Francois Romieu | 1202d6f | 2007-09-17 17:13:55 -0700 | [diff] [blame] | 1 | /* |
| 2 | * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter |
| 3 | * |
| 4 | * Copyright (C) 2003, 2007 IC Plus Corp |
| 5 | * |
| 6 | * Original Author: |
| 7 | * |
| 8 | * Craig Rich |
| 9 | * Sundance Technology, Inc. |
| 10 | * www.sundanceti.com |
| 11 | * craig_rich@sundanceti.com |
| 12 | * |
| 13 | * Current Maintainer: |
| 14 | * |
| 15 | * Sorbica Shieh. |
| 16 | * http://www.icplus.com.tw |
| 17 | * sorbica@icplus.com.tw |
| 18 | * |
| 19 | * Jesse Huang |
| 20 | * http://www.icplus.com.tw |
| 21 | * jesse@icplus.com.tw |
| 22 | */ |
| 23 | #include <linux/crc32.h> |
| 24 | #include <linux/ethtool.h> |
| 25 | #include <linux/mii.h> |
| 26 | #include <linux/mutex.h> |
| 27 | |
trem | 1dad939 | 2007-10-02 14:04:38 -0700 | [diff] [blame] | 28 | #include <asm/div64.h> |
| 29 | |
Francois Romieu | 1202d6f | 2007-09-17 17:13:55 -0700 | [diff] [blame] | 30 | #define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH) |
| 31 | #define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH) |
| 32 | #define IPG_RESET_MASK \ |
| 33 | (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \ |
| 34 | IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \ |
| 35 | IPG_AC_AUTO_INIT) |
| 36 | |
| 37 | #define ipg_w32(val32,reg) iowrite32((val32), ioaddr + (reg)) |
| 38 | #define ipg_w16(val16,reg) iowrite16((val16), ioaddr + (reg)) |
| 39 | #define ipg_w8(val8,reg) iowrite8((val8), ioaddr + (reg)) |
| 40 | |
| 41 | #define ipg_r32(reg) ioread32(ioaddr + (reg)) |
| 42 | #define ipg_r16(reg) ioread16(ioaddr + (reg)) |
| 43 | #define ipg_r8(reg) ioread8(ioaddr + (reg)) |
| 44 | |
| 45 | #define JUMBO_FRAME_4k_ONLY |
| 46 | enum { |
| 47 | netdev_io_size = 128 |
| 48 | }; |
| 49 | |
| 50 | #include "ipg.h" |
| 51 | #define DRV_NAME "ipg" |
| 52 | |
| 53 | MODULE_AUTHOR("IC Plus Corp. 2003"); |
| 54 | MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver " |
| 55 | DrvVer); |
| 56 | MODULE_LICENSE("GPL"); |
| 57 | |
| 58 | static const char *ipg_brand_name[] = { |
| 59 | "IC PLUS IP1000 1000/100/10 based NIC", |
| 60 | "Sundance Technology ST2021 based NIC", |
| 61 | "Tamarack Microelectronics TC9020/9021 based NIC", |
| 62 | "Tamarack Microelectronics TC9020/9021 based NIC", |
| 63 | "D-Link NIC", |
| 64 | "D-Link NIC IP1000A" |
| 65 | }; |
| 66 | |
| 67 | static struct pci_device_id ipg_pci_tbl[] __devinitdata = { |
| 68 | { PCI_VDEVICE(SUNDANCE, 0x1023), 0 }, |
| 69 | { PCI_VDEVICE(SUNDANCE, 0x2021), 1 }, |
| 70 | { PCI_VDEVICE(SUNDANCE, 0x1021), 2 }, |
| 71 | { PCI_VDEVICE(DLINK, 0x9021), 3 }, |
| 72 | { PCI_VDEVICE(DLINK, 0x4000), 4 }, |
| 73 | { PCI_VDEVICE(DLINK, 0x4020), 5 }, |
| 74 | { 0, } |
| 75 | }; |
| 76 | |
| 77 | MODULE_DEVICE_TABLE(pci, ipg_pci_tbl); |
| 78 | |
| 79 | static inline void __iomem *ipg_ioaddr(struct net_device *dev) |
| 80 | { |
| 81 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 82 | return sp->ioaddr; |
| 83 | } |
| 84 | |
| 85 | #ifdef IPG_DEBUG |
| 86 | static void ipg_dump_rfdlist(struct net_device *dev) |
| 87 | { |
| 88 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 89 | void __iomem *ioaddr = sp->ioaddr; |
| 90 | unsigned int i; |
| 91 | u32 offset; |
| 92 | |
| 93 | IPG_DEBUG_MSG("_dump_rfdlist\n"); |
| 94 | |
| 95 | printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current); |
| 96 | printk(KERN_INFO "rx_dirty = %2.2x\n", sp->rx_dirty); |
| 97 | printk(KERN_INFO "RFDList start address = %16.16lx\n", |
| 98 | (unsigned long) sp->rxd_map); |
| 99 | printk(KERN_INFO "RFDListPtr register = %8.8x%8.8x\n", |
| 100 | ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0)); |
| 101 | |
| 102 | for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { |
| 103 | offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd; |
| 104 | printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i, |
| 105 | offset, (unsigned long) sp->rxd[i].next_desc); |
| 106 | offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd; |
| 107 | printk(KERN_INFO "%2.2x %4.4x RFS = %16.16lx\n", i, |
| 108 | offset, (unsigned long) sp->rxd[i].rfs); |
| 109 | offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd; |
| 110 | printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, |
| 111 | offset, (unsigned long) sp->rxd[i].frag_info); |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | static void ipg_dump_tfdlist(struct net_device *dev) |
| 116 | { |
| 117 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 118 | void __iomem *ioaddr = sp->ioaddr; |
| 119 | unsigned int i; |
| 120 | u32 offset; |
| 121 | |
| 122 | IPG_DEBUG_MSG("_dump_tfdlist\n"); |
| 123 | |
| 124 | printk(KERN_INFO "tx_current = %2.2x\n", sp->tx_current); |
| 125 | printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty); |
| 126 | printk(KERN_INFO "TFDList start address = %16.16lx\n", |
| 127 | (unsigned long) sp->txd_map); |
| 128 | printk(KERN_INFO "TFDListPtr register = %8.8x%8.8x\n", |
| 129 | ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0)); |
| 130 | |
| 131 | for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { |
| 132 | offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd; |
| 133 | printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i, |
| 134 | offset, (unsigned long) sp->txd[i].next_desc); |
| 135 | |
| 136 | offset = (u32) &sp->txd[i].tfc - (u32) sp->txd; |
| 137 | printk(KERN_INFO "%2.2x %4.4x TFC = %16.16lx\n", i, |
| 138 | offset, (unsigned long) sp->txd[i].tfc); |
| 139 | offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd; |
| 140 | printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i, |
| 141 | offset, (unsigned long) sp->txd[i].frag_info); |
| 142 | } |
| 143 | } |
| 144 | #endif |
| 145 | |
| 146 | static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data) |
| 147 | { |
| 148 | ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL); |
| 149 | ndelay(IPG_PC_PHYCTRLWAIT_NS); |
| 150 | } |
| 151 | |
| 152 | static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data) |
| 153 | { |
| 154 | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data); |
| 155 | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data); |
| 156 | } |
| 157 | |
| 158 | static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity) |
| 159 | { |
| 160 | phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR; |
| 161 | |
| 162 | ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity); |
| 163 | } |
| 164 | |
| 165 | static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity) |
| 166 | { |
| 167 | ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR | |
| 168 | phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL); |
| 169 | } |
| 170 | |
| 171 | static u16 read_phy_bit(void __iomem * ioaddr, u8 phyctrlpolarity) |
| 172 | { |
| 173 | u16 bit_data; |
| 174 | |
| 175 | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity); |
| 176 | |
| 177 | bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1; |
| 178 | |
| 179 | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity); |
| 180 | |
| 181 | return bit_data; |
| 182 | } |
| 183 | |
| 184 | /* |
| 185 | * Read a register from the Physical Layer device located |
| 186 | * on the IPG NIC, using the IPG PHYCTRL register. |
| 187 | */ |
| 188 | static int mdio_read(struct net_device * dev, int phy_id, int phy_reg) |
| 189 | { |
| 190 | void __iomem *ioaddr = ipg_ioaddr(dev); |
| 191 | /* |
| 192 | * The GMII mangement frame structure for a read is as follows: |
| 193 | * |
| 194 | * |Preamble|st|op|phyad|regad|ta| data |idle| |
| 195 | * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | |
| 196 | * |
| 197 | * <32 1s> = 32 consecutive logic 1 values |
| 198 | * A = bit of Physical Layer device address (MSB first) |
| 199 | * R = bit of register address (MSB first) |
| 200 | * z = High impedance state |
| 201 | * D = bit of read data (MSB first) |
| 202 | * |
| 203 | * Transmission order is 'Preamble' field first, bits transmitted |
| 204 | * left to right (first to last). |
| 205 | */ |
| 206 | struct { |
| 207 | u32 field; |
| 208 | unsigned int len; |
| 209 | } p[] = { |
| 210 | { GMII_PREAMBLE, 32 }, /* Preamble */ |
| 211 | { GMII_ST, 2 }, /* ST */ |
| 212 | { GMII_READ, 2 }, /* OP */ |
| 213 | { phy_id, 5 }, /* PHYAD */ |
| 214 | { phy_reg, 5 }, /* REGAD */ |
| 215 | { 0x0000, 2 }, /* TA */ |
| 216 | { 0x0000, 16 }, /* DATA */ |
| 217 | { 0x0000, 1 } /* IDLE */ |
| 218 | }; |
| 219 | unsigned int i, j; |
| 220 | u8 polarity, data; |
| 221 | |
| 222 | polarity = ipg_r8(PHY_CTRL); |
| 223 | polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); |
| 224 | |
| 225 | /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ |
| 226 | for (j = 0; j < 5; j++) { |
| 227 | for (i = 0; i < p[j].len; i++) { |
| 228 | /* For each variable length field, the MSB must be |
| 229 | * transmitted first. Rotate through the field bits, |
| 230 | * starting with the MSB, and move each bit into the |
| 231 | * the 1st (2^1) bit position (this is the bit position |
| 232 | * corresponding to the MgmtData bit of the PhyCtrl |
| 233 | * register for the IPG). |
| 234 | * |
| 235 | * Example: ST = 01; |
| 236 | * |
| 237 | * First write a '0' to bit 1 of the PhyCtrl |
| 238 | * register, then write a '1' to bit 1 of the |
| 239 | * PhyCtrl register. |
| 240 | * |
| 241 | * To do this, right shift the MSB of ST by the value: |
| 242 | * [field length - 1 - #ST bits already written] |
| 243 | * then left shift this result by 1. |
| 244 | */ |
| 245 | data = (p[j].field >> (p[j].len - 1 - i)) << 1; |
| 246 | data &= IPG_PC_MGMTDATA; |
| 247 | data |= polarity | IPG_PC_MGMTDIR; |
| 248 | |
| 249 | ipg_drive_phy_ctl_low_high(ioaddr, data); |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | send_three_state(ioaddr, polarity); |
| 254 | |
| 255 | read_phy_bit(ioaddr, polarity); |
| 256 | |
| 257 | /* |
| 258 | * For a read cycle, the bits for the next two fields (TA and |
| 259 | * DATA) are driven by the PHY (the IPG reads these bits). |
| 260 | */ |
| 261 | for (i = 0; i < p[6].len; i++) { |
| 262 | p[6].field |= |
| 263 | (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i)); |
| 264 | } |
| 265 | |
| 266 | send_three_state(ioaddr, polarity); |
| 267 | send_three_state(ioaddr, polarity); |
| 268 | send_three_state(ioaddr, polarity); |
| 269 | send_end(ioaddr, polarity); |
| 270 | |
| 271 | /* Return the value of the DATA field. */ |
| 272 | return p[6].field; |
| 273 | } |
| 274 | |
| 275 | /* |
| 276 | * Write to a register from the Physical Layer device located |
| 277 | * on the IPG NIC, using the IPG PHYCTRL register. |
| 278 | */ |
| 279 | static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val) |
| 280 | { |
| 281 | void __iomem *ioaddr = ipg_ioaddr(dev); |
| 282 | /* |
| 283 | * The GMII mangement frame structure for a read is as follows: |
| 284 | * |
| 285 | * |Preamble|st|op|phyad|regad|ta| data |idle| |
| 286 | * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z | |
| 287 | * |
| 288 | * <32 1s> = 32 consecutive logic 1 values |
| 289 | * A = bit of Physical Layer device address (MSB first) |
| 290 | * R = bit of register address (MSB first) |
| 291 | * z = High impedance state |
| 292 | * D = bit of write data (MSB first) |
| 293 | * |
| 294 | * Transmission order is 'Preamble' field first, bits transmitted |
| 295 | * left to right (first to last). |
| 296 | */ |
| 297 | struct { |
| 298 | u32 field; |
| 299 | unsigned int len; |
| 300 | } p[] = { |
| 301 | { GMII_PREAMBLE, 32 }, /* Preamble */ |
| 302 | { GMII_ST, 2 }, /* ST */ |
| 303 | { GMII_WRITE, 2 }, /* OP */ |
| 304 | { phy_id, 5 }, /* PHYAD */ |
| 305 | { phy_reg, 5 }, /* REGAD */ |
| 306 | { 0x0002, 2 }, /* TA */ |
| 307 | { val & 0xffff, 16 }, /* DATA */ |
| 308 | { 0x0000, 1 } /* IDLE */ |
| 309 | }; |
| 310 | unsigned int i, j; |
| 311 | u8 polarity, data; |
| 312 | |
| 313 | polarity = ipg_r8(PHY_CTRL); |
| 314 | polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY); |
| 315 | |
| 316 | /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */ |
| 317 | for (j = 0; j < 7; j++) { |
| 318 | for (i = 0; i < p[j].len; i++) { |
| 319 | /* For each variable length field, the MSB must be |
| 320 | * transmitted first. Rotate through the field bits, |
| 321 | * starting with the MSB, and move each bit into the |
| 322 | * the 1st (2^1) bit position (this is the bit position |
| 323 | * corresponding to the MgmtData bit of the PhyCtrl |
| 324 | * register for the IPG). |
| 325 | * |
| 326 | * Example: ST = 01; |
| 327 | * |
| 328 | * First write a '0' to bit 1 of the PhyCtrl |
| 329 | * register, then write a '1' to bit 1 of the |
| 330 | * PhyCtrl register. |
| 331 | * |
| 332 | * To do this, right shift the MSB of ST by the value: |
| 333 | * [field length - 1 - #ST bits already written] |
| 334 | * then left shift this result by 1. |
| 335 | */ |
| 336 | data = (p[j].field >> (p[j].len - 1 - i)) << 1; |
| 337 | data &= IPG_PC_MGMTDATA; |
| 338 | data |= polarity | IPG_PC_MGMTDIR; |
| 339 | |
| 340 | ipg_drive_phy_ctl_low_high(ioaddr, data); |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | /* The last cycle is a tri-state, so read from the PHY. */ |
| 345 | for (j = 7; j < 8; j++) { |
| 346 | for (i = 0; i < p[j].len; i++) { |
| 347 | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity); |
| 348 | |
| 349 | p[j].field |= ((ipg_r8(PHY_CTRL) & |
| 350 | IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i); |
| 351 | |
| 352 | ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity); |
| 353 | } |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | /* Set LED_Mode JES20040127EEPROM */ |
| 358 | static void ipg_set_led_mode(struct net_device *dev) |
| 359 | { |
| 360 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 361 | void __iomem *ioaddr = sp->ioaddr; |
| 362 | u32 mode; |
| 363 | |
| 364 | mode = ipg_r32(ASIC_CTRL); |
| 365 | mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED); |
| 366 | |
| 367 | if ((sp->LED_Mode & 0x03) > 1) |
| 368 | mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */ |
| 369 | |
| 370 | if ((sp->LED_Mode & 0x01) == 1) |
| 371 | mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */ |
| 372 | |
| 373 | if ((sp->LED_Mode & 0x08) == 8) |
| 374 | mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */ |
| 375 | |
| 376 | ipg_w32(mode, ASIC_CTRL); |
| 377 | } |
| 378 | |
| 379 | /* Set PHYSet JES20040127EEPROM */ |
| 380 | static void ipg_set_phy_set(struct net_device *dev) |
| 381 | { |
| 382 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 383 | void __iomem *ioaddr = sp->ioaddr; |
| 384 | int physet; |
| 385 | |
| 386 | physet = ipg_r8(PHY_SET); |
| 387 | physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET); |
| 388 | physet |= ((sp->LED_Mode & 0x70) >> 4); |
| 389 | ipg_w8(physet, PHY_SET); |
| 390 | } |
| 391 | |
| 392 | static int ipg_reset(struct net_device *dev, u32 resetflags) |
| 393 | { |
| 394 | /* Assert functional resets via the IPG AsicCtrl |
| 395 | * register as specified by the 'resetflags' input |
| 396 | * parameter. |
| 397 | */ |
| 398 | void __iomem *ioaddr = ipg_ioaddr(dev); //JES20040127EEPROM: |
| 399 | unsigned int timeout_count = 0; |
| 400 | |
| 401 | IPG_DEBUG_MSG("_reset\n"); |
| 402 | |
| 403 | ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL); |
| 404 | |
| 405 | /* Delay added to account for problem with 10Mbps reset. */ |
| 406 | mdelay(IPG_AC_RESETWAIT); |
| 407 | |
| 408 | while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) { |
| 409 | mdelay(IPG_AC_RESETWAIT); |
| 410 | if (++timeout_count > IPG_AC_RESET_TIMEOUT) |
| 411 | return -ETIME; |
| 412 | } |
| 413 | /* Set LED Mode in Asic Control JES20040127EEPROM */ |
| 414 | ipg_set_led_mode(dev); |
| 415 | |
| 416 | /* Set PHYSet Register Value JES20040127EEPROM */ |
| 417 | ipg_set_phy_set(dev); |
| 418 | return 0; |
| 419 | } |
| 420 | |
| 421 | /* Find the GMII PHY address. */ |
| 422 | static int ipg_find_phyaddr(struct net_device *dev) |
| 423 | { |
| 424 | unsigned int phyaddr, i; |
| 425 | |
| 426 | for (i = 0; i < 32; i++) { |
| 427 | u32 status; |
| 428 | |
| 429 | /* Search for the correct PHY address among 32 possible. */ |
| 430 | phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32; |
| 431 | |
| 432 | /* 10/22/03 Grace change verify from GMII_PHY_STATUS to |
| 433 | GMII_PHY_ID1 |
| 434 | */ |
| 435 | |
| 436 | status = mdio_read(dev, phyaddr, MII_BMSR); |
| 437 | |
| 438 | if ((status != 0xFFFF) && (status != 0)) |
| 439 | return phyaddr; |
| 440 | } |
| 441 | |
| 442 | return 0x1f; |
| 443 | } |
| 444 | |
| 445 | /* |
| 446 | * Configure IPG based on result of IEEE 802.3 PHY |
| 447 | * auto-negotiation. |
| 448 | */ |
| 449 | static int ipg_config_autoneg(struct net_device *dev) |
| 450 | { |
| 451 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 452 | void __iomem *ioaddr = sp->ioaddr; |
| 453 | unsigned int txflowcontrol; |
| 454 | unsigned int rxflowcontrol; |
| 455 | unsigned int fullduplex; |
| 456 | unsigned int gig; |
| 457 | u32 mac_ctrl_val; |
| 458 | u32 asicctrl; |
| 459 | u8 phyctrl; |
| 460 | |
| 461 | IPG_DEBUG_MSG("_config_autoneg\n"); |
| 462 | |
| 463 | asicctrl = ipg_r32(ASIC_CTRL); |
| 464 | phyctrl = ipg_r8(PHY_CTRL); |
| 465 | mac_ctrl_val = ipg_r32(MAC_CTRL); |
| 466 | |
| 467 | /* Set flags for use in resolving auto-negotation, assuming |
| 468 | * non-1000Mbps, half duplex, no flow control. |
| 469 | */ |
| 470 | fullduplex = 0; |
| 471 | txflowcontrol = 0; |
| 472 | rxflowcontrol = 0; |
| 473 | gig = 0; |
| 474 | |
| 475 | /* To accomodate a problem in 10Mbps operation, |
| 476 | * set a global flag if PHY running in 10Mbps mode. |
| 477 | */ |
| 478 | sp->tenmbpsmode = 0; |
| 479 | |
| 480 | printk(KERN_INFO "%s: Link speed = ", dev->name); |
| 481 | |
| 482 | /* Determine actual speed of operation. */ |
| 483 | switch (phyctrl & IPG_PC_LINK_SPEED) { |
| 484 | case IPG_PC_LINK_SPEED_10MBPS: |
| 485 | printk("10Mbps.\n"); |
| 486 | printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n", |
| 487 | dev->name); |
| 488 | sp->tenmbpsmode = 1; |
| 489 | break; |
| 490 | case IPG_PC_LINK_SPEED_100MBPS: |
| 491 | printk("100Mbps.\n"); |
| 492 | break; |
| 493 | case IPG_PC_LINK_SPEED_1000MBPS: |
| 494 | printk("1000Mbps.\n"); |
| 495 | gig = 1; |
| 496 | break; |
| 497 | default: |
| 498 | printk("undefined!\n"); |
| 499 | return 0; |
| 500 | } |
| 501 | |
| 502 | if (phyctrl & IPG_PC_DUPLEX_STATUS) { |
| 503 | fullduplex = 1; |
| 504 | txflowcontrol = 1; |
| 505 | rxflowcontrol = 1; |
| 506 | } |
| 507 | |
| 508 | /* Configure full duplex, and flow control. */ |
| 509 | if (fullduplex == 1) { |
| 510 | /* Configure IPG for full duplex operation. */ |
| 511 | printk(KERN_INFO "%s: setting full duplex, ", dev->name); |
| 512 | |
| 513 | mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD; |
| 514 | |
| 515 | if (txflowcontrol == 1) { |
| 516 | printk("TX flow control"); |
| 517 | mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE; |
| 518 | } else { |
| 519 | printk("no TX flow control"); |
| 520 | mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE; |
| 521 | } |
| 522 | |
| 523 | if (rxflowcontrol == 1) { |
| 524 | printk(", RX flow control."); |
| 525 | mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE; |
| 526 | } else { |
| 527 | printk(", no RX flow control."); |
| 528 | mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE; |
| 529 | } |
| 530 | |
| 531 | printk("\n"); |
| 532 | } else { |
| 533 | /* Configure IPG for half duplex operation. */ |
| 534 | printk(KERN_INFO "%s: setting half duplex, " |
| 535 | "no TX flow control, no RX flow control.\n", dev->name); |
| 536 | |
| 537 | mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD & |
| 538 | ~IPG_MC_TX_FLOW_CONTROL_ENABLE & |
| 539 | ~IPG_MC_RX_FLOW_CONTROL_ENABLE; |
| 540 | } |
| 541 | ipg_w32(mac_ctrl_val, MAC_CTRL); |
| 542 | return 0; |
| 543 | } |
| 544 | |
| 545 | /* Determine and configure multicast operation and set |
| 546 | * receive mode for IPG. |
| 547 | */ |
| 548 | static void ipg_nic_set_multicast_list(struct net_device *dev) |
| 549 | { |
| 550 | void __iomem *ioaddr = ipg_ioaddr(dev); |
| 551 | struct dev_mc_list *mc_list_ptr; |
| 552 | unsigned int hashindex; |
| 553 | u32 hashtable[2]; |
| 554 | u8 receivemode; |
| 555 | |
| 556 | IPG_DEBUG_MSG("_nic_set_multicast_list\n"); |
| 557 | |
| 558 | receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST; |
| 559 | |
| 560 | if (dev->flags & IFF_PROMISC) { |
| 561 | /* NIC to be configured in promiscuous mode. */ |
| 562 | receivemode = IPG_RM_RECEIVEALLFRAMES; |
| 563 | } else if ((dev->flags & IFF_ALLMULTI) || |
| 564 | (dev->flags & IFF_MULTICAST & |
| 565 | (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) { |
| 566 | /* NIC to be configured to receive all multicast |
| 567 | * frames. */ |
| 568 | receivemode |= IPG_RM_RECEIVEMULTICAST; |
| 569 | } else if (dev->flags & IFF_MULTICAST & (dev->mc_count > 0)) { |
| 570 | /* NIC to be configured to receive selected |
| 571 | * multicast addresses. */ |
| 572 | receivemode |= IPG_RM_RECEIVEMULTICASTHASH; |
| 573 | } |
| 574 | |
| 575 | /* Calculate the bits to set for the 64 bit, IPG HASHTABLE. |
| 576 | * The IPG applies a cyclic-redundancy-check (the same CRC |
| 577 | * used to calculate the frame data FCS) to the destination |
| 578 | * address all incoming multicast frames whose destination |
| 579 | * address has the multicast bit set. The least significant |
| 580 | * 6 bits of the CRC result are used as an addressing index |
| 581 | * into the hash table. If the value of the bit addressed by |
| 582 | * this index is a 1, the frame is passed to the host system. |
| 583 | */ |
| 584 | |
| 585 | /* Clear hashtable. */ |
| 586 | hashtable[0] = 0x00000000; |
| 587 | hashtable[1] = 0x00000000; |
| 588 | |
| 589 | /* Cycle through all multicast addresses to filter. */ |
| 590 | for (mc_list_ptr = dev->mc_list; |
| 591 | mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) { |
| 592 | /* Calculate CRC result for each multicast address. */ |
| 593 | hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr, |
| 594 | ETH_ALEN); |
| 595 | |
| 596 | /* Use only the least significant 6 bits. */ |
| 597 | hashindex = hashindex & 0x3F; |
| 598 | |
| 599 | /* Within "hashtable", set bit number "hashindex" |
| 600 | * to a logic 1. |
| 601 | */ |
| 602 | set_bit(hashindex, (void *)hashtable); |
| 603 | } |
| 604 | |
| 605 | /* Write the value of the hashtable, to the 4, 16 bit |
| 606 | * HASHTABLE IPG registers. |
| 607 | */ |
| 608 | ipg_w32(hashtable[0], HASHTABLE_0); |
| 609 | ipg_w32(hashtable[1], HASHTABLE_1); |
| 610 | |
| 611 | ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE); |
| 612 | |
| 613 | IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE)); |
| 614 | } |
| 615 | |
| 616 | static int ipg_io_config(struct net_device *dev) |
| 617 | { |
| 618 | void __iomem *ioaddr = ipg_ioaddr(dev); |
| 619 | u32 origmacctrl; |
| 620 | u32 restoremacctrl; |
| 621 | |
| 622 | IPG_DEBUG_MSG("_io_config\n"); |
| 623 | |
| 624 | origmacctrl = ipg_r32(MAC_CTRL); |
| 625 | |
| 626 | restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE; |
| 627 | |
| 628 | /* Based on compilation option, determine if FCS is to be |
| 629 | * stripped on receive frames by IPG. |
| 630 | */ |
| 631 | if (!IPG_STRIP_FCS_ON_RX) |
| 632 | restoremacctrl |= IPG_MC_RCV_FCS; |
| 633 | |
| 634 | /* Determine if transmitter and/or receiver are |
| 635 | * enabled so we may restore MACCTRL correctly. |
| 636 | */ |
| 637 | if (origmacctrl & IPG_MC_TX_ENABLED) |
| 638 | restoremacctrl |= IPG_MC_TX_ENABLE; |
| 639 | |
| 640 | if (origmacctrl & IPG_MC_RX_ENABLED) |
| 641 | restoremacctrl |= IPG_MC_RX_ENABLE; |
| 642 | |
| 643 | /* Transmitter and receiver must be disabled before setting |
| 644 | * IFSSelect. |
| 645 | */ |
| 646 | ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) & |
| 647 | IPG_MC_RSVD_MASK, MAC_CTRL); |
| 648 | |
| 649 | /* Now that transmitter and receiver are disabled, write |
| 650 | * to IFSSelect. |
| 651 | */ |
| 652 | ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL); |
| 653 | |
| 654 | /* Set RECEIVEMODE register. */ |
| 655 | ipg_nic_set_multicast_list(dev); |
| 656 | |
| 657 | ipg_w16(IPG_MAX_RXFRAME_SIZE, MAX_FRAME_SIZE); |
| 658 | |
| 659 | ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD); |
| 660 | ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH); |
| 661 | ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH); |
| 662 | ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD); |
| 663 | ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH); |
| 664 | ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH); |
| 665 | ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE | |
| 666 | IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED | |
| 667 | IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT | |
| 668 | IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE); |
| 669 | ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH); |
| 670 | ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH); |
| 671 | |
| 672 | /* IPG multi-frag frame bug workaround. |
| 673 | * Per silicon revision B3 eratta. |
| 674 | */ |
| 675 | ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL); |
| 676 | |
| 677 | /* IPG TX poll now bug workaround. |
| 678 | * Per silicon revision B3 eratta. |
| 679 | */ |
| 680 | ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL); |
| 681 | |
| 682 | /* IPG RX poll now bug workaround. |
| 683 | * Per silicon revision B3 eratta. |
| 684 | */ |
| 685 | ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL); |
| 686 | |
| 687 | /* Now restore MACCTRL to original setting. */ |
| 688 | ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL); |
| 689 | |
| 690 | /* Disable unused RMON statistics. */ |
| 691 | ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK); |
| 692 | |
| 693 | /* Disable unused MIB statistics. */ |
| 694 | ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD | |
| 695 | IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES | |
| 696 | IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES | |
| 697 | IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK | |
| 698 | IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS | |
| 699 | IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK); |
| 700 | |
| 701 | return 0; |
| 702 | } |
| 703 | |
| 704 | /* |
| 705 | * Create a receive buffer within system memory and update |
| 706 | * NIC private structure appropriately. |
| 707 | */ |
| 708 | static int ipg_get_rxbuff(struct net_device *dev, int entry) |
| 709 | { |
| 710 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 711 | struct ipg_rx *rxfd = sp->rxd + entry; |
| 712 | struct sk_buff *skb; |
| 713 | u64 rxfragsize; |
| 714 | |
| 715 | IPG_DEBUG_MSG("_get_rxbuff\n"); |
| 716 | |
| 717 | skb = netdev_alloc_skb(dev, IPG_RXSUPPORT_SIZE + NET_IP_ALIGN); |
| 718 | if (!skb) { |
| 719 | sp->RxBuff[entry] = NULL; |
| 720 | return -ENOMEM; |
| 721 | } |
| 722 | |
| 723 | /* Adjust the data start location within the buffer to |
| 724 | * align IP address field to a 16 byte boundary. |
| 725 | */ |
| 726 | skb_reserve(skb, NET_IP_ALIGN); |
| 727 | |
| 728 | /* Associate the receive buffer with the IPG NIC. */ |
| 729 | skb->dev = dev; |
| 730 | |
| 731 | /* Save the address of the sk_buff structure. */ |
| 732 | sp->RxBuff[entry] = skb; |
| 733 | |
| 734 | rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, |
| 735 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE)); |
| 736 | |
| 737 | /* Set the RFD fragment length. */ |
| 738 | rxfragsize = IPG_RXFRAG_SIZE; |
| 739 | rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN); |
| 740 | |
| 741 | return 0; |
| 742 | } |
| 743 | |
| 744 | static int init_rfdlist(struct net_device *dev) |
| 745 | { |
| 746 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 747 | void __iomem *ioaddr = sp->ioaddr; |
| 748 | unsigned int i; |
| 749 | |
| 750 | IPG_DEBUG_MSG("_init_rfdlist\n"); |
| 751 | |
| 752 | for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { |
| 753 | struct ipg_rx *rxfd = sp->rxd + i; |
| 754 | |
| 755 | if (sp->RxBuff[i]) { |
| 756 | pci_unmap_single(sp->pdev, |
| 757 | le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), |
| 758 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
| 759 | IPG_DEV_KFREE_SKB(sp->RxBuff[i]); |
| 760 | sp->RxBuff[i] = NULL; |
| 761 | } |
| 762 | |
| 763 | /* Clear out the RFS field. */ |
| 764 | rxfd->rfs = 0x0000000000000000; |
| 765 | |
| 766 | if (ipg_get_rxbuff(dev, i) < 0) { |
| 767 | /* |
| 768 | * A receive buffer was not ready, break the |
| 769 | * RFD list here. |
| 770 | */ |
| 771 | IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n"); |
| 772 | |
| 773 | /* Just in case we cannot allocate a single RFD. |
| 774 | * Should not occur. |
| 775 | */ |
| 776 | if (i == 0) { |
| 777 | printk(KERN_ERR "%s: No memory available" |
| 778 | " for RFD list.\n", dev->name); |
| 779 | return -ENOMEM; |
| 780 | } |
| 781 | } |
| 782 | |
| 783 | rxfd->next_desc = cpu_to_le64(sp->rxd_map + |
| 784 | sizeof(struct ipg_rx)*(i + 1)); |
| 785 | } |
| 786 | sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map); |
| 787 | |
| 788 | sp->rx_current = 0; |
| 789 | sp->rx_dirty = 0; |
| 790 | |
| 791 | /* Write the location of the RFDList to the IPG. */ |
| 792 | ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0); |
| 793 | ipg_w32(0x00000000, RFD_LIST_PTR_1); |
| 794 | |
| 795 | return 0; |
| 796 | } |
| 797 | |
| 798 | static void init_tfdlist(struct net_device *dev) |
| 799 | { |
| 800 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 801 | void __iomem *ioaddr = sp->ioaddr; |
| 802 | unsigned int i; |
| 803 | |
| 804 | IPG_DEBUG_MSG("_init_tfdlist\n"); |
| 805 | |
| 806 | for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { |
| 807 | struct ipg_tx *txfd = sp->txd + i; |
| 808 | |
| 809 | txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); |
| 810 | |
| 811 | if (sp->TxBuff[i]) { |
| 812 | IPG_DEV_KFREE_SKB(sp->TxBuff[i]); |
| 813 | sp->TxBuff[i] = NULL; |
| 814 | } |
| 815 | |
| 816 | txfd->next_desc = cpu_to_le64(sp->txd_map + |
| 817 | sizeof(struct ipg_tx)*(i + 1)); |
| 818 | } |
| 819 | sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map); |
| 820 | |
| 821 | sp->tx_current = 0; |
| 822 | sp->tx_dirty = 0; |
| 823 | |
| 824 | /* Write the location of the TFDList to the IPG. */ |
| 825 | IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n", |
| 826 | (u32) sp->txd_map); |
| 827 | ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0); |
| 828 | ipg_w32(0x00000000, TFD_LIST_PTR_1); |
| 829 | |
| 830 | sp->ResetCurrentTFD = 1; |
| 831 | } |
| 832 | |
| 833 | /* |
| 834 | * Free all transmit buffers which have already been transfered |
| 835 | * via DMA to the IPG. |
| 836 | */ |
| 837 | static void ipg_nic_txfree(struct net_device *dev) |
| 838 | { |
| 839 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 840 | void __iomem *ioaddr = sp->ioaddr; |
trem | 1dad939 | 2007-10-02 14:04:38 -0700 | [diff] [blame] | 841 | unsigned int curr; |
| 842 | u64 txd_map; |
Francois Romieu | 1202d6f | 2007-09-17 17:13:55 -0700 | [diff] [blame] | 843 | unsigned int released, pending; |
| 844 | |
trem | 1dad939 | 2007-10-02 14:04:38 -0700 | [diff] [blame] | 845 | txd_map = (u64)sp->txd_map; |
| 846 | curr = ipg_r32(TFD_LIST_PTR_0) - |
| 847 | do_div(txd_map, sizeof(struct ipg_tx)) - 1; |
| 848 | |
Francois Romieu | 1202d6f | 2007-09-17 17:13:55 -0700 | [diff] [blame] | 849 | IPG_DEBUG_MSG("_nic_txfree\n"); |
| 850 | |
| 851 | pending = sp->tx_current - sp->tx_dirty; |
| 852 | |
| 853 | for (released = 0; released < pending; released++) { |
| 854 | unsigned int dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH; |
| 855 | struct sk_buff *skb = sp->TxBuff[dirty]; |
| 856 | struct ipg_tx *txfd = sp->txd + dirty; |
| 857 | |
| 858 | IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc); |
| 859 | |
| 860 | /* Look at each TFD's TFC field beginning |
| 861 | * at the last freed TFD up to the current TFD. |
| 862 | * If the TFDDone bit is set, free the associated |
| 863 | * buffer. |
| 864 | */ |
| 865 | if (dirty == curr) |
| 866 | break; |
| 867 | |
| 868 | /* Setup TFDDONE for compatible issue. */ |
| 869 | txfd->tfc |= cpu_to_le64(IPG_TFC_TFDDONE); |
| 870 | |
| 871 | /* Free the transmit buffer. */ |
| 872 | if (skb) { |
| 873 | pci_unmap_single(sp->pdev, |
| 874 | le64_to_cpu(txfd->frag_info & ~IPG_TFI_FRAGLEN), |
| 875 | skb->len, PCI_DMA_TODEVICE); |
| 876 | |
| 877 | IPG_DEV_KFREE_SKB(skb); |
| 878 | |
| 879 | sp->TxBuff[dirty] = NULL; |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | sp->tx_dirty += released; |
| 884 | |
| 885 | if (netif_queue_stopped(dev) && |
| 886 | (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) { |
| 887 | netif_wake_queue(dev); |
| 888 | } |
| 889 | } |
| 890 | |
| 891 | static void ipg_tx_timeout(struct net_device *dev) |
| 892 | { |
| 893 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 894 | void __iomem *ioaddr = sp->ioaddr; |
| 895 | |
| 896 | ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK | |
| 897 | IPG_AC_FIFO); |
| 898 | |
| 899 | spin_lock_irq(&sp->lock); |
| 900 | |
| 901 | /* Re-configure after DMA reset. */ |
| 902 | if (ipg_io_config(dev) < 0) { |
| 903 | printk(KERN_INFO "%s: Error during re-configuration.\n", |
| 904 | dev->name); |
| 905 | } |
| 906 | |
| 907 | init_tfdlist(dev); |
| 908 | |
| 909 | spin_unlock_irq(&sp->lock); |
| 910 | |
| 911 | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK, |
| 912 | MAC_CTRL); |
| 913 | } |
| 914 | |
| 915 | /* |
| 916 | * For TxComplete interrupts, free all transmit |
| 917 | * buffers which have already been transfered via DMA |
| 918 | * to the IPG. |
| 919 | */ |
| 920 | static void ipg_nic_txcleanup(struct net_device *dev) |
| 921 | { |
| 922 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 923 | void __iomem *ioaddr = sp->ioaddr; |
| 924 | unsigned int i; |
| 925 | |
| 926 | IPG_DEBUG_MSG("_nic_txcleanup\n"); |
| 927 | |
| 928 | for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { |
| 929 | /* Reading the TXSTATUS register clears the |
| 930 | * TX_COMPLETE interrupt. |
| 931 | */ |
| 932 | u32 txstatusdword = ipg_r32(TX_STATUS); |
| 933 | |
| 934 | IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword); |
| 935 | |
| 936 | /* Check for Transmit errors. Error bits only valid if |
| 937 | * TX_COMPLETE bit in the TXSTATUS register is a 1. |
| 938 | */ |
| 939 | if (!(txstatusdword & IPG_TS_TX_COMPLETE)) |
| 940 | break; |
| 941 | |
| 942 | /* If in 10Mbps mode, indicate transmit is ready. */ |
| 943 | if (sp->tenmbpsmode) { |
| 944 | netif_wake_queue(dev); |
| 945 | } |
| 946 | |
| 947 | /* Transmit error, increment stat counters. */ |
| 948 | if (txstatusdword & IPG_TS_TX_ERROR) { |
| 949 | IPG_DEBUG_MSG("Transmit error.\n"); |
| 950 | sp->stats.tx_errors++; |
| 951 | } |
| 952 | |
| 953 | /* Late collision, re-enable transmitter. */ |
| 954 | if (txstatusdword & IPG_TS_LATE_COLLISION) { |
| 955 | IPG_DEBUG_MSG("Late collision on transmit.\n"); |
| 956 | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & |
| 957 | IPG_MC_RSVD_MASK, MAC_CTRL); |
| 958 | } |
| 959 | |
| 960 | /* Maximum collisions, re-enable transmitter. */ |
| 961 | if (txstatusdword & IPG_TS_TX_MAX_COLL) { |
| 962 | IPG_DEBUG_MSG("Maximum collisions on transmit.\n"); |
| 963 | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & |
| 964 | IPG_MC_RSVD_MASK, MAC_CTRL); |
| 965 | } |
| 966 | |
| 967 | /* Transmit underrun, reset and re-enable |
| 968 | * transmitter. |
| 969 | */ |
| 970 | if (txstatusdword & IPG_TS_TX_UNDERRUN) { |
| 971 | IPG_DEBUG_MSG("Transmitter underrun.\n"); |
| 972 | sp->stats.tx_fifo_errors++; |
| 973 | ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | |
| 974 | IPG_AC_NETWORK | IPG_AC_FIFO); |
| 975 | |
| 976 | /* Re-configure after DMA reset. */ |
| 977 | if (ipg_io_config(dev) < 0) { |
| 978 | printk(KERN_INFO |
| 979 | "%s: Error during re-configuration.\n", |
| 980 | dev->name); |
| 981 | } |
| 982 | init_tfdlist(dev); |
| 983 | |
| 984 | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & |
| 985 | IPG_MC_RSVD_MASK, MAC_CTRL); |
| 986 | } |
| 987 | } |
| 988 | |
| 989 | ipg_nic_txfree(dev); |
| 990 | } |
| 991 | |
| 992 | /* Provides statistical information about the IPG NIC. */ |
| 993 | struct net_device_stats *ipg_nic_get_stats(struct net_device *dev) |
| 994 | { |
| 995 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 996 | void __iomem *ioaddr = sp->ioaddr; |
| 997 | u16 temp1; |
| 998 | u16 temp2; |
| 999 | |
| 1000 | IPG_DEBUG_MSG("_nic_get_stats\n"); |
| 1001 | |
| 1002 | /* Check to see if the NIC has been initialized via nic_open, |
| 1003 | * before trying to read statistic registers. |
| 1004 | */ |
| 1005 | if (!test_bit(__LINK_STATE_START, &dev->state)) |
| 1006 | return &sp->stats; |
| 1007 | |
| 1008 | sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK); |
| 1009 | sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK); |
| 1010 | sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK); |
| 1011 | sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK); |
| 1012 | temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS); |
| 1013 | sp->stats.rx_errors += temp1; |
| 1014 | sp->stats.rx_missed_errors += temp1; |
| 1015 | temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) + |
| 1016 | ipg_r32(IPG_LATECOLLISIONS); |
| 1017 | temp2 = ipg_r16(IPG_CARRIERSENSEERRORS); |
| 1018 | sp->stats.collisions += temp1; |
| 1019 | sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS); |
| 1020 | sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) + |
| 1021 | ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2; |
| 1022 | sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK); |
| 1023 | |
| 1024 | /* detailed tx_errors */ |
| 1025 | sp->stats.tx_carrier_errors += temp2; |
| 1026 | |
| 1027 | /* detailed rx_errors */ |
| 1028 | sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) + |
| 1029 | ipg_r16(IPG_FRAMETOOLONGERRRORS); |
| 1030 | sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS); |
| 1031 | |
| 1032 | /* Unutilized IPG statistic registers. */ |
| 1033 | ipg_r32(IPG_MCSTFRAMESRCVDOK); |
| 1034 | |
| 1035 | return &sp->stats; |
| 1036 | } |
| 1037 | |
| 1038 | /* Restore used receive buffers. */ |
| 1039 | static int ipg_nic_rxrestore(struct net_device *dev) |
| 1040 | { |
| 1041 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 1042 | const unsigned int curr = sp->rx_current; |
| 1043 | unsigned int dirty = sp->rx_dirty; |
| 1044 | |
| 1045 | IPG_DEBUG_MSG("_nic_rxrestore\n"); |
| 1046 | |
| 1047 | for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) { |
| 1048 | unsigned int entry = dirty % IPG_RFDLIST_LENGTH; |
| 1049 | |
| 1050 | /* rx_copybreak may poke hole here and there. */ |
| 1051 | if (sp->RxBuff[entry]) |
| 1052 | continue; |
| 1053 | |
| 1054 | /* Generate a new receive buffer to replace the |
| 1055 | * current buffer (which will be released by the |
| 1056 | * Linux system). |
| 1057 | */ |
| 1058 | if (ipg_get_rxbuff(dev, entry) < 0) { |
| 1059 | IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n"); |
| 1060 | |
| 1061 | break; |
| 1062 | } |
| 1063 | |
| 1064 | /* Reset the RFS field. */ |
| 1065 | sp->rxd[entry].rfs = 0x0000000000000000; |
| 1066 | } |
| 1067 | sp->rx_dirty = dirty; |
| 1068 | |
| 1069 | return 0; |
| 1070 | } |
| 1071 | |
| 1072 | #ifdef JUMBO_FRAME |
| 1073 | |
| 1074 | /* use jumboindex and jumbosize to control jumbo frame status |
| 1075 | initial status is jumboindex=-1 and jumbosize=0 |
| 1076 | 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done. |
| 1077 | 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving |
| 1078 | 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump |
| 1079 | previous receiving and need to continue dumping the current one |
| 1080 | */ |
| 1081 | enum { |
| 1082 | NormalPacket, |
| 1083 | ErrorPacket |
| 1084 | }; |
| 1085 | |
| 1086 | enum { |
| 1087 | Frame_NoStart_NoEnd = 0, |
| 1088 | Frame_WithStart = 1, |
| 1089 | Frame_WithEnd = 10, |
| 1090 | Frame_WithStart_WithEnd = 11 |
| 1091 | }; |
| 1092 | |
| 1093 | inline void ipg_nic_rx_free_skb(struct net_device *dev) |
| 1094 | { |
| 1095 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 1096 | unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; |
| 1097 | |
| 1098 | if (sp->RxBuff[entry]) { |
| 1099 | struct ipg_rx *rxfd = sp->rxd + entry; |
| 1100 | |
| 1101 | pci_unmap_single(sp->pdev, |
| 1102 | le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), |
| 1103 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
| 1104 | IPG_DEV_KFREE_SKB(sp->RxBuff[entry]); |
| 1105 | sp->RxBuff[entry] = NULL; |
| 1106 | } |
| 1107 | } |
| 1108 | |
| 1109 | inline int ipg_nic_rx_check_frame_type(struct net_device *dev) |
| 1110 | { |
| 1111 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 1112 | struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH); |
| 1113 | int type = Frame_NoStart_NoEnd; |
| 1114 | |
| 1115 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) |
| 1116 | type += Frame_WithStart; |
| 1117 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND) |
| 1118 | type += Frame_WithEnd; |
| 1119 | return type; |
| 1120 | } |
| 1121 | |
| 1122 | inline int ipg_nic_rx_check_error(struct net_device *dev) |
| 1123 | { |
| 1124 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 1125 | unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH; |
| 1126 | struct ipg_rx *rxfd = sp->rxd + entry; |
| 1127 | |
| 1128 | if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) & |
| 1129 | (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | |
| 1130 | IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | |
| 1131 | IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) { |
| 1132 | IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", |
| 1133 | (unsigned long) rxfd->rfs); |
| 1134 | |
| 1135 | /* Increment general receive error statistic. */ |
| 1136 | sp->stats.rx_errors++; |
| 1137 | |
| 1138 | /* Increment detailed receive error statistics. */ |
| 1139 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) { |
| 1140 | IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); |
| 1141 | |
| 1142 | sp->stats.rx_fifo_errors++; |
| 1143 | } |
| 1144 | |
| 1145 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) { |
| 1146 | IPG_DEBUG_MSG("RX runt occured.\n"); |
| 1147 | sp->stats.rx_length_errors++; |
| 1148 | } |
| 1149 | |
| 1150 | /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME, |
| 1151 | * error count handled by a IPG statistic register. |
| 1152 | */ |
| 1153 | |
| 1154 | if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) { |
| 1155 | IPG_DEBUG_MSG("RX alignment error occured.\n"); |
| 1156 | sp->stats.rx_frame_errors++; |
| 1157 | } |
| 1158 | |
| 1159 | /* Do nothing for IPG_RFS_RXFCSERROR, error count |
| 1160 | * handled by a IPG statistic register. |
| 1161 | */ |
| 1162 | |
| 1163 | /* Free the memory associated with the RX |
| 1164 | * buffer since it is erroneous and we will |
| 1165 | * not pass it to higher layer processes. |
| 1166 | */ |
| 1167 | if (sp->RxBuff[entry]) { |
| 1168 | pci_unmap_single(sp->pdev, |
| 1169 | le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), |
| 1170 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
| 1171 | |
| 1172 | IPG_DEV_KFREE_SKB(sp->RxBuff[entry]); |
| 1173 | sp->RxBuff[entry] = NULL; |
| 1174 | } |
| 1175 | return ErrorPacket; |
| 1176 | } |
| 1177 | return NormalPacket; |
| 1178 | } |
| 1179 | |
| 1180 | static void ipg_nic_rx_with_start_and_end(struct net_device *dev, |
| 1181 | struct ipg_nic_private *sp, |
| 1182 | struct ipg_rx *rxfd, unsigned entry) |
| 1183 | { |
| 1184 | struct SJumbo *jumbo = &sp->Jumbo; |
| 1185 | struct sk_buff *skb; |
| 1186 | int framelen; |
| 1187 | |
| 1188 | if (jumbo->FoundStart) { |
| 1189 | IPG_DEV_KFREE_SKB(jumbo->skb); |
| 1190 | jumbo->FoundStart = 0; |
| 1191 | jumbo->CurrentSize = 0; |
| 1192 | jumbo->skb = NULL; |
| 1193 | } |
| 1194 | |
| 1195 | // 1: found error, 0 no error |
| 1196 | if (ipg_nic_rx_check_error(dev) != NormalPacket) |
| 1197 | return; |
| 1198 | |
| 1199 | skb = sp->RxBuff[entry]; |
| 1200 | if (!skb) |
| 1201 | return; |
| 1202 | |
| 1203 | // accept this frame and send to upper layer |
| 1204 | framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; |
| 1205 | if (framelen > IPG_RXFRAG_SIZE) |
| 1206 | framelen = IPG_RXFRAG_SIZE; |
| 1207 | |
| 1208 | skb_put(skb, framelen); |
| 1209 | skb->protocol = eth_type_trans(skb, dev); |
| 1210 | skb->ip_summed = CHECKSUM_NONE; |
| 1211 | netif_rx(skb); |
| 1212 | dev->last_rx = jiffies; |
| 1213 | sp->RxBuff[entry] = NULL; |
| 1214 | } |
| 1215 | |
| 1216 | static void ipg_nic_rx_with_start(struct net_device *dev, |
| 1217 | struct ipg_nic_private *sp, |
| 1218 | struct ipg_rx *rxfd, unsigned entry) |
| 1219 | { |
| 1220 | struct SJumbo *jumbo = &sp->Jumbo; |
| 1221 | struct pci_dev *pdev = sp->pdev; |
| 1222 | struct sk_buff *skb; |
| 1223 | |
| 1224 | // 1: found error, 0 no error |
| 1225 | if (ipg_nic_rx_check_error(dev) != NormalPacket) |
| 1226 | return; |
| 1227 | |
| 1228 | // accept this frame and send to upper layer |
| 1229 | skb = sp->RxBuff[entry]; |
| 1230 | if (!skb) |
| 1231 | return; |
| 1232 | |
| 1233 | if (jumbo->FoundStart) |
| 1234 | IPG_DEV_KFREE_SKB(jumbo->skb); |
| 1235 | |
| 1236 | pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), |
| 1237 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
| 1238 | |
| 1239 | skb_put(skb, IPG_RXFRAG_SIZE); |
| 1240 | |
| 1241 | jumbo->FoundStart = 1; |
| 1242 | jumbo->CurrentSize = IPG_RXFRAG_SIZE; |
| 1243 | jumbo->skb = skb; |
| 1244 | |
| 1245 | sp->RxBuff[entry] = NULL; |
| 1246 | dev->last_rx = jiffies; |
| 1247 | } |
| 1248 | |
| 1249 | static void ipg_nic_rx_with_end(struct net_device *dev, |
| 1250 | struct ipg_nic_private *sp, |
| 1251 | struct ipg_rx *rxfd, unsigned entry) |
| 1252 | { |
| 1253 | struct SJumbo *jumbo = &sp->Jumbo; |
| 1254 | |
| 1255 | //1: found error, 0 no error |
| 1256 | if (ipg_nic_rx_check_error(dev) == NormalPacket) { |
| 1257 | struct sk_buff *skb = sp->RxBuff[entry]; |
| 1258 | |
| 1259 | if (!skb) |
| 1260 | return; |
| 1261 | |
| 1262 | if (jumbo->FoundStart) { |
| 1263 | int framelen, endframelen; |
| 1264 | |
| 1265 | framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; |
| 1266 | |
| 1267 | endframeLen = framelen - jumbo->CurrentSize; |
| 1268 | /* |
| 1269 | if (framelen > IPG_RXFRAG_SIZE) |
| 1270 | framelen=IPG_RXFRAG_SIZE; |
| 1271 | */ |
| 1272 | if (framelen > IPG_RXSUPPORT_SIZE) |
| 1273 | IPG_DEV_KFREE_SKB(jumbo->skb); |
| 1274 | else { |
| 1275 | memcpy(skb_put(jumbo->skb, endframeLen), |
| 1276 | skb->data, endframeLen); |
| 1277 | |
| 1278 | jumbo->skb->protocol = |
| 1279 | eth_type_trans(jumbo->skb, dev); |
| 1280 | |
| 1281 | jumbo->skb->ip_summed = CHECKSUM_NONE; |
| 1282 | netif_rx(jumbo->skb); |
| 1283 | } |
| 1284 | } |
| 1285 | |
| 1286 | dev->last_rx = jiffies; |
| 1287 | jumbo->FoundStart = 0; |
| 1288 | jumbo->CurrentSize = 0; |
| 1289 | jumbo->skb = NULL; |
| 1290 | |
| 1291 | ipg_nic_rx_free_skb(dev); |
| 1292 | } else { |
| 1293 | IPG_DEV_KFREE_SKB(jumbo->skb); |
| 1294 | jumbo->FoundStart = 0; |
| 1295 | jumbo->CurrentSize = 0; |
| 1296 | jumbo->skb = NULL; |
| 1297 | } |
| 1298 | } |
| 1299 | |
| 1300 | static void ipg_nic_rx_no_start_no_end(struct net_device *dev, |
| 1301 | struct ipg_nic_private *sp, |
| 1302 | struct ipg_rx *rxfd, unsigned entry) |
| 1303 | { |
| 1304 | struct SJumbo *jumbo = &sp->Jumbo; |
| 1305 | |
| 1306 | //1: found error, 0 no error |
| 1307 | if (ipg_nic_rx_check_error(dev) == NormalPacket) { |
| 1308 | struct sk_buff *skb = sp->RxBuff[entry]; |
| 1309 | |
| 1310 | if (skb) { |
| 1311 | if (jumbo->FoundStart) { |
| 1312 | jumbo->CurrentSize += IPG_RXFRAG_SIZE; |
| 1313 | if (jumbo->CurrentSize <= IPG_RXSUPPORT_SIZE) { |
| 1314 | memcpy(skb_put(jumbo->skb, |
| 1315 | IPG_RXFRAG_SIZE), |
| 1316 | skb->data, IPG_RXFRAG_SIZE); |
| 1317 | } |
| 1318 | } |
| 1319 | dev->last_rx = jiffies; |
| 1320 | ipg_nic_rx_free_skb(dev); |
| 1321 | } |
| 1322 | } else { |
| 1323 | IPG_DEV_KFREE_SKB(jumbo->skb); |
| 1324 | jumbo->FoundStart = 0; |
| 1325 | jumbo->CurrentSize = 0; |
| 1326 | jumbo->skb = NULL; |
| 1327 | } |
| 1328 | } |
| 1329 | |
| 1330 | static int ipg_nic_rx(struct net_device *dev) |
| 1331 | { |
| 1332 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 1333 | unsigned int curr = sp->rx_current; |
| 1334 | void __iomem *ioaddr = sp->ioaddr; |
| 1335 | unsigned int i; |
| 1336 | |
| 1337 | IPG_DEBUG_MSG("_nic_rx\n"); |
| 1338 | |
| 1339 | for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { |
| 1340 | unsigned int entry = curr % IPG_RFDLIST_LENGTH; |
| 1341 | struct ipg_rx *rxfd = sp->rxd + entry; |
| 1342 | |
| 1343 | if (!(rxfd->rfs & le64_to_cpu(IPG_RFS_RFDDONE))) |
| 1344 | break; |
| 1345 | |
| 1346 | switch (ipg_nic_rx_check_frame_type(dev)) { |
| 1347 | case Frame_WithStart_WithEnd: |
| 1348 | ipg_nic_rx_with_start_and_end(dev, tp, rxfd, entry); |
| 1349 | break; |
| 1350 | case Frame_WithStart: |
| 1351 | ipg_nic_rx_with_start(dev, tp, rxfd, entry); |
| 1352 | break; |
| 1353 | case Frame_WithEnd: |
| 1354 | ipg_nic_rx_with_end(dev, tp, rxfd, entry); |
| 1355 | break; |
| 1356 | case Frame_NoStart_NoEnd: |
| 1357 | ipg_nic_rx_no_start_no_end(dev, tp, rxfd, entry); |
| 1358 | break; |
| 1359 | } |
| 1360 | } |
| 1361 | |
| 1362 | sp->rx_current = curr; |
| 1363 | |
| 1364 | if (i == IPG_MAXRFDPROCESS_COUNT) { |
| 1365 | /* There are more RFDs to process, however the |
| 1366 | * allocated amount of RFD processing time has |
| 1367 | * expired. Assert Interrupt Requested to make |
| 1368 | * sure we come back to process the remaining RFDs. |
| 1369 | */ |
| 1370 | ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); |
| 1371 | } |
| 1372 | |
| 1373 | ipg_nic_rxrestore(dev); |
| 1374 | |
| 1375 | return 0; |
| 1376 | } |
| 1377 | |
| 1378 | #else |
| 1379 | static int ipg_nic_rx(struct net_device *dev) |
| 1380 | { |
| 1381 | /* Transfer received Ethernet frames to higher network layers. */ |
| 1382 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 1383 | unsigned int curr = sp->rx_current; |
| 1384 | void __iomem *ioaddr = sp->ioaddr; |
| 1385 | struct ipg_rx *rxfd; |
| 1386 | unsigned int i; |
| 1387 | |
| 1388 | IPG_DEBUG_MSG("_nic_rx\n"); |
| 1389 | |
| 1390 | #define __RFS_MASK \ |
| 1391 | cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND) |
| 1392 | |
| 1393 | for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) { |
| 1394 | unsigned int entry = curr % IPG_RFDLIST_LENGTH; |
| 1395 | struct sk_buff *skb = sp->RxBuff[entry]; |
| 1396 | unsigned int framelen; |
| 1397 | |
| 1398 | rxfd = sp->rxd + entry; |
| 1399 | |
| 1400 | if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb) |
| 1401 | break; |
| 1402 | |
| 1403 | /* Get received frame length. */ |
| 1404 | framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN; |
| 1405 | |
| 1406 | /* Check for jumbo frame arrival with too small |
| 1407 | * RXFRAG_SIZE. |
| 1408 | */ |
| 1409 | if (framelen > IPG_RXFRAG_SIZE) { |
| 1410 | IPG_DEBUG_MSG |
| 1411 | ("RFS FrameLen > allocated fragment size.\n"); |
| 1412 | |
| 1413 | framelen = IPG_RXFRAG_SIZE; |
| 1414 | } |
| 1415 | |
| 1416 | if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs & |
| 1417 | (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME | |
| 1418 | IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR | |
| 1419 | IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))))) { |
| 1420 | |
| 1421 | IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n", |
| 1422 | (unsigned long int) rxfd->rfs); |
| 1423 | |
| 1424 | /* Increment general receive error statistic. */ |
| 1425 | sp->stats.rx_errors++; |
| 1426 | |
| 1427 | /* Increment detailed receive error statistics. */ |
| 1428 | if (le64_to_cpu(rxfd->rfs & IPG_RFS_RXFIFOOVERRUN)) { |
| 1429 | IPG_DEBUG_MSG("RX FIFO overrun occured.\n"); |
| 1430 | sp->stats.rx_fifo_errors++; |
| 1431 | } |
| 1432 | |
| 1433 | if (le64_to_cpu(rxfd->rfs & IPG_RFS_RXRUNTFRAME)) { |
| 1434 | IPG_DEBUG_MSG("RX runt occured.\n"); |
| 1435 | sp->stats.rx_length_errors++; |
| 1436 | } |
| 1437 | |
| 1438 | if (le64_to_cpu(rxfd->rfs & IPG_RFS_RXOVERSIZEDFRAME)) ; |
| 1439 | /* Do nothing, error count handled by a IPG |
| 1440 | * statistic register. |
| 1441 | */ |
| 1442 | |
| 1443 | if (le64_to_cpu(rxfd->rfs & IPG_RFS_RXALIGNMENTERROR)) { |
| 1444 | IPG_DEBUG_MSG("RX alignment error occured.\n"); |
| 1445 | sp->stats.rx_frame_errors++; |
| 1446 | } |
| 1447 | |
| 1448 | if (le64_to_cpu(rxfd->rfs & IPG_RFS_RXFCSERROR)) ; |
| 1449 | /* Do nothing, error count handled by a IPG |
| 1450 | * statistic register. |
| 1451 | */ |
| 1452 | |
| 1453 | /* Free the memory associated with the RX |
| 1454 | * buffer since it is erroneous and we will |
| 1455 | * not pass it to higher layer processes. |
| 1456 | */ |
| 1457 | if (skb) { |
| 1458 | u64 info = rxfd->frag_info; |
| 1459 | |
| 1460 | pci_unmap_single(sp->pdev, |
| 1461 | le64_to_cpu(info & ~IPG_RFI_FRAGLEN), |
| 1462 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
| 1463 | |
| 1464 | IPG_DEV_KFREE_SKB(skb); |
| 1465 | } |
| 1466 | } else { |
| 1467 | |
| 1468 | /* Adjust the new buffer length to accomodate the size |
| 1469 | * of the received frame. |
| 1470 | */ |
| 1471 | skb_put(skb, framelen); |
| 1472 | |
| 1473 | /* Set the buffer's protocol field to Ethernet. */ |
| 1474 | skb->protocol = eth_type_trans(skb, dev); |
| 1475 | |
| 1476 | /* If the frame contains an IP/TCP/UDP frame, |
| 1477 | * determine if upper layer must check IP/TCP/UDP |
| 1478 | * checksums. |
| 1479 | * |
| 1480 | * NOTE: DO NOT RELY ON THE TCP/UDP CHECKSUM |
| 1481 | * VERIFICATION FOR SILICON REVISIONS B3 |
| 1482 | * AND EARLIER! |
| 1483 | * |
| 1484 | if ((le64_to_cpu(rxfd->rfs & |
| 1485 | (IPG_RFS_TCPDETECTED | IPG_RFS_UDPDETECTED | |
| 1486 | IPG_RFS_IPDETECTED))) && |
| 1487 | !(le64_to_cpu(rxfd->rfs & |
| 1488 | (IPG_RFS_TCPERROR | IPG_RFS_UDPERROR | |
| 1489 | IPG_RFS_IPERROR)))) { |
| 1490 | * Indicate IP checksums were performed |
| 1491 | * by the IPG. |
| 1492 | * |
| 1493 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 1494 | } else |
| 1495 | */ |
| 1496 | { |
| 1497 | /* The IPG encountered an error with (or |
| 1498 | * there were no) IP/TCP/UDP checksums. |
| 1499 | * This may or may not indicate an invalid |
| 1500 | * IP/TCP/UDP frame was received. Let the |
| 1501 | * upper layer decide. |
| 1502 | */ |
| 1503 | skb->ip_summed = CHECKSUM_NONE; |
| 1504 | } |
| 1505 | |
| 1506 | /* Hand off frame for higher layer processing. |
| 1507 | * The function netif_rx() releases the sk_buff |
| 1508 | * when processing completes. |
| 1509 | */ |
| 1510 | netif_rx(skb); |
| 1511 | |
| 1512 | /* Record frame receive time (jiffies = Linux |
| 1513 | * kernel current time stamp). |
| 1514 | */ |
| 1515 | dev->last_rx = jiffies; |
| 1516 | } |
| 1517 | |
| 1518 | /* Assure RX buffer is not reused by IPG. */ |
| 1519 | sp->RxBuff[entry] = NULL; |
| 1520 | } |
| 1521 | |
| 1522 | /* |
| 1523 | * If there are more RFDs to proces and the allocated amount of RFD |
| 1524 | * processing time has expired, assert Interrupt Requested to make |
| 1525 | * sure we come back to process the remaining RFDs. |
| 1526 | */ |
| 1527 | if (i == IPG_MAXRFDPROCESS_COUNT) |
| 1528 | ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL); |
| 1529 | |
| 1530 | #ifdef IPG_DEBUG |
| 1531 | /* Check if the RFD list contained no receive frame data. */ |
| 1532 | if (!i) |
| 1533 | sp->EmptyRFDListCount++; |
| 1534 | #endif |
| 1535 | while ((le64_to_cpu(rxfd->rfs & IPG_RFS_RFDDONE)) && |
| 1536 | !((le64_to_cpu(rxfd->rfs & IPG_RFS_FRAMESTART)) && |
| 1537 | (le64_to_cpu(rxfd->rfs & IPG_RFS_FRAMEEND)))) { |
| 1538 | unsigned int entry = curr++ % IPG_RFDLIST_LENGTH; |
| 1539 | |
| 1540 | rxfd = sp->rxd + entry; |
| 1541 | |
| 1542 | IPG_DEBUG_MSG("Frame requires multiple RFDs.\n"); |
| 1543 | |
| 1544 | /* An unexpected event, additional code needed to handle |
| 1545 | * properly. So for the time being, just disregard the |
| 1546 | * frame. |
| 1547 | */ |
| 1548 | |
| 1549 | /* Free the memory associated with the RX |
| 1550 | * buffer since it is erroneous and we will |
| 1551 | * not pass it to higher layer processes. |
| 1552 | */ |
| 1553 | if (sp->RxBuff[entry]) { |
| 1554 | pci_unmap_single(sp->pdev, |
| 1555 | le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), |
| 1556 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
| 1557 | IPG_DEV_KFREE_SKB(sp->RxBuff[entry]); |
| 1558 | } |
| 1559 | |
| 1560 | /* Assure RX buffer is not reused by IPG. */ |
| 1561 | sp->RxBuff[entry] = NULL; |
| 1562 | } |
| 1563 | |
| 1564 | sp->rx_current = curr; |
| 1565 | |
| 1566 | /* Check to see if there are a minimum number of used |
| 1567 | * RFDs before restoring any (should improve performance.) |
| 1568 | */ |
| 1569 | if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE) |
| 1570 | ipg_nic_rxrestore(dev); |
| 1571 | |
| 1572 | return 0; |
| 1573 | } |
| 1574 | #endif |
| 1575 | |
| 1576 | static void ipg_reset_after_host_error(struct work_struct *work) |
| 1577 | { |
| 1578 | struct ipg_nic_private *sp = |
| 1579 | container_of(work, struct ipg_nic_private, task.work); |
| 1580 | struct net_device *dev = sp->dev; |
| 1581 | |
| 1582 | IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL)); |
| 1583 | |
| 1584 | /* |
| 1585 | * Acknowledge HostError interrupt by resetting |
| 1586 | * IPG DMA and HOST. |
| 1587 | */ |
| 1588 | ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); |
| 1589 | |
| 1590 | init_rfdlist(dev); |
| 1591 | init_tfdlist(dev); |
| 1592 | |
| 1593 | if (ipg_io_config(dev) < 0) { |
| 1594 | printk(KERN_INFO "%s: Cannot recover from PCI error.\n", |
| 1595 | dev->name); |
| 1596 | schedule_delayed_work(&sp->task, HZ); |
| 1597 | } |
| 1598 | } |
| 1599 | |
| 1600 | static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst) |
| 1601 | { |
| 1602 | struct net_device *dev = dev_inst; |
| 1603 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 1604 | void __iomem *ioaddr = sp->ioaddr; |
| 1605 | unsigned int handled = 0; |
| 1606 | u16 status; |
| 1607 | |
| 1608 | IPG_DEBUG_MSG("_interrupt_handler\n"); |
| 1609 | |
| 1610 | #ifdef JUMBO_FRAME |
| 1611 | ipg_nic_rxrestore(dev); |
| 1612 | #endif |
| 1613 | /* Get interrupt source information, and acknowledge |
| 1614 | * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly, |
| 1615 | * IntRequested, MacControlFrame, LinkEvent) interrupts |
| 1616 | * if issued. Also, all IPG interrupts are disabled by |
| 1617 | * reading IntStatusAck. |
| 1618 | */ |
| 1619 | status = ipg_r16(INT_STATUS_ACK); |
| 1620 | |
| 1621 | IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status); |
| 1622 | |
| 1623 | /* Shared IRQ of remove event. */ |
| 1624 | if (!(status & IPG_IS_RSVD_MASK)) |
| 1625 | goto out_enable; |
| 1626 | |
| 1627 | handled = 1; |
| 1628 | |
| 1629 | if (unlikely(!netif_running(dev))) |
| 1630 | goto out; |
| 1631 | |
| 1632 | spin_lock(&sp->lock); |
| 1633 | |
| 1634 | /* If RFDListEnd interrupt, restore all used RFDs. */ |
| 1635 | if (status & IPG_IS_RFD_LIST_END) { |
| 1636 | IPG_DEBUG_MSG("RFDListEnd Interrupt.\n"); |
| 1637 | |
| 1638 | /* The RFD list end indicates an RFD was encountered |
| 1639 | * with a 0 NextPtr, or with an RFDDone bit set to 1 |
| 1640 | * (indicating the RFD is not read for use by the |
| 1641 | * IPG.) Try to restore all RFDs. |
| 1642 | */ |
| 1643 | ipg_nic_rxrestore(dev); |
| 1644 | |
| 1645 | #ifdef IPG_DEBUG |
| 1646 | /* Increment the RFDlistendCount counter. */ |
| 1647 | sp->RFDlistendCount++; |
| 1648 | #endif |
| 1649 | } |
| 1650 | |
| 1651 | /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or |
| 1652 | * IntRequested interrupt, process received frames. */ |
| 1653 | if ((status & IPG_IS_RX_DMA_PRIORITY) || |
| 1654 | (status & IPG_IS_RFD_LIST_END) || |
| 1655 | (status & IPG_IS_RX_DMA_COMPLETE) || |
| 1656 | (status & IPG_IS_INT_REQUESTED)) { |
| 1657 | #ifdef IPG_DEBUG |
| 1658 | /* Increment the RFD list checked counter if interrupted |
| 1659 | * only to check the RFD list. */ |
| 1660 | if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END | |
| 1661 | IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) & |
| 1662 | (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE | |
| 1663 | IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE | |
| 1664 | IPG_IS_UPDATE_STATS))) |
| 1665 | sp->RFDListCheckedCount++; |
| 1666 | #endif |
| 1667 | |
| 1668 | ipg_nic_rx(dev); |
| 1669 | } |
| 1670 | |
| 1671 | /* If TxDMAComplete interrupt, free used TFDs. */ |
| 1672 | if (status & IPG_IS_TX_DMA_COMPLETE) |
| 1673 | ipg_nic_txfree(dev); |
| 1674 | |
| 1675 | /* TxComplete interrupts indicate one of numerous actions. |
| 1676 | * Determine what action to take based on TXSTATUS register. |
| 1677 | */ |
| 1678 | if (status & IPG_IS_TX_COMPLETE) |
| 1679 | ipg_nic_txcleanup(dev); |
| 1680 | |
| 1681 | /* If UpdateStats interrupt, update Linux Ethernet statistics */ |
| 1682 | if (status & IPG_IS_UPDATE_STATS) |
| 1683 | ipg_nic_get_stats(dev); |
| 1684 | |
| 1685 | /* If HostError interrupt, reset IPG. */ |
| 1686 | if (status & IPG_IS_HOST_ERROR) { |
| 1687 | IPG_DDEBUG_MSG("HostError Interrupt\n"); |
| 1688 | |
| 1689 | schedule_delayed_work(&sp->task, 0); |
| 1690 | } |
| 1691 | |
| 1692 | /* If LinkEvent interrupt, resolve autonegotiation. */ |
| 1693 | if (status & IPG_IS_LINK_EVENT) { |
| 1694 | if (ipg_config_autoneg(dev) < 0) |
| 1695 | printk(KERN_INFO "%s: Auto-negotiation error.\n", |
| 1696 | dev->name); |
| 1697 | } |
| 1698 | |
| 1699 | /* If MACCtrlFrame interrupt, do nothing. */ |
| 1700 | if (status & IPG_IS_MAC_CTRL_FRAME) |
| 1701 | IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n"); |
| 1702 | |
| 1703 | /* If RxComplete interrupt, do nothing. */ |
| 1704 | if (status & IPG_IS_RX_COMPLETE) |
| 1705 | IPG_DEBUG_MSG("RxComplete interrupt.\n"); |
| 1706 | |
| 1707 | /* If RxEarly interrupt, do nothing. */ |
| 1708 | if (status & IPG_IS_RX_EARLY) |
| 1709 | IPG_DEBUG_MSG("RxEarly interrupt.\n"); |
| 1710 | |
| 1711 | out_enable: |
| 1712 | /* Re-enable IPG interrupts. */ |
| 1713 | ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE | |
| 1714 | IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE | |
| 1715 | IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE); |
| 1716 | |
| 1717 | spin_unlock(&sp->lock); |
| 1718 | out: |
| 1719 | return IRQ_RETVAL(handled); |
| 1720 | } |
| 1721 | |
| 1722 | static void ipg_rx_clear(struct ipg_nic_private *sp) |
| 1723 | { |
| 1724 | unsigned int i; |
| 1725 | |
| 1726 | for (i = 0; i < IPG_RFDLIST_LENGTH; i++) { |
| 1727 | if (sp->RxBuff[i]) { |
| 1728 | struct ipg_rx *rxfd = sp->rxd + i; |
| 1729 | |
| 1730 | IPG_DEV_KFREE_SKB(sp->RxBuff[i]); |
| 1731 | sp->RxBuff[i] = NULL; |
| 1732 | pci_unmap_single(sp->pdev, |
| 1733 | le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN), |
| 1734 | sp->rx_buf_sz, PCI_DMA_FROMDEVICE); |
| 1735 | } |
| 1736 | } |
| 1737 | } |
| 1738 | |
| 1739 | static void ipg_tx_clear(struct ipg_nic_private *sp) |
| 1740 | { |
| 1741 | unsigned int i; |
| 1742 | |
| 1743 | for (i = 0; i < IPG_TFDLIST_LENGTH; i++) { |
| 1744 | if (sp->TxBuff[i]) { |
| 1745 | struct ipg_tx *txfd = sp->txd + i; |
| 1746 | |
| 1747 | pci_unmap_single(sp->pdev, |
| 1748 | le64_to_cpu(txfd->frag_info & ~IPG_TFI_FRAGLEN), |
| 1749 | sp->TxBuff[i]->len, PCI_DMA_TODEVICE); |
| 1750 | |
| 1751 | IPG_DEV_KFREE_SKB(sp->TxBuff[i]); |
| 1752 | |
| 1753 | sp->TxBuff[i] = NULL; |
| 1754 | } |
| 1755 | } |
| 1756 | } |
| 1757 | |
| 1758 | static int ipg_nic_open(struct net_device *dev) |
| 1759 | { |
| 1760 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 1761 | void __iomem *ioaddr = sp->ioaddr; |
| 1762 | struct pci_dev *pdev = sp->pdev; |
| 1763 | int rc; |
| 1764 | |
| 1765 | IPG_DEBUG_MSG("_nic_open\n"); |
| 1766 | |
| 1767 | sp->rx_buf_sz = IPG_RXSUPPORT_SIZE; |
| 1768 | |
| 1769 | /* Check for interrupt line conflicts, and request interrupt |
| 1770 | * line for IPG. |
| 1771 | * |
| 1772 | * IMPORTANT: Disable IPG interrupts prior to registering |
| 1773 | * IRQ. |
| 1774 | */ |
| 1775 | ipg_w16(0x0000, INT_ENABLE); |
| 1776 | |
| 1777 | /* Register the interrupt line to be used by the IPG within |
| 1778 | * the Linux system. |
| 1779 | */ |
| 1780 | rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED, |
| 1781 | dev->name, dev); |
| 1782 | if (rc < 0) { |
| 1783 | printk(KERN_INFO "%s: Error when requesting interrupt.\n", |
| 1784 | dev->name); |
| 1785 | goto out; |
| 1786 | } |
| 1787 | |
| 1788 | dev->irq = pdev->irq; |
| 1789 | |
| 1790 | rc = -ENOMEM; |
| 1791 | |
| 1792 | sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES, |
| 1793 | &sp->rxd_map, GFP_KERNEL); |
| 1794 | if (!sp->rxd) |
| 1795 | goto err_free_irq_0; |
| 1796 | |
| 1797 | sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES, |
| 1798 | &sp->txd_map, GFP_KERNEL); |
| 1799 | if (!sp->txd) |
| 1800 | goto err_free_rx_1; |
| 1801 | |
| 1802 | rc = init_rfdlist(dev); |
| 1803 | if (rc < 0) { |
| 1804 | printk(KERN_INFO "%s: Error during configuration.\n", |
| 1805 | dev->name); |
| 1806 | goto err_free_tx_2; |
| 1807 | } |
| 1808 | |
| 1809 | init_tfdlist(dev); |
| 1810 | |
| 1811 | rc = ipg_io_config(dev); |
| 1812 | if (rc < 0) { |
| 1813 | printk(KERN_INFO "%s: Error during configuration.\n", |
| 1814 | dev->name); |
| 1815 | goto err_release_tfdlist_3; |
| 1816 | } |
| 1817 | |
| 1818 | /* Resolve autonegotiation. */ |
| 1819 | if (ipg_config_autoneg(dev) < 0) |
| 1820 | printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name); |
| 1821 | |
| 1822 | #ifdef JUMBO_FRAME |
| 1823 | /* initialize JUMBO Frame control variable */ |
| 1824 | sp->Jumbo.FoundStart = 0; |
| 1825 | sp->Jumbo.CurrentSize = 0; |
| 1826 | sp->Jumbo.skb = 0; |
| 1827 | dev->mtu = IPG_TXFRAG_SIZE; |
| 1828 | #endif |
| 1829 | |
| 1830 | /* Enable transmit and receive operation of the IPG. */ |
| 1831 | ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) & |
| 1832 | IPG_MC_RSVD_MASK, MAC_CTRL); |
| 1833 | |
| 1834 | netif_start_queue(dev); |
| 1835 | out: |
| 1836 | return rc; |
| 1837 | |
| 1838 | err_release_tfdlist_3: |
| 1839 | ipg_tx_clear(sp); |
| 1840 | ipg_rx_clear(sp); |
| 1841 | err_free_tx_2: |
| 1842 | dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); |
| 1843 | err_free_rx_1: |
| 1844 | dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); |
| 1845 | err_free_irq_0: |
| 1846 | free_irq(pdev->irq, dev); |
| 1847 | goto out; |
| 1848 | } |
| 1849 | |
| 1850 | static int ipg_nic_stop(struct net_device *dev) |
| 1851 | { |
| 1852 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 1853 | void __iomem *ioaddr = sp->ioaddr; |
| 1854 | struct pci_dev *pdev = sp->pdev; |
| 1855 | |
| 1856 | IPG_DEBUG_MSG("_nic_stop\n"); |
| 1857 | |
| 1858 | netif_stop_queue(dev); |
| 1859 | |
| 1860 | IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount); |
| 1861 | IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount); |
| 1862 | IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount); |
| 1863 | IPG_DUMPTFDLIST(dev); |
| 1864 | |
| 1865 | do { |
| 1866 | (void) ipg_r16(INT_STATUS_ACK); |
| 1867 | |
| 1868 | ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA); |
| 1869 | |
| 1870 | synchronize_irq(pdev->irq); |
| 1871 | } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK); |
| 1872 | |
| 1873 | ipg_rx_clear(sp); |
| 1874 | |
| 1875 | ipg_tx_clear(sp); |
| 1876 | |
| 1877 | pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map); |
| 1878 | pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map); |
| 1879 | |
| 1880 | free_irq(pdev->irq, dev); |
| 1881 | |
| 1882 | return 0; |
| 1883 | } |
| 1884 | |
| 1885 | static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| 1886 | { |
| 1887 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 1888 | void __iomem *ioaddr = sp->ioaddr; |
| 1889 | unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH; |
| 1890 | unsigned long flags; |
| 1891 | struct ipg_tx *txfd; |
| 1892 | |
| 1893 | IPG_DDEBUG_MSG("_nic_hard_start_xmit\n"); |
| 1894 | |
| 1895 | /* If in 10Mbps mode, stop the transmit queue so |
| 1896 | * no more transmit frames are accepted. |
| 1897 | */ |
| 1898 | if (sp->tenmbpsmode) |
| 1899 | netif_stop_queue(dev); |
| 1900 | |
| 1901 | if (sp->ResetCurrentTFD) { |
| 1902 | sp->ResetCurrentTFD = 0; |
| 1903 | entry = 0; |
| 1904 | } |
| 1905 | |
| 1906 | txfd = sp->txd + entry; |
| 1907 | |
| 1908 | sp->TxBuff[entry] = skb; |
| 1909 | |
| 1910 | /* Clear all TFC fields, except TFDDONE. */ |
| 1911 | txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE); |
| 1912 | |
| 1913 | /* Specify the TFC field within the TFD. */ |
| 1914 | txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED | |
| 1915 | (IPG_TFC_FRAMEID & cpu_to_le64(sp->tx_current)) | |
| 1916 | (IPG_TFC_FRAGCOUNT & (1 << 24))); |
| 1917 | |
| 1918 | /* Request TxComplete interrupts at an interval defined |
| 1919 | * by the constant IPG_FRAMESBETWEENTXCOMPLETES. |
| 1920 | * Request TxComplete interrupt for every frame |
| 1921 | * if in 10Mbps mode to accomodate problem with 10Mbps |
| 1922 | * processing. |
| 1923 | */ |
| 1924 | if (sp->tenmbpsmode) |
| 1925 | txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE); |
| 1926 | else if (!((sp->tx_current - sp->tx_dirty + 1) > |
| 1927 | IPG_FRAMESBETWEENTXDMACOMPLETES)) { |
| 1928 | txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE); |
| 1929 | } |
| 1930 | /* Based on compilation option, determine if FCS is to be |
| 1931 | * appended to transmit frame by IPG. |
| 1932 | */ |
| 1933 | if (!(IPG_APPEND_FCS_ON_TX)) |
| 1934 | txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE); |
| 1935 | |
| 1936 | /* Based on compilation option, determine if IP, TCP and/or |
| 1937 | * UDP checksums are to be added to transmit frame by IPG. |
| 1938 | */ |
| 1939 | if (IPG_ADD_IPCHECKSUM_ON_TX) |
| 1940 | txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE); |
| 1941 | |
| 1942 | if (IPG_ADD_TCPCHECKSUM_ON_TX) |
| 1943 | txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE); |
| 1944 | |
| 1945 | if (IPG_ADD_UDPCHECKSUM_ON_TX) |
| 1946 | txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE); |
| 1947 | |
| 1948 | /* Based on compilation option, determine if VLAN tag info is to be |
| 1949 | * inserted into transmit frame by IPG. |
| 1950 | */ |
| 1951 | if (IPG_INSERT_MANUAL_VLAN_TAG) { |
| 1952 | txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT | |
| 1953 | ((u64) IPG_MANUAL_VLAN_VID << 32) | |
| 1954 | ((u64) IPG_MANUAL_VLAN_CFI << 44) | |
| 1955 | ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45)); |
| 1956 | } |
| 1957 | |
| 1958 | /* The fragment start location within system memory is defined |
| 1959 | * by the sk_buff structure's data field. The physical address |
| 1960 | * of this location within the system's virtual memory space |
| 1961 | * is determined using the IPG_HOST2BUS_MAP function. |
| 1962 | */ |
| 1963 | txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data, |
| 1964 | skb->len, PCI_DMA_TODEVICE)); |
| 1965 | |
| 1966 | /* The length of the fragment within system memory is defined by |
| 1967 | * the sk_buff structure's len field. |
| 1968 | */ |
| 1969 | txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN & |
| 1970 | ((u64) (skb->len & 0xffff) << 48)); |
| 1971 | |
| 1972 | /* Clear the TFDDone bit last to indicate the TFD is ready |
| 1973 | * for transfer to the IPG. |
| 1974 | */ |
| 1975 | txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE); |
| 1976 | |
| 1977 | spin_lock_irqsave(&sp->lock, flags); |
| 1978 | |
| 1979 | sp->tx_current++; |
| 1980 | |
| 1981 | mmiowb(); |
| 1982 | |
| 1983 | ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL); |
| 1984 | |
| 1985 | if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH)) |
| 1986 | netif_wake_queue(dev); |
| 1987 | |
| 1988 | spin_unlock_irqrestore(&sp->lock, flags); |
| 1989 | |
| 1990 | return NETDEV_TX_OK; |
| 1991 | } |
| 1992 | |
| 1993 | static void ipg_set_phy_default_param(unsigned char rev, |
| 1994 | struct net_device *dev, int phy_address) |
| 1995 | { |
| 1996 | unsigned short length; |
| 1997 | unsigned char revision; |
| 1998 | unsigned short *phy_param; |
| 1999 | unsigned short address, value; |
| 2000 | |
| 2001 | phy_param = &DefaultPhyParam[0]; |
| 2002 | length = *phy_param & 0x00FF; |
| 2003 | revision = (unsigned char)((*phy_param) >> 8); |
| 2004 | phy_param++; |
| 2005 | while (length != 0) { |
| 2006 | if (rev == revision) { |
| 2007 | while (length > 1) { |
| 2008 | address = *phy_param; |
| 2009 | value = *(phy_param + 1); |
| 2010 | phy_param += 2; |
| 2011 | mdio_write(dev, phy_address, address, value); |
| 2012 | length -= 4; |
| 2013 | } |
| 2014 | break; |
| 2015 | } else { |
| 2016 | phy_param += length / 2; |
| 2017 | length = *phy_param & 0x00FF; |
| 2018 | revision = (unsigned char)((*phy_param) >> 8); |
| 2019 | phy_param++; |
| 2020 | } |
| 2021 | } |
| 2022 | } |
| 2023 | |
| 2024 | /* JES20040127EEPROM */ |
| 2025 | static int read_eeprom(struct net_device *dev, int eep_addr) |
| 2026 | { |
| 2027 | void __iomem *ioaddr = ipg_ioaddr(dev); |
| 2028 | unsigned int i; |
| 2029 | int ret = 0; |
| 2030 | u16 value; |
| 2031 | |
| 2032 | value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff); |
| 2033 | ipg_w16(value, EEPROM_CTRL); |
| 2034 | |
| 2035 | for (i = 0; i < 1000; i++) { |
| 2036 | u16 data; |
| 2037 | |
| 2038 | mdelay(10); |
| 2039 | data = ipg_r16(EEPROM_CTRL); |
| 2040 | if (!(data & IPG_EC_EEPROM_BUSY)) { |
| 2041 | ret = ipg_r16(EEPROM_DATA); |
| 2042 | break; |
| 2043 | } |
| 2044 | } |
| 2045 | return ret; |
| 2046 | } |
| 2047 | |
| 2048 | static void ipg_init_mii(struct net_device *dev) |
| 2049 | { |
| 2050 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 2051 | struct mii_if_info *mii_if = &sp->mii_if; |
| 2052 | int phyaddr; |
| 2053 | |
| 2054 | mii_if->dev = dev; |
| 2055 | mii_if->mdio_read = mdio_read; |
| 2056 | mii_if->mdio_write = mdio_write; |
| 2057 | mii_if->phy_id_mask = 0x1f; |
| 2058 | mii_if->reg_num_mask = 0x1f; |
| 2059 | |
| 2060 | mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev); |
| 2061 | |
| 2062 | if (phyaddr != 0x1f) { |
| 2063 | u16 mii_phyctrl, mii_1000cr; |
| 2064 | u8 revisionid = 0; |
| 2065 | |
| 2066 | mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000); |
| 2067 | mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF | |
| 2068 | GMII_PHY_1000BASETCONTROL_PreferMaster; |
| 2069 | mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr); |
| 2070 | |
| 2071 | mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR); |
| 2072 | |
| 2073 | /* Set default phyparam */ |
| 2074 | pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid); |
| 2075 | ipg_set_phy_default_param(revisionid, dev, phyaddr); |
| 2076 | |
| 2077 | /* Reset PHY */ |
| 2078 | mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART; |
| 2079 | mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl); |
| 2080 | |
| 2081 | } |
| 2082 | } |
| 2083 | |
| 2084 | static int ipg_hw_init(struct net_device *dev) |
| 2085 | { |
| 2086 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 2087 | void __iomem *ioaddr = sp->ioaddr; |
| 2088 | unsigned int i; |
| 2089 | int rc; |
| 2090 | |
| 2091 | /* Read/Write and Reset EEPROM Value Jesse20040128EEPROM_VALUE */ |
| 2092 | /* Read LED Mode Configuration from EEPROM */ |
| 2093 | sp->LED_Mode = read_eeprom(dev, 6); |
| 2094 | |
| 2095 | /* Reset all functions within the IPG. Do not assert |
| 2096 | * RST_OUT as not compatible with some PHYs. |
| 2097 | */ |
| 2098 | rc = ipg_reset(dev, IPG_RESET_MASK); |
| 2099 | if (rc < 0) |
| 2100 | goto out; |
| 2101 | |
| 2102 | ipg_init_mii(dev); |
| 2103 | |
| 2104 | /* Read MAC Address from EEPROM */ |
| 2105 | for (i = 0; i < 3; i++) |
| 2106 | sp->station_addr[i] = read_eeprom(dev, 16 + i); |
| 2107 | |
| 2108 | for (i = 0; i < 3; i++) |
| 2109 | ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i); |
| 2110 | |
| 2111 | /* Set station address in ethernet_device structure. */ |
| 2112 | dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff; |
| 2113 | dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8; |
| 2114 | dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff; |
| 2115 | dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8; |
| 2116 | dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff; |
| 2117 | dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8; |
| 2118 | out: |
| 2119 | return rc; |
| 2120 | } |
| 2121 | |
| 2122 | static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) |
| 2123 | { |
| 2124 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 2125 | int rc; |
| 2126 | |
| 2127 | mutex_lock(&sp->mii_mutex); |
| 2128 | rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL); |
| 2129 | mutex_unlock(&sp->mii_mutex); |
| 2130 | |
| 2131 | return rc; |
| 2132 | } |
| 2133 | |
| 2134 | static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu) |
| 2135 | { |
| 2136 | /* Function to accomodate changes to Maximum Transfer Unit |
| 2137 | * (or MTU) of IPG NIC. Cannot use default function since |
| 2138 | * the default will not allow for MTU > 1500 bytes. |
| 2139 | */ |
| 2140 | |
| 2141 | IPG_DEBUG_MSG("_nic_change_mtu\n"); |
| 2142 | |
| 2143 | /* Check that the new MTU value is between 68 (14 byte header, 46 |
| 2144 | * byte payload, 4 byte FCS) and IPG_MAX_RXFRAME_SIZE, which |
| 2145 | * corresponds to the MAXFRAMESIZE register in the IPG. |
| 2146 | */ |
| 2147 | if ((new_mtu < 68) || (new_mtu > IPG_MAX_RXFRAME_SIZE)) |
| 2148 | return -EINVAL; |
| 2149 | |
| 2150 | dev->mtu = new_mtu; |
| 2151 | |
| 2152 | return 0; |
| 2153 | } |
| 2154 | |
| 2155 | static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| 2156 | { |
| 2157 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 2158 | int rc; |
| 2159 | |
| 2160 | mutex_lock(&sp->mii_mutex); |
| 2161 | rc = mii_ethtool_gset(&sp->mii_if, cmd); |
| 2162 | mutex_unlock(&sp->mii_mutex); |
| 2163 | |
| 2164 | return rc; |
| 2165 | } |
| 2166 | |
| 2167 | static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) |
| 2168 | { |
| 2169 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 2170 | int rc; |
| 2171 | |
| 2172 | mutex_lock(&sp->mii_mutex); |
| 2173 | rc = mii_ethtool_sset(&sp->mii_if, cmd); |
| 2174 | mutex_unlock(&sp->mii_mutex); |
| 2175 | |
| 2176 | return rc; |
| 2177 | } |
| 2178 | |
| 2179 | static int ipg_nway_reset(struct net_device *dev) |
| 2180 | { |
| 2181 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 2182 | int rc; |
| 2183 | |
| 2184 | mutex_lock(&sp->mii_mutex); |
| 2185 | rc = mii_nway_restart(&sp->mii_if); |
| 2186 | mutex_unlock(&sp->mii_mutex); |
| 2187 | |
| 2188 | return rc; |
| 2189 | } |
| 2190 | |
| 2191 | static struct ethtool_ops ipg_ethtool_ops = { |
| 2192 | .get_settings = ipg_get_settings, |
| 2193 | .set_settings = ipg_set_settings, |
| 2194 | .nway_reset = ipg_nway_reset, |
| 2195 | }; |
| 2196 | |
| 2197 | static void ipg_remove(struct pci_dev *pdev) |
| 2198 | { |
| 2199 | struct net_device *dev = pci_get_drvdata(pdev); |
| 2200 | struct ipg_nic_private *sp = netdev_priv(dev); |
| 2201 | |
| 2202 | IPG_DEBUG_MSG("_remove\n"); |
| 2203 | |
| 2204 | /* Un-register Ethernet device. */ |
| 2205 | unregister_netdev(dev); |
| 2206 | |
| 2207 | pci_iounmap(pdev, sp->ioaddr); |
| 2208 | |
| 2209 | pci_release_regions(pdev); |
| 2210 | |
| 2211 | free_netdev(dev); |
| 2212 | pci_disable_device(pdev); |
| 2213 | pci_set_drvdata(pdev, NULL); |
| 2214 | } |
| 2215 | |
| 2216 | static int __devinit ipg_probe(struct pci_dev *pdev, |
| 2217 | const struct pci_device_id *id) |
| 2218 | { |
| 2219 | unsigned int i = id->driver_data; |
| 2220 | struct ipg_nic_private *sp; |
| 2221 | struct net_device *dev; |
| 2222 | void __iomem *ioaddr; |
| 2223 | int rc; |
| 2224 | |
| 2225 | rc = pci_enable_device(pdev); |
| 2226 | if (rc < 0) |
| 2227 | goto out; |
| 2228 | |
| 2229 | printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]); |
| 2230 | |
| 2231 | pci_set_master(pdev); |
| 2232 | |
| 2233 | rc = pci_set_dma_mask(pdev, DMA_40BIT_MASK); |
| 2234 | if (rc < 0) { |
| 2235 | rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK); |
| 2236 | if (rc < 0) { |
| 2237 | printk(KERN_ERR "%s: DMA config failed.\n", |
| 2238 | pci_name(pdev)); |
| 2239 | goto err_disable_0; |
| 2240 | } |
| 2241 | } |
| 2242 | |
| 2243 | /* |
| 2244 | * Initialize net device. |
| 2245 | */ |
| 2246 | dev = alloc_etherdev(sizeof(struct ipg_nic_private)); |
| 2247 | if (!dev) { |
| 2248 | printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev)); |
| 2249 | rc = -ENOMEM; |
| 2250 | goto err_disable_0; |
| 2251 | } |
| 2252 | |
| 2253 | sp = netdev_priv(dev); |
| 2254 | spin_lock_init(&sp->lock); |
| 2255 | mutex_init(&sp->mii_mutex); |
| 2256 | |
| 2257 | /* Declare IPG NIC functions for Ethernet device methods. |
| 2258 | */ |
| 2259 | dev->open = &ipg_nic_open; |
| 2260 | dev->stop = &ipg_nic_stop; |
| 2261 | dev->hard_start_xmit = &ipg_nic_hard_start_xmit; |
| 2262 | dev->get_stats = &ipg_nic_get_stats; |
| 2263 | dev->set_multicast_list = &ipg_nic_set_multicast_list; |
| 2264 | dev->do_ioctl = ipg_ioctl; |
| 2265 | dev->tx_timeout = ipg_tx_timeout; |
| 2266 | dev->change_mtu = &ipg_nic_change_mtu; |
| 2267 | |
| 2268 | SET_NETDEV_DEV(dev, &pdev->dev); |
| 2269 | SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops); |
| 2270 | |
| 2271 | rc = pci_request_regions(pdev, DRV_NAME); |
| 2272 | if (rc) |
| 2273 | goto err_free_dev_1; |
| 2274 | |
| 2275 | ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1)); |
| 2276 | if (!ioaddr) { |
| 2277 | printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev)); |
| 2278 | rc = -EIO; |
| 2279 | goto err_release_regions_2; |
| 2280 | } |
| 2281 | |
| 2282 | /* Save the pointer to the PCI device information. */ |
| 2283 | sp->ioaddr = ioaddr; |
| 2284 | sp->pdev = pdev; |
| 2285 | sp->dev = dev; |
| 2286 | |
| 2287 | INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error); |
| 2288 | |
| 2289 | pci_set_drvdata(pdev, dev); |
| 2290 | |
| 2291 | rc = ipg_hw_init(dev); |
| 2292 | if (rc < 0) |
| 2293 | goto err_unmap_3; |
| 2294 | |
| 2295 | rc = register_netdev(dev); |
| 2296 | if (rc < 0) |
| 2297 | goto err_unmap_3; |
| 2298 | |
| 2299 | printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name); |
| 2300 | out: |
| 2301 | return rc; |
| 2302 | |
| 2303 | err_unmap_3: |
| 2304 | pci_iounmap(pdev, ioaddr); |
| 2305 | err_release_regions_2: |
| 2306 | pci_release_regions(pdev); |
| 2307 | err_free_dev_1: |
| 2308 | free_netdev(dev); |
| 2309 | err_disable_0: |
| 2310 | pci_disable_device(pdev); |
| 2311 | goto out; |
| 2312 | } |
| 2313 | |
| 2314 | static struct pci_driver ipg_pci_driver = { |
| 2315 | .name = IPG_DRIVER_NAME, |
| 2316 | .id_table = ipg_pci_tbl, |
| 2317 | .probe = ipg_probe, |
| 2318 | .remove = __devexit_p(ipg_remove), |
| 2319 | }; |
| 2320 | |
| 2321 | static int __init ipg_init_module(void) |
| 2322 | { |
| 2323 | return pci_register_driver(&ipg_pci_driver); |
| 2324 | } |
| 2325 | |
| 2326 | static void __exit ipg_exit_module(void) |
| 2327 | { |
| 2328 | pci_unregister_driver(&ipg_pci_driver); |
| 2329 | } |
| 2330 | |
| 2331 | module_init(ipg_init_module); |
| 2332 | module_exit(ipg_exit_module); |