 | |
| 873 | case ACTION_PRGPAGE: |
| 874 | /* |
| 875 | * Programm page - move internal buffer data to the page. |
| 876 | */ |
| 877 | |
| 878 | if (ns->lines.wp) { |
| 879 | NS_WARN("do_state_action: device is write-protected, programm\n"); |
| 880 | return -1; |
| 881 | } |
| 882 | |
| 883 | num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; |
| 884 | if (num != ns->regs.count) { |
| 885 | NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n", |
| 886 | ns->regs.count, num); |
| 887 | return -1; |
| 888 | } |
| 889 | |
| 890 | for (i = 0; i < num; i++) |
| 891 | ns->mem.byte[NS_RAW_OFFSET(ns) + ns->regs.off + i] &= ns->buf.byte[i]; |
| 892 | |
| 893 | NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n", |
| 894 | num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off); |
| 895 | NS_LOG("programm page %d\n", ns->regs.row); |
| 896 | |
| 897 | NS_UDELAY(programm_delay); |
| 898 | NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv); |
| 899 | |
| 900 | break; |
| 901 | |
| 902 | case ACTION_ZEROOFF: |
| 903 | NS_DBG("do_state_action: set internal offset to 0\n"); |
| 904 | ns->regs.off = 0; |
| 905 | break; |
| 906 | |
| 907 | case ACTION_HALFOFF: |
| 908 | if (!(ns->options & OPT_PAGE512_8BIT)) { |
| 909 | NS_ERR("do_state_action: BUG! can't skip half of page for non-512" |
| 910 | "byte page size 8x chips\n"); |
| 911 | return -1; |
| 912 | } |
| 913 | NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2); |
| 914 | ns->regs.off = ns->geom.pgsz/2; |
| 915 | break; |
| 916 | |
| 917 | case ACTION_OOBOFF: |
| 918 | NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz); |
| 919 | ns->regs.off = ns->geom.pgsz; |
| 920 | break; |
| 921 | |
| 922 | default: |
| 923 | NS_DBG("do_state_action: BUG! unknown action\n"); |
| 924 | } |
| 925 | |
| 926 | return 0; |
| 927 | } |
| 928 | |
| 929 | /* |
| 930 | * Switch simulator's state. |
| 931 | */ |
| 932 | static void |
| 933 | switch_state(struct nandsim *ns) |
| 934 | { |
| 935 | if (ns->op) { |
| 936 | /* |
| 937 | * The current operation have already been identified. |
| 938 | * Just follow the states chain. |
| 939 | */ |
| 940 | |
| 941 | ns->stateidx += 1; |
| 942 | ns->state = ns->nxstate; |
| 943 | ns->nxstate = ns->op[ns->stateidx + 1]; |
| 944 | |
| 945 | NS_DBG("switch_state: operation is known, switch to the next state, " |
| 946 | "state: %s, nxstate: %s\n", |
| 947 | get_state_name(ns->state), get_state_name(ns->nxstate)); |
| 948 | |
| 949 | /* See, whether we need to do some action */ |
| 950 | if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { |
| 951 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 952 | return; |
| 953 | } |
| 954 | |
| 955 | } else { |
| 956 | /* |
| 957 | * We don't yet know which operation we perform. |
| 958 | * Try to identify it. |
| 959 | */ |
| 960 | |
| 961 | /* |
| 962 | * The only event causing the switch_state function to |
| 963 | * be called with yet unknown operation is new command. |
| 964 | */ |
| 965 | ns->state = get_state_by_command(ns->regs.command); |
| 966 | |
| 967 | NS_DBG("switch_state: operation is unknown, try to find it\n"); |
| 968 | |
| 969 | if (find_operation(ns, 0) != 0) |
| 970 | return; |
| 971 | |
| 972 | if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { |
| 973 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 974 | return; |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | /* For 16x devices column means the page offset in words */ |
| 979 | if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) { |
| 980 | NS_DBG("switch_state: double the column number for 16x device\n"); |
| 981 | ns->regs.column <<= 1; |
| 982 | } |
| 983 | |
| 984 | if (NS_STATE(ns->nxstate) == STATE_READY) { |
| 985 | /* |
| 986 | * The current state is the last. Return to STATE_READY |
| 987 | */ |
| 988 | |
| 989 | u_char status = NS_STATUS_OK(ns); |
| 990 | |
| 991 | /* In case of data states, see if all bytes were input/output */ |
| 992 | if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) |
| 993 | && ns->regs.count != ns->regs.num) { |
| 994 | NS_WARN("switch_state: not all bytes were processed, %d left\n", |
| 995 | ns->regs.num - ns->regs.count); |
| 996 | status = NS_STATUS_FAILED(ns); |
| 997 | } |
| 998 | |
| 999 | NS_DBG("switch_state: operation complete, switch to STATE_READY state\n"); |
| 1000 | |
| 1001 | switch_to_ready_state(ns, status); |
| 1002 | |
| 1003 | return; |
| 1004 | } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) { |
| 1005 | /* |
| 1006 | * If the next state is data input/output, switch to it now |
| 1007 | */ |
| 1008 | |
| 1009 | ns->state = ns->nxstate; |
| 1010 | ns->nxstate = ns->op[++ns->stateidx + 1]; |
| 1011 | ns->regs.num = ns->regs.count = 0; |
| 1012 | |
| 1013 | NS_DBG("switch_state: the next state is data I/O, switch, " |
| 1014 | "state: %s, nxstate: %s\n", |
| 1015 | get_state_name(ns->state), get_state_name(ns->nxstate)); |
| 1016 | |
| 1017 | /* |
| 1018 | * Set the internal register to the count of bytes which |
| 1019 | * are expected to be input or output |
| 1020 | */ |
| 1021 | switch (NS_STATE(ns->state)) { |
| 1022 | case STATE_DATAIN: |
| 1023 | case STATE_DATAOUT: |
| 1024 | ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; |
| 1025 | break; |
| 1026 | |
| 1027 | case STATE_DATAOUT_ID: |
| 1028 | ns->regs.num = ns->geom.idbytes; |
| 1029 | break; |
| 1030 | |
| 1031 | case STATE_DATAOUT_STATUS: |
| 1032 | case STATE_DATAOUT_STATUS_M: |
| 1033 | ns->regs.count = ns->regs.num = 0; |
| 1034 | break; |
| 1035 | |
| 1036 | default: |
| 1037 | NS_ERR("switch_state: BUG! unknown data state\n"); |
| 1038 | } |
| 1039 | |
| 1040 | } else if (ns->nxstate & STATE_ADDR_MASK) { |
| 1041 | /* |
| 1042 | * If the next state is address input, set the internal |
| 1043 | * register to the number of expected address bytes |
| 1044 | */ |
| 1045 | |
| 1046 | ns->regs.count = 0; |
| 1047 | |
| 1048 | switch (NS_STATE(ns->nxstate)) { |
| 1049 | case STATE_ADDR_PAGE: |
| 1050 | ns->regs.num = ns->geom.pgaddrbytes; |
| 1051 | |
| 1052 | break; |
| 1053 | case STATE_ADDR_SEC: |
| 1054 | ns->regs.num = ns->geom.secaddrbytes; |
| 1055 | break; |
| 1056 | |
| 1057 | case STATE_ADDR_ZERO: |
| 1058 | ns->regs.num = 1; |
| 1059 | break; |
| 1060 | |
| 1061 | default: |
| 1062 | NS_ERR("switch_state: BUG! unknown address state\n"); |
| 1063 | } |
| 1064 | } else { |
| 1065 | /* |
| 1066 | * Just reset internal counters. |
| 1067 | */ |
| 1068 | |
| 1069 | ns->regs.num = 0; |
| 1070 | ns->regs.count = 0; |
| 1071 | } |
| 1072 | } |
| 1073 | |
| 1074 | static void |
| 1075 | ns_hwcontrol(struct mtd_info *mtd, int cmd) |
| 1076 | { |
| 1077 | struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv; |
| 1078 | |
| 1079 | switch (cmd) { |
| 1080 | |
| 1081 | /* set CLE line high */ |
| 1082 | case NAND_CTL_SETCLE: |
| 1083 | NS_DBG("ns_hwcontrol: start command latch cycles\n"); |
| 1084 | ns->lines.cle = 1; |
| 1085 | break; |
| 1086 | |
| 1087 | /* set CLE line low */ |
| 1088 | case NAND_CTL_CLRCLE: |
| 1089 | NS_DBG("ns_hwcontrol: stop command latch cycles\n"); |
| 1090 | ns->lines.cle = 0; |
| 1091 | break; |
| 1092 | |
| 1093 | /* set ALE line high */ |
| 1094 | case NAND_CTL_SETALE: |
| 1095 | NS_DBG("ns_hwcontrol: start address latch cycles\n"); |
| 1096 | ns->lines.ale = 1; |
| 1097 | break; |
| 1098 | |
| 1099 | /* set ALE line low */ |
| 1100 | case NAND_CTL_CLRALE: |
| 1101 | NS_DBG("ns_hwcontrol: stop address latch cycles\n"); |
| 1102 | ns->lines.ale = 0; |
| 1103 | break; |
| 1104 | |
| 1105 | /* set WP line high */ |
| 1106 | case NAND_CTL_SETWP: |
| 1107 | NS_DBG("ns_hwcontrol: enable write protection\n"); |
| 1108 | ns->lines.wp = 1; |
| 1109 | break; |
| 1110 | |
| 1111 | /* set WP line low */ |
| 1112 | case NAND_CTL_CLRWP: |
| 1113 | NS_DBG("ns_hwcontrol: disable write protection\n"); |
| 1114 | ns->lines.wp = 0; |
| 1115 | break; |
| 1116 | |
| 1117 | /* set CE line low */ |
| 1118 | case NAND_CTL_SETNCE: |
| 1119 | NS_DBG("ns_hwcontrol: enable chip\n"); |
| 1120 | ns->lines.ce = 1; |
| 1121 | break; |
| 1122 | |
| 1123 | /* set CE line high */ |
| 1124 | case NAND_CTL_CLRNCE: |
| 1125 | NS_DBG("ns_hwcontrol: disable chip\n"); |
| 1126 | ns->lines.ce = 0; |
| 1127 | break; |
| 1128 | |
| 1129 | default: |
| 1130 | NS_ERR("hwcontrol: unknown command\n"); |
| 1131 | } |
| 1132 | |
| 1133 | return; |
| 1134 | } |
| 1135 | |
| 1136 | static u_char |
| 1137 | ns_nand_read_byte(struct mtd_info *mtd) |
| 1138 | { |
| 1139 | struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv; |
| 1140 | u_char outb = 0x00; |
| 1141 | |
| 1142 | /* Sanity and correctness checks */ |
| 1143 | if (!ns->lines.ce) { |
| 1144 | NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb); |
| 1145 | return outb; |
| 1146 | } |
| 1147 | if (ns->lines.ale || ns->lines.cle) { |
| 1148 | NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb); |
| 1149 | return outb; |
| 1150 | } |
| 1151 | if (!(ns->state & STATE_DATAOUT_MASK)) { |
| 1152 | NS_WARN("read_byte: unexpected data output cycle, state is %s " |
| 1153 | "return %#x\n", get_state_name(ns->state), (uint)outb); |
| 1154 | return outb; |
| 1155 | } |
| 1156 | |
| 1157 | /* Status register may be read as many times as it is wanted */ |
| 1158 | if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) { |
| 1159 | NS_DBG("read_byte: return %#x status\n", ns->regs.status); |
| 1160 | return ns->regs.status; |
| 1161 | } |
| 1162 | |
| 1163 | /* Check if there is any data in the internal buffer which may be read */ |
| 1164 | if (ns->regs.count == ns->regs.num) { |
| 1165 | NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb); |
| 1166 | return outb; |
| 1167 | } |
| 1168 | |
| 1169 | switch (NS_STATE(ns->state)) { |
| 1170 | case STATE_DATAOUT: |
| 1171 | if (ns->busw == 8) { |
| 1172 | outb = ns->buf.byte[ns->regs.count]; |
| 1173 | ns->regs.count += 1; |
| 1174 | } else { |
| 1175 | outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]); |
| 1176 | ns->regs.count += 2; |
| 1177 | } |
| 1178 | break; |
| 1179 | case STATE_DATAOUT_ID: |
| 1180 | NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num); |
| 1181 | outb = ns->ids[ns->regs.count]; |
| 1182 | ns->regs.count += 1; |
| 1183 | break; |
| 1184 | default: |
| 1185 | BUG(); |
| 1186 | } |
| 1187 | |
| 1188 | if (ns->regs.count == ns->regs.num) { |
| 1189 | NS_DBG("read_byte: all bytes were read\n"); |
| 1190 | |
| 1191 | /* |
| 1192 | * The OPT_AUTOINCR allows to read next conseqitive pages without |
| 1193 | * new read operation cycle. |
| 1194 | */ |
| 1195 | if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) { |
| 1196 | ns->regs.count = 0; |
| 1197 | if (ns->regs.row + 1 < ns->geom.pgnum) |
| 1198 | ns->regs.row += 1; |
| 1199 | NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row); |
| 1200 | do_state_action(ns, ACTION_CPY); |
| 1201 | } |
| 1202 | else if (NS_STATE(ns->nxstate) == STATE_READY) |
| 1203 | switch_state(ns); |
| 1204 | |
| 1205 | } |
| 1206 | |
| 1207 | return outb; |
| 1208 | } |
| 1209 | |
| 1210 | static void |
| 1211 | ns_nand_write_byte(struct mtd_info *mtd, u_char byte) |
| 1212 | { |
| 1213 | struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv; |
| 1214 | |
| 1215 | /* Sanity and correctness checks */ |
| 1216 | if (!ns->lines.ce) { |
| 1217 | NS_ERR("write_byte: chip is disabled, ignore write\n"); |
| 1218 | return; |
| 1219 | } |
| 1220 | if (ns->lines.ale && ns->lines.cle) { |
| 1221 | NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n"); |
| 1222 | return; |
| 1223 | } |
| 1224 | |
| 1225 | if (ns->lines.cle == 1) { |
| 1226 | /* |
| 1227 | * The byte written is a command. |
| 1228 | */ |
| 1229 | |
| 1230 | if (byte == NAND_CMD_RESET) { |
| 1231 | NS_LOG("reset chip\n"); |
| 1232 | switch_to_ready_state(ns, NS_STATUS_OK(ns)); |
| 1233 | return; |
| 1234 | } |
| 1235 | |
| 1236 | /* |
| 1237 | * Chip might still be in STATE_DATAOUT |
| 1238 | * (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or |
| 1239 | * STATE_DATAOUT_STATUS_M state. If so, switch state. |
| 1240 | */ |
| 1241 | if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS |
| 1242 | || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M |
| 1243 | || ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT)) |
| 1244 | switch_state(ns); |
| 1245 | |
| 1246 | /* Check if chip is expecting command */ |
| 1247 | if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) { |
| 1248 | /* |
| 1249 | * We are in situation when something else (not command) |
| 1250 | * was expected but command was input. In this case ignore |
| 1251 | * previous command(s)/state(s) and accept the last one. |
| 1252 | */ |
| 1253 | NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, " |
| 1254 | "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate)); |
| 1255 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 1256 | } |
| 1257 | |
| 1258 | /* Check that the command byte is correct */ |
| 1259 | if (check_command(byte)) { |
| 1260 | NS_ERR("write_byte: unknown command %#x\n", (uint)byte); |
| 1261 | return; |
| 1262 | } |
| 1263 | |
| 1264 | NS_DBG("command byte corresponding to %s state accepted\n", |
| 1265 | get_state_name(get_state_by_command(byte))); |
| 1266 | ns->regs.command = byte; |
| 1267 | switch_state(ns); |
| 1268 | |
| 1269 | } else if (ns->lines.ale == 1) { |
| 1270 | /* |
| 1271 | * The byte written is an address. |
| 1272 | */ |
| 1273 | |
| 1274 | if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) { |
| 1275 | |
| 1276 | NS_DBG("write_byte: operation isn't known yet, identify it\n"); |
| 1277 | |
| 1278 | if (find_operation(ns, 1) < 0) |
| 1279 | return; |
| 1280 | |
| 1281 | if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { |
| 1282 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 1283 | return; |
| 1284 | } |
| 1285 | |
| 1286 | ns->regs.count = 0; |
| 1287 | switch (NS_STATE(ns->nxstate)) { |
| 1288 | case STATE_ADDR_PAGE: |
| 1289 | ns->regs.num = ns->geom.pgaddrbytes; |
| 1290 | break; |
| 1291 | case STATE_ADDR_SEC: |
| 1292 | ns->regs.num = ns->geom.secaddrbytes; |
| 1293 | break; |
| 1294 | case STATE_ADDR_ZERO: |
| 1295 | ns->regs.num = 1; |
| 1296 | break; |
| 1297 | default: |
| 1298 | BUG(); |
| 1299 | } |
| 1300 | } |
| 1301 | |
| 1302 | /* Check that chip is expecting address */ |
| 1303 | if (!(ns->nxstate & STATE_ADDR_MASK)) { |
| 1304 | NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, " |
| 1305 | "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate)); |
| 1306 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 1307 | return; |
| 1308 | } |
| 1309 | |
| 1310 | /* Check if this is expected byte */ |
| 1311 | if (ns->regs.count == ns->regs.num) { |
| 1312 | NS_ERR("write_byte: no more address bytes expected\n"); |
| 1313 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 1314 | return; |
| 1315 | } |
| 1316 | |
| 1317 | accept_addr_byte(ns, byte); |
| 1318 | |
| 1319 | ns->regs.count += 1; |
| 1320 | |
| 1321 | NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n", |
| 1322 | (uint)byte, ns->regs.count, ns->regs.num); |
| 1323 | |
| 1324 | if (ns->regs.count == ns->regs.num) { |
| 1325 | NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column); |
| 1326 | switch_state(ns); |
| 1327 | } |
| 1328 | |
| 1329 | } else { |
| 1330 | /* |
| 1331 | * The byte written is an input data. |
| 1332 | */ |
| 1333 | |
| 1334 | /* Check that chip is expecting data input */ |
| 1335 | if (!(ns->state & STATE_DATAIN_MASK)) { |
| 1336 | NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, " |
| 1337 | "switch to %s\n", (uint)byte, |
| 1338 | get_state_name(ns->state), get_state_name(STATE_READY)); |
| 1339 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 1340 | return; |
| 1341 | } |
| 1342 | |
| 1343 | /* Check if this is expected byte */ |
| 1344 | if (ns->regs.count == ns->regs.num) { |
| 1345 | NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n", |
| 1346 | ns->regs.num); |
| 1347 | return; |
| 1348 | } |
| 1349 | |
| 1350 | if (ns->busw == 8) { |
| 1351 | ns->buf.byte[ns->regs.count] = byte; |
| 1352 | ns->regs.count += 1; |
| 1353 | } else { |
| 1354 | ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte); |
| 1355 | ns->regs.count += 2; |
| 1356 | } |
| 1357 | } |
| 1358 | |
| 1359 | return; |
| 1360 | } |
| 1361 | |
| 1362 | static int |
| 1363 | ns_device_ready(struct mtd_info *mtd) |
| 1364 | { |
| 1365 | NS_DBG("device_ready\n"); |
| 1366 | return 1; |
| 1367 | } |
| 1368 | |
| 1369 | static uint16_t |
| 1370 | ns_nand_read_word(struct mtd_info *mtd) |
| 1371 | { |
| 1372 | struct nand_chip *chip = (struct nand_chip *)mtd->priv; |
| 1373 | |
| 1374 | NS_DBG("read_word\n"); |
| 1375 | |
| 1376 | return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8); |
| 1377 | } |
| 1378 | |
| 1379 | static void |
| 1380 | ns_nand_write_word(struct mtd_info *mtd, uint16_t word) |
| 1381 | { |
| 1382 | struct nand_chip *chip = (struct nand_chip *)mtd->priv; |
| 1383 | |
| 1384 | NS_DBG("write_word\n"); |
| 1385 | |
| 1386 | chip->write_byte(mtd, word & 0xFF); |
| 1387 | chip->write_byte(mtd, word >> 8); |
| 1388 | } |
| 1389 | |
| 1390 | static void |
| 1391 | ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) |
| 1392 | { |
| 1393 | struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv; |
| 1394 | |
| 1395 | /* Check that chip is expecting data input */ |
| 1396 | if (!(ns->state & STATE_DATAIN_MASK)) { |
| 1397 | NS_ERR("write_buf: data input isn't expected, state is %s, " |
| 1398 | "switch to STATE_READY\n", get_state_name(ns->state)); |
| 1399 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 1400 | return; |
| 1401 | } |
| 1402 | |
| 1403 | /* Check if these are expected bytes */ |
| 1404 | if (ns->regs.count + len > ns->regs.num) { |
| 1405 | NS_ERR("write_buf: too many input bytes\n"); |
| 1406 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 1407 | return; |
| 1408 | } |
| 1409 | |
| 1410 | memcpy(ns->buf.byte + ns->regs.count, buf, len); |
| 1411 | ns->regs.count += len; |
| 1412 | |
| 1413 | if (ns->regs.count == ns->regs.num) { |
| 1414 | NS_DBG("write_buf: %d bytes were written\n", ns->regs.count); |
| 1415 | } |
| 1416 | } |
| 1417 | |
| 1418 | static void |
| 1419 | ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) |
| 1420 | { |
| 1421 | struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv; |
| 1422 | |
| 1423 | /* Sanity and correctness checks */ |
| 1424 | if (!ns->lines.ce) { |
| 1425 | NS_ERR("read_buf: chip is disabled\n"); |
| 1426 | return; |
| 1427 | } |
| 1428 | if (ns->lines.ale || ns->lines.cle) { |
| 1429 | NS_ERR("read_buf: ALE or CLE pin is high\n"); |
| 1430 | return; |
| 1431 | } |
| 1432 | if (!(ns->state & STATE_DATAOUT_MASK)) { |
| 1433 | NS_WARN("read_buf: unexpected data output cycle, current state is %s\n", |
| 1434 | get_state_name(ns->state)); |
| 1435 | return; |
| 1436 | } |
| 1437 | |
| 1438 | if (NS_STATE(ns->state) != STATE_DATAOUT) { |
| 1439 | int i; |
| 1440 | |
| 1441 | for (i = 0; i < len; i++) |
| 1442 | buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd); |
| 1443 | |
| 1444 | return; |
| 1445 | } |
| 1446 | |
| 1447 | /* Check if these are expected bytes */ |
| 1448 | if (ns->regs.count + len > ns->regs.num) { |
| 1449 | NS_ERR("read_buf: too many bytes to read\n"); |
| 1450 | switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); |
| 1451 | return; |
| 1452 | } |
| 1453 | |
| 1454 | memcpy(buf, ns->buf.byte + ns->regs.count, len); |
| 1455 | ns->regs.count += len; |
| 1456 | |
| 1457 | if (ns->regs.count == ns->regs.num) { |
| 1458 | if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) { |
| 1459 | ns->regs.count = 0; |
| 1460 | if (ns->regs.row + 1 < ns->geom.pgnum) |
| 1461 | ns->regs.row += 1; |
| 1462 | NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row); |
| 1463 | do_state_action(ns, ACTION_CPY); |
| 1464 | } |
| 1465 | else if (NS_STATE(ns->nxstate) == STATE_READY) |
| 1466 | switch_state(ns); |
| 1467 | } |
| 1468 | |
| 1469 | return; |
| 1470 | } |
| 1471 | |
| 1472 | static int |
| 1473 | ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) |
| 1474 | { |
| 1475 | ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len); |
| 1476 | |
| 1477 | if (!memcmp(buf, &ns_verify_buf[0], len)) { |
| 1478 | NS_DBG("verify_buf: the buffer is OK\n"); |
| 1479 | return 0; |
| 1480 | } else { |
| 1481 | NS_DBG("verify_buf: the buffer is wrong\n"); |
| 1482 | return -EFAULT; |
| 1483 | } |
| 1484 | } |
| 1485 | |
| 1486 | /* |
| 1487 | * Having only NAND chip IDs we call nand_scan which detects NAND flash |
| 1488 | * parameters and then calls scan_bbt in order to scan/find/build the |
| 1489 | * NAND flash bad block table. But since at that moment the NAND flash |
| 1490 | * image isn't allocated in the simulator, errors arise. To avoid this |
| 1491 | * we redefine the scan_bbt callback and initialize the nandsim structure |
| 1492 | * before the flash media scanning. |
| 1493 | */ |
| 1494 | int ns_scan_bbt(struct mtd_info *mtd) |
| 1495 | { |
| 1496 | struct nand_chip *chip = (struct nand_chip *)mtd->priv; |
| 1497 | struct nandsim *ns = (struct nandsim *)(chip->priv); |
| 1498 | int retval; |
| 1499 | |
| 1500 | if (!NS_IS_INITIALIZED(ns)) |
| 1501 | if ((retval = init_nandsim(mtd)) != 0) { |
| 1502 | NS_ERR("scan_bbt: can't initialize the nandsim structure\n"); |
| 1503 | return retval; |
| 1504 | } |
| 1505 | if ((retval = nand_default_bbt(mtd)) != 0) { |
| 1506 | free_nandsim(ns); |
| 1507 | return retval; |
| 1508 | } |
| 1509 | |
| 1510 | return 0; |
| 1511 | } |
| 1512 | |
| 1513 | /* |
| 1514 | * Module initialization function |
| 1515 | */ |
| 1516 | int __init ns_init_module(void) |
| 1517 | { |
| 1518 | struct nand_chip *chip; |
| 1519 | struct nandsim *nand; |
| 1520 | int retval = -ENOMEM; |
| 1521 | |
| 1522 | if (bus_width != 8 && bus_width != 16) { |
| 1523 | NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width); |
| 1524 | return -EINVAL; |
| 1525 | } |
| 1526 | |
| 1527 | /* Allocate and initialize mtd_info, nand_chip and nandsim structures */ |
| 1528 | nsmtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip) |
| 1529 | + sizeof(struct nandsim), GFP_KERNEL); |
| 1530 | if (!nsmtd) { |
| 1531 | NS_ERR("unable to allocate core structures.\n"); |
| 1532 | return -ENOMEM; |
| 1533 | } |
| 1534 | memset(nsmtd, 0, sizeof(struct mtd_info) + sizeof(struct nand_chip) + |
| 1535 | sizeof(struct nandsim)); |
| 1536 | chip = (struct nand_chip *)(nsmtd + 1); |
| 1537 | nsmtd->priv = (void *)chip; |
| 1538 | nand = (struct nandsim *)(chip + 1); |
| 1539 | chip->priv = (void *)nand; |
| 1540 | |
| 1541 | /* |
| 1542 | * Register simulator's callbacks. |
| 1543 | */ |
| 1544 | chip->hwcontrol = ns_hwcontrol; |
| 1545 | chip->read_byte = ns_nand_read_byte; |
| 1546 | chip->dev_ready = ns_device_ready; |
| 1547 | chip->scan_bbt = ns_scan_bbt; |
| 1548 | chip->write_byte = ns_nand_write_byte; |
| 1549 | chip->write_buf = ns_nand_write_buf; |
| 1550 | chip->read_buf = ns_nand_read_buf; |
| 1551 | chip->verify_buf = ns_nand_verify_buf; |
| 1552 | chip->write_word = ns_nand_write_word; |
| 1553 | chip->read_word = ns_nand_read_word; |
| 1554 | chip->eccmode = NAND_ECC_SOFT; |
| 1555 | |
| 1556 | /* |
| 1557 | * Perform minimum nandsim structure initialization to handle |
| 1558 | * the initial ID read command correctly |
| 1559 | */ |
| 1560 | if (third_id_byte != 0xFF || fourth_id_byte != 0xFF) |
| 1561 | nand->geom.idbytes = 4; |
| 1562 | else |
| 1563 | nand->geom.idbytes = 2; |
| 1564 | nand->regs.status = NS_STATUS_OK(nand); |
| 1565 | nand->nxstate = STATE_UNKNOWN; |
| 1566 | nand->options |= OPT_PAGE256; /* temporary value */ |
| 1567 | nand->ids[0] = first_id_byte; |
| 1568 | nand->ids[1] = second_id_byte; |
| 1569 | nand->ids[2] = third_id_byte; |
| 1570 | nand->ids[3] = fourth_id_byte; |
| 1571 | if (bus_width == 16) { |
| 1572 | nand->busw = 16; |
| 1573 | chip->options |= NAND_BUSWIDTH_16; |
| 1574 | } |
| 1575 | |
| 1576 | if ((retval = nand_scan(nsmtd, 1)) != 0) { |
| 1577 | NS_ERR("can't register NAND Simulator\n"); |
| 1578 | if (retval > 0) |
| 1579 | retval = -ENXIO; |
| 1580 | goto error; |
| 1581 | } |
| 1582 | |
| 1583 | /* Register NAND as one big partition */ |
| 1584 | add_mtd_partitions(nsmtd, &nand->part, 1); |
| 1585 | |
| 1586 | return 0; |
| 1587 | |
| 1588 | error: |
| 1589 | kfree(nsmtd); |
| 1590 | |
| 1591 | return retval; |
| 1592 | } |
| 1593 | |
| 1594 | module_init(ns_init_module); |
| 1595 | |
| 1596 | /* |
| 1597 | * Module clean-up function |
| 1598 | */ |
| 1599 | static void __exit ns_cleanup_module(void) |
| 1600 | { |
| 1601 | struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv); |
| 1602 | |
| 1603 | free_nandsim(ns); /* Free nandsim private resources */ |
| 1604 | nand_release(nsmtd); /* Unregisterd drived */ |
| 1605 | kfree(nsmtd); /* Free other structures */ |
| 1606 | } |
| 1607 | |
| 1608 | module_exit(ns_cleanup_module); |
| 1609 | |
| 1610 | MODULE_LICENSE ("GPL"); |
| 1611 | MODULE_AUTHOR ("Artem B. Bityuckiy"); |
| 1612 | MODULE_DESCRIPTION ("The NAND flash simulator"); |
| 1613 | |