Linus Walleij | e8689e6 | 2010-09-28 15:57:37 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2006 ARM Ltd. |
| 3 | * Copyright (c) 2010 ST-Ericsson SA |
| 4 | * |
| 5 | * Author: Peter Pearse <peter.pearse@arm.com> |
| 6 | * Author: Linus Walleij <linus.walleij@stericsson.com> |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify it |
| 9 | * under the terms of the GNU General Public License as published by the Free |
| 10 | * Software Foundation; either version 2 of the License, or (at your option) |
| 11 | * any later version. |
| 12 | * |
| 13 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 14 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 15 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 16 | * more details. |
| 17 | * |
| 18 | * You should have received a copy of the GNU General Public License along with |
| 19 | * this program; if not, write to the Free Software Foundation, Inc., 59 |
| 20 | * Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 21 | * |
| 22 | * The full GNU General Public License is iin this distribution in the |
| 23 | * file called COPYING. |
| 24 | * |
| 25 | * Documentation: ARM DDI 0196G == PL080 |
| 26 | * Documentation: ARM DDI 0218E == PL081 |
| 27 | * |
| 28 | * PL080 & PL081 both have 16 sets of DMA signals that can be routed to |
| 29 | * any channel. |
| 30 | * |
| 31 | * The PL080 has 8 channels available for simultaneous use, and the PL081 |
| 32 | * has only two channels. So on these DMA controllers the number of channels |
| 33 | * and the number of incoming DMA signals are two totally different things. |
| 34 | * It is usually not possible to theoretically handle all physical signals, |
| 35 | * so a multiplexing scheme with possible denial of use is necessary. |
| 36 | * |
| 37 | * The PL080 has a dual bus master, PL081 has a single master. |
| 38 | * |
| 39 | * Memory to peripheral transfer may be visualized as |
| 40 | * Get data from memory to DMAC |
| 41 | * Until no data left |
| 42 | * On burst request from peripheral |
| 43 | * Destination burst from DMAC to peripheral |
| 44 | * Clear burst request |
| 45 | * Raise terminal count interrupt |
| 46 | * |
| 47 | * For peripherals with a FIFO: |
| 48 | * Source burst size == half the depth of the peripheral FIFO |
| 49 | * Destination burst size == the depth of the peripheral FIFO |
| 50 | * |
| 51 | * (Bursts are irrelevant for mem to mem transfers - there are no burst |
| 52 | * signals, the DMA controller will simply facilitate its AHB master.) |
| 53 | * |
| 54 | * ASSUMES default (little) endianness for DMA transfers |
| 55 | * |
| 56 | * Only DMAC flow control is implemented |
| 57 | * |
| 58 | * Global TODO: |
| 59 | * - Break out common code from arch/arm/mach-s3c64xx and share |
| 60 | */ |
| 61 | #include <linux/device.h> |
| 62 | #include <linux/init.h> |
| 63 | #include <linux/module.h> |
| 64 | #include <linux/pci.h> |
| 65 | #include <linux/interrupt.h> |
| 66 | #include <linux/slab.h> |
| 67 | #include <linux/dmapool.h> |
| 68 | #include <linux/amba/bus.h> |
| 69 | #include <linux/dmaengine.h> |
| 70 | #include <linux/amba/pl08x.h> |
| 71 | #include <linux/debugfs.h> |
| 72 | #include <linux/seq_file.h> |
| 73 | |
| 74 | #include <asm/hardware/pl080.h> |
| 75 | #include <asm/dma.h> |
| 76 | #include <asm/mach/dma.h> |
| 77 | #include <asm/atomic.h> |
| 78 | #include <asm/processor.h> |
| 79 | #include <asm/cacheflush.h> |
| 80 | |
| 81 | #define DRIVER_NAME "pl08xdmac" |
| 82 | |
| 83 | /** |
| 84 | * struct vendor_data - vendor-specific config parameters |
| 85 | * for PL08x derivates |
| 86 | * @name: the name of this specific variant |
| 87 | * @channels: the number of channels available in this variant |
| 88 | * @dualmaster: whether this version supports dual AHB masters |
| 89 | * or not. |
| 90 | */ |
| 91 | struct vendor_data { |
| 92 | char *name; |
| 93 | u8 channels; |
| 94 | bool dualmaster; |
| 95 | }; |
| 96 | |
| 97 | /* |
| 98 | * PL08X private data structures |
| 99 | * An LLI struct - see pl08x TRM |
| 100 | * Note that next uses bit[0] as a bus bit, |
| 101 | * start & end do not - their bus bit info |
| 102 | * is in cctl |
| 103 | */ |
| 104 | struct lli { |
| 105 | dma_addr_t src; |
| 106 | dma_addr_t dst; |
| 107 | dma_addr_t next; |
| 108 | u32 cctl; |
| 109 | }; |
| 110 | |
| 111 | /** |
| 112 | * struct pl08x_driver_data - the local state holder for the PL08x |
| 113 | * @slave: slave engine for this instance |
| 114 | * @memcpy: memcpy engine for this instance |
| 115 | * @base: virtual memory base (remapped) for the PL08x |
| 116 | * @adev: the corresponding AMBA (PrimeCell) bus entry |
| 117 | * @vd: vendor data for this PL08x variant |
| 118 | * @pd: platform data passed in from the platform/machine |
| 119 | * @phy_chans: array of data for the physical channels |
| 120 | * @pool: a pool for the LLI descriptors |
| 121 | * @pool_ctr: counter of LLIs in the pool |
| 122 | * @lock: a spinlock for this struct |
| 123 | */ |
| 124 | struct pl08x_driver_data { |
| 125 | struct dma_device slave; |
| 126 | struct dma_device memcpy; |
| 127 | void __iomem *base; |
| 128 | struct amba_device *adev; |
| 129 | struct vendor_data *vd; |
| 130 | struct pl08x_platform_data *pd; |
| 131 | struct pl08x_phy_chan *phy_chans; |
| 132 | struct dma_pool *pool; |
| 133 | int pool_ctr; |
| 134 | spinlock_t lock; |
| 135 | }; |
| 136 | |
| 137 | /* |
| 138 | * PL08X specific defines |
| 139 | */ |
| 140 | |
| 141 | /* |
| 142 | * Memory boundaries: the manual for PL08x says that the controller |
| 143 | * cannot read past a 1KiB boundary, so these defines are used to |
| 144 | * create transfer LLIs that do not cross such boundaries. |
| 145 | */ |
| 146 | #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */ |
| 147 | #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT) |
| 148 | |
| 149 | /* Minimum period between work queue runs */ |
| 150 | #define PL08X_WQ_PERIODMIN 20 |
| 151 | |
| 152 | /* Size (bytes) of each LLI buffer allocated for one transfer */ |
| 153 | # define PL08X_LLI_TSFR_SIZE 0x2000 |
| 154 | |
| 155 | /* Maximimum times we call dma_pool_alloc on this pool without freeing */ |
| 156 | #define PL08X_MAX_ALLOCS 0x40 |
| 157 | #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct lli)) |
| 158 | #define PL08X_ALIGN 8 |
| 159 | |
| 160 | static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan) |
| 161 | { |
| 162 | return container_of(chan, struct pl08x_dma_chan, chan); |
| 163 | } |
| 164 | |
| 165 | /* |
| 166 | * Physical channel handling |
| 167 | */ |
| 168 | |
| 169 | /* Whether a certain channel is busy or not */ |
| 170 | static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch) |
| 171 | { |
| 172 | unsigned int val; |
| 173 | |
| 174 | val = readl(ch->base + PL080_CH_CONFIG); |
| 175 | return val & PL080_CONFIG_ACTIVE; |
| 176 | } |
| 177 | |
| 178 | /* |
| 179 | * Set the initial DMA register values i.e. those for the first LLI |
| 180 | * The next lli pointer and the configuration interrupt bit have |
| 181 | * been set when the LLIs were constructed |
| 182 | */ |
| 183 | static void pl08x_set_cregs(struct pl08x_driver_data *pl08x, |
| 184 | struct pl08x_phy_chan *ch) |
| 185 | { |
| 186 | /* Wait for channel inactive */ |
| 187 | while (pl08x_phy_channel_busy(ch)) |
| 188 | ; |
| 189 | |
| 190 | dev_vdbg(&pl08x->adev->dev, |
| 191 | "WRITE channel %d: csrc=%08x, cdst=%08x, " |
| 192 | "cctl=%08x, clli=%08x, ccfg=%08x\n", |
| 193 | ch->id, |
| 194 | ch->csrc, |
| 195 | ch->cdst, |
| 196 | ch->cctl, |
| 197 | ch->clli, |
| 198 | ch->ccfg); |
| 199 | |
| 200 | writel(ch->csrc, ch->base + PL080_CH_SRC_ADDR); |
| 201 | writel(ch->cdst, ch->base + PL080_CH_DST_ADDR); |
| 202 | writel(ch->clli, ch->base + PL080_CH_LLI); |
| 203 | writel(ch->cctl, ch->base + PL080_CH_CONTROL); |
| 204 | writel(ch->ccfg, ch->base + PL080_CH_CONFIG); |
| 205 | } |
| 206 | |
| 207 | static inline void pl08x_config_phychan_for_txd(struct pl08x_dma_chan *plchan) |
| 208 | { |
| 209 | struct pl08x_channel_data *cd = plchan->cd; |
| 210 | struct pl08x_phy_chan *phychan = plchan->phychan; |
| 211 | struct pl08x_txd *txd = plchan->at; |
| 212 | |
| 213 | /* Copy the basic control register calculated at transfer config */ |
| 214 | phychan->csrc = txd->csrc; |
| 215 | phychan->cdst = txd->cdst; |
| 216 | phychan->clli = txd->clli; |
| 217 | phychan->cctl = txd->cctl; |
| 218 | |
| 219 | /* Assign the signal to the proper control registers */ |
| 220 | phychan->ccfg = cd->ccfg; |
| 221 | phychan->ccfg &= ~PL080_CONFIG_SRC_SEL_MASK; |
| 222 | phychan->ccfg &= ~PL080_CONFIG_DST_SEL_MASK; |
| 223 | /* If it wasn't set from AMBA, ignore it */ |
| 224 | if (txd->direction == DMA_TO_DEVICE) |
| 225 | /* Select signal as destination */ |
| 226 | phychan->ccfg |= |
| 227 | (phychan->signal << PL080_CONFIG_DST_SEL_SHIFT); |
| 228 | else if (txd->direction == DMA_FROM_DEVICE) |
| 229 | /* Select signal as source */ |
| 230 | phychan->ccfg |= |
| 231 | (phychan->signal << PL080_CONFIG_SRC_SEL_SHIFT); |
| 232 | /* Always enable error interrupts */ |
| 233 | phychan->ccfg |= PL080_CONFIG_ERR_IRQ_MASK; |
| 234 | /* Always enable terminal interrupts */ |
| 235 | phychan->ccfg |= PL080_CONFIG_TC_IRQ_MASK; |
| 236 | } |
| 237 | |
| 238 | /* |
| 239 | * Enable the DMA channel |
| 240 | * Assumes all other configuration bits have been set |
| 241 | * as desired before this code is called |
| 242 | */ |
| 243 | static void pl08x_enable_phy_chan(struct pl08x_driver_data *pl08x, |
| 244 | struct pl08x_phy_chan *ch) |
| 245 | { |
| 246 | u32 val; |
| 247 | |
| 248 | /* |
| 249 | * Do not access config register until channel shows as disabled |
| 250 | */ |
| 251 | while (readl(pl08x->base + PL080_EN_CHAN) & (1 << ch->id)) |
| 252 | ; |
| 253 | |
| 254 | /* |
| 255 | * Do not access config register until channel shows as inactive |
| 256 | */ |
| 257 | val = readl(ch->base + PL080_CH_CONFIG); |
| 258 | while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE)) |
| 259 | val = readl(ch->base + PL080_CH_CONFIG); |
| 260 | |
| 261 | writel(val | PL080_CONFIG_ENABLE, ch->base + PL080_CH_CONFIG); |
| 262 | } |
| 263 | |
| 264 | /* |
| 265 | * Overall DMAC remains enabled always. |
| 266 | * |
| 267 | * Disabling individual channels could lose data. |
| 268 | * |
| 269 | * Disable the peripheral DMA after disabling the DMAC |
| 270 | * in order to allow the DMAC FIFO to drain, and |
| 271 | * hence allow the channel to show inactive |
| 272 | * |
| 273 | */ |
| 274 | static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch) |
| 275 | { |
| 276 | u32 val; |
| 277 | |
| 278 | /* Set the HALT bit and wait for the FIFO to drain */ |
| 279 | val = readl(ch->base + PL080_CH_CONFIG); |
| 280 | val |= PL080_CONFIG_HALT; |
| 281 | writel(val, ch->base + PL080_CH_CONFIG); |
| 282 | |
| 283 | /* Wait for channel inactive */ |
| 284 | while (pl08x_phy_channel_busy(ch)) |
| 285 | ; |
| 286 | } |
| 287 | |
| 288 | static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch) |
| 289 | { |
| 290 | u32 val; |
| 291 | |
| 292 | /* Clear the HALT bit */ |
| 293 | val = readl(ch->base + PL080_CH_CONFIG); |
| 294 | val &= ~PL080_CONFIG_HALT; |
| 295 | writel(val, ch->base + PL080_CH_CONFIG); |
| 296 | } |
| 297 | |
| 298 | |
| 299 | /* Stops the channel */ |
| 300 | static void pl08x_stop_phy_chan(struct pl08x_phy_chan *ch) |
| 301 | { |
| 302 | u32 val; |
| 303 | |
| 304 | pl08x_pause_phy_chan(ch); |
| 305 | |
| 306 | /* Disable channel */ |
| 307 | val = readl(ch->base + PL080_CH_CONFIG); |
| 308 | val &= ~PL080_CONFIG_ENABLE; |
| 309 | val &= ~PL080_CONFIG_ERR_IRQ_MASK; |
| 310 | val &= ~PL080_CONFIG_TC_IRQ_MASK; |
| 311 | writel(val, ch->base + PL080_CH_CONFIG); |
| 312 | } |
| 313 | |
| 314 | static inline u32 get_bytes_in_cctl(u32 cctl) |
| 315 | { |
| 316 | /* The source width defines the number of bytes */ |
| 317 | u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK; |
| 318 | |
| 319 | switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) { |
| 320 | case PL080_WIDTH_8BIT: |
| 321 | break; |
| 322 | case PL080_WIDTH_16BIT: |
| 323 | bytes *= 2; |
| 324 | break; |
| 325 | case PL080_WIDTH_32BIT: |
| 326 | bytes *= 4; |
| 327 | break; |
| 328 | } |
| 329 | return bytes; |
| 330 | } |
| 331 | |
| 332 | /* The channel should be paused when calling this */ |
| 333 | static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan) |
| 334 | { |
| 335 | struct pl08x_phy_chan *ch; |
| 336 | struct pl08x_txd *txdi = NULL; |
| 337 | struct pl08x_txd *txd; |
| 338 | unsigned long flags; |
| 339 | u32 bytes = 0; |
| 340 | |
| 341 | spin_lock_irqsave(&plchan->lock, flags); |
| 342 | |
| 343 | ch = plchan->phychan; |
| 344 | txd = plchan->at; |
| 345 | |
| 346 | /* |
| 347 | * Next follow the LLIs to get the number of pending bytes in the |
| 348 | * currently active transaction. |
| 349 | */ |
| 350 | if (ch && txd) { |
| 351 | struct lli *llis_va = txd->llis_va; |
| 352 | struct lli *llis_bus = (struct lli *) txd->llis_bus; |
| 353 | u32 clli = readl(ch->base + PL080_CH_LLI); |
| 354 | |
| 355 | /* First get the bytes in the current active LLI */ |
| 356 | bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL)); |
| 357 | |
| 358 | if (clli) { |
| 359 | int i = 0; |
| 360 | |
| 361 | /* Forward to the LLI pointed to by clli */ |
| 362 | while ((clli != (u32) &(llis_bus[i])) && |
| 363 | (i < MAX_NUM_TSFR_LLIS)) |
| 364 | i++; |
| 365 | |
| 366 | while (clli) { |
| 367 | bytes += get_bytes_in_cctl(llis_va[i].cctl); |
| 368 | /* |
| 369 | * A clli of 0x00000000 will terminate the |
| 370 | * LLI list |
| 371 | */ |
| 372 | clli = llis_va[i].next; |
| 373 | i++; |
| 374 | } |
| 375 | } |
| 376 | } |
| 377 | |
| 378 | /* Sum up all queued transactions */ |
| 379 | if (!list_empty(&plchan->desc_list)) { |
| 380 | list_for_each_entry(txdi, &plchan->desc_list, node) { |
| 381 | bytes += txdi->len; |
| 382 | } |
| 383 | |
| 384 | } |
| 385 | |
| 386 | spin_unlock_irqrestore(&plchan->lock, flags); |
| 387 | |
| 388 | return bytes; |
| 389 | } |
| 390 | |
| 391 | /* |
| 392 | * Allocate a physical channel for a virtual channel |
| 393 | */ |
| 394 | static struct pl08x_phy_chan * |
| 395 | pl08x_get_phy_channel(struct pl08x_driver_data *pl08x, |
| 396 | struct pl08x_dma_chan *virt_chan) |
| 397 | { |
| 398 | struct pl08x_phy_chan *ch = NULL; |
| 399 | unsigned long flags; |
| 400 | int i; |
| 401 | |
| 402 | /* |
| 403 | * Try to locate a physical channel to be used for |
| 404 | * this transfer. If all are taken return NULL and |
| 405 | * the requester will have to cope by using some fallback |
| 406 | * PIO mode or retrying later. |
| 407 | */ |
| 408 | for (i = 0; i < pl08x->vd->channels; i++) { |
| 409 | ch = &pl08x->phy_chans[i]; |
| 410 | |
| 411 | spin_lock_irqsave(&ch->lock, flags); |
| 412 | |
| 413 | if (!ch->serving) { |
| 414 | ch->serving = virt_chan; |
| 415 | ch->signal = -1; |
| 416 | spin_unlock_irqrestore(&ch->lock, flags); |
| 417 | break; |
| 418 | } |
| 419 | |
| 420 | spin_unlock_irqrestore(&ch->lock, flags); |
| 421 | } |
| 422 | |
| 423 | if (i == pl08x->vd->channels) { |
| 424 | /* No physical channel available, cope with it */ |
| 425 | return NULL; |
| 426 | } |
| 427 | |
| 428 | return ch; |
| 429 | } |
| 430 | |
| 431 | static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x, |
| 432 | struct pl08x_phy_chan *ch) |
| 433 | { |
| 434 | unsigned long flags; |
| 435 | |
| 436 | /* Stop the channel and clear its interrupts */ |
| 437 | pl08x_stop_phy_chan(ch); |
| 438 | writel((1 << ch->id), pl08x->base + PL080_ERR_CLEAR); |
| 439 | writel((1 << ch->id), pl08x->base + PL080_TC_CLEAR); |
| 440 | |
| 441 | /* Mark it as free */ |
| 442 | spin_lock_irqsave(&ch->lock, flags); |
| 443 | ch->serving = NULL; |
| 444 | spin_unlock_irqrestore(&ch->lock, flags); |
| 445 | } |
| 446 | |
| 447 | /* |
| 448 | * LLI handling |
| 449 | */ |
| 450 | |
| 451 | static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded) |
| 452 | { |
| 453 | switch (coded) { |
| 454 | case PL080_WIDTH_8BIT: |
| 455 | return 1; |
| 456 | case PL080_WIDTH_16BIT: |
| 457 | return 2; |
| 458 | case PL080_WIDTH_32BIT: |
| 459 | return 4; |
| 460 | default: |
| 461 | break; |
| 462 | } |
| 463 | BUG(); |
| 464 | return 0; |
| 465 | } |
| 466 | |
| 467 | static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth, |
| 468 | u32 tsize) |
| 469 | { |
| 470 | u32 retbits = cctl; |
| 471 | |
| 472 | /* Remove all src, dst and transfersize bits */ |
| 473 | retbits &= ~PL080_CONTROL_DWIDTH_MASK; |
| 474 | retbits &= ~PL080_CONTROL_SWIDTH_MASK; |
| 475 | retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK; |
| 476 | |
| 477 | /* Then set the bits according to the parameters */ |
| 478 | switch (srcwidth) { |
| 479 | case 1: |
| 480 | retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT; |
| 481 | break; |
| 482 | case 2: |
| 483 | retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT; |
| 484 | break; |
| 485 | case 4: |
| 486 | retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT; |
| 487 | break; |
| 488 | default: |
| 489 | BUG(); |
| 490 | break; |
| 491 | } |
| 492 | |
| 493 | switch (dstwidth) { |
| 494 | case 1: |
| 495 | retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT; |
| 496 | break; |
| 497 | case 2: |
| 498 | retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT; |
| 499 | break; |
| 500 | case 4: |
| 501 | retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT; |
| 502 | break; |
| 503 | default: |
| 504 | BUG(); |
| 505 | break; |
| 506 | } |
| 507 | |
| 508 | retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT; |
| 509 | return retbits; |
| 510 | } |
| 511 | |
| 512 | /* |
| 513 | * Autoselect a master bus to use for the transfer |
| 514 | * this prefers the destination bus if both available |
| 515 | * if fixed address on one bus the other will be chosen |
| 516 | */ |
| 517 | void pl08x_choose_master_bus(struct pl08x_bus_data *src_bus, |
| 518 | struct pl08x_bus_data *dst_bus, struct pl08x_bus_data **mbus, |
| 519 | struct pl08x_bus_data **sbus, u32 cctl) |
| 520 | { |
| 521 | if (!(cctl & PL080_CONTROL_DST_INCR)) { |
| 522 | *mbus = src_bus; |
| 523 | *sbus = dst_bus; |
| 524 | } else if (!(cctl & PL080_CONTROL_SRC_INCR)) { |
| 525 | *mbus = dst_bus; |
| 526 | *sbus = src_bus; |
| 527 | } else { |
| 528 | if (dst_bus->buswidth == 4) { |
| 529 | *mbus = dst_bus; |
| 530 | *sbus = src_bus; |
| 531 | } else if (src_bus->buswidth == 4) { |
| 532 | *mbus = src_bus; |
| 533 | *sbus = dst_bus; |
| 534 | } else if (dst_bus->buswidth == 2) { |
| 535 | *mbus = dst_bus; |
| 536 | *sbus = src_bus; |
| 537 | } else if (src_bus->buswidth == 2) { |
| 538 | *mbus = src_bus; |
| 539 | *sbus = dst_bus; |
| 540 | } else { |
| 541 | /* src_bus->buswidth == 1 */ |
| 542 | *mbus = dst_bus; |
| 543 | *sbus = src_bus; |
| 544 | } |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | /* |
| 549 | * Fills in one LLI for a certain transfer descriptor |
| 550 | * and advance the counter |
| 551 | */ |
| 552 | int pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x, |
| 553 | struct pl08x_txd *txd, int num_llis, int len, |
| 554 | u32 cctl, u32 *remainder) |
| 555 | { |
| 556 | struct lli *llis_va = txd->llis_va; |
| 557 | struct lli *llis_bus = (struct lli *) txd->llis_bus; |
| 558 | |
| 559 | BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS); |
| 560 | |
| 561 | llis_va[num_llis].cctl = cctl; |
| 562 | llis_va[num_llis].src = txd->srcbus.addr; |
| 563 | llis_va[num_llis].dst = txd->dstbus.addr; |
| 564 | |
| 565 | /* |
| 566 | * On versions with dual masters, you can optionally AND on |
| 567 | * PL080_LLI_LM_AHB2 to the LLI to tell the hardware to read |
| 568 | * in new LLIs with that controller, but we always try to |
| 569 | * choose AHB1 to point into memory. The idea is to have AHB2 |
| 570 | * fixed on the peripheral and AHB1 messing around in the |
| 571 | * memory. So we don't manipulate this bit currently. |
| 572 | */ |
| 573 | |
| 574 | llis_va[num_llis].next = |
| 575 | (dma_addr_t)((u32) &(llis_bus[num_llis + 1])); |
| 576 | |
| 577 | if (cctl & PL080_CONTROL_SRC_INCR) |
| 578 | txd->srcbus.addr += len; |
| 579 | if (cctl & PL080_CONTROL_DST_INCR) |
| 580 | txd->dstbus.addr += len; |
| 581 | |
| 582 | *remainder -= len; |
| 583 | |
| 584 | return num_llis + 1; |
| 585 | } |
| 586 | |
| 587 | /* |
| 588 | * Return number of bytes to fill to boundary, or len |
| 589 | */ |
| 590 | static inline u32 pl08x_pre_boundary(u32 addr, u32 len) |
| 591 | { |
| 592 | u32 boundary; |
| 593 | |
| 594 | boundary = ((addr >> PL08X_BOUNDARY_SHIFT) + 1) |
| 595 | << PL08X_BOUNDARY_SHIFT; |
| 596 | |
| 597 | if (boundary < addr + len) |
| 598 | return boundary - addr; |
| 599 | else |
| 600 | return len; |
| 601 | } |
| 602 | |
| 603 | /* |
| 604 | * This fills in the table of LLIs for the transfer descriptor |
| 605 | * Note that we assume we never have to change the burst sizes |
| 606 | * Return 0 for error |
| 607 | */ |
| 608 | static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x, |
| 609 | struct pl08x_txd *txd) |
| 610 | { |
| 611 | struct pl08x_channel_data *cd = txd->cd; |
| 612 | struct pl08x_bus_data *mbus, *sbus; |
| 613 | u32 remainder; |
| 614 | int num_llis = 0; |
| 615 | u32 cctl; |
| 616 | int max_bytes_per_lli; |
| 617 | int total_bytes = 0; |
| 618 | struct lli *llis_va; |
| 619 | struct lli *llis_bus; |
| 620 | |
| 621 | if (!txd) { |
| 622 | dev_err(&pl08x->adev->dev, "%s no descriptor\n", __func__); |
| 623 | return 0; |
| 624 | } |
| 625 | |
| 626 | txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, |
| 627 | &txd->llis_bus); |
| 628 | if (!txd->llis_va) { |
| 629 | dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__); |
| 630 | return 0; |
| 631 | } |
| 632 | |
| 633 | pl08x->pool_ctr++; |
| 634 | |
| 635 | /* |
| 636 | * Initialize bus values for this transfer |
| 637 | * from the passed optimal values |
| 638 | */ |
| 639 | if (!cd) { |
| 640 | dev_err(&pl08x->adev->dev, "%s no channel data\n", __func__); |
| 641 | return 0; |
| 642 | } |
| 643 | |
| 644 | /* Get the default CCTL from the platform data */ |
| 645 | cctl = cd->cctl; |
| 646 | |
| 647 | /* |
| 648 | * On the PL080 we have two bus masters and we |
| 649 | * should select one for source and one for |
| 650 | * destination. We try to use AHB2 for the |
| 651 | * bus which does not increment (typically the |
| 652 | * peripheral) else we just choose something. |
| 653 | */ |
| 654 | cctl &= ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2); |
| 655 | if (pl08x->vd->dualmaster) { |
| 656 | if (cctl & PL080_CONTROL_SRC_INCR) |
| 657 | /* Source increments, use AHB2 for destination */ |
| 658 | cctl |= PL080_CONTROL_DST_AHB2; |
| 659 | else if (cctl & PL080_CONTROL_DST_INCR) |
| 660 | /* Destination increments, use AHB2 for source */ |
| 661 | cctl |= PL080_CONTROL_SRC_AHB2; |
| 662 | else |
| 663 | /* Just pick something, source AHB1 dest AHB2 */ |
| 664 | cctl |= PL080_CONTROL_DST_AHB2; |
| 665 | } |
| 666 | |
| 667 | /* Find maximum width of the source bus */ |
| 668 | txd->srcbus.maxwidth = |
| 669 | pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >> |
| 670 | PL080_CONTROL_SWIDTH_SHIFT); |
| 671 | |
| 672 | /* Find maximum width of the destination bus */ |
| 673 | txd->dstbus.maxwidth = |
| 674 | pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >> |
| 675 | PL080_CONTROL_DWIDTH_SHIFT); |
| 676 | |
| 677 | /* Set up the bus widths to the maximum */ |
| 678 | txd->srcbus.buswidth = txd->srcbus.maxwidth; |
| 679 | txd->dstbus.buswidth = txd->dstbus.maxwidth; |
| 680 | dev_vdbg(&pl08x->adev->dev, |
| 681 | "%s source bus is %d bytes wide, dest bus is %d bytes wide\n", |
| 682 | __func__, txd->srcbus.buswidth, txd->dstbus.buswidth); |
| 683 | |
| 684 | |
| 685 | /* |
| 686 | * Bytes transferred == tsize * MIN(buswidths), not max(buswidths) |
| 687 | */ |
| 688 | max_bytes_per_lli = min(txd->srcbus.buswidth, txd->dstbus.buswidth) * |
| 689 | PL080_CONTROL_TRANSFER_SIZE_MASK; |
| 690 | dev_vdbg(&pl08x->adev->dev, |
| 691 | "%s max bytes per lli = %d\n", |
| 692 | __func__, max_bytes_per_lli); |
| 693 | |
| 694 | /* We need to count this down to zero */ |
| 695 | remainder = txd->len; |
| 696 | dev_vdbg(&pl08x->adev->dev, |
| 697 | "%s remainder = %d\n", |
| 698 | __func__, remainder); |
| 699 | |
| 700 | /* |
| 701 | * Choose bus to align to |
| 702 | * - prefers destination bus if both available |
| 703 | * - if fixed address on one bus chooses other |
| 704 | * - modifies cctl to choose an apropriate master |
| 705 | */ |
| 706 | pl08x_choose_master_bus(&txd->srcbus, &txd->dstbus, |
| 707 | &mbus, &sbus, cctl); |
| 708 | |
| 709 | |
| 710 | /* |
| 711 | * The lowest bit of the LLI register |
| 712 | * is also used to indicate which master to |
| 713 | * use for reading the LLIs. |
| 714 | */ |
| 715 | |
| 716 | if (txd->len < mbus->buswidth) { |
| 717 | /* |
| 718 | * Less than a bus width available |
| 719 | * - send as single bytes |
| 720 | */ |
| 721 | while (remainder) { |
| 722 | dev_vdbg(&pl08x->adev->dev, |
| 723 | "%s single byte LLIs for a transfer of " |
| 724 | "less than a bus width (remain %08x)\n", |
| 725 | __func__, remainder); |
| 726 | cctl = pl08x_cctl_bits(cctl, 1, 1, 1); |
| 727 | num_llis = |
| 728 | pl08x_fill_lli_for_desc(pl08x, txd, num_llis, 1, |
| 729 | cctl, &remainder); |
| 730 | total_bytes++; |
| 731 | } |
| 732 | } else { |
| 733 | /* |
| 734 | * Make one byte LLIs until master bus is aligned |
| 735 | * - slave will then be aligned also |
| 736 | */ |
| 737 | while ((mbus->addr) % (mbus->buswidth)) { |
| 738 | dev_vdbg(&pl08x->adev->dev, |
| 739 | "%s adjustment lli for less than bus width " |
| 740 | "(remain %08x)\n", |
| 741 | __func__, remainder); |
| 742 | cctl = pl08x_cctl_bits(cctl, 1, 1, 1); |
| 743 | num_llis = pl08x_fill_lli_for_desc |
| 744 | (pl08x, txd, num_llis, 1, cctl, &remainder); |
| 745 | total_bytes++; |
| 746 | } |
| 747 | |
| 748 | /* |
| 749 | * Master now aligned |
| 750 | * - if slave is not then we must set its width down |
| 751 | */ |
| 752 | if (sbus->addr % sbus->buswidth) { |
| 753 | dev_dbg(&pl08x->adev->dev, |
| 754 | "%s set down bus width to one byte\n", |
| 755 | __func__); |
| 756 | |
| 757 | sbus->buswidth = 1; |
| 758 | } |
| 759 | |
| 760 | /* |
| 761 | * Make largest possible LLIs until less than one bus |
| 762 | * width left |
| 763 | */ |
| 764 | while (remainder > (mbus->buswidth - 1)) { |
| 765 | int lli_len, target_len; |
| 766 | int tsize; |
| 767 | int odd_bytes; |
| 768 | |
| 769 | /* |
| 770 | * If enough left try to send max possible, |
| 771 | * otherwise try to send the remainder |
| 772 | */ |
| 773 | target_len = remainder; |
| 774 | if (remainder > max_bytes_per_lli) |
| 775 | target_len = max_bytes_per_lli; |
| 776 | |
| 777 | /* |
| 778 | * Set bus lengths for incrementing busses |
| 779 | * to number of bytes which fill to next memory |
| 780 | * boundary |
| 781 | */ |
| 782 | if (cctl & PL080_CONTROL_SRC_INCR) |
| 783 | txd->srcbus.fill_bytes = |
| 784 | pl08x_pre_boundary( |
| 785 | txd->srcbus.addr, |
| 786 | remainder); |
| 787 | else |
| 788 | txd->srcbus.fill_bytes = |
| 789 | max_bytes_per_lli; |
| 790 | |
| 791 | if (cctl & PL080_CONTROL_DST_INCR) |
| 792 | txd->dstbus.fill_bytes = |
| 793 | pl08x_pre_boundary( |
| 794 | txd->dstbus.addr, |
| 795 | remainder); |
| 796 | else |
| 797 | txd->dstbus.fill_bytes = |
| 798 | max_bytes_per_lli; |
| 799 | |
| 800 | /* |
| 801 | * Find the nearest |
| 802 | */ |
| 803 | lli_len = min(txd->srcbus.fill_bytes, |
| 804 | txd->dstbus.fill_bytes); |
| 805 | |
| 806 | BUG_ON(lli_len > remainder); |
| 807 | |
| 808 | if (lli_len <= 0) { |
| 809 | dev_err(&pl08x->adev->dev, |
| 810 | "%s lli_len is %d, <= 0\n", |
| 811 | __func__, lli_len); |
| 812 | return 0; |
| 813 | } |
| 814 | |
| 815 | if (lli_len == target_len) { |
| 816 | /* |
| 817 | * Can send what we wanted |
| 818 | */ |
| 819 | /* |
| 820 | * Maintain alignment |
| 821 | */ |
| 822 | lli_len = (lli_len/mbus->buswidth) * |
| 823 | mbus->buswidth; |
| 824 | odd_bytes = 0; |
| 825 | } else { |
| 826 | /* |
| 827 | * So now we know how many bytes to transfer |
| 828 | * to get to the nearest boundary |
| 829 | * The next lli will past the boundary |
| 830 | * - however we may be working to a boundary |
| 831 | * on the slave bus |
| 832 | * We need to ensure the master stays aligned |
| 833 | */ |
| 834 | odd_bytes = lli_len % mbus->buswidth; |
| 835 | /* |
| 836 | * - and that we are working in multiples |
| 837 | * of the bus widths |
| 838 | */ |
| 839 | lli_len -= odd_bytes; |
| 840 | |
| 841 | } |
| 842 | |
| 843 | if (lli_len) { |
| 844 | /* |
| 845 | * Check against minimum bus alignment: |
| 846 | * Calculate actual transfer size in relation |
| 847 | * to bus width an get a maximum remainder of |
| 848 | * the smallest bus width - 1 |
| 849 | */ |
| 850 | /* FIXME: use round_down()? */ |
| 851 | tsize = lli_len / min(mbus->buswidth, |
| 852 | sbus->buswidth); |
| 853 | lli_len = tsize * min(mbus->buswidth, |
| 854 | sbus->buswidth); |
| 855 | |
| 856 | if (target_len != lli_len) { |
| 857 | dev_vdbg(&pl08x->adev->dev, |
| 858 | "%s can't send what we want. Desired %08x, lli of %08x bytes in txd of %08x\n", |
| 859 | __func__, target_len, lli_len, txd->len); |
| 860 | } |
| 861 | |
| 862 | cctl = pl08x_cctl_bits(cctl, |
| 863 | txd->srcbus.buswidth, |
| 864 | txd->dstbus.buswidth, |
| 865 | tsize); |
| 866 | |
| 867 | dev_vdbg(&pl08x->adev->dev, |
| 868 | "%s fill lli with single lli chunk of size %08x (remainder %08x)\n", |
| 869 | __func__, lli_len, remainder); |
| 870 | num_llis = pl08x_fill_lli_for_desc(pl08x, txd, |
| 871 | num_llis, lli_len, cctl, |
| 872 | &remainder); |
| 873 | total_bytes += lli_len; |
| 874 | } |
| 875 | |
| 876 | |
| 877 | if (odd_bytes) { |
| 878 | /* |
| 879 | * Creep past the boundary, |
| 880 | * maintaining master alignment |
| 881 | */ |
| 882 | int j; |
| 883 | for (j = 0; (j < mbus->buswidth) |
| 884 | && (remainder); j++) { |
| 885 | cctl = pl08x_cctl_bits(cctl, 1, 1, 1); |
| 886 | dev_vdbg(&pl08x->adev->dev, |
| 887 | "%s align with boundardy, single byte (remain %08x)\n", |
| 888 | __func__, remainder); |
| 889 | num_llis = |
| 890 | pl08x_fill_lli_for_desc(pl08x, |
| 891 | txd, num_llis, 1, |
| 892 | cctl, &remainder); |
| 893 | total_bytes++; |
| 894 | } |
| 895 | } |
| 896 | } |
| 897 | |
| 898 | /* |
| 899 | * Send any odd bytes |
| 900 | */ |
| 901 | if (remainder < 0) { |
| 902 | dev_err(&pl08x->adev->dev, "%s remainder not fitted 0x%08x bytes\n", |
| 903 | __func__, remainder); |
| 904 | return 0; |
| 905 | } |
| 906 | |
| 907 | while (remainder) { |
| 908 | cctl = pl08x_cctl_bits(cctl, 1, 1, 1); |
| 909 | dev_vdbg(&pl08x->adev->dev, |
| 910 | "%s align with boundardy, single odd byte (remain %d)\n", |
| 911 | __func__, remainder); |
| 912 | num_llis = pl08x_fill_lli_for_desc(pl08x, txd, num_llis, |
| 913 | 1, cctl, &remainder); |
| 914 | total_bytes++; |
| 915 | } |
| 916 | } |
| 917 | if (total_bytes != txd->len) { |
| 918 | dev_err(&pl08x->adev->dev, |
| 919 | "%s size of encoded lli:s don't match total txd, transferred 0x%08x from size 0x%08x\n", |
| 920 | __func__, total_bytes, txd->len); |
| 921 | return 0; |
| 922 | } |
| 923 | |
| 924 | if (num_llis >= MAX_NUM_TSFR_LLIS) { |
| 925 | dev_err(&pl08x->adev->dev, |
| 926 | "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n", |
| 927 | __func__, (u32) MAX_NUM_TSFR_LLIS); |
| 928 | return 0; |
| 929 | } |
| 930 | /* |
| 931 | * Decide whether this is a loop or a terminated transfer |
| 932 | */ |
| 933 | llis_va = txd->llis_va; |
| 934 | llis_bus = (struct lli *) txd->llis_bus; |
| 935 | |
| 936 | if (cd->circular_buffer) { |
| 937 | /* |
| 938 | * Loop the circular buffer so that the next element |
| 939 | * points back to the beginning of the LLI. |
| 940 | */ |
| 941 | llis_va[num_llis - 1].next = |
| 942 | (dma_addr_t)((unsigned int)&(llis_bus[0])); |
| 943 | } else { |
| 944 | /* |
| 945 | * On non-circular buffers, the final LLI terminates |
| 946 | * the LLI. |
| 947 | */ |
| 948 | llis_va[num_llis - 1].next = 0; |
| 949 | /* |
| 950 | * The final LLI element shall also fire an interrupt |
| 951 | */ |
| 952 | llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN; |
| 953 | } |
| 954 | |
| 955 | /* Now store the channel register values */ |
| 956 | txd->csrc = llis_va[0].src; |
| 957 | txd->cdst = llis_va[0].dst; |
| 958 | if (num_llis > 1) |
| 959 | txd->clli = llis_va[0].next; |
| 960 | else |
| 961 | txd->clli = 0; |
| 962 | |
| 963 | txd->cctl = llis_va[0].cctl; |
| 964 | /* ccfg will be set at physical channel allocation time */ |
| 965 | |
| 966 | #ifdef VERBOSE_DEBUG |
| 967 | { |
| 968 | int i; |
| 969 | |
| 970 | for (i = 0; i < num_llis; i++) { |
| 971 | dev_vdbg(&pl08x->adev->dev, |
| 972 | "lli %d @%p: csrc=%08x, cdst=%08x, cctl=%08x, clli=%08x\n", |
| 973 | i, |
| 974 | &llis_va[i], |
| 975 | llis_va[i].src, |
| 976 | llis_va[i].dst, |
| 977 | llis_va[i].cctl, |
| 978 | llis_va[i].next |
| 979 | ); |
| 980 | } |
| 981 | } |
| 982 | #endif |
| 983 | |
| 984 | return num_llis; |
| 985 | } |
| 986 | |
| 987 | /* You should call this with the struct pl08x lock held */ |
| 988 | static void pl08x_free_txd(struct pl08x_driver_data *pl08x, |
| 989 | struct pl08x_txd *txd) |
| 990 | { |
| 991 | if (!txd) |
| 992 | dev_err(&pl08x->adev->dev, |
| 993 | "%s no descriptor to free\n", |
| 994 | __func__); |
| 995 | |
| 996 | /* Free the LLI */ |
| 997 | dma_pool_free(pl08x->pool, txd->llis_va, |
| 998 | txd->llis_bus); |
| 999 | |
| 1000 | pl08x->pool_ctr--; |
| 1001 | |
| 1002 | kfree(txd); |
| 1003 | } |
| 1004 | |
| 1005 | static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x, |
| 1006 | struct pl08x_dma_chan *plchan) |
| 1007 | { |
| 1008 | struct pl08x_txd *txdi = NULL; |
| 1009 | struct pl08x_txd *next; |
| 1010 | |
| 1011 | if (!list_empty(&plchan->desc_list)) { |
| 1012 | list_for_each_entry_safe(txdi, |
| 1013 | next, &plchan->desc_list, node) { |
| 1014 | list_del(&txdi->node); |
| 1015 | pl08x_free_txd(pl08x, txdi); |
| 1016 | } |
| 1017 | |
| 1018 | } |
| 1019 | } |
| 1020 | |
| 1021 | /* |
| 1022 | * The DMA ENGINE API |
| 1023 | */ |
| 1024 | static int pl08x_alloc_chan_resources(struct dma_chan *chan) |
| 1025 | { |
| 1026 | return 0; |
| 1027 | } |
| 1028 | |
| 1029 | static void pl08x_free_chan_resources(struct dma_chan *chan) |
| 1030 | { |
| 1031 | } |
| 1032 | |
| 1033 | /* |
| 1034 | * This should be called with the channel plchan->lock held |
| 1035 | */ |
| 1036 | static int prep_phy_channel(struct pl08x_dma_chan *plchan, |
| 1037 | struct pl08x_txd *txd) |
| 1038 | { |
| 1039 | struct pl08x_driver_data *pl08x = plchan->host; |
| 1040 | struct pl08x_phy_chan *ch; |
| 1041 | int ret; |
| 1042 | |
| 1043 | /* Check if we already have a channel */ |
| 1044 | if (plchan->phychan) |
| 1045 | return 0; |
| 1046 | |
| 1047 | ch = pl08x_get_phy_channel(pl08x, plchan); |
| 1048 | if (!ch) { |
| 1049 | /* No physical channel available, cope with it */ |
| 1050 | dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name); |
| 1051 | return -EBUSY; |
| 1052 | } |
| 1053 | |
| 1054 | /* |
| 1055 | * OK we have a physical channel: for memcpy() this is all we |
| 1056 | * need, but for slaves the physical signals may be muxed! |
| 1057 | * Can the platform allow us to use this channel? |
| 1058 | */ |
| 1059 | if (plchan->slave && |
| 1060 | ch->signal < 0 && |
| 1061 | pl08x->pd->get_signal) { |
| 1062 | ret = pl08x->pd->get_signal(plchan); |
| 1063 | if (ret < 0) { |
| 1064 | dev_dbg(&pl08x->adev->dev, |
| 1065 | "unable to use physical channel %d for transfer on %s due to platform restrictions\n", |
| 1066 | ch->id, plchan->name); |
| 1067 | /* Release physical channel & return */ |
| 1068 | pl08x_put_phy_channel(pl08x, ch); |
| 1069 | return -EBUSY; |
| 1070 | } |
| 1071 | ch->signal = ret; |
| 1072 | } |
| 1073 | |
| 1074 | dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n", |
| 1075 | ch->id, |
| 1076 | ch->signal, |
| 1077 | plchan->name); |
| 1078 | |
| 1079 | plchan->phychan = ch; |
| 1080 | |
| 1081 | return 0; |
| 1082 | } |
| 1083 | |
| 1084 | static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx) |
| 1085 | { |
| 1086 | struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan); |
| 1087 | |
| 1088 | atomic_inc(&plchan->last_issued); |
| 1089 | tx->cookie = atomic_read(&plchan->last_issued); |
| 1090 | /* This unlock follows the lock in the prep() function */ |
| 1091 | spin_unlock_irqrestore(&plchan->lock, plchan->lockflags); |
| 1092 | |
| 1093 | return tx->cookie; |
| 1094 | } |
| 1095 | |
| 1096 | static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt( |
| 1097 | struct dma_chan *chan, unsigned long flags) |
| 1098 | { |
| 1099 | struct dma_async_tx_descriptor *retval = NULL; |
| 1100 | |
| 1101 | return retval; |
| 1102 | } |
| 1103 | |
| 1104 | /* |
| 1105 | * Code accessing dma_async_is_complete() in a tight loop |
| 1106 | * may give problems - could schedule where indicated. |
| 1107 | * If slaves are relying on interrupts to signal completion this |
| 1108 | * function must not be called with interrupts disabled |
| 1109 | */ |
| 1110 | static enum dma_status |
| 1111 | pl08x_dma_tx_status(struct dma_chan *chan, |
| 1112 | dma_cookie_t cookie, |
| 1113 | struct dma_tx_state *txstate) |
| 1114 | { |
| 1115 | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| 1116 | dma_cookie_t last_used; |
| 1117 | dma_cookie_t last_complete; |
| 1118 | enum dma_status ret; |
| 1119 | u32 bytesleft = 0; |
| 1120 | |
| 1121 | last_used = atomic_read(&plchan->last_issued); |
| 1122 | last_complete = plchan->lc; |
| 1123 | |
| 1124 | ret = dma_async_is_complete(cookie, last_complete, last_used); |
| 1125 | if (ret == DMA_SUCCESS) { |
| 1126 | dma_set_tx_state(txstate, last_complete, last_used, 0); |
| 1127 | return ret; |
| 1128 | } |
| 1129 | |
| 1130 | /* |
| 1131 | * schedule(); could be inserted here |
| 1132 | */ |
| 1133 | |
| 1134 | /* |
| 1135 | * This cookie not complete yet |
| 1136 | */ |
| 1137 | last_used = atomic_read(&plchan->last_issued); |
| 1138 | last_complete = plchan->lc; |
| 1139 | |
| 1140 | /* Get number of bytes left in the active transactions and queue */ |
| 1141 | bytesleft = pl08x_getbytes_chan(plchan); |
| 1142 | |
| 1143 | dma_set_tx_state(txstate, last_complete, last_used, |
| 1144 | bytesleft); |
| 1145 | |
| 1146 | if (plchan->state == PL08X_CHAN_PAUSED) |
| 1147 | return DMA_PAUSED; |
| 1148 | |
| 1149 | /* Whether waiting or running, we're in progress */ |
| 1150 | return DMA_IN_PROGRESS; |
| 1151 | } |
| 1152 | |
| 1153 | /* PrimeCell DMA extension */ |
| 1154 | struct burst_table { |
| 1155 | int burstwords; |
| 1156 | u32 reg; |
| 1157 | }; |
| 1158 | |
| 1159 | static const struct burst_table burst_sizes[] = { |
| 1160 | { |
| 1161 | .burstwords = 256, |
| 1162 | .reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) | |
| 1163 | (PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT), |
| 1164 | }, |
| 1165 | { |
| 1166 | .burstwords = 128, |
| 1167 | .reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) | |
| 1168 | (PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT), |
| 1169 | }, |
| 1170 | { |
| 1171 | .burstwords = 64, |
| 1172 | .reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) | |
| 1173 | (PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT), |
| 1174 | }, |
| 1175 | { |
| 1176 | .burstwords = 32, |
| 1177 | .reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) | |
| 1178 | (PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT), |
| 1179 | }, |
| 1180 | { |
| 1181 | .burstwords = 16, |
| 1182 | .reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) | |
| 1183 | (PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT), |
| 1184 | }, |
| 1185 | { |
| 1186 | .burstwords = 8, |
| 1187 | .reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) | |
| 1188 | (PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT), |
| 1189 | }, |
| 1190 | { |
| 1191 | .burstwords = 4, |
| 1192 | .reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) | |
| 1193 | (PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT), |
| 1194 | }, |
| 1195 | { |
| 1196 | .burstwords = 1, |
| 1197 | .reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) | |
| 1198 | (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT), |
| 1199 | }, |
| 1200 | }; |
| 1201 | |
| 1202 | static void dma_set_runtime_config(struct dma_chan *chan, |
| 1203 | struct dma_slave_config *config) |
| 1204 | { |
| 1205 | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| 1206 | struct pl08x_driver_data *pl08x = plchan->host; |
| 1207 | struct pl08x_channel_data *cd = plchan->cd; |
| 1208 | enum dma_slave_buswidth addr_width; |
| 1209 | u32 maxburst; |
| 1210 | u32 cctl = 0; |
| 1211 | /* Mask out all except src and dst channel */ |
| 1212 | u32 ccfg = cd->ccfg & 0x000003DEU; |
| 1213 | int i = 0; |
| 1214 | |
| 1215 | /* Transfer direction */ |
| 1216 | plchan->runtime_direction = config->direction; |
| 1217 | if (config->direction == DMA_TO_DEVICE) { |
| 1218 | plchan->runtime_addr = config->dst_addr; |
| 1219 | cctl |= PL080_CONTROL_SRC_INCR; |
| 1220 | ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT; |
| 1221 | addr_width = config->dst_addr_width; |
| 1222 | maxburst = config->dst_maxburst; |
| 1223 | } else if (config->direction == DMA_FROM_DEVICE) { |
| 1224 | plchan->runtime_addr = config->src_addr; |
| 1225 | cctl |= PL080_CONTROL_DST_INCR; |
| 1226 | ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT; |
| 1227 | addr_width = config->src_addr_width; |
| 1228 | maxburst = config->src_maxburst; |
| 1229 | } else { |
| 1230 | dev_err(&pl08x->adev->dev, |
| 1231 | "bad runtime_config: alien transfer direction\n"); |
| 1232 | return; |
| 1233 | } |
| 1234 | |
| 1235 | switch (addr_width) { |
| 1236 | case DMA_SLAVE_BUSWIDTH_1_BYTE: |
| 1237 | cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) | |
| 1238 | (PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT); |
| 1239 | break; |
| 1240 | case DMA_SLAVE_BUSWIDTH_2_BYTES: |
| 1241 | cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) | |
| 1242 | (PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT); |
| 1243 | break; |
| 1244 | case DMA_SLAVE_BUSWIDTH_4_BYTES: |
| 1245 | cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) | |
| 1246 | (PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT); |
| 1247 | break; |
| 1248 | default: |
| 1249 | dev_err(&pl08x->adev->dev, |
| 1250 | "bad runtime_config: alien address width\n"); |
| 1251 | return; |
| 1252 | } |
| 1253 | |
| 1254 | /* |
| 1255 | * Now decide on a maxburst: |
| 1256 | * If this channel will only request single transfers, set |
| 1257 | * this down to ONE element. |
| 1258 | */ |
| 1259 | if (plchan->cd->single) { |
| 1260 | cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) | |
| 1261 | (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT); |
| 1262 | } else { |
| 1263 | while (i < ARRAY_SIZE(burst_sizes)) { |
| 1264 | if (burst_sizes[i].burstwords <= maxburst) |
| 1265 | break; |
| 1266 | i++; |
| 1267 | } |
| 1268 | cctl |= burst_sizes[i].reg; |
| 1269 | } |
| 1270 | |
| 1271 | /* Access the cell in privileged mode, non-bufferable, non-cacheable */ |
| 1272 | cctl &= ~PL080_CONTROL_PROT_MASK; |
| 1273 | cctl |= PL080_CONTROL_PROT_SYS; |
| 1274 | |
| 1275 | /* Modify the default channel data to fit PrimeCell request */ |
| 1276 | cd->cctl = cctl; |
| 1277 | cd->ccfg = ccfg; |
| 1278 | |
| 1279 | dev_dbg(&pl08x->adev->dev, |
| 1280 | "configured channel %s (%s) for %s, data width %d, " |
| 1281 | "maxburst %d words, LE, CCTL=%08x, CCFG=%08x\n", |
| 1282 | dma_chan_name(chan), plchan->name, |
| 1283 | (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX", |
| 1284 | addr_width, |
| 1285 | maxburst, |
| 1286 | cctl, ccfg); |
| 1287 | } |
| 1288 | |
| 1289 | /* |
| 1290 | * Slave transactions callback to the slave device to allow |
| 1291 | * synchronization of slave DMA signals with the DMAC enable |
| 1292 | */ |
| 1293 | static void pl08x_issue_pending(struct dma_chan *chan) |
| 1294 | { |
| 1295 | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| 1296 | struct pl08x_driver_data *pl08x = plchan->host; |
| 1297 | unsigned long flags; |
| 1298 | |
| 1299 | spin_lock_irqsave(&plchan->lock, flags); |
| 1300 | /* Something is already active */ |
| 1301 | if (plchan->at) { |
| 1302 | spin_unlock_irqrestore(&plchan->lock, flags); |
| 1303 | return; |
| 1304 | } |
| 1305 | |
| 1306 | /* Didn't get a physical channel so waiting for it ... */ |
| 1307 | if (plchan->state == PL08X_CHAN_WAITING) |
| 1308 | return; |
| 1309 | |
| 1310 | /* Take the first element in the queue and execute it */ |
| 1311 | if (!list_empty(&plchan->desc_list)) { |
| 1312 | struct pl08x_txd *next; |
| 1313 | |
| 1314 | next = list_first_entry(&plchan->desc_list, |
| 1315 | struct pl08x_txd, |
| 1316 | node); |
| 1317 | list_del(&next->node); |
| 1318 | plchan->at = next; |
| 1319 | plchan->state = PL08X_CHAN_RUNNING; |
| 1320 | |
| 1321 | /* Configure the physical channel for the active txd */ |
| 1322 | pl08x_config_phychan_for_txd(plchan); |
| 1323 | pl08x_set_cregs(pl08x, plchan->phychan); |
| 1324 | pl08x_enable_phy_chan(pl08x, plchan->phychan); |
| 1325 | } |
| 1326 | |
| 1327 | spin_unlock_irqrestore(&plchan->lock, flags); |
| 1328 | } |
| 1329 | |
| 1330 | static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan, |
| 1331 | struct pl08x_txd *txd) |
| 1332 | { |
| 1333 | int num_llis; |
| 1334 | struct pl08x_driver_data *pl08x = plchan->host; |
| 1335 | int ret; |
| 1336 | |
| 1337 | num_llis = pl08x_fill_llis_for_desc(pl08x, txd); |
| 1338 | |
| 1339 | if (!num_llis) |
| 1340 | return -EINVAL; |
| 1341 | |
| 1342 | spin_lock_irqsave(&plchan->lock, plchan->lockflags); |
| 1343 | |
| 1344 | /* |
| 1345 | * If this device is not using a circular buffer then |
| 1346 | * queue this new descriptor for transfer. |
| 1347 | * The descriptor for a circular buffer continues |
| 1348 | * to be used until the channel is freed. |
| 1349 | */ |
| 1350 | if (txd->cd->circular_buffer) |
| 1351 | dev_err(&pl08x->adev->dev, |
| 1352 | "%s attempting to queue a circular buffer\n", |
| 1353 | __func__); |
| 1354 | else |
| 1355 | list_add_tail(&txd->node, |
| 1356 | &plchan->desc_list); |
| 1357 | |
| 1358 | /* |
| 1359 | * See if we already have a physical channel allocated, |
| 1360 | * else this is the time to try to get one. |
| 1361 | */ |
| 1362 | ret = prep_phy_channel(plchan, txd); |
| 1363 | if (ret) { |
| 1364 | /* |
| 1365 | * No physical channel available, we will |
| 1366 | * stack up the memcpy channels until there is a channel |
| 1367 | * available to handle it whereas slave transfers may |
| 1368 | * have been denied due to platform channel muxing restrictions |
| 1369 | * and since there is no guarantee that this will ever be |
| 1370 | * resolved, and since the signal must be aquired AFTER |
| 1371 | * aquiring the physical channel, we will let them be NACK:ed |
| 1372 | * with -EBUSY here. The drivers can alway retry the prep() |
| 1373 | * call if they are eager on doing this using DMA. |
| 1374 | */ |
| 1375 | if (plchan->slave) { |
| 1376 | pl08x_free_txd_list(pl08x, plchan); |
| 1377 | spin_unlock_irqrestore(&plchan->lock, plchan->lockflags); |
| 1378 | return -EBUSY; |
| 1379 | } |
| 1380 | /* Do this memcpy whenever there is a channel ready */ |
| 1381 | plchan->state = PL08X_CHAN_WAITING; |
| 1382 | plchan->waiting = txd; |
| 1383 | } else |
| 1384 | /* |
| 1385 | * Else we're all set, paused and ready to roll, |
| 1386 | * status will switch to PL08X_CHAN_RUNNING when |
| 1387 | * we call issue_pending(). If there is something |
| 1388 | * running on the channel already we don't change |
| 1389 | * its state. |
| 1390 | */ |
| 1391 | if (plchan->state == PL08X_CHAN_IDLE) |
| 1392 | plchan->state = PL08X_CHAN_PAUSED; |
| 1393 | |
| 1394 | /* |
| 1395 | * Notice that we leave plchan->lock locked on purpose: |
| 1396 | * it will be unlocked in the subsequent tx_submit() |
| 1397 | * call. This is a consequence of the current API. |
| 1398 | */ |
| 1399 | |
| 1400 | return 0; |
| 1401 | } |
| 1402 | |
| 1403 | /* |
| 1404 | * Initialize a descriptor to be used by memcpy submit |
| 1405 | */ |
| 1406 | static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy( |
| 1407 | struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, |
| 1408 | size_t len, unsigned long flags) |
| 1409 | { |
| 1410 | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| 1411 | struct pl08x_driver_data *pl08x = plchan->host; |
| 1412 | struct pl08x_txd *txd; |
| 1413 | int ret; |
| 1414 | |
| 1415 | txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT); |
| 1416 | if (!txd) { |
| 1417 | dev_err(&pl08x->adev->dev, |
| 1418 | "%s no memory for descriptor\n", __func__); |
| 1419 | return NULL; |
| 1420 | } |
| 1421 | |
| 1422 | dma_async_tx_descriptor_init(&txd->tx, chan); |
| 1423 | txd->direction = DMA_NONE; |
| 1424 | txd->srcbus.addr = src; |
| 1425 | txd->dstbus.addr = dest; |
| 1426 | |
| 1427 | /* Set platform data for m2m */ |
| 1428 | txd->cd = &pl08x->pd->memcpy_channel; |
| 1429 | /* Both to be incremented or the code will break */ |
| 1430 | txd->cd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR; |
| 1431 | txd->tx.tx_submit = pl08x_tx_submit; |
| 1432 | txd->tx.callback = NULL; |
| 1433 | txd->tx.callback_param = NULL; |
| 1434 | txd->len = len; |
| 1435 | |
| 1436 | INIT_LIST_HEAD(&txd->node); |
| 1437 | ret = pl08x_prep_channel_resources(plchan, txd); |
| 1438 | if (ret) |
| 1439 | return NULL; |
| 1440 | /* |
| 1441 | * NB: the channel lock is held at this point so tx_submit() |
| 1442 | * must be called in direct succession. |
| 1443 | */ |
| 1444 | |
| 1445 | return &txd->tx; |
| 1446 | } |
| 1447 | |
| 1448 | struct dma_async_tx_descriptor *pl08x_prep_slave_sg( |
| 1449 | struct dma_chan *chan, struct scatterlist *sgl, |
| 1450 | unsigned int sg_len, enum dma_data_direction direction, |
| 1451 | unsigned long flags) |
| 1452 | { |
| 1453 | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| 1454 | struct pl08x_driver_data *pl08x = plchan->host; |
| 1455 | struct pl08x_txd *txd; |
| 1456 | int ret; |
| 1457 | |
| 1458 | /* |
| 1459 | * Current implementation ASSUMES only one sg |
| 1460 | */ |
| 1461 | if (sg_len != 1) { |
| 1462 | dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n", |
| 1463 | __func__); |
| 1464 | BUG(); |
| 1465 | } |
| 1466 | |
| 1467 | dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n", |
| 1468 | __func__, sgl->length, plchan->name); |
| 1469 | |
| 1470 | txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT); |
| 1471 | if (!txd) { |
| 1472 | dev_err(&pl08x->adev->dev, "%s no txd\n", __func__); |
| 1473 | return NULL; |
| 1474 | } |
| 1475 | |
| 1476 | dma_async_tx_descriptor_init(&txd->tx, chan); |
| 1477 | |
| 1478 | if (direction != plchan->runtime_direction) |
| 1479 | dev_err(&pl08x->adev->dev, "%s DMA setup does not match " |
| 1480 | "the direction configured for the PrimeCell\n", |
| 1481 | __func__); |
| 1482 | |
| 1483 | /* |
| 1484 | * Set up addresses, the PrimeCell configured address |
| 1485 | * will take precedence since this may configure the |
| 1486 | * channel target address dynamically at runtime. |
| 1487 | */ |
| 1488 | txd->direction = direction; |
| 1489 | if (direction == DMA_TO_DEVICE) { |
| 1490 | txd->srcbus.addr = sgl->dma_address; |
| 1491 | if (plchan->runtime_addr) |
| 1492 | txd->dstbus.addr = plchan->runtime_addr; |
| 1493 | else |
| 1494 | txd->dstbus.addr = plchan->cd->addr; |
| 1495 | } else if (direction == DMA_FROM_DEVICE) { |
| 1496 | if (plchan->runtime_addr) |
| 1497 | txd->srcbus.addr = plchan->runtime_addr; |
| 1498 | else |
| 1499 | txd->srcbus.addr = plchan->cd->addr; |
| 1500 | txd->dstbus.addr = sgl->dma_address; |
| 1501 | } else { |
| 1502 | dev_err(&pl08x->adev->dev, |
| 1503 | "%s direction unsupported\n", __func__); |
| 1504 | return NULL; |
| 1505 | } |
| 1506 | txd->cd = plchan->cd; |
| 1507 | txd->tx.tx_submit = pl08x_tx_submit; |
| 1508 | txd->tx.callback = NULL; |
| 1509 | txd->tx.callback_param = NULL; |
| 1510 | txd->len = sgl->length; |
| 1511 | INIT_LIST_HEAD(&txd->node); |
| 1512 | |
| 1513 | ret = pl08x_prep_channel_resources(plchan, txd); |
| 1514 | if (ret) |
| 1515 | return NULL; |
| 1516 | /* |
| 1517 | * NB: the channel lock is held at this point so tx_submit() |
| 1518 | * must be called in direct succession. |
| 1519 | */ |
| 1520 | |
| 1521 | return &txd->tx; |
| 1522 | } |
| 1523 | |
| 1524 | static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, |
| 1525 | unsigned long arg) |
| 1526 | { |
| 1527 | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| 1528 | struct pl08x_driver_data *pl08x = plchan->host; |
| 1529 | unsigned long flags; |
| 1530 | int ret = 0; |
| 1531 | |
| 1532 | /* Controls applicable to inactive channels */ |
| 1533 | if (cmd == DMA_SLAVE_CONFIG) { |
| 1534 | dma_set_runtime_config(chan, |
| 1535 | (struct dma_slave_config *) |
| 1536 | arg); |
| 1537 | return 0; |
| 1538 | } |
| 1539 | |
| 1540 | /* |
| 1541 | * Anything succeeds on channels with no physical allocation and |
| 1542 | * no queued transfers. |
| 1543 | */ |
| 1544 | spin_lock_irqsave(&plchan->lock, flags); |
| 1545 | if (!plchan->phychan && !plchan->at) { |
| 1546 | spin_unlock_irqrestore(&plchan->lock, flags); |
| 1547 | return 0; |
| 1548 | } |
| 1549 | |
| 1550 | switch (cmd) { |
| 1551 | case DMA_TERMINATE_ALL: |
| 1552 | plchan->state = PL08X_CHAN_IDLE; |
| 1553 | |
| 1554 | if (plchan->phychan) { |
| 1555 | pl08x_stop_phy_chan(plchan->phychan); |
| 1556 | |
| 1557 | /* |
| 1558 | * Mark physical channel as free and free any slave |
| 1559 | * signal |
| 1560 | */ |
| 1561 | if ((plchan->phychan->signal >= 0) && |
| 1562 | pl08x->pd->put_signal) { |
| 1563 | pl08x->pd->put_signal(plchan); |
| 1564 | plchan->phychan->signal = -1; |
| 1565 | } |
| 1566 | pl08x_put_phy_channel(pl08x, plchan->phychan); |
| 1567 | plchan->phychan = NULL; |
| 1568 | } |
| 1569 | /* Stop any pending tasklet */ |
| 1570 | tasklet_disable(&plchan->tasklet); |
| 1571 | /* Dequeue jobs and free LLIs */ |
| 1572 | if (plchan->at) { |
| 1573 | pl08x_free_txd(pl08x, plchan->at); |
| 1574 | plchan->at = NULL; |
| 1575 | } |
| 1576 | /* Dequeue jobs not yet fired as well */ |
| 1577 | pl08x_free_txd_list(pl08x, plchan); |
| 1578 | break; |
| 1579 | case DMA_PAUSE: |
| 1580 | pl08x_pause_phy_chan(plchan->phychan); |
| 1581 | plchan->state = PL08X_CHAN_PAUSED; |
| 1582 | break; |
| 1583 | case DMA_RESUME: |
| 1584 | pl08x_resume_phy_chan(plchan->phychan); |
| 1585 | plchan->state = PL08X_CHAN_RUNNING; |
| 1586 | break; |
| 1587 | default: |
| 1588 | /* Unknown command */ |
| 1589 | ret = -ENXIO; |
| 1590 | break; |
| 1591 | } |
| 1592 | |
| 1593 | spin_unlock_irqrestore(&plchan->lock, flags); |
| 1594 | |
| 1595 | return ret; |
| 1596 | } |
| 1597 | |
| 1598 | bool pl08x_filter_id(struct dma_chan *chan, void *chan_id) |
| 1599 | { |
| 1600 | struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| 1601 | char *name = chan_id; |
| 1602 | |
| 1603 | /* Check that the channel is not taken! */ |
| 1604 | if (!strcmp(plchan->name, name)) |
| 1605 | return true; |
| 1606 | |
| 1607 | return false; |
| 1608 | } |
| 1609 | |
| 1610 | /* |
| 1611 | * Just check that the device is there and active |
| 1612 | * TODO: turn this bit on/off depending on the number of |
| 1613 | * physical channels actually used, if it is zero... well |
| 1614 | * shut it off. That will save some power. Cut the clock |
| 1615 | * at the same time. |
| 1616 | */ |
| 1617 | static void pl08x_ensure_on(struct pl08x_driver_data *pl08x) |
| 1618 | { |
| 1619 | u32 val; |
| 1620 | |
| 1621 | val = readl(pl08x->base + PL080_CONFIG); |
| 1622 | val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE); |
| 1623 | /* We implictly clear bit 1 and that means little-endian mode */ |
| 1624 | val |= PL080_CONFIG_ENABLE; |
| 1625 | writel(val, pl08x->base + PL080_CONFIG); |
| 1626 | } |
| 1627 | |
| 1628 | static void pl08x_tasklet(unsigned long data) |
| 1629 | { |
| 1630 | struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data; |
| 1631 | struct pl08x_phy_chan *phychan = plchan->phychan; |
| 1632 | struct pl08x_driver_data *pl08x = plchan->host; |
| 1633 | |
| 1634 | if (!plchan) |
| 1635 | BUG(); |
| 1636 | |
| 1637 | spin_lock(&plchan->lock); |
| 1638 | |
| 1639 | if (plchan->at) { |
| 1640 | dma_async_tx_callback callback = |
| 1641 | plchan->at->tx.callback; |
| 1642 | void *callback_param = |
| 1643 | plchan->at->tx.callback_param; |
| 1644 | |
| 1645 | /* |
| 1646 | * Update last completed |
| 1647 | */ |
| 1648 | plchan->lc = |
| 1649 | (plchan->at->tx.cookie); |
| 1650 | |
| 1651 | /* |
| 1652 | * Callback to signal completion |
| 1653 | */ |
| 1654 | if (callback) |
| 1655 | callback(callback_param); |
| 1656 | |
| 1657 | /* |
| 1658 | * Device callbacks should NOT clear |
| 1659 | * the current transaction on the channel |
| 1660 | * Linus: sometimes they should? |
| 1661 | */ |
| 1662 | if (!plchan->at) |
| 1663 | BUG(); |
| 1664 | |
| 1665 | /* |
| 1666 | * Free the descriptor if it's not for a device |
| 1667 | * using a circular buffer |
| 1668 | */ |
| 1669 | if (!plchan->at->cd->circular_buffer) { |
| 1670 | pl08x_free_txd(pl08x, plchan->at); |
| 1671 | plchan->at = NULL; |
| 1672 | } |
| 1673 | /* |
| 1674 | * else descriptor for circular |
| 1675 | * buffers only freed when |
| 1676 | * client has disabled dma |
| 1677 | */ |
| 1678 | } |
| 1679 | /* |
| 1680 | * If a new descriptor is queued, set it up |
| 1681 | * plchan->at is NULL here |
| 1682 | */ |
| 1683 | if (!list_empty(&plchan->desc_list)) { |
| 1684 | struct pl08x_txd *next; |
| 1685 | |
| 1686 | next = list_first_entry(&plchan->desc_list, |
| 1687 | struct pl08x_txd, |
| 1688 | node); |
| 1689 | list_del(&next->node); |
| 1690 | plchan->at = next; |
| 1691 | /* Configure the physical channel for the next txd */ |
| 1692 | pl08x_config_phychan_for_txd(plchan); |
| 1693 | pl08x_set_cregs(pl08x, plchan->phychan); |
| 1694 | pl08x_enable_phy_chan(pl08x, plchan->phychan); |
| 1695 | } else { |
| 1696 | struct pl08x_dma_chan *waiting = NULL; |
| 1697 | |
| 1698 | /* |
| 1699 | * No more jobs, so free up the physical channel |
| 1700 | * Free any allocated signal on slave transfers too |
| 1701 | */ |
| 1702 | if ((phychan->signal >= 0) && pl08x->pd->put_signal) { |
| 1703 | pl08x->pd->put_signal(plchan); |
| 1704 | phychan->signal = -1; |
| 1705 | } |
| 1706 | pl08x_put_phy_channel(pl08x, phychan); |
| 1707 | plchan->phychan = NULL; |
| 1708 | plchan->state = PL08X_CHAN_IDLE; |
| 1709 | |
| 1710 | /* |
| 1711 | * And NOW before anyone else can grab that free:d |
| 1712 | * up physical channel, see if there is some memcpy |
| 1713 | * pending that seriously needs to start because of |
| 1714 | * being stacked up while we were choking the |
| 1715 | * physical channels with data. |
| 1716 | */ |
| 1717 | list_for_each_entry(waiting, &pl08x->memcpy.channels, |
| 1718 | chan.device_node) { |
| 1719 | if (waiting->state == PL08X_CHAN_WAITING && |
| 1720 | waiting->waiting != NULL) { |
| 1721 | int ret; |
| 1722 | |
| 1723 | /* This should REALLY not fail now */ |
| 1724 | ret = prep_phy_channel(waiting, |
| 1725 | waiting->waiting); |
| 1726 | BUG_ON(ret); |
| 1727 | waiting->state = PL08X_CHAN_RUNNING; |
| 1728 | waiting->waiting = NULL; |
| 1729 | pl08x_issue_pending(&waiting->chan); |
| 1730 | break; |
| 1731 | } |
| 1732 | } |
| 1733 | } |
| 1734 | |
| 1735 | spin_unlock(&plchan->lock); |
| 1736 | } |
| 1737 | |
| 1738 | static irqreturn_t pl08x_irq(int irq, void *dev) |
| 1739 | { |
| 1740 | struct pl08x_driver_data *pl08x = dev; |
| 1741 | u32 mask = 0; |
| 1742 | u32 val; |
| 1743 | int i; |
| 1744 | |
| 1745 | val = readl(pl08x->base + PL080_ERR_STATUS); |
| 1746 | if (val) { |
| 1747 | /* |
| 1748 | * An error interrupt (on one or more channels) |
| 1749 | */ |
| 1750 | dev_err(&pl08x->adev->dev, |
| 1751 | "%s error interrupt, register value 0x%08x\n", |
| 1752 | __func__, val); |
| 1753 | /* |
| 1754 | * Simply clear ALL PL08X error interrupts, |
| 1755 | * regardless of channel and cause |
| 1756 | * FIXME: should be 0x00000003 on PL081 really. |
| 1757 | */ |
| 1758 | writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR); |
| 1759 | } |
| 1760 | val = readl(pl08x->base + PL080_INT_STATUS); |
| 1761 | for (i = 0; i < pl08x->vd->channels; i++) { |
| 1762 | if ((1 << i) & val) { |
| 1763 | /* Locate physical channel */ |
| 1764 | struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i]; |
| 1765 | struct pl08x_dma_chan *plchan = phychan->serving; |
| 1766 | |
| 1767 | /* Schedule tasklet on this channel */ |
| 1768 | tasklet_schedule(&plchan->tasklet); |
| 1769 | |
| 1770 | mask |= (1 << i); |
| 1771 | } |
| 1772 | } |
| 1773 | /* |
| 1774 | * Clear only the terminal interrupts on channels we processed |
| 1775 | */ |
| 1776 | writel(mask, pl08x->base + PL080_TC_CLEAR); |
| 1777 | |
| 1778 | return mask ? IRQ_HANDLED : IRQ_NONE; |
| 1779 | } |
| 1780 | |
| 1781 | /* |
| 1782 | * Initialise the DMAC memcpy/slave channels. |
| 1783 | * Make a local wrapper to hold required data |
| 1784 | */ |
| 1785 | static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x, |
| 1786 | struct dma_device *dmadev, |
| 1787 | unsigned int channels, |
| 1788 | bool slave) |
| 1789 | { |
| 1790 | struct pl08x_dma_chan *chan; |
| 1791 | int i; |
| 1792 | |
| 1793 | INIT_LIST_HEAD(&dmadev->channels); |
| 1794 | /* |
| 1795 | * Register as many many memcpy as we have physical channels, |
| 1796 | * we won't always be able to use all but the code will have |
| 1797 | * to cope with that situation. |
| 1798 | */ |
| 1799 | for (i = 0; i < channels; i++) { |
| 1800 | chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL); |
| 1801 | if (!chan) { |
| 1802 | dev_err(&pl08x->adev->dev, |
| 1803 | "%s no memory for channel\n", __func__); |
| 1804 | return -ENOMEM; |
| 1805 | } |
| 1806 | |
| 1807 | chan->host = pl08x; |
| 1808 | chan->state = PL08X_CHAN_IDLE; |
| 1809 | |
| 1810 | if (slave) { |
| 1811 | chan->slave = true; |
| 1812 | chan->name = pl08x->pd->slave_channels[i].bus_id; |
| 1813 | chan->cd = &pl08x->pd->slave_channels[i]; |
| 1814 | } else { |
| 1815 | chan->cd = &pl08x->pd->memcpy_channel; |
| 1816 | chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i); |
| 1817 | if (!chan->name) { |
| 1818 | kfree(chan); |
| 1819 | return -ENOMEM; |
| 1820 | } |
| 1821 | } |
| 1822 | dev_info(&pl08x->adev->dev, |
| 1823 | "initialize virtual channel \"%s\"\n", |
| 1824 | chan->name); |
| 1825 | |
| 1826 | chan->chan.device = dmadev; |
| 1827 | atomic_set(&chan->last_issued, 0); |
| 1828 | chan->lc = atomic_read(&chan->last_issued); |
| 1829 | |
| 1830 | spin_lock_init(&chan->lock); |
| 1831 | INIT_LIST_HEAD(&chan->desc_list); |
| 1832 | tasklet_init(&chan->tasklet, pl08x_tasklet, |
| 1833 | (unsigned long) chan); |
| 1834 | |
| 1835 | list_add_tail(&chan->chan.device_node, &dmadev->channels); |
| 1836 | } |
| 1837 | dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n", |
| 1838 | i, slave ? "slave" : "memcpy"); |
| 1839 | return i; |
| 1840 | } |
| 1841 | |
| 1842 | static void pl08x_free_virtual_channels(struct dma_device *dmadev) |
| 1843 | { |
| 1844 | struct pl08x_dma_chan *chan = NULL; |
| 1845 | struct pl08x_dma_chan *next; |
| 1846 | |
| 1847 | list_for_each_entry_safe(chan, |
| 1848 | next, &dmadev->channels, chan.device_node) { |
| 1849 | list_del(&chan->chan.device_node); |
| 1850 | kfree(chan); |
| 1851 | } |
| 1852 | } |
| 1853 | |
| 1854 | #ifdef CONFIG_DEBUG_FS |
| 1855 | static const char *pl08x_state_str(enum pl08x_dma_chan_state state) |
| 1856 | { |
| 1857 | switch (state) { |
| 1858 | case PL08X_CHAN_IDLE: |
| 1859 | return "idle"; |
| 1860 | case PL08X_CHAN_RUNNING: |
| 1861 | return "running"; |
| 1862 | case PL08X_CHAN_PAUSED: |
| 1863 | return "paused"; |
| 1864 | case PL08X_CHAN_WAITING: |
| 1865 | return "waiting"; |
| 1866 | default: |
| 1867 | break; |
| 1868 | } |
| 1869 | return "UNKNOWN STATE"; |
| 1870 | } |
| 1871 | |
| 1872 | static int pl08x_debugfs_show(struct seq_file *s, void *data) |
| 1873 | { |
| 1874 | struct pl08x_driver_data *pl08x = s->private; |
| 1875 | struct pl08x_dma_chan *chan; |
| 1876 | struct pl08x_phy_chan *ch; |
| 1877 | unsigned long flags; |
| 1878 | int i; |
| 1879 | |
| 1880 | seq_printf(s, "PL08x physical channels:\n"); |
| 1881 | seq_printf(s, "CHANNEL:\tUSER:\n"); |
| 1882 | seq_printf(s, "--------\t-----\n"); |
| 1883 | for (i = 0; i < pl08x->vd->channels; i++) { |
| 1884 | struct pl08x_dma_chan *virt_chan; |
| 1885 | |
| 1886 | ch = &pl08x->phy_chans[i]; |
| 1887 | |
| 1888 | spin_lock_irqsave(&ch->lock, flags); |
| 1889 | virt_chan = ch->serving; |
| 1890 | |
| 1891 | seq_printf(s, "%d\t\t%s\n", |
| 1892 | ch->id, virt_chan ? virt_chan->name : "(none)"); |
| 1893 | |
| 1894 | spin_unlock_irqrestore(&ch->lock, flags); |
| 1895 | } |
| 1896 | |
| 1897 | seq_printf(s, "\nPL08x virtual memcpy channels:\n"); |
| 1898 | seq_printf(s, "CHANNEL:\tSTATE:\n"); |
| 1899 | seq_printf(s, "--------\t------\n"); |
| 1900 | list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) { |
| 1901 | seq_printf(s, "%s\t\t\%s\n", chan->name, |
| 1902 | pl08x_state_str(chan->state)); |
| 1903 | } |
| 1904 | |
| 1905 | seq_printf(s, "\nPL08x virtual slave channels:\n"); |
| 1906 | seq_printf(s, "CHANNEL:\tSTATE:\n"); |
| 1907 | seq_printf(s, "--------\t------\n"); |
| 1908 | list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) { |
| 1909 | seq_printf(s, "%s\t\t\%s\n", chan->name, |
| 1910 | pl08x_state_str(chan->state)); |
| 1911 | } |
| 1912 | |
| 1913 | return 0; |
| 1914 | } |
| 1915 | |
| 1916 | static int pl08x_debugfs_open(struct inode *inode, struct file *file) |
| 1917 | { |
| 1918 | return single_open(file, pl08x_debugfs_show, inode->i_private); |
| 1919 | } |
| 1920 | |
| 1921 | static const struct file_operations pl08x_debugfs_operations = { |
| 1922 | .open = pl08x_debugfs_open, |
| 1923 | .read = seq_read, |
| 1924 | .llseek = seq_lseek, |
| 1925 | .release = single_release, |
| 1926 | }; |
| 1927 | |
| 1928 | static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) |
| 1929 | { |
| 1930 | /* Expose a simple debugfs interface to view all clocks */ |
| 1931 | (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO, |
| 1932 | NULL, pl08x, |
| 1933 | &pl08x_debugfs_operations); |
| 1934 | } |
| 1935 | |
| 1936 | #else |
| 1937 | static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) |
| 1938 | { |
| 1939 | } |
| 1940 | #endif |
| 1941 | |
| 1942 | static int pl08x_probe(struct amba_device *adev, struct amba_id *id) |
| 1943 | { |
| 1944 | struct pl08x_driver_data *pl08x; |
| 1945 | struct vendor_data *vd = id->data; |
| 1946 | int ret = 0; |
| 1947 | int i; |
| 1948 | |
| 1949 | ret = amba_request_regions(adev, NULL); |
| 1950 | if (ret) |
| 1951 | return ret; |
| 1952 | |
| 1953 | /* Create the driver state holder */ |
| 1954 | pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL); |
| 1955 | if (!pl08x) { |
| 1956 | ret = -ENOMEM; |
| 1957 | goto out_no_pl08x; |
| 1958 | } |
| 1959 | |
| 1960 | /* Initialize memcpy engine */ |
| 1961 | dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask); |
| 1962 | pl08x->memcpy.dev = &adev->dev; |
| 1963 | pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources; |
| 1964 | pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources; |
| 1965 | pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy; |
| 1966 | pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt; |
| 1967 | pl08x->memcpy.device_tx_status = pl08x_dma_tx_status; |
| 1968 | pl08x->memcpy.device_issue_pending = pl08x_issue_pending; |
| 1969 | pl08x->memcpy.device_control = pl08x_control; |
| 1970 | |
| 1971 | /* Initialize slave engine */ |
| 1972 | dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask); |
| 1973 | pl08x->slave.dev = &adev->dev; |
| 1974 | pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources; |
| 1975 | pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources; |
| 1976 | pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt; |
| 1977 | pl08x->slave.device_tx_status = pl08x_dma_tx_status; |
| 1978 | pl08x->slave.device_issue_pending = pl08x_issue_pending; |
| 1979 | pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg; |
| 1980 | pl08x->slave.device_control = pl08x_control; |
| 1981 | |
| 1982 | /* Get the platform data */ |
| 1983 | pl08x->pd = dev_get_platdata(&adev->dev); |
| 1984 | if (!pl08x->pd) { |
| 1985 | dev_err(&adev->dev, "no platform data supplied\n"); |
| 1986 | goto out_no_platdata; |
| 1987 | } |
| 1988 | |
| 1989 | /* Assign useful pointers to the driver state */ |
| 1990 | pl08x->adev = adev; |
| 1991 | pl08x->vd = vd; |
| 1992 | |
| 1993 | /* A DMA memory pool for LLIs, align on 1-byte boundary */ |
| 1994 | pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev, |
| 1995 | PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0); |
| 1996 | if (!pl08x->pool) { |
| 1997 | ret = -ENOMEM; |
| 1998 | goto out_no_lli_pool; |
| 1999 | } |
| 2000 | |
| 2001 | spin_lock_init(&pl08x->lock); |
| 2002 | |
| 2003 | pl08x->base = ioremap(adev->res.start, resource_size(&adev->res)); |
| 2004 | if (!pl08x->base) { |
| 2005 | ret = -ENOMEM; |
| 2006 | goto out_no_ioremap; |
| 2007 | } |
| 2008 | |
| 2009 | /* Turn on the PL08x */ |
| 2010 | pl08x_ensure_on(pl08x); |
| 2011 | |
| 2012 | /* |
| 2013 | * Attach the interrupt handler |
| 2014 | */ |
| 2015 | writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR); |
| 2016 | writel(0x000000FF, pl08x->base + PL080_TC_CLEAR); |
| 2017 | |
| 2018 | ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED, |
| 2019 | vd->name, pl08x); |
| 2020 | if (ret) { |
| 2021 | dev_err(&adev->dev, "%s failed to request interrupt %d\n", |
| 2022 | __func__, adev->irq[0]); |
| 2023 | goto out_no_irq; |
| 2024 | } |
| 2025 | |
| 2026 | /* Initialize physical channels */ |
| 2027 | pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)), |
| 2028 | GFP_KERNEL); |
| 2029 | if (!pl08x->phy_chans) { |
| 2030 | dev_err(&adev->dev, "%s failed to allocate " |
| 2031 | "physical channel holders\n", |
| 2032 | __func__); |
| 2033 | goto out_no_phychans; |
| 2034 | } |
| 2035 | |
| 2036 | for (i = 0; i < vd->channels; i++) { |
| 2037 | struct pl08x_phy_chan *ch = &pl08x->phy_chans[i]; |
| 2038 | |
| 2039 | ch->id = i; |
| 2040 | ch->base = pl08x->base + PL080_Cx_BASE(i); |
| 2041 | spin_lock_init(&ch->lock); |
| 2042 | ch->serving = NULL; |
| 2043 | ch->signal = -1; |
| 2044 | dev_info(&adev->dev, |
| 2045 | "physical channel %d is %s\n", i, |
| 2046 | pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE"); |
| 2047 | } |
| 2048 | |
| 2049 | /* Register as many memcpy channels as there are physical channels */ |
| 2050 | ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy, |
| 2051 | pl08x->vd->channels, false); |
| 2052 | if (ret <= 0) { |
| 2053 | dev_warn(&pl08x->adev->dev, |
| 2054 | "%s failed to enumerate memcpy channels - %d\n", |
| 2055 | __func__, ret); |
| 2056 | goto out_no_memcpy; |
| 2057 | } |
| 2058 | pl08x->memcpy.chancnt = ret; |
| 2059 | |
| 2060 | /* Register slave channels */ |
| 2061 | ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave, |
| 2062 | pl08x->pd->num_slave_channels, |
| 2063 | true); |
| 2064 | if (ret <= 0) { |
| 2065 | dev_warn(&pl08x->adev->dev, |
| 2066 | "%s failed to enumerate slave channels - %d\n", |
| 2067 | __func__, ret); |
| 2068 | goto out_no_slave; |
| 2069 | } |
| 2070 | pl08x->slave.chancnt = ret; |
| 2071 | |
| 2072 | ret = dma_async_device_register(&pl08x->memcpy); |
| 2073 | if (ret) { |
| 2074 | dev_warn(&pl08x->adev->dev, |
| 2075 | "%s failed to register memcpy as an async device - %d\n", |
| 2076 | __func__, ret); |
| 2077 | goto out_no_memcpy_reg; |
| 2078 | } |
| 2079 | |
| 2080 | ret = dma_async_device_register(&pl08x->slave); |
| 2081 | if (ret) { |
| 2082 | dev_warn(&pl08x->adev->dev, |
| 2083 | "%s failed to register slave as an async device - %d\n", |
| 2084 | __func__, ret); |
| 2085 | goto out_no_slave_reg; |
| 2086 | } |
| 2087 | |
| 2088 | amba_set_drvdata(adev, pl08x); |
| 2089 | init_pl08x_debugfs(pl08x); |
| 2090 | dev_info(&pl08x->adev->dev, "ARM(R) %s DMA block initialized @%08x\n", |
| 2091 | vd->name, adev->res.start); |
| 2092 | return 0; |
| 2093 | |
| 2094 | out_no_slave_reg: |
| 2095 | dma_async_device_unregister(&pl08x->memcpy); |
| 2096 | out_no_memcpy_reg: |
| 2097 | pl08x_free_virtual_channels(&pl08x->slave); |
| 2098 | out_no_slave: |
| 2099 | pl08x_free_virtual_channels(&pl08x->memcpy); |
| 2100 | out_no_memcpy: |
| 2101 | kfree(pl08x->phy_chans); |
| 2102 | out_no_phychans: |
| 2103 | free_irq(adev->irq[0], pl08x); |
| 2104 | out_no_irq: |
| 2105 | iounmap(pl08x->base); |
| 2106 | out_no_ioremap: |
| 2107 | dma_pool_destroy(pl08x->pool); |
| 2108 | out_no_lli_pool: |
| 2109 | out_no_platdata: |
| 2110 | kfree(pl08x); |
| 2111 | out_no_pl08x: |
| 2112 | amba_release_regions(adev); |
| 2113 | return ret; |
| 2114 | } |
| 2115 | |
| 2116 | /* PL080 has 8 channels and the PL080 have just 2 */ |
| 2117 | static struct vendor_data vendor_pl080 = { |
| 2118 | .name = "PL080", |
| 2119 | .channels = 8, |
| 2120 | .dualmaster = true, |
| 2121 | }; |
| 2122 | |
| 2123 | static struct vendor_data vendor_pl081 = { |
| 2124 | .name = "PL081", |
| 2125 | .channels = 2, |
| 2126 | .dualmaster = false, |
| 2127 | }; |
| 2128 | |
| 2129 | static struct amba_id pl08x_ids[] = { |
| 2130 | /* PL080 */ |
| 2131 | { |
| 2132 | .id = 0x00041080, |
| 2133 | .mask = 0x000fffff, |
| 2134 | .data = &vendor_pl080, |
| 2135 | }, |
| 2136 | /* PL081 */ |
| 2137 | { |
| 2138 | .id = 0x00041081, |
| 2139 | .mask = 0x000fffff, |
| 2140 | .data = &vendor_pl081, |
| 2141 | }, |
| 2142 | /* Nomadik 8815 PL080 variant */ |
| 2143 | { |
| 2144 | .id = 0x00280880, |
| 2145 | .mask = 0x00ffffff, |
| 2146 | .data = &vendor_pl080, |
| 2147 | }, |
| 2148 | { 0, 0 }, |
| 2149 | }; |
| 2150 | |
| 2151 | static struct amba_driver pl08x_amba_driver = { |
| 2152 | .drv.name = DRIVER_NAME, |
| 2153 | .id_table = pl08x_ids, |
| 2154 | .probe = pl08x_probe, |
| 2155 | }; |
| 2156 | |
| 2157 | static int __init pl08x_init(void) |
| 2158 | { |
| 2159 | int retval; |
| 2160 | retval = amba_driver_register(&pl08x_amba_driver); |
| 2161 | if (retval) |
| 2162 | printk(KERN_WARNING DRIVER_NAME |
| 2163 | "failed to register as an amba device (%d)\n", |
| 2164 | retval); |
| 2165 | return retval; |
| 2166 | } |
| 2167 | subsys_initcall(pl08x_init); |