blob: a50d9db4b6e4265759b07344546485e77c6afd34 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/fs/ext2/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23 */
24
25#include <linux/smp_lock.h>
26#include <linux/time.h>
27#include <linux/highuid.h>
28#include <linux/pagemap.h>
29#include <linux/quotaops.h>
30#include <linux/module.h>
31#include <linux/writeback.h>
32#include <linux/buffer_head.h>
33#include <linux/mpage.h>
34#include "ext2.h"
35#include "acl.h"
36
37MODULE_AUTHOR("Remy Card and others");
38MODULE_DESCRIPTION("Second Extended Filesystem");
39MODULE_LICENSE("GPL");
40
41static int ext2_update_inode(struct inode * inode, int do_sync);
42
43/*
44 * Test whether an inode is a fast symlink.
45 */
46static inline int ext2_inode_is_fast_symlink(struct inode *inode)
47{
48 int ea_blocks = EXT2_I(inode)->i_file_acl ?
49 (inode->i_sb->s_blocksize >> 9) : 0;
50
51 return (S_ISLNK(inode->i_mode) &&
52 inode->i_blocks - ea_blocks == 0);
53}
54
55/*
Bernard Blackhame072c6f2005-04-16 15:25:45 -070056 * Called at each iput().
57 *
58 * The inode may be "bad" if ext2_read_inode() saw an error from
59 * ext2_get_inode(), so we need to check that to avoid freeing random disk
60 * blocks.
61 */
62void ext2_put_inode(struct inode *inode)
63{
64 if (!is_bad_inode(inode))
65 ext2_discard_prealloc(inode);
66}
67
68/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070069 * Called at the last iput() if i_nlink is zero.
70 */
71void ext2_delete_inode (struct inode * inode)
72{
73 if (is_bad_inode(inode))
74 goto no_delete;
75 EXT2_I(inode)->i_dtime = get_seconds();
76 mark_inode_dirty(inode);
77 ext2_update_inode(inode, inode_needs_sync(inode));
78
79 inode->i_size = 0;
80 if (inode->i_blocks)
81 ext2_truncate (inode);
82 ext2_free_inode (inode);
83
84 return;
85no_delete:
86 clear_inode(inode); /* We must guarantee clearing of inode... */
87}
88
89void ext2_discard_prealloc (struct inode * inode)
90{
91#ifdef EXT2_PREALLOCATE
92 struct ext2_inode_info *ei = EXT2_I(inode);
93 write_lock(&ei->i_meta_lock);
94 if (ei->i_prealloc_count) {
95 unsigned short total = ei->i_prealloc_count;
96 unsigned long block = ei->i_prealloc_block;
97 ei->i_prealloc_count = 0;
98 ei->i_prealloc_block = 0;
99 write_unlock(&ei->i_meta_lock);
100 ext2_free_blocks (inode, block, total);
101 return;
102 } else
103 write_unlock(&ei->i_meta_lock);
104#endif
105}
106
107static int ext2_alloc_block (struct inode * inode, unsigned long goal, int *err)
108{
109#ifdef EXT2FS_DEBUG
110 static unsigned long alloc_hits, alloc_attempts;
111#endif
112 unsigned long result;
113
114
115#ifdef EXT2_PREALLOCATE
116 struct ext2_inode_info *ei = EXT2_I(inode);
117 write_lock(&ei->i_meta_lock);
118 if (ei->i_prealloc_count &&
119 (goal == ei->i_prealloc_block || goal + 1 == ei->i_prealloc_block))
120 {
121 result = ei->i_prealloc_block++;
122 ei->i_prealloc_count--;
123 write_unlock(&ei->i_meta_lock);
124 ext2_debug ("preallocation hit (%lu/%lu).\n",
125 ++alloc_hits, ++alloc_attempts);
126 } else {
127 write_unlock(&ei->i_meta_lock);
128 ext2_discard_prealloc (inode);
129 ext2_debug ("preallocation miss (%lu/%lu).\n",
130 alloc_hits, ++alloc_attempts);
131 if (S_ISREG(inode->i_mode))
132 result = ext2_new_block (inode, goal,
133 &ei->i_prealloc_count,
134 &ei->i_prealloc_block, err);
135 else
136 result = ext2_new_block(inode, goal, NULL, NULL, err);
137 }
138#else
139 result = ext2_new_block (inode, goal, 0, 0, err);
140#endif
141 return result;
142}
143
144typedef struct {
145 __le32 *p;
146 __le32 key;
147 struct buffer_head *bh;
148} Indirect;
149
150static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
151{
152 p->key = *(p->p = v);
153 p->bh = bh;
154}
155
156static inline int verify_chain(Indirect *from, Indirect *to)
157{
158 while (from <= to && from->key == *from->p)
159 from++;
160 return (from > to);
161}
162
163/**
164 * ext2_block_to_path - parse the block number into array of offsets
165 * @inode: inode in question (we are only interested in its superblock)
166 * @i_block: block number to be parsed
167 * @offsets: array to store the offsets in
168 * @boundary: set this non-zero if the referred-to block is likely to be
169 * followed (on disk) by an indirect block.
170 * To store the locations of file's data ext2 uses a data structure common
171 * for UNIX filesystems - tree of pointers anchored in the inode, with
172 * data blocks at leaves and indirect blocks in intermediate nodes.
173 * This function translates the block number into path in that tree -
174 * return value is the path length and @offsets[n] is the offset of
175 * pointer to (n+1)th node in the nth one. If @block is out of range
176 * (negative or too large) warning is printed and zero returned.
177 *
178 * Note: function doesn't find node addresses, so no IO is needed. All
179 * we need to know is the capacity of indirect blocks (taken from the
180 * inode->i_sb).
181 */
182
183/*
184 * Portability note: the last comparison (check that we fit into triple
185 * indirect block) is spelled differently, because otherwise on an
186 * architecture with 32-bit longs and 8Kb pages we might get into trouble
187 * if our filesystem had 8Kb blocks. We might use long long, but that would
188 * kill us on x86. Oh, well, at least the sign propagation does not matter -
189 * i_block would have to be negative in the very beginning, so we would not
190 * get there at all.
191 */
192
193static int ext2_block_to_path(struct inode *inode,
194 long i_block, int offsets[4], int *boundary)
195{
196 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
197 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
198 const long direct_blocks = EXT2_NDIR_BLOCKS,
199 indirect_blocks = ptrs,
200 double_blocks = (1 << (ptrs_bits * 2));
201 int n = 0;
202 int final = 0;
203
204 if (i_block < 0) {
205 ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0");
206 } else if (i_block < direct_blocks) {
207 offsets[n++] = i_block;
208 final = direct_blocks;
209 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
210 offsets[n++] = EXT2_IND_BLOCK;
211 offsets[n++] = i_block;
212 final = ptrs;
213 } else if ((i_block -= indirect_blocks) < double_blocks) {
214 offsets[n++] = EXT2_DIND_BLOCK;
215 offsets[n++] = i_block >> ptrs_bits;
216 offsets[n++] = i_block & (ptrs - 1);
217 final = ptrs;
218 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
219 offsets[n++] = EXT2_TIND_BLOCK;
220 offsets[n++] = i_block >> (ptrs_bits * 2);
221 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
222 offsets[n++] = i_block & (ptrs - 1);
223 final = ptrs;
224 } else {
225 ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big");
226 }
227 if (boundary)
228 *boundary = (i_block & (ptrs - 1)) == (final - 1);
229 return n;
230}
231
232/**
233 * ext2_get_branch - read the chain of indirect blocks leading to data
234 * @inode: inode in question
235 * @depth: depth of the chain (1 - direct pointer, etc.)
236 * @offsets: offsets of pointers in inode/indirect blocks
237 * @chain: place to store the result
238 * @err: here we store the error value
239 *
240 * Function fills the array of triples <key, p, bh> and returns %NULL
241 * if everything went OK or the pointer to the last filled triple
242 * (incomplete one) otherwise. Upon the return chain[i].key contains
243 * the number of (i+1)-th block in the chain (as it is stored in memory,
244 * i.e. little-endian 32-bit), chain[i].p contains the address of that
245 * number (it points into struct inode for i==0 and into the bh->b_data
246 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
247 * block for i>0 and NULL for i==0. In other words, it holds the block
248 * numbers of the chain, addresses they were taken from (and where we can
249 * verify that chain did not change) and buffer_heads hosting these
250 * numbers.
251 *
252 * Function stops when it stumbles upon zero pointer (absent block)
253 * (pointer to last triple returned, *@err == 0)
254 * or when it gets an IO error reading an indirect block
255 * (ditto, *@err == -EIO)
256 * or when it notices that chain had been changed while it was reading
257 * (ditto, *@err == -EAGAIN)
258 * or when it reads all @depth-1 indirect blocks successfully and finds
259 * the whole chain, all way to the data (returns %NULL, *err == 0).
260 */
261static Indirect *ext2_get_branch(struct inode *inode,
262 int depth,
263 int *offsets,
264 Indirect chain[4],
265 int *err)
266{
267 struct super_block *sb = inode->i_sb;
268 Indirect *p = chain;
269 struct buffer_head *bh;
270
271 *err = 0;
272 /* i_data is not going away, no lock needed */
273 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
274 if (!p->key)
275 goto no_block;
276 while (--depth) {
277 bh = sb_bread(sb, le32_to_cpu(p->key));
278 if (!bh)
279 goto failure;
280 read_lock(&EXT2_I(inode)->i_meta_lock);
281 if (!verify_chain(chain, p))
282 goto changed;
283 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
284 read_unlock(&EXT2_I(inode)->i_meta_lock);
285 if (!p->key)
286 goto no_block;
287 }
288 return NULL;
289
290changed:
291 read_unlock(&EXT2_I(inode)->i_meta_lock);
292 brelse(bh);
293 *err = -EAGAIN;
294 goto no_block;
295failure:
296 *err = -EIO;
297no_block:
298 return p;
299}
300
301/**
302 * ext2_find_near - find a place for allocation with sufficient locality
303 * @inode: owner
304 * @ind: descriptor of indirect block.
305 *
306 * This function returns the prefered place for block allocation.
307 * It is used when heuristic for sequential allocation fails.
308 * Rules are:
309 * + if there is a block to the left of our position - allocate near it.
310 * + if pointer will live in indirect block - allocate near that block.
311 * + if pointer will live in inode - allocate in the same cylinder group.
312 *
313 * In the latter case we colour the starting block by the callers PID to
314 * prevent it from clashing with concurrent allocations for a different inode
315 * in the same block group. The PID is used here so that functionally related
316 * files will be close-by on-disk.
317 *
318 * Caller must make sure that @ind is valid and will stay that way.
319 */
320
321static unsigned long ext2_find_near(struct inode *inode, Indirect *ind)
322{
323 struct ext2_inode_info *ei = EXT2_I(inode);
324 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
325 __le32 *p;
326 unsigned long bg_start;
327 unsigned long colour;
328
329 /* Try to find previous block */
330 for (p = ind->p - 1; p >= start; p--)
331 if (*p)
332 return le32_to_cpu(*p);
333
334 /* No such thing, so let's try location of indirect block */
335 if (ind->bh)
336 return ind->bh->b_blocknr;
337
338 /*
339 * It is going to be refered from inode itself? OK, just put it into
340 * the same cylinder group then.
341 */
342 bg_start = (ei->i_block_group * EXT2_BLOCKS_PER_GROUP(inode->i_sb)) +
343 le32_to_cpu(EXT2_SB(inode->i_sb)->s_es->s_first_data_block);
344 colour = (current->pid % 16) *
345 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
346 return bg_start + colour;
347}
348
349/**
350 * ext2_find_goal - find a prefered place for allocation.
351 * @inode: owner
352 * @block: block we want
353 * @chain: chain of indirect blocks
354 * @partial: pointer to the last triple within a chain
355 * @goal: place to store the result.
356 *
357 * Normally this function find the prefered place for block allocation,
358 * stores it in *@goal and returns zero. If the branch had been changed
359 * under us we return -EAGAIN.
360 */
361
362static inline int ext2_find_goal(struct inode *inode,
363 long block,
364 Indirect chain[4],
365 Indirect *partial,
366 unsigned long *goal)
367{
368 struct ext2_inode_info *ei = EXT2_I(inode);
369 write_lock(&ei->i_meta_lock);
370 if ((block == ei->i_next_alloc_block + 1) && ei->i_next_alloc_goal) {
371 ei->i_next_alloc_block++;
372 ei->i_next_alloc_goal++;
373 }
374 if (verify_chain(chain, partial)) {
375 /*
376 * try the heuristic for sequential allocation,
377 * failing that at least try to get decent locality.
378 */
379 if (block == ei->i_next_alloc_block)
380 *goal = ei->i_next_alloc_goal;
381 if (!*goal)
382 *goal = ext2_find_near(inode, partial);
383 write_unlock(&ei->i_meta_lock);
384 return 0;
385 }
386 write_unlock(&ei->i_meta_lock);
387 return -EAGAIN;
388}
389
390/**
391 * ext2_alloc_branch - allocate and set up a chain of blocks.
392 * @inode: owner
393 * @num: depth of the chain (number of blocks to allocate)
394 * @offsets: offsets (in the blocks) to store the pointers to next.
395 * @branch: place to store the chain in.
396 *
397 * This function allocates @num blocks, zeroes out all but the last one,
398 * links them into chain and (if we are synchronous) writes them to disk.
399 * In other words, it prepares a branch that can be spliced onto the
400 * inode. It stores the information about that chain in the branch[], in
401 * the same format as ext2_get_branch() would do. We are calling it after
402 * we had read the existing part of chain and partial points to the last
403 * triple of that (one with zero ->key). Upon the exit we have the same
404 * picture as after the successful ext2_get_block(), excpet that in one
405 * place chain is disconnected - *branch->p is still zero (we did not
406 * set the last link), but branch->key contains the number that should
407 * be placed into *branch->p to fill that gap.
408 *
409 * If allocation fails we free all blocks we've allocated (and forget
410 * their buffer_heads) and return the error value the from failed
411 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
412 * as described above and return 0.
413 */
414
415static int ext2_alloc_branch(struct inode *inode,
416 int num,
417 unsigned long goal,
418 int *offsets,
419 Indirect *branch)
420{
421 int blocksize = inode->i_sb->s_blocksize;
422 int n = 0;
423 int err;
424 int i;
425 int parent = ext2_alloc_block(inode, goal, &err);
426
427 branch[0].key = cpu_to_le32(parent);
428 if (parent) for (n = 1; n < num; n++) {
429 struct buffer_head *bh;
430 /* Allocate the next block */
431 int nr = ext2_alloc_block(inode, parent, &err);
432 if (!nr)
433 break;
434 branch[n].key = cpu_to_le32(nr);
435 /*
436 * Get buffer_head for parent block, zero it out and set
437 * the pointer to new one, then send parent to disk.
438 */
439 bh = sb_getblk(inode->i_sb, parent);
440 lock_buffer(bh);
441 memset(bh->b_data, 0, blocksize);
442 branch[n].bh = bh;
443 branch[n].p = (__le32 *) bh->b_data + offsets[n];
444 *branch[n].p = branch[n].key;
445 set_buffer_uptodate(bh);
446 unlock_buffer(bh);
447 mark_buffer_dirty_inode(bh, inode);
448 /* We used to sync bh here if IS_SYNC(inode).
449 * But we now rely upon generic_osync_inode()
450 * and b_inode_buffers. But not for directories.
451 */
452 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
453 sync_dirty_buffer(bh);
454 parent = nr;
455 }
456 if (n == num)
457 return 0;
458
459 /* Allocation failed, free what we already allocated */
460 for (i = 1; i < n; i++)
461 bforget(branch[i].bh);
462 for (i = 0; i < n; i++)
463 ext2_free_blocks(inode, le32_to_cpu(branch[i].key), 1);
464 return err;
465}
466
467/**
468 * ext2_splice_branch - splice the allocated branch onto inode.
469 * @inode: owner
470 * @block: (logical) number of block we are adding
471 * @chain: chain of indirect blocks (with a missing link - see
472 * ext2_alloc_branch)
473 * @where: location of missing link
474 * @num: number of blocks we are adding
475 *
476 * This function verifies that chain (up to the missing link) had not
477 * changed, fills the missing link and does all housekeeping needed in
478 * inode (->i_blocks, etc.). In case of success we end up with the full
479 * chain to new block and return 0. Otherwise (== chain had been changed)
480 * we free the new blocks (forgetting their buffer_heads, indeed) and
481 * return -EAGAIN.
482 */
483
484static inline int ext2_splice_branch(struct inode *inode,
485 long block,
486 Indirect chain[4],
487 Indirect *where,
488 int num)
489{
490 struct ext2_inode_info *ei = EXT2_I(inode);
491 int i;
492
493 /* Verify that place we are splicing to is still there and vacant */
494
495 write_lock(&ei->i_meta_lock);
496 if (!verify_chain(chain, where-1) || *where->p)
497 goto changed;
498
499 /* That's it */
500
501 *where->p = where->key;
502 ei->i_next_alloc_block = block;
503 ei->i_next_alloc_goal = le32_to_cpu(where[num-1].key);
504
505 write_unlock(&ei->i_meta_lock);
506
507 /* We are done with atomic stuff, now do the rest of housekeeping */
508
509 inode->i_ctime = CURRENT_TIME_SEC;
510
511 /* had we spliced it onto indirect block? */
512 if (where->bh)
513 mark_buffer_dirty_inode(where->bh, inode);
514
515 mark_inode_dirty(inode);
516 return 0;
517
518changed:
519 write_unlock(&ei->i_meta_lock);
520 for (i = 1; i < num; i++)
521 bforget(where[i].bh);
522 for (i = 0; i < num; i++)
523 ext2_free_blocks(inode, le32_to_cpu(where[i].key), 1);
524 return -EAGAIN;
525}
526
527/*
528 * Allocation strategy is simple: if we have to allocate something, we will
529 * have to go the whole way to leaf. So let's do it before attaching anything
530 * to tree, set linkage between the newborn blocks, write them if sync is
531 * required, recheck the path, free and repeat if check fails, otherwise
532 * set the last missing link (that will protect us from any truncate-generated
533 * removals - all blocks on the path are immune now) and possibly force the
534 * write on the parent block.
535 * That has a nice additional property: no special recovery from the failed
536 * allocations is needed - we simply release blocks and do not touch anything
537 * reachable from inode.
538 */
539
540int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
541{
542 int err = -EIO;
543 int offsets[4];
544 Indirect chain[4];
545 Indirect *partial;
546 unsigned long goal;
547 int left;
548 int boundary = 0;
549 int depth = ext2_block_to_path(inode, iblock, offsets, &boundary);
550
551 if (depth == 0)
552 goto out;
553
554reread:
555 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
556
557 /* Simplest case - block found, no allocation needed */
558 if (!partial) {
559got_it:
560 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
561 if (boundary)
562 set_buffer_boundary(bh_result);
563 /* Clean up and exit */
564 partial = chain+depth-1; /* the whole chain */
565 goto cleanup;
566 }
567
568 /* Next simple case - plain lookup or failed read of indirect block */
569 if (!create || err == -EIO) {
570cleanup:
571 while (partial > chain) {
572 brelse(partial->bh);
573 partial--;
574 }
575out:
576 return err;
577 }
578
579 /*
580 * Indirect block might be removed by truncate while we were
581 * reading it. Handling of that case (forget what we've got and
582 * reread) is taken out of the main path.
583 */
584 if (err == -EAGAIN)
585 goto changed;
586
587 goal = 0;
588 if (ext2_find_goal(inode, iblock, chain, partial, &goal) < 0)
589 goto changed;
590
591 left = (chain + depth) - partial;
592 err = ext2_alloc_branch(inode, left, goal,
593 offsets+(partial-chain), partial);
594 if (err)
595 goto cleanup;
596
597 if (ext2_splice_branch(inode, iblock, chain, partial, left) < 0)
598 goto changed;
599
600 set_buffer_new(bh_result);
601 goto got_it;
602
603changed:
604 while (partial > chain) {
605 brelse(partial->bh);
606 partial--;
607 }
608 goto reread;
609}
610
611static int ext2_writepage(struct page *page, struct writeback_control *wbc)
612{
613 return block_write_full_page(page, ext2_get_block, wbc);
614}
615
616static int ext2_readpage(struct file *file, struct page *page)
617{
618 return mpage_readpage(page, ext2_get_block);
619}
620
621static int
622ext2_readpages(struct file *file, struct address_space *mapping,
623 struct list_head *pages, unsigned nr_pages)
624{
625 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
626}
627
628static int
629ext2_prepare_write(struct file *file, struct page *page,
630 unsigned from, unsigned to)
631{
632 return block_prepare_write(page,from,to,ext2_get_block);
633}
634
635static int
636ext2_nobh_prepare_write(struct file *file, struct page *page,
637 unsigned from, unsigned to)
638{
639 return nobh_prepare_write(page,from,to,ext2_get_block);
640}
641
642static int ext2_nobh_writepage(struct page *page,
643 struct writeback_control *wbc)
644{
645 return nobh_writepage(page, ext2_get_block, wbc);
646}
647
648static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
649{
650 return generic_block_bmap(mapping,block,ext2_get_block);
651}
652
653static int
654ext2_get_blocks(struct inode *inode, sector_t iblock, unsigned long max_blocks,
655 struct buffer_head *bh_result, int create)
656{
657 int ret;
658
659 ret = ext2_get_block(inode, iblock, bh_result, create);
660 if (ret == 0)
661 bh_result->b_size = (1 << inode->i_blkbits);
662 return ret;
663}
664
665static ssize_t
666ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
667 loff_t offset, unsigned long nr_segs)
668{
669 struct file *file = iocb->ki_filp;
670 struct inode *inode = file->f_mapping->host;
671
672 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
673 offset, nr_segs, ext2_get_blocks, NULL);
674}
675
676static int
677ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
678{
679 return mpage_writepages(mapping, wbc, ext2_get_block);
680}
681
682struct address_space_operations ext2_aops = {
683 .readpage = ext2_readpage,
684 .readpages = ext2_readpages,
685 .writepage = ext2_writepage,
686 .sync_page = block_sync_page,
687 .prepare_write = ext2_prepare_write,
688 .commit_write = generic_commit_write,
689 .bmap = ext2_bmap,
690 .direct_IO = ext2_direct_IO,
691 .writepages = ext2_writepages,
692};
693
694struct address_space_operations ext2_nobh_aops = {
695 .readpage = ext2_readpage,
696 .readpages = ext2_readpages,
697 .writepage = ext2_nobh_writepage,
698 .sync_page = block_sync_page,
699 .prepare_write = ext2_nobh_prepare_write,
700 .commit_write = nobh_commit_write,
701 .bmap = ext2_bmap,
702 .direct_IO = ext2_direct_IO,
703 .writepages = ext2_writepages,
704};
705
706/*
707 * Probably it should be a library function... search for first non-zero word
708 * or memcmp with zero_page, whatever is better for particular architecture.
709 * Linus?
710 */
711static inline int all_zeroes(__le32 *p, __le32 *q)
712{
713 while (p < q)
714 if (*p++)
715 return 0;
716 return 1;
717}
718
719/**
720 * ext2_find_shared - find the indirect blocks for partial truncation.
721 * @inode: inode in question
722 * @depth: depth of the affected branch
723 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
724 * @chain: place to store the pointers to partial indirect blocks
725 * @top: place to the (detached) top of branch
726 *
727 * This is a helper function used by ext2_truncate().
728 *
729 * When we do truncate() we may have to clean the ends of several indirect
730 * blocks but leave the blocks themselves alive. Block is partially
731 * truncated if some data below the new i_size is refered from it (and
732 * it is on the path to the first completely truncated data block, indeed).
733 * We have to free the top of that path along with everything to the right
734 * of the path. Since no allocation past the truncation point is possible
735 * until ext2_truncate() finishes, we may safely do the latter, but top
736 * of branch may require special attention - pageout below the truncation
737 * point might try to populate it.
738 *
739 * We atomically detach the top of branch from the tree, store the block
740 * number of its root in *@top, pointers to buffer_heads of partially
741 * truncated blocks - in @chain[].bh and pointers to their last elements
742 * that should not be removed - in @chain[].p. Return value is the pointer
743 * to last filled element of @chain.
744 *
745 * The work left to caller to do the actual freeing of subtrees:
746 * a) free the subtree starting from *@top
747 * b) free the subtrees whose roots are stored in
748 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
749 * c) free the subtrees growing from the inode past the @chain[0].p
750 * (no partially truncated stuff there).
751 */
752
753static Indirect *ext2_find_shared(struct inode *inode,
754 int depth,
755 int offsets[4],
756 Indirect chain[4],
757 __le32 *top)
758{
759 Indirect *partial, *p;
760 int k, err;
761
762 *top = 0;
763 for (k = depth; k > 1 && !offsets[k-1]; k--)
764 ;
765 partial = ext2_get_branch(inode, k, offsets, chain, &err);
766 if (!partial)
767 partial = chain + k-1;
768 /*
769 * If the branch acquired continuation since we've looked at it -
770 * fine, it should all survive and (new) top doesn't belong to us.
771 */
772 write_lock(&EXT2_I(inode)->i_meta_lock);
773 if (!partial->key && *partial->p) {
774 write_unlock(&EXT2_I(inode)->i_meta_lock);
775 goto no_top;
776 }
777 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
778 ;
779 /*
780 * OK, we've found the last block that must survive. The rest of our
781 * branch should be detached before unlocking. However, if that rest
782 * of branch is all ours and does not grow immediately from the inode
783 * it's easier to cheat and just decrement partial->p.
784 */
785 if (p == chain + k - 1 && p > chain) {
786 p->p--;
787 } else {
788 *top = *p->p;
789 *p->p = 0;
790 }
791 write_unlock(&EXT2_I(inode)->i_meta_lock);
792
793 while(partial > p)
794 {
795 brelse(partial->bh);
796 partial--;
797 }
798no_top:
799 return partial;
800}
801
802/**
803 * ext2_free_data - free a list of data blocks
804 * @inode: inode we are dealing with
805 * @p: array of block numbers
806 * @q: points immediately past the end of array
807 *
808 * We are freeing all blocks refered from that array (numbers are
809 * stored as little-endian 32-bit) and updating @inode->i_blocks
810 * appropriately.
811 */
812static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
813{
814 unsigned long block_to_free = 0, count = 0;
815 unsigned long nr;
816
817 for ( ; p < q ; p++) {
818 nr = le32_to_cpu(*p);
819 if (nr) {
820 *p = 0;
821 /* accumulate blocks to free if they're contiguous */
822 if (count == 0)
823 goto free_this;
824 else if (block_to_free == nr - count)
825 count++;
826 else {
827 mark_inode_dirty(inode);
828 ext2_free_blocks (inode, block_to_free, count);
829 free_this:
830 block_to_free = nr;
831 count = 1;
832 }
833 }
834 }
835 if (count > 0) {
836 mark_inode_dirty(inode);
837 ext2_free_blocks (inode, block_to_free, count);
838 }
839}
840
841/**
842 * ext2_free_branches - free an array of branches
843 * @inode: inode we are dealing with
844 * @p: array of block numbers
845 * @q: pointer immediately past the end of array
846 * @depth: depth of the branches to free
847 *
848 * We are freeing all blocks refered from these branches (numbers are
849 * stored as little-endian 32-bit) and updating @inode->i_blocks
850 * appropriately.
851 */
852static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
853{
854 struct buffer_head * bh;
855 unsigned long nr;
856
857 if (depth--) {
858 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
859 for ( ; p < q ; p++) {
860 nr = le32_to_cpu(*p);
861 if (!nr)
862 continue;
863 *p = 0;
864 bh = sb_bread(inode->i_sb, nr);
865 /*
866 * A read failure? Report error and clear slot
867 * (should be rare).
868 */
869 if (!bh) {
870 ext2_error(inode->i_sb, "ext2_free_branches",
871 "Read failure, inode=%ld, block=%ld",
872 inode->i_ino, nr);
873 continue;
874 }
875 ext2_free_branches(inode,
876 (__le32*)bh->b_data,
877 (__le32*)bh->b_data + addr_per_block,
878 depth);
879 bforget(bh);
880 ext2_free_blocks(inode, nr, 1);
881 mark_inode_dirty(inode);
882 }
883 } else
884 ext2_free_data(inode, p, q);
885}
886
887void ext2_truncate (struct inode * inode)
888{
889 __le32 *i_data = EXT2_I(inode)->i_data;
890 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
891 int offsets[4];
892 Indirect chain[4];
893 Indirect *partial;
894 __le32 nr = 0;
895 int n;
896 long iblock;
897 unsigned blocksize;
898
899 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
900 S_ISLNK(inode->i_mode)))
901 return;
902 if (ext2_inode_is_fast_symlink(inode))
903 return;
904 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
905 return;
906
907 ext2_discard_prealloc(inode);
908
909 blocksize = inode->i_sb->s_blocksize;
910 iblock = (inode->i_size + blocksize-1)
911 >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
912
913 if (test_opt(inode->i_sb, NOBH))
914 nobh_truncate_page(inode->i_mapping, inode->i_size);
915 else
916 block_truncate_page(inode->i_mapping,
917 inode->i_size, ext2_get_block);
918
919 n = ext2_block_to_path(inode, iblock, offsets, NULL);
920 if (n == 0)
921 return;
922
923 if (n == 1) {
924 ext2_free_data(inode, i_data+offsets[0],
925 i_data + EXT2_NDIR_BLOCKS);
926 goto do_indirects;
927 }
928
929 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
930 /* Kill the top of shared branch (already detached) */
931 if (nr) {
932 if (partial == chain)
933 mark_inode_dirty(inode);
934 else
935 mark_buffer_dirty_inode(partial->bh, inode);
936 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
937 }
938 /* Clear the ends of indirect blocks on the shared branch */
939 while (partial > chain) {
940 ext2_free_branches(inode,
941 partial->p + 1,
942 (__le32*)partial->bh->b_data+addr_per_block,
943 (chain+n-1) - partial);
944 mark_buffer_dirty_inode(partial->bh, inode);
945 brelse (partial->bh);
946 partial--;
947 }
948do_indirects:
949 /* Kill the remaining (whole) subtrees */
950 switch (offsets[0]) {
951 default:
952 nr = i_data[EXT2_IND_BLOCK];
953 if (nr) {
954 i_data[EXT2_IND_BLOCK] = 0;
955 mark_inode_dirty(inode);
956 ext2_free_branches(inode, &nr, &nr+1, 1);
957 }
958 case EXT2_IND_BLOCK:
959 nr = i_data[EXT2_DIND_BLOCK];
960 if (nr) {
961 i_data[EXT2_DIND_BLOCK] = 0;
962 mark_inode_dirty(inode);
963 ext2_free_branches(inode, &nr, &nr+1, 2);
964 }
965 case EXT2_DIND_BLOCK:
966 nr = i_data[EXT2_TIND_BLOCK];
967 if (nr) {
968 i_data[EXT2_TIND_BLOCK] = 0;
969 mark_inode_dirty(inode);
970 ext2_free_branches(inode, &nr, &nr+1, 3);
971 }
972 case EXT2_TIND_BLOCK:
973 ;
974 }
975 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
976 if (inode_needs_sync(inode)) {
977 sync_mapping_buffers(inode->i_mapping);
978 ext2_sync_inode (inode);
979 } else {
980 mark_inode_dirty(inode);
981 }
982}
983
984static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
985 struct buffer_head **p)
986{
987 struct buffer_head * bh;
988 unsigned long block_group;
989 unsigned long block;
990 unsigned long offset;
991 struct ext2_group_desc * gdp;
992
993 *p = NULL;
994 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
995 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
996 goto Einval;
997
998 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
999 gdp = ext2_get_group_desc(sb, block_group, &bh);
1000 if (!gdp)
1001 goto Egdp;
1002 /*
1003 * Figure out the offset within the block group inode table
1004 */
1005 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1006 block = le32_to_cpu(gdp->bg_inode_table) +
1007 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1008 if (!(bh = sb_bread(sb, block)))
1009 goto Eio;
1010
1011 *p = bh;
1012 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1013 return (struct ext2_inode *) (bh->b_data + offset);
1014
1015Einval:
1016 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1017 (unsigned long) ino);
1018 return ERR_PTR(-EINVAL);
1019Eio:
1020 ext2_error(sb, "ext2_get_inode",
1021 "unable to read inode block - inode=%lu, block=%lu",
1022 (unsigned long) ino, block);
1023Egdp:
1024 return ERR_PTR(-EIO);
1025}
1026
1027void ext2_set_inode_flags(struct inode *inode)
1028{
1029 unsigned int flags = EXT2_I(inode)->i_flags;
1030
1031 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1032 if (flags & EXT2_SYNC_FL)
1033 inode->i_flags |= S_SYNC;
1034 if (flags & EXT2_APPEND_FL)
1035 inode->i_flags |= S_APPEND;
1036 if (flags & EXT2_IMMUTABLE_FL)
1037 inode->i_flags |= S_IMMUTABLE;
1038 if (flags & EXT2_NOATIME_FL)
1039 inode->i_flags |= S_NOATIME;
1040 if (flags & EXT2_DIRSYNC_FL)
1041 inode->i_flags |= S_DIRSYNC;
1042}
1043
1044void ext2_read_inode (struct inode * inode)
1045{
1046 struct ext2_inode_info *ei = EXT2_I(inode);
1047 ino_t ino = inode->i_ino;
1048 struct buffer_head * bh;
1049 struct ext2_inode * raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1050 int n;
1051
1052#ifdef CONFIG_EXT2_FS_POSIX_ACL
1053 ei->i_acl = EXT2_ACL_NOT_CACHED;
1054 ei->i_default_acl = EXT2_ACL_NOT_CACHED;
1055#endif
1056 if (IS_ERR(raw_inode))
1057 goto bad_inode;
1058
1059 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1060 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1061 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1062 if (!(test_opt (inode->i_sb, NO_UID32))) {
1063 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1064 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1065 }
1066 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1067 inode->i_size = le32_to_cpu(raw_inode->i_size);
1068 inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime);
1069 inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime);
1070 inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime);
1071 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1072 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1073 /* We now have enough fields to check if the inode was active or not.
1074 * This is needed because nfsd might try to access dead inodes
1075 * the test is that same one that e2fsck uses
1076 * NeilBrown 1999oct15
1077 */
1078 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1079 /* this inode is deleted */
1080 brelse (bh);
1081 goto bad_inode;
1082 }
1083 inode->i_blksize = PAGE_SIZE; /* This is the optimal IO size (for stat), not the fs block size */
1084 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1085 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1086 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1087 ei->i_frag_no = raw_inode->i_frag;
1088 ei->i_frag_size = raw_inode->i_fsize;
1089 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1090 ei->i_dir_acl = 0;
1091 if (S_ISREG(inode->i_mode))
1092 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1093 else
1094 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1095 ei->i_dtime = 0;
1096 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1097 ei->i_state = 0;
1098 ei->i_next_alloc_block = 0;
1099 ei->i_next_alloc_goal = 0;
1100 ei->i_prealloc_count = 0;
1101 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1102 ei->i_dir_start_lookup = 0;
1103
1104 /*
1105 * NOTE! The in-memory inode i_data array is in little-endian order
1106 * even on big-endian machines: we do NOT byteswap the block numbers!
1107 */
1108 for (n = 0; n < EXT2_N_BLOCKS; n++)
1109 ei->i_data[n] = raw_inode->i_block[n];
1110
1111 if (S_ISREG(inode->i_mode)) {
1112 inode->i_op = &ext2_file_inode_operations;
1113 inode->i_fop = &ext2_file_operations;
1114 if (test_opt(inode->i_sb, NOBH))
1115 inode->i_mapping->a_ops = &ext2_nobh_aops;
1116 else
1117 inode->i_mapping->a_ops = &ext2_aops;
1118 } else if (S_ISDIR(inode->i_mode)) {
1119 inode->i_op = &ext2_dir_inode_operations;
1120 inode->i_fop = &ext2_dir_operations;
1121 if (test_opt(inode->i_sb, NOBH))
1122 inode->i_mapping->a_ops = &ext2_nobh_aops;
1123 else
1124 inode->i_mapping->a_ops = &ext2_aops;
1125 } else if (S_ISLNK(inode->i_mode)) {
1126 if (ext2_inode_is_fast_symlink(inode))
1127 inode->i_op = &ext2_fast_symlink_inode_operations;
1128 else {
1129 inode->i_op = &ext2_symlink_inode_operations;
1130 if (test_opt(inode->i_sb, NOBH))
1131 inode->i_mapping->a_ops = &ext2_nobh_aops;
1132 else
1133 inode->i_mapping->a_ops = &ext2_aops;
1134 }
1135 } else {
1136 inode->i_op = &ext2_special_inode_operations;
1137 if (raw_inode->i_block[0])
1138 init_special_inode(inode, inode->i_mode,
1139 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1140 else
1141 init_special_inode(inode, inode->i_mode,
1142 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1143 }
1144 brelse (bh);
1145 ext2_set_inode_flags(inode);
1146 return;
1147
1148bad_inode:
1149 make_bad_inode(inode);
1150 return;
1151}
1152
1153static int ext2_update_inode(struct inode * inode, int do_sync)
1154{
1155 struct ext2_inode_info *ei = EXT2_I(inode);
1156 struct super_block *sb = inode->i_sb;
1157 ino_t ino = inode->i_ino;
1158 uid_t uid = inode->i_uid;
1159 gid_t gid = inode->i_gid;
1160 struct buffer_head * bh;
1161 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1162 int n;
1163 int err = 0;
1164
1165 if (IS_ERR(raw_inode))
1166 return -EIO;
1167
1168 /* For fields not not tracking in the in-memory inode,
1169 * initialise them to zero for new inodes. */
1170 if (ei->i_state & EXT2_STATE_NEW)
1171 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1172
1173 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1174 if (!(test_opt(sb, NO_UID32))) {
1175 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1176 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1177/*
1178 * Fix up interoperability with old kernels. Otherwise, old inodes get
1179 * re-used with the upper 16 bits of the uid/gid intact
1180 */
1181 if (!ei->i_dtime) {
1182 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1183 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1184 } else {
1185 raw_inode->i_uid_high = 0;
1186 raw_inode->i_gid_high = 0;
1187 }
1188 } else {
1189 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1190 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1191 raw_inode->i_uid_high = 0;
1192 raw_inode->i_gid_high = 0;
1193 }
1194 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1195 raw_inode->i_size = cpu_to_le32(inode->i_size);
1196 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1197 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1198 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1199
1200 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1201 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1202 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1203 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1204 raw_inode->i_frag = ei->i_frag_no;
1205 raw_inode->i_fsize = ei->i_frag_size;
1206 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1207 if (!S_ISREG(inode->i_mode))
1208 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1209 else {
1210 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1211 if (inode->i_size > 0x7fffffffULL) {
1212 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1213 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1214 EXT2_SB(sb)->s_es->s_rev_level ==
1215 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1216 /* If this is the first large file
1217 * created, add a flag to the superblock.
1218 */
1219 lock_kernel();
1220 ext2_update_dynamic_rev(sb);
1221 EXT2_SET_RO_COMPAT_FEATURE(sb,
1222 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1223 unlock_kernel();
1224 ext2_write_super(sb);
1225 }
1226 }
1227 }
1228
1229 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1230 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1231 if (old_valid_dev(inode->i_rdev)) {
1232 raw_inode->i_block[0] =
1233 cpu_to_le32(old_encode_dev(inode->i_rdev));
1234 raw_inode->i_block[1] = 0;
1235 } else {
1236 raw_inode->i_block[0] = 0;
1237 raw_inode->i_block[1] =
1238 cpu_to_le32(new_encode_dev(inode->i_rdev));
1239 raw_inode->i_block[2] = 0;
1240 }
1241 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1242 raw_inode->i_block[n] = ei->i_data[n];
1243 mark_buffer_dirty(bh);
1244 if (do_sync) {
1245 sync_dirty_buffer(bh);
1246 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1247 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1248 sb->s_id, (unsigned long) ino);
1249 err = -EIO;
1250 }
1251 }
1252 ei->i_state &= ~EXT2_STATE_NEW;
1253 brelse (bh);
1254 return err;
1255}
1256
1257int ext2_write_inode(struct inode *inode, int wait)
1258{
1259 return ext2_update_inode(inode, wait);
1260}
1261
1262int ext2_sync_inode(struct inode *inode)
1263{
1264 struct writeback_control wbc = {
1265 .sync_mode = WB_SYNC_ALL,
1266 .nr_to_write = 0, /* sys_fsync did this */
1267 };
1268 return sync_inode(inode, &wbc);
1269}
1270
1271int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1272{
1273 struct inode *inode = dentry->d_inode;
1274 int error;
1275
1276 error = inode_change_ok(inode, iattr);
1277 if (error)
1278 return error;
1279 if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1280 (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1281 error = DQUOT_TRANSFER(inode, iattr) ? -EDQUOT : 0;
1282 if (error)
1283 return error;
1284 }
1285 error = inode_setattr(inode, iattr);
1286 if (!error && (iattr->ia_valid & ATTR_MODE))
1287 error = ext2_acl_chmod(inode);
1288 return error;
1289}