Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2006 Oracle. All rights reserved. |
| 3 | * |
| 4 | * This software is available to you under a choice of one of two |
| 5 | * licenses. You may choose to be licensed under the terms of the GNU |
| 6 | * General Public License (GPL) Version 2, available from the file |
| 7 | * COPYING in the main directory of this source tree, or the |
| 8 | * OpenIB.org BSD license below: |
| 9 | * |
| 10 | * Redistribution and use in source and binary forms, with or |
| 11 | * without modification, are permitted provided that the following |
| 12 | * conditions are met: |
| 13 | * |
| 14 | * - Redistributions of source code must retain the above |
| 15 | * copyright notice, this list of conditions and the following |
| 16 | * disclaimer. |
| 17 | * |
| 18 | * - Redistributions in binary form must reproduce the above |
| 19 | * copyright notice, this list of conditions and the following |
| 20 | * disclaimer in the documentation and/or other materials |
| 21 | * provided with the distribution. |
| 22 | * |
| 23 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 24 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 25 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 26 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| 27 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| 28 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 29 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 30 | * SOFTWARE. |
| 31 | * |
| 32 | */ |
| 33 | #include <linux/kernel.h> |
| 34 | |
| 35 | #include "rds.h" |
| 36 | #include "rdma.h" |
| 37 | #include "iw.h" |
| 38 | |
| 39 | |
| 40 | /* |
| 41 | * This is stored as mr->r_trans_private. |
| 42 | */ |
| 43 | struct rds_iw_mr { |
| 44 | struct rds_iw_device *device; |
| 45 | struct rds_iw_mr_pool *pool; |
| 46 | struct rdma_cm_id *cm_id; |
| 47 | |
| 48 | struct ib_mr *mr; |
| 49 | struct ib_fast_reg_page_list *page_list; |
| 50 | |
| 51 | struct rds_iw_mapping mapping; |
| 52 | unsigned char remap_count; |
| 53 | }; |
| 54 | |
| 55 | /* |
| 56 | * Our own little MR pool |
| 57 | */ |
| 58 | struct rds_iw_mr_pool { |
| 59 | struct rds_iw_device *device; /* back ptr to the device that owns us */ |
| 60 | |
| 61 | struct mutex flush_lock; /* serialize fmr invalidate */ |
| 62 | struct work_struct flush_worker; /* flush worker */ |
| 63 | |
| 64 | spinlock_t list_lock; /* protect variables below */ |
| 65 | atomic_t item_count; /* total # of MRs */ |
| 66 | atomic_t dirty_count; /* # dirty of MRs */ |
| 67 | struct list_head dirty_list; /* dirty mappings */ |
| 68 | struct list_head clean_list; /* unused & unamapped MRs */ |
| 69 | atomic_t free_pinned; /* memory pinned by free MRs */ |
| 70 | unsigned long max_message_size; /* in pages */ |
| 71 | unsigned long max_items; |
| 72 | unsigned long max_items_soft; |
| 73 | unsigned long max_free_pinned; |
| 74 | int max_pages; |
| 75 | }; |
| 76 | |
| 77 | static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all); |
| 78 | static void rds_iw_mr_pool_flush_worker(struct work_struct *work); |
| 79 | static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); |
| 80 | static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool, |
| 81 | struct rds_iw_mr *ibmr, |
| 82 | struct scatterlist *sg, unsigned int nents); |
| 83 | static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); |
| 84 | static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool, |
| 85 | struct list_head *unmap_list, |
| 86 | struct list_head *kill_list); |
| 87 | static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, struct rds_iw_mr *ibmr); |
| 88 | |
| 89 | static int rds_iw_get_device(struct rds_sock *rs, struct rds_iw_device **rds_iwdev, struct rdma_cm_id **cm_id) |
| 90 | { |
| 91 | struct rds_iw_device *iwdev; |
| 92 | struct rds_iw_cm_id *i_cm_id; |
| 93 | |
| 94 | *rds_iwdev = NULL; |
| 95 | *cm_id = NULL; |
| 96 | |
| 97 | list_for_each_entry(iwdev, &rds_iw_devices, list) { |
| 98 | spin_lock_irq(&iwdev->spinlock); |
| 99 | list_for_each_entry(i_cm_id, &iwdev->cm_id_list, list) { |
| 100 | struct sockaddr_in *src_addr, *dst_addr; |
| 101 | |
| 102 | src_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.src_addr; |
| 103 | dst_addr = (struct sockaddr_in *)&i_cm_id->cm_id->route.addr.dst_addr; |
| 104 | |
| 105 | rdsdebug("local ipaddr = %x port %d, " |
| 106 | "remote ipaddr = %x port %d" |
| 107 | "..looking for %x port %d, " |
| 108 | "remote ipaddr = %x port %d\n", |
| 109 | src_addr->sin_addr.s_addr, |
| 110 | src_addr->sin_port, |
| 111 | dst_addr->sin_addr.s_addr, |
| 112 | dst_addr->sin_port, |
| 113 | rs->rs_bound_addr, |
| 114 | rs->rs_bound_port, |
| 115 | rs->rs_conn_addr, |
| 116 | rs->rs_conn_port); |
| 117 | #ifdef WORKING_TUPLE_DETECTION |
| 118 | if (src_addr->sin_addr.s_addr == rs->rs_bound_addr && |
| 119 | src_addr->sin_port == rs->rs_bound_port && |
| 120 | dst_addr->sin_addr.s_addr == rs->rs_conn_addr && |
| 121 | dst_addr->sin_port == rs->rs_conn_port) { |
| 122 | #else |
| 123 | /* FIXME - needs to compare the local and remote |
| 124 | * ipaddr/port tuple, but the ipaddr is the only |
| 125 | * available infomation in the rds_sock (as the rest are |
| 126 | * zero'ed. It doesn't appear to be properly populated |
| 127 | * during connection setup... |
| 128 | */ |
| 129 | if (src_addr->sin_addr.s_addr == rs->rs_bound_addr) { |
| 130 | #endif |
| 131 | spin_unlock_irq(&iwdev->spinlock); |
| 132 | *rds_iwdev = iwdev; |
| 133 | *cm_id = i_cm_id->cm_id; |
| 134 | return 0; |
| 135 | } |
| 136 | } |
| 137 | spin_unlock_irq(&iwdev->spinlock); |
| 138 | } |
| 139 | |
| 140 | return 1; |
| 141 | } |
| 142 | |
| 143 | static int rds_iw_add_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) |
| 144 | { |
| 145 | struct rds_iw_cm_id *i_cm_id; |
| 146 | |
| 147 | i_cm_id = kmalloc(sizeof *i_cm_id, GFP_KERNEL); |
| 148 | if (!i_cm_id) |
| 149 | return -ENOMEM; |
| 150 | |
| 151 | i_cm_id->cm_id = cm_id; |
| 152 | |
| 153 | spin_lock_irq(&rds_iwdev->spinlock); |
| 154 | list_add_tail(&i_cm_id->list, &rds_iwdev->cm_id_list); |
| 155 | spin_unlock_irq(&rds_iwdev->spinlock); |
| 156 | |
| 157 | return 0; |
| 158 | } |
| 159 | |
| 160 | void rds_iw_remove_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) |
| 161 | { |
| 162 | struct rds_iw_cm_id *i_cm_id; |
| 163 | |
| 164 | spin_lock_irq(&rds_iwdev->spinlock); |
| 165 | list_for_each_entry(i_cm_id, &rds_iwdev->cm_id_list, list) { |
| 166 | if (i_cm_id->cm_id == cm_id) { |
| 167 | list_del(&i_cm_id->list); |
| 168 | kfree(i_cm_id); |
| 169 | break; |
| 170 | } |
| 171 | } |
| 172 | spin_unlock_irq(&rds_iwdev->spinlock); |
| 173 | } |
| 174 | |
| 175 | |
| 176 | int rds_iw_update_cm_id(struct rds_iw_device *rds_iwdev, struct rdma_cm_id *cm_id) |
| 177 | { |
| 178 | struct sockaddr_in *src_addr, *dst_addr; |
| 179 | struct rds_iw_device *rds_iwdev_old; |
| 180 | struct rds_sock rs; |
| 181 | struct rdma_cm_id *pcm_id; |
| 182 | int rc; |
| 183 | |
| 184 | src_addr = (struct sockaddr_in *)&cm_id->route.addr.src_addr; |
| 185 | dst_addr = (struct sockaddr_in *)&cm_id->route.addr.dst_addr; |
| 186 | |
| 187 | rs.rs_bound_addr = src_addr->sin_addr.s_addr; |
| 188 | rs.rs_bound_port = src_addr->sin_port; |
| 189 | rs.rs_conn_addr = dst_addr->sin_addr.s_addr; |
| 190 | rs.rs_conn_port = dst_addr->sin_port; |
| 191 | |
| 192 | rc = rds_iw_get_device(&rs, &rds_iwdev_old, &pcm_id); |
| 193 | if (rc) |
| 194 | rds_iw_remove_cm_id(rds_iwdev, cm_id); |
| 195 | |
| 196 | return rds_iw_add_cm_id(rds_iwdev, cm_id); |
| 197 | } |
| 198 | |
Andy Grover | 745cbcc | 2009-04-01 08:20:19 +0000 | [diff] [blame] | 199 | void rds_iw_add_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn) |
Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 200 | { |
| 201 | struct rds_iw_connection *ic = conn->c_transport_data; |
| 202 | |
| 203 | /* conn was previously on the nodev_conns_list */ |
| 204 | spin_lock_irq(&iw_nodev_conns_lock); |
| 205 | BUG_ON(list_empty(&iw_nodev_conns)); |
| 206 | BUG_ON(list_empty(&ic->iw_node)); |
| 207 | list_del(&ic->iw_node); |
Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 208 | |
| 209 | spin_lock_irq(&rds_iwdev->spinlock); |
| 210 | list_add_tail(&ic->iw_node, &rds_iwdev->conn_list); |
| 211 | spin_unlock_irq(&rds_iwdev->spinlock); |
Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 212 | spin_unlock_irq(&iw_nodev_conns_lock); |
| 213 | |
Andy Grover | 745cbcc | 2009-04-01 08:20:19 +0000 | [diff] [blame] | 214 | ic->rds_iwdev = rds_iwdev; |
Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 215 | } |
| 216 | |
Andy Grover | 745cbcc | 2009-04-01 08:20:19 +0000 | [diff] [blame] | 217 | void rds_iw_remove_conn(struct rds_iw_device *rds_iwdev, struct rds_connection *conn) |
| 218 | { |
| 219 | struct rds_iw_connection *ic = conn->c_transport_data; |
| 220 | |
| 221 | /* place conn on nodev_conns_list */ |
| 222 | spin_lock(&iw_nodev_conns_lock); |
| 223 | |
| 224 | spin_lock_irq(&rds_iwdev->spinlock); |
| 225 | BUG_ON(list_empty(&ic->iw_node)); |
| 226 | list_del(&ic->iw_node); |
| 227 | spin_unlock_irq(&rds_iwdev->spinlock); |
| 228 | |
| 229 | list_add_tail(&ic->iw_node, &iw_nodev_conns); |
| 230 | |
| 231 | spin_unlock(&iw_nodev_conns_lock); |
| 232 | |
| 233 | rds_iw_remove_cm_id(ic->rds_iwdev, ic->i_cm_id); |
| 234 | ic->rds_iwdev = NULL; |
| 235 | } |
| 236 | |
| 237 | void __rds_iw_destroy_conns(struct list_head *list, spinlock_t *list_lock) |
Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 238 | { |
| 239 | struct rds_iw_connection *ic, *_ic; |
| 240 | LIST_HEAD(tmp_list); |
| 241 | |
| 242 | /* avoid calling conn_destroy with irqs off */ |
Andy Grover | 745cbcc | 2009-04-01 08:20:19 +0000 | [diff] [blame] | 243 | spin_lock_irq(list_lock); |
| 244 | list_splice(list, &tmp_list); |
| 245 | INIT_LIST_HEAD(list); |
| 246 | spin_unlock_irq(list_lock); |
Andy Grover | fcd8b7c | 2009-02-24 15:30:36 +0000 | [diff] [blame] | 247 | |
| 248 | list_for_each_entry_safe(ic, _ic, &tmp_list, iw_node) { |
| 249 | if (ic->conn->c_passive) |
| 250 | rds_conn_destroy(ic->conn->c_passive); |
| 251 | rds_conn_destroy(ic->conn); |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | static void rds_iw_set_scatterlist(struct rds_iw_scatterlist *sg, |
| 256 | struct scatterlist *list, unsigned int sg_len) |
| 257 | { |
| 258 | sg->list = list; |
| 259 | sg->len = sg_len; |
| 260 | sg->dma_len = 0; |
| 261 | sg->dma_npages = 0; |
| 262 | sg->bytes = 0; |
| 263 | } |
| 264 | |
| 265 | static u64 *rds_iw_map_scatterlist(struct rds_iw_device *rds_iwdev, |
| 266 | struct rds_iw_scatterlist *sg, |
| 267 | unsigned int dma_page_shift) |
| 268 | { |
| 269 | struct ib_device *dev = rds_iwdev->dev; |
| 270 | u64 *dma_pages = NULL; |
| 271 | u64 dma_mask; |
| 272 | unsigned int dma_page_size; |
| 273 | int i, j, ret; |
| 274 | |
| 275 | dma_page_size = 1 << dma_page_shift; |
| 276 | dma_mask = dma_page_size - 1; |
| 277 | |
| 278 | WARN_ON(sg->dma_len); |
| 279 | |
| 280 | sg->dma_len = ib_dma_map_sg(dev, sg->list, sg->len, DMA_BIDIRECTIONAL); |
| 281 | if (unlikely(!sg->dma_len)) { |
| 282 | printk(KERN_WARNING "RDS/IW: dma_map_sg failed!\n"); |
| 283 | return ERR_PTR(-EBUSY); |
| 284 | } |
| 285 | |
| 286 | sg->bytes = 0; |
| 287 | sg->dma_npages = 0; |
| 288 | |
| 289 | ret = -EINVAL; |
| 290 | for (i = 0; i < sg->dma_len; ++i) { |
| 291 | unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]); |
| 292 | u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]); |
| 293 | u64 end_addr; |
| 294 | |
| 295 | sg->bytes += dma_len; |
| 296 | |
| 297 | end_addr = dma_addr + dma_len; |
| 298 | if (dma_addr & dma_mask) { |
| 299 | if (i > 0) |
| 300 | goto out_unmap; |
| 301 | dma_addr &= ~dma_mask; |
| 302 | } |
| 303 | if (end_addr & dma_mask) { |
| 304 | if (i < sg->dma_len - 1) |
| 305 | goto out_unmap; |
| 306 | end_addr = (end_addr + dma_mask) & ~dma_mask; |
| 307 | } |
| 308 | |
| 309 | sg->dma_npages += (end_addr - dma_addr) >> dma_page_shift; |
| 310 | } |
| 311 | |
| 312 | /* Now gather the dma addrs into one list */ |
| 313 | if (sg->dma_npages > fastreg_message_size) |
| 314 | goto out_unmap; |
| 315 | |
| 316 | dma_pages = kmalloc(sizeof(u64) * sg->dma_npages, GFP_ATOMIC); |
| 317 | if (!dma_pages) { |
| 318 | ret = -ENOMEM; |
| 319 | goto out_unmap; |
| 320 | } |
| 321 | |
| 322 | for (i = j = 0; i < sg->dma_len; ++i) { |
| 323 | unsigned int dma_len = ib_sg_dma_len(dev, &sg->list[i]); |
| 324 | u64 dma_addr = ib_sg_dma_address(dev, &sg->list[i]); |
| 325 | u64 end_addr; |
| 326 | |
| 327 | end_addr = dma_addr + dma_len; |
| 328 | dma_addr &= ~dma_mask; |
| 329 | for (; dma_addr < end_addr; dma_addr += dma_page_size) |
| 330 | dma_pages[j++] = dma_addr; |
| 331 | BUG_ON(j > sg->dma_npages); |
| 332 | } |
| 333 | |
| 334 | return dma_pages; |
| 335 | |
| 336 | out_unmap: |
| 337 | ib_dma_unmap_sg(rds_iwdev->dev, sg->list, sg->len, DMA_BIDIRECTIONAL); |
| 338 | sg->dma_len = 0; |
| 339 | kfree(dma_pages); |
| 340 | return ERR_PTR(ret); |
| 341 | } |
| 342 | |
| 343 | |
| 344 | struct rds_iw_mr_pool *rds_iw_create_mr_pool(struct rds_iw_device *rds_iwdev) |
| 345 | { |
| 346 | struct rds_iw_mr_pool *pool; |
| 347 | |
| 348 | pool = kzalloc(sizeof(*pool), GFP_KERNEL); |
| 349 | if (!pool) { |
| 350 | printk(KERN_WARNING "RDS/IW: rds_iw_create_mr_pool alloc error\n"); |
| 351 | return ERR_PTR(-ENOMEM); |
| 352 | } |
| 353 | |
| 354 | pool->device = rds_iwdev; |
| 355 | INIT_LIST_HEAD(&pool->dirty_list); |
| 356 | INIT_LIST_HEAD(&pool->clean_list); |
| 357 | mutex_init(&pool->flush_lock); |
| 358 | spin_lock_init(&pool->list_lock); |
| 359 | INIT_WORK(&pool->flush_worker, rds_iw_mr_pool_flush_worker); |
| 360 | |
| 361 | pool->max_message_size = fastreg_message_size; |
| 362 | pool->max_items = fastreg_pool_size; |
| 363 | pool->max_free_pinned = pool->max_items * pool->max_message_size / 4; |
| 364 | pool->max_pages = fastreg_message_size; |
| 365 | |
| 366 | /* We never allow more than max_items MRs to be allocated. |
| 367 | * When we exceed more than max_items_soft, we start freeing |
| 368 | * items more aggressively. |
| 369 | * Make sure that max_items > max_items_soft > max_items / 2 |
| 370 | */ |
| 371 | pool->max_items_soft = pool->max_items * 3 / 4; |
| 372 | |
| 373 | return pool; |
| 374 | } |
| 375 | |
| 376 | void rds_iw_get_mr_info(struct rds_iw_device *rds_iwdev, struct rds_info_rdma_connection *iinfo) |
| 377 | { |
| 378 | struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; |
| 379 | |
| 380 | iinfo->rdma_mr_max = pool->max_items; |
| 381 | iinfo->rdma_mr_size = pool->max_pages; |
| 382 | } |
| 383 | |
| 384 | void rds_iw_destroy_mr_pool(struct rds_iw_mr_pool *pool) |
| 385 | { |
| 386 | flush_workqueue(rds_wq); |
| 387 | rds_iw_flush_mr_pool(pool, 1); |
| 388 | BUG_ON(atomic_read(&pool->item_count)); |
| 389 | BUG_ON(atomic_read(&pool->free_pinned)); |
| 390 | kfree(pool); |
| 391 | } |
| 392 | |
| 393 | static inline struct rds_iw_mr *rds_iw_reuse_fmr(struct rds_iw_mr_pool *pool) |
| 394 | { |
| 395 | struct rds_iw_mr *ibmr = NULL; |
| 396 | unsigned long flags; |
| 397 | |
| 398 | spin_lock_irqsave(&pool->list_lock, flags); |
| 399 | if (!list_empty(&pool->clean_list)) { |
| 400 | ibmr = list_entry(pool->clean_list.next, struct rds_iw_mr, mapping.m_list); |
| 401 | list_del_init(&ibmr->mapping.m_list); |
| 402 | } |
| 403 | spin_unlock_irqrestore(&pool->list_lock, flags); |
| 404 | |
| 405 | return ibmr; |
| 406 | } |
| 407 | |
| 408 | static struct rds_iw_mr *rds_iw_alloc_mr(struct rds_iw_device *rds_iwdev) |
| 409 | { |
| 410 | struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; |
| 411 | struct rds_iw_mr *ibmr = NULL; |
| 412 | int err = 0, iter = 0; |
| 413 | |
| 414 | while (1) { |
| 415 | ibmr = rds_iw_reuse_fmr(pool); |
| 416 | if (ibmr) |
| 417 | return ibmr; |
| 418 | |
| 419 | /* No clean MRs - now we have the choice of either |
| 420 | * allocating a fresh MR up to the limit imposed by the |
| 421 | * driver, or flush any dirty unused MRs. |
| 422 | * We try to avoid stalling in the send path if possible, |
| 423 | * so we allocate as long as we're allowed to. |
| 424 | * |
| 425 | * We're fussy with enforcing the FMR limit, though. If the driver |
| 426 | * tells us we can't use more than N fmrs, we shouldn't start |
| 427 | * arguing with it */ |
| 428 | if (atomic_inc_return(&pool->item_count) <= pool->max_items) |
| 429 | break; |
| 430 | |
| 431 | atomic_dec(&pool->item_count); |
| 432 | |
| 433 | if (++iter > 2) { |
| 434 | rds_iw_stats_inc(s_iw_rdma_mr_pool_depleted); |
| 435 | return ERR_PTR(-EAGAIN); |
| 436 | } |
| 437 | |
| 438 | /* We do have some empty MRs. Flush them out. */ |
| 439 | rds_iw_stats_inc(s_iw_rdma_mr_pool_wait); |
| 440 | rds_iw_flush_mr_pool(pool, 0); |
| 441 | } |
| 442 | |
| 443 | ibmr = kzalloc(sizeof(*ibmr), GFP_KERNEL); |
| 444 | if (!ibmr) { |
| 445 | err = -ENOMEM; |
| 446 | goto out_no_cigar; |
| 447 | } |
| 448 | |
| 449 | spin_lock_init(&ibmr->mapping.m_lock); |
| 450 | INIT_LIST_HEAD(&ibmr->mapping.m_list); |
| 451 | ibmr->mapping.m_mr = ibmr; |
| 452 | |
| 453 | err = rds_iw_init_fastreg(pool, ibmr); |
| 454 | if (err) |
| 455 | goto out_no_cigar; |
| 456 | |
| 457 | rds_iw_stats_inc(s_iw_rdma_mr_alloc); |
| 458 | return ibmr; |
| 459 | |
| 460 | out_no_cigar: |
| 461 | if (ibmr) { |
| 462 | rds_iw_destroy_fastreg(pool, ibmr); |
| 463 | kfree(ibmr); |
| 464 | } |
| 465 | atomic_dec(&pool->item_count); |
| 466 | return ERR_PTR(err); |
| 467 | } |
| 468 | |
| 469 | void rds_iw_sync_mr(void *trans_private, int direction) |
| 470 | { |
| 471 | struct rds_iw_mr *ibmr = trans_private; |
| 472 | struct rds_iw_device *rds_iwdev = ibmr->device; |
| 473 | |
| 474 | switch (direction) { |
| 475 | case DMA_FROM_DEVICE: |
| 476 | ib_dma_sync_sg_for_cpu(rds_iwdev->dev, ibmr->mapping.m_sg.list, |
| 477 | ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL); |
| 478 | break; |
| 479 | case DMA_TO_DEVICE: |
| 480 | ib_dma_sync_sg_for_device(rds_iwdev->dev, ibmr->mapping.m_sg.list, |
| 481 | ibmr->mapping.m_sg.dma_len, DMA_BIDIRECTIONAL); |
| 482 | break; |
| 483 | } |
| 484 | } |
| 485 | |
| 486 | static inline unsigned int rds_iw_flush_goal(struct rds_iw_mr_pool *pool, int free_all) |
| 487 | { |
| 488 | unsigned int item_count; |
| 489 | |
| 490 | item_count = atomic_read(&pool->item_count); |
| 491 | if (free_all) |
| 492 | return item_count; |
| 493 | |
| 494 | return 0; |
| 495 | } |
| 496 | |
| 497 | /* |
| 498 | * Flush our pool of MRs. |
| 499 | * At a minimum, all currently unused MRs are unmapped. |
| 500 | * If the number of MRs allocated exceeds the limit, we also try |
| 501 | * to free as many MRs as needed to get back to this limit. |
| 502 | */ |
| 503 | static int rds_iw_flush_mr_pool(struct rds_iw_mr_pool *pool, int free_all) |
| 504 | { |
| 505 | struct rds_iw_mr *ibmr, *next; |
| 506 | LIST_HEAD(unmap_list); |
| 507 | LIST_HEAD(kill_list); |
| 508 | unsigned long flags; |
| 509 | unsigned int nfreed = 0, ncleaned = 0, free_goal; |
| 510 | int ret = 0; |
| 511 | |
| 512 | rds_iw_stats_inc(s_iw_rdma_mr_pool_flush); |
| 513 | |
| 514 | mutex_lock(&pool->flush_lock); |
| 515 | |
| 516 | spin_lock_irqsave(&pool->list_lock, flags); |
| 517 | /* Get the list of all mappings to be destroyed */ |
| 518 | list_splice_init(&pool->dirty_list, &unmap_list); |
| 519 | if (free_all) |
| 520 | list_splice_init(&pool->clean_list, &kill_list); |
| 521 | spin_unlock_irqrestore(&pool->list_lock, flags); |
| 522 | |
| 523 | free_goal = rds_iw_flush_goal(pool, free_all); |
| 524 | |
| 525 | /* Batched invalidate of dirty MRs. |
| 526 | * For FMR based MRs, the mappings on the unmap list are |
| 527 | * actually members of an ibmr (ibmr->mapping). They either |
| 528 | * migrate to the kill_list, or have been cleaned and should be |
| 529 | * moved to the clean_list. |
| 530 | * For fastregs, they will be dynamically allocated, and |
| 531 | * will be destroyed by the unmap function. |
| 532 | */ |
| 533 | if (!list_empty(&unmap_list)) { |
| 534 | ncleaned = rds_iw_unmap_fastreg_list(pool, &unmap_list, &kill_list); |
| 535 | /* If we've been asked to destroy all MRs, move those |
| 536 | * that were simply cleaned to the kill list */ |
| 537 | if (free_all) |
| 538 | list_splice_init(&unmap_list, &kill_list); |
| 539 | } |
| 540 | |
| 541 | /* Destroy any MRs that are past their best before date */ |
| 542 | list_for_each_entry_safe(ibmr, next, &kill_list, mapping.m_list) { |
| 543 | rds_iw_stats_inc(s_iw_rdma_mr_free); |
| 544 | list_del(&ibmr->mapping.m_list); |
| 545 | rds_iw_destroy_fastreg(pool, ibmr); |
| 546 | kfree(ibmr); |
| 547 | nfreed++; |
| 548 | } |
| 549 | |
| 550 | /* Anything that remains are laundered ibmrs, which we can add |
| 551 | * back to the clean list. */ |
| 552 | if (!list_empty(&unmap_list)) { |
| 553 | spin_lock_irqsave(&pool->list_lock, flags); |
| 554 | list_splice(&unmap_list, &pool->clean_list); |
| 555 | spin_unlock_irqrestore(&pool->list_lock, flags); |
| 556 | } |
| 557 | |
| 558 | atomic_sub(ncleaned, &pool->dirty_count); |
| 559 | atomic_sub(nfreed, &pool->item_count); |
| 560 | |
| 561 | mutex_unlock(&pool->flush_lock); |
| 562 | return ret; |
| 563 | } |
| 564 | |
| 565 | static void rds_iw_mr_pool_flush_worker(struct work_struct *work) |
| 566 | { |
| 567 | struct rds_iw_mr_pool *pool = container_of(work, struct rds_iw_mr_pool, flush_worker); |
| 568 | |
| 569 | rds_iw_flush_mr_pool(pool, 0); |
| 570 | } |
| 571 | |
| 572 | void rds_iw_free_mr(void *trans_private, int invalidate) |
| 573 | { |
| 574 | struct rds_iw_mr *ibmr = trans_private; |
| 575 | struct rds_iw_mr_pool *pool = ibmr->device->mr_pool; |
| 576 | |
| 577 | rdsdebug("RDS/IW: free_mr nents %u\n", ibmr->mapping.m_sg.len); |
| 578 | if (!pool) |
| 579 | return; |
| 580 | |
| 581 | /* Return it to the pool's free list */ |
| 582 | rds_iw_free_fastreg(pool, ibmr); |
| 583 | |
| 584 | /* If we've pinned too many pages, request a flush */ |
| 585 | if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned |
| 586 | || atomic_read(&pool->dirty_count) >= pool->max_items / 10) |
| 587 | queue_work(rds_wq, &pool->flush_worker); |
| 588 | |
| 589 | if (invalidate) { |
| 590 | if (likely(!in_interrupt())) { |
| 591 | rds_iw_flush_mr_pool(pool, 0); |
| 592 | } else { |
| 593 | /* We get here if the user created a MR marked |
| 594 | * as use_once and invalidate at the same time. */ |
| 595 | queue_work(rds_wq, &pool->flush_worker); |
| 596 | } |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | void rds_iw_flush_mrs(void) |
| 601 | { |
| 602 | struct rds_iw_device *rds_iwdev; |
| 603 | |
| 604 | list_for_each_entry(rds_iwdev, &rds_iw_devices, list) { |
| 605 | struct rds_iw_mr_pool *pool = rds_iwdev->mr_pool; |
| 606 | |
| 607 | if (pool) |
| 608 | rds_iw_flush_mr_pool(pool, 0); |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | void *rds_iw_get_mr(struct scatterlist *sg, unsigned long nents, |
| 613 | struct rds_sock *rs, u32 *key_ret) |
| 614 | { |
| 615 | struct rds_iw_device *rds_iwdev; |
| 616 | struct rds_iw_mr *ibmr = NULL; |
| 617 | struct rdma_cm_id *cm_id; |
| 618 | int ret; |
| 619 | |
| 620 | ret = rds_iw_get_device(rs, &rds_iwdev, &cm_id); |
| 621 | if (ret || !cm_id) { |
| 622 | ret = -ENODEV; |
| 623 | goto out; |
| 624 | } |
| 625 | |
| 626 | if (!rds_iwdev->mr_pool) { |
| 627 | ret = -ENODEV; |
| 628 | goto out; |
| 629 | } |
| 630 | |
| 631 | ibmr = rds_iw_alloc_mr(rds_iwdev); |
| 632 | if (IS_ERR(ibmr)) |
| 633 | return ibmr; |
| 634 | |
| 635 | ibmr->cm_id = cm_id; |
| 636 | ibmr->device = rds_iwdev; |
| 637 | |
| 638 | ret = rds_iw_map_fastreg(rds_iwdev->mr_pool, ibmr, sg, nents); |
| 639 | if (ret == 0) |
| 640 | *key_ret = ibmr->mr->rkey; |
| 641 | else |
| 642 | printk(KERN_WARNING "RDS/IW: failed to map mr (errno=%d)\n", ret); |
| 643 | |
| 644 | out: |
| 645 | if (ret) { |
| 646 | if (ibmr) |
| 647 | rds_iw_free_mr(ibmr, 0); |
| 648 | ibmr = ERR_PTR(ret); |
| 649 | } |
| 650 | return ibmr; |
| 651 | } |
| 652 | |
| 653 | /* |
| 654 | * iWARP fastreg handling |
| 655 | * |
| 656 | * The life cycle of a fastreg registration is a bit different from |
| 657 | * FMRs. |
| 658 | * The idea behind fastreg is to have one MR, to which we bind different |
| 659 | * mappings over time. To avoid stalling on the expensive map and invalidate |
| 660 | * operations, these operations are pipelined on the same send queue on |
| 661 | * which we want to send the message containing the r_key. |
| 662 | * |
| 663 | * This creates a bit of a problem for us, as we do not have the destination |
| 664 | * IP in GET_MR, so the connection must be setup prior to the GET_MR call for |
| 665 | * RDMA to be correctly setup. If a fastreg request is present, rds_iw_xmit |
| 666 | * will try to queue a LOCAL_INV (if needed) and a FAST_REG_MR work request |
| 667 | * before queuing the SEND. When completions for these arrive, they are |
| 668 | * dispatched to the MR has a bit set showing that RDMa can be performed. |
| 669 | * |
| 670 | * There is another interesting aspect that's related to invalidation. |
| 671 | * The application can request that a mapping is invalidated in FREE_MR. |
| 672 | * The expectation there is that this invalidation step includes ALL |
| 673 | * PREVIOUSLY FREED MRs. |
| 674 | */ |
| 675 | static int rds_iw_init_fastreg(struct rds_iw_mr_pool *pool, |
| 676 | struct rds_iw_mr *ibmr) |
| 677 | { |
| 678 | struct rds_iw_device *rds_iwdev = pool->device; |
| 679 | struct ib_fast_reg_page_list *page_list = NULL; |
| 680 | struct ib_mr *mr; |
| 681 | int err; |
| 682 | |
| 683 | mr = ib_alloc_fast_reg_mr(rds_iwdev->pd, pool->max_message_size); |
| 684 | if (IS_ERR(mr)) { |
| 685 | err = PTR_ERR(mr); |
| 686 | |
| 687 | printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_mr failed (err=%d)\n", err); |
| 688 | return err; |
| 689 | } |
| 690 | |
| 691 | /* FIXME - this is overkill, but mapping->m_sg.dma_len/mapping->m_sg.dma_npages |
| 692 | * is not filled in. |
| 693 | */ |
| 694 | page_list = ib_alloc_fast_reg_page_list(rds_iwdev->dev, pool->max_message_size); |
| 695 | if (IS_ERR(page_list)) { |
| 696 | err = PTR_ERR(page_list); |
| 697 | |
| 698 | printk(KERN_WARNING "RDS/IW: ib_alloc_fast_reg_page_list failed (err=%d)\n", err); |
| 699 | ib_dereg_mr(mr); |
| 700 | return err; |
| 701 | } |
| 702 | |
| 703 | ibmr->page_list = page_list; |
| 704 | ibmr->mr = mr; |
| 705 | return 0; |
| 706 | } |
| 707 | |
| 708 | static int rds_iw_rdma_build_fastreg(struct rds_iw_mapping *mapping) |
| 709 | { |
| 710 | struct rds_iw_mr *ibmr = mapping->m_mr; |
| 711 | struct ib_send_wr f_wr, *failed_wr; |
| 712 | int ret; |
| 713 | |
| 714 | /* |
| 715 | * Perform a WR for the fast_reg_mr. Each individual page |
| 716 | * in the sg list is added to the fast reg page list and placed |
| 717 | * inside the fast_reg_mr WR. The key used is a rolling 8bit |
| 718 | * counter, which should guarantee uniqueness. |
| 719 | */ |
| 720 | ib_update_fast_reg_key(ibmr->mr, ibmr->remap_count++); |
| 721 | mapping->m_rkey = ibmr->mr->rkey; |
| 722 | |
| 723 | memset(&f_wr, 0, sizeof(f_wr)); |
| 724 | f_wr.wr_id = RDS_IW_FAST_REG_WR_ID; |
| 725 | f_wr.opcode = IB_WR_FAST_REG_MR; |
| 726 | f_wr.wr.fast_reg.length = mapping->m_sg.bytes; |
| 727 | f_wr.wr.fast_reg.rkey = mapping->m_rkey; |
| 728 | f_wr.wr.fast_reg.page_list = ibmr->page_list; |
| 729 | f_wr.wr.fast_reg.page_list_len = mapping->m_sg.dma_len; |
| 730 | f_wr.wr.fast_reg.page_shift = ibmr->device->page_shift; |
| 731 | f_wr.wr.fast_reg.access_flags = IB_ACCESS_LOCAL_WRITE | |
| 732 | IB_ACCESS_REMOTE_READ | |
| 733 | IB_ACCESS_REMOTE_WRITE; |
| 734 | f_wr.wr.fast_reg.iova_start = 0; |
| 735 | f_wr.send_flags = IB_SEND_SIGNALED; |
| 736 | |
| 737 | failed_wr = &f_wr; |
| 738 | ret = ib_post_send(ibmr->cm_id->qp, &f_wr, &failed_wr); |
| 739 | BUG_ON(failed_wr != &f_wr); |
| 740 | if (ret && printk_ratelimit()) |
| 741 | printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n", |
| 742 | __func__, __LINE__, ret); |
| 743 | return ret; |
| 744 | } |
| 745 | |
| 746 | static int rds_iw_rdma_fastreg_inv(struct rds_iw_mr *ibmr) |
| 747 | { |
| 748 | struct ib_send_wr s_wr, *failed_wr; |
| 749 | int ret = 0; |
| 750 | |
| 751 | if (!ibmr->cm_id->qp || !ibmr->mr) |
| 752 | goto out; |
| 753 | |
| 754 | memset(&s_wr, 0, sizeof(s_wr)); |
| 755 | s_wr.wr_id = RDS_IW_LOCAL_INV_WR_ID; |
| 756 | s_wr.opcode = IB_WR_LOCAL_INV; |
| 757 | s_wr.ex.invalidate_rkey = ibmr->mr->rkey; |
| 758 | s_wr.send_flags = IB_SEND_SIGNALED; |
| 759 | |
| 760 | failed_wr = &s_wr; |
| 761 | ret = ib_post_send(ibmr->cm_id->qp, &s_wr, &failed_wr); |
| 762 | if (ret && printk_ratelimit()) { |
| 763 | printk(KERN_WARNING "RDS/IW: %s:%d ib_post_send returned %d\n", |
| 764 | __func__, __LINE__, ret); |
| 765 | goto out; |
| 766 | } |
| 767 | out: |
| 768 | return ret; |
| 769 | } |
| 770 | |
| 771 | static int rds_iw_map_fastreg(struct rds_iw_mr_pool *pool, |
| 772 | struct rds_iw_mr *ibmr, |
| 773 | struct scatterlist *sg, |
| 774 | unsigned int sg_len) |
| 775 | { |
| 776 | struct rds_iw_device *rds_iwdev = pool->device; |
| 777 | struct rds_iw_mapping *mapping = &ibmr->mapping; |
| 778 | u64 *dma_pages; |
| 779 | int i, ret = 0; |
| 780 | |
| 781 | rds_iw_set_scatterlist(&mapping->m_sg, sg, sg_len); |
| 782 | |
| 783 | dma_pages = rds_iw_map_scatterlist(rds_iwdev, |
| 784 | &mapping->m_sg, |
| 785 | rds_iwdev->page_shift); |
| 786 | if (IS_ERR(dma_pages)) { |
| 787 | ret = PTR_ERR(dma_pages); |
| 788 | dma_pages = NULL; |
| 789 | goto out; |
| 790 | } |
| 791 | |
| 792 | if (mapping->m_sg.dma_len > pool->max_message_size) { |
| 793 | ret = -EMSGSIZE; |
| 794 | goto out; |
| 795 | } |
| 796 | |
| 797 | for (i = 0; i < mapping->m_sg.dma_npages; ++i) |
| 798 | ibmr->page_list->page_list[i] = dma_pages[i]; |
| 799 | |
| 800 | ret = rds_iw_rdma_build_fastreg(mapping); |
| 801 | if (ret) |
| 802 | goto out; |
| 803 | |
| 804 | rds_iw_stats_inc(s_iw_rdma_mr_used); |
| 805 | |
| 806 | out: |
| 807 | kfree(dma_pages); |
| 808 | |
| 809 | return ret; |
| 810 | } |
| 811 | |
| 812 | /* |
| 813 | * "Free" a fastreg MR. |
| 814 | */ |
| 815 | static void rds_iw_free_fastreg(struct rds_iw_mr_pool *pool, |
| 816 | struct rds_iw_mr *ibmr) |
| 817 | { |
| 818 | unsigned long flags; |
| 819 | int ret; |
| 820 | |
| 821 | if (!ibmr->mapping.m_sg.dma_len) |
| 822 | return; |
| 823 | |
| 824 | ret = rds_iw_rdma_fastreg_inv(ibmr); |
| 825 | if (ret) |
| 826 | return; |
| 827 | |
| 828 | /* Try to post the LOCAL_INV WR to the queue. */ |
| 829 | spin_lock_irqsave(&pool->list_lock, flags); |
| 830 | |
| 831 | list_add_tail(&ibmr->mapping.m_list, &pool->dirty_list); |
| 832 | atomic_add(ibmr->mapping.m_sg.len, &pool->free_pinned); |
| 833 | atomic_inc(&pool->dirty_count); |
| 834 | |
| 835 | spin_unlock_irqrestore(&pool->list_lock, flags); |
| 836 | } |
| 837 | |
| 838 | static unsigned int rds_iw_unmap_fastreg_list(struct rds_iw_mr_pool *pool, |
| 839 | struct list_head *unmap_list, |
| 840 | struct list_head *kill_list) |
| 841 | { |
| 842 | struct rds_iw_mapping *mapping, *next; |
| 843 | unsigned int ncleaned = 0; |
| 844 | LIST_HEAD(laundered); |
| 845 | |
| 846 | /* Batched invalidation of fastreg MRs. |
| 847 | * Why do we do it this way, even though we could pipeline unmap |
| 848 | * and remap? The reason is the application semantics - when the |
| 849 | * application requests an invalidation of MRs, it expects all |
| 850 | * previously released R_Keys to become invalid. |
| 851 | * |
| 852 | * If we implement MR reuse naively, we risk memory corruption |
| 853 | * (this has actually been observed). So the default behavior |
| 854 | * requires that a MR goes through an explicit unmap operation before |
| 855 | * we can reuse it again. |
| 856 | * |
| 857 | * We could probably improve on this a little, by allowing immediate |
| 858 | * reuse of a MR on the same socket (eg you could add small |
| 859 | * cache of unused MRs to strct rds_socket - GET_MR could grab one |
| 860 | * of these without requiring an explicit invalidate). |
| 861 | */ |
| 862 | while (!list_empty(unmap_list)) { |
| 863 | unsigned long flags; |
| 864 | |
| 865 | spin_lock_irqsave(&pool->list_lock, flags); |
| 866 | list_for_each_entry_safe(mapping, next, unmap_list, m_list) { |
| 867 | list_move(&mapping->m_list, &laundered); |
| 868 | ncleaned++; |
| 869 | } |
| 870 | spin_unlock_irqrestore(&pool->list_lock, flags); |
| 871 | } |
| 872 | |
| 873 | /* Move all laundered mappings back to the unmap list. |
| 874 | * We do not kill any WRs right now - it doesn't seem the |
| 875 | * fastreg API has a max_remap limit. */ |
| 876 | list_splice_init(&laundered, unmap_list); |
| 877 | |
| 878 | return ncleaned; |
| 879 | } |
| 880 | |
| 881 | static void rds_iw_destroy_fastreg(struct rds_iw_mr_pool *pool, |
| 882 | struct rds_iw_mr *ibmr) |
| 883 | { |
| 884 | if (ibmr->page_list) |
| 885 | ib_free_fast_reg_page_list(ibmr->page_list); |
| 886 | if (ibmr->mr) |
| 887 | ib_dereg_mr(ibmr->mr); |
| 888 | } |