blob: df82116a9f261c35998c3bb5a69eb1a38c8d83d1 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001
2 Low Level Serial API
3 --------------------
4
5
Linus Torvalds1da177e2005-04-16 15:20:36 -07006This document is meant as a brief overview of some aspects of the new serial
7driver. It is not complete, any questions you have should be directed to
8<rmk@arm.linux.org.uk>
9
Russell King67ab7f52006-04-15 20:46:11 +010010The reference implementation is contained within amba_pl011.c.
Linus Torvalds1da177e2005-04-16 15:20:36 -070011
12
13
14Low Level Serial Hardware Driver
15--------------------------------
16
17The low level serial hardware driver is responsible for supplying port
18information (defined by uart_port) and a set of control methods (defined
19by uart_ops) to the core serial driver. The low level driver is also
20responsible for handling interrupts for the port, and providing any
21console support.
22
23
24Console Support
25---------------
26
27The serial core provides a few helper functions. This includes identifing
28the correct port structure (via uart_get_console) and decoding command line
29arguments (uart_parse_options).
30
Russell King67ab7f52006-04-15 20:46:11 +010031There is also a helper function (uart_write_console) which performs a
32character by character write, translating newlines to CRLF sequences.
33Driver writers are recommended to use this function rather than implementing
34their own version.
35
Linus Torvalds1da177e2005-04-16 15:20:36 -070036
37Locking
38-------
39
40It is the responsibility of the low level hardware driver to perform the
41necessary locking using port->lock. There are some exceptions (which
42are described in the uart_ops listing below.)
43
44There are three locks. A per-port spinlock, a per-port tmpbuf semaphore,
45and an overall semaphore.
46
47From the core driver perspective, the port->lock locks the following
48data:
49
50 port->mctrl
51 port->icount
52 info->xmit.head (circ->head)
53 info->xmit.tail (circ->tail)
54
55The low level driver is free to use this lock to provide any additional
56locking.
57
58The core driver uses the info->tmpbuf_sem lock to prevent multi-threaded
59access to the info->tmpbuf bouncebuffer used for port writes.
60
61The port_sem semaphore is used to protect against ports being added/
62removed or reconfigured at inappropriate times.
63
64
65uart_ops
66--------
67
68The uart_ops structure is the main interface between serial_core and the
69hardware specific driver. It contains all the methods to control the
70hardware.
71
72 tx_empty(port)
73 This function tests whether the transmitter fifo and shifter
74 for the port described by 'port' is empty. If it is empty,
75 this function should return TIOCSER_TEMT, otherwise return 0.
76 If the port does not support this operation, then it should
77 return TIOCSER_TEMT.
78
79 Locking: none.
80 Interrupts: caller dependent.
81 This call must not sleep
82
83 set_mctrl(port, mctrl)
84 This function sets the modem control lines for port described
85 by 'port' to the state described by mctrl. The relevant bits
86 of mctrl are:
87 - TIOCM_RTS RTS signal.
88 - TIOCM_DTR DTR signal.
89 - TIOCM_OUT1 OUT1 signal.
90 - TIOCM_OUT2 OUT2 signal.
Russell King67ab7f52006-04-15 20:46:11 +010091 - TIOCM_LOOP Set the port into loopback mode.
Linus Torvalds1da177e2005-04-16 15:20:36 -070092 If the appropriate bit is set, the signal should be driven
93 active. If the bit is clear, the signal should be driven
94 inactive.
95
96 Locking: port->lock taken.
97 Interrupts: locally disabled.
98 This call must not sleep
99
100 get_mctrl(port)
101 Returns the current state of modem control inputs. The state
102 of the outputs should not be returned, since the core keeps
103 track of their state. The state information should include:
104 - TIOCM_DCD state of DCD signal
105 - TIOCM_CTS state of CTS signal
106 - TIOCM_DSR state of DSR signal
107 - TIOCM_RI state of RI signal
108 The bit is set if the signal is currently driven active. If
109 the port does not support CTS, DCD or DSR, the driver should
110 indicate that the signal is permanently active. If RI is
111 not available, the signal should not be indicated as active.
112
Russell Kingc5f46442005-06-29 09:42:38 +0100113 Locking: port->lock taken.
114 Interrupts: locally disabled.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700115 This call must not sleep
116
Russell Kingb129a8c2005-08-31 10:12:14 +0100117 stop_tx(port)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700118 Stop transmitting characters. This might be due to the CTS
119 line becoming inactive or the tty layer indicating we want
Russell Kingb129a8c2005-08-31 10:12:14 +0100120 to stop transmission due to an XOFF character.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700121
Russell King6a8f8d72005-10-31 11:53:19 +0000122 The driver should stop transmitting characters as soon as
123 possible.
124
Linus Torvalds1da177e2005-04-16 15:20:36 -0700125 Locking: port->lock taken.
126 Interrupts: locally disabled.
127 This call must not sleep
128
Russell Kingb129a8c2005-08-31 10:12:14 +0100129 start_tx(port)
Russell King6a8f8d72005-10-31 11:53:19 +0000130 Start transmitting characters.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700131
132 Locking: port->lock taken.
133 Interrupts: locally disabled.
134 This call must not sleep
135
136 stop_rx(port)
137 Stop receiving characters; the port is in the process of
138 being closed.
139
140 Locking: port->lock taken.
141 Interrupts: locally disabled.
142 This call must not sleep
143
144 enable_ms(port)
145 Enable the modem status interrupts.
146
Russell King67ab7f52006-04-15 20:46:11 +0100147 This method may be called multiple times. Modem status
148 interrupts should be disabled when the shutdown method is
149 called.
150
Linus Torvalds1da177e2005-04-16 15:20:36 -0700151 Locking: port->lock taken.
152 Interrupts: locally disabled.
153 This call must not sleep
154
155 break_ctl(port,ctl)
156 Control the transmission of a break signal. If ctl is
157 nonzero, the break signal should be transmitted. The signal
158 should be terminated when another call is made with a zero
159 ctl.
160
161 Locking: none.
162 Interrupts: caller dependent.
163 This call must not sleep
164
165 startup(port)
166 Grab any interrupt resources and initialise any low level driver
167 state. Enable the port for reception. It should not activate
168 RTS nor DTR; this will be done via a separate call to set_mctrl.
169
Russell King67ab7f52006-04-15 20:46:11 +0100170 This method will only be called when the port is initially opened.
171
Linus Torvalds1da177e2005-04-16 15:20:36 -0700172 Locking: port_sem taken.
173 Interrupts: globally disabled.
174
175 shutdown(port)
176 Disable the port, disable any break condition that may be in
177 effect, and free any interrupt resources. It should not disable
178 RTS nor DTR; this will have already been done via a separate
179 call to set_mctrl.
180
Russell King67ab7f52006-04-15 20:46:11 +0100181 Drivers must not access port->info once this call has completed.
182
183 This method will only be called when there are no more users of
184 this port.
185
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186 Locking: port_sem taken.
187 Interrupts: caller dependent.
188
189 set_termios(port,termios,oldtermios)
190 Change the port parameters, including word length, parity, stop
191 bits. Update read_status_mask and ignore_status_mask to indicate
192 the types of events we are interested in receiving. Relevant
193 termios->c_cflag bits are:
194 CSIZE - word size
195 CSTOPB - 2 stop bits
196 PARENB - parity enable
197 PARODD - odd parity (when PARENB is in force)
198 CREAD - enable reception of characters (if not set,
199 still receive characters from the port, but
200 throw them away.
201 CRTSCTS - if set, enable CTS status change reporting
202 CLOCAL - if not set, enable modem status change
203 reporting.
204 Relevant termios->c_iflag bits are:
205 INPCK - enable frame and parity error events to be
206 passed to the TTY layer.
207 BRKINT
208 PARMRK - both of these enable break events to be
209 passed to the TTY layer.
210
211 IGNPAR - ignore parity and framing errors
212 IGNBRK - ignore break errors, If IGNPAR is also
213 set, ignore overrun errors as well.
214 The interaction of the iflag bits is as follows (parity error
215 given as an example):
216 Parity error INPCK IGNPAR
217 None n/a n/a character received
218 Yes n/a 0 character discarded
219 Yes 0 1 character received, marked as
220 TTY_NORMAL
221 Yes 1 1 character received, marked as
222 TTY_PARITY
223
224 Other flags may be used (eg, xon/xoff characters) if your
225 hardware supports hardware "soft" flow control.
226
227 Locking: none.
228 Interrupts: caller dependent.
229 This call must not sleep
230
231 pm(port,state,oldstate)
232 Perform any power management related activities on the specified
233 port. State indicates the new state (defined by ACPI D0-D3),
234 oldstate indicates the previous state. Essentially, D0 means
235 fully on, D3 means powered down.
236
237 This function should not be used to grab any resources.
238
239 This will be called when the port is initially opened and finally
240 closed, except when the port is also the system console. This
241 will occur even if CONFIG_PM is not set.
242
243 Locking: none.
244 Interrupts: caller dependent.
245
246 type(port)
247 Return a pointer to a string constant describing the specified
248 port, or return NULL, in which case the string 'unknown' is
249 substituted.
250
251 Locking: none.
252 Interrupts: caller dependent.
253
254 release_port(port)
255 Release any memory and IO region resources currently in use by
256 the port.
257
258 Locking: none.
259 Interrupts: caller dependent.
260
261 request_port(port)
262 Request any memory and IO region resources required by the port.
263 If any fail, no resources should be registered when this function
264 returns, and it should return -EBUSY on failure.
265
266 Locking: none.
267 Interrupts: caller dependent.
268
269 config_port(port,type)
270 Perform any autoconfiguration steps required for the port. `type`
271 contains a bit mask of the required configuration. UART_CONFIG_TYPE
272 indicates that the port requires detection and identification.
273 port->type should be set to the type found, or PORT_UNKNOWN if
274 no port was detected.
275
276 UART_CONFIG_IRQ indicates autoconfiguration of the interrupt signal,
277 which should be probed using standard kernel autoprobing techniques.
278 This is not necessary on platforms where ports have interrupts
279 internally hard wired (eg, system on a chip implementations).
280
281 Locking: none.
282 Interrupts: caller dependent.
283
284 verify_port(port,serinfo)
285 Verify the new serial port information contained within serinfo is
286 suitable for this port type.
287
288 Locking: none.
289 Interrupts: caller dependent.
290
291 ioctl(port,cmd,arg)
292 Perform any port specific IOCTLs. IOCTL commands must be defined
293 using the standard numbering system found in <asm/ioctl.h>
294
295 Locking: none.
296 Interrupts: caller dependent.
297
298Other functions
299---------------
300
Russell King6a8f8d72005-10-31 11:53:19 +0000301uart_update_timeout(port,cflag,baud)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700302 Update the FIFO drain timeout, port->timeout, according to the
Russell King6a8f8d72005-10-31 11:53:19 +0000303 number of bits, parity, stop bits and baud rate.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700304
305 Locking: caller is expected to take port->lock
306 Interrupts: n/a
307
Russell King6a8f8d72005-10-31 11:53:19 +0000308uart_get_baud_rate(port,termios,old,min,max)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700309 Return the numeric baud rate for the specified termios, taking
310 account of the special 38400 baud "kludge". The B0 baud rate
311 is mapped to 9600 baud.
312
Russell King6a8f8d72005-10-31 11:53:19 +0000313 If the baud rate is not within min..max, then if old is non-NULL,
314 the original baud rate will be tried. If that exceeds the
315 min..max constraint, 9600 baud will be returned. termios will
316 be updated to the baud rate in use.
317
318 Note: min..max must always allow 9600 baud to be selected.
319
Linus Torvalds1da177e2005-04-16 15:20:36 -0700320 Locking: caller dependent.
321 Interrupts: n/a
322
Russell King6a8f8d72005-10-31 11:53:19 +0000323uart_get_divisor(port,baud)
324 Return the divsor (baud_base / baud) for the specified baud
325 rate, appropriately rounded.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700326
327 If 38400 baud and custom divisor is selected, return the
328 custom divisor instead.
329
330 Locking: caller dependent.
331 Interrupts: n/a
332
Russell King6a8f8d72005-10-31 11:53:19 +0000333uart_match_port(port1,port2)
334 This utility function can be used to determine whether two
335 uart_port structures describe the same port.
336
337 Locking: n/a
338 Interrupts: n/a
339
340uart_write_wakeup(port)
341 A driver is expected to call this function when the number of
342 characters in the transmit buffer have dropped below a threshold.
343
344 Locking: port->lock should be held.
345 Interrupts: n/a
346
347uart_register_driver(drv)
348 Register a uart driver with the core driver. We in turn register
349 with the tty layer, and initialise the core driver per-port state.
350
351 drv->port should be NULL, and the per-port structures should be
352 registered using uart_add_one_port after this call has succeeded.
353
354 Locking: none
355 Interrupts: enabled
356
357uart_unregister_driver()
358 Remove all references to a driver from the core driver. The low
359 level driver must have removed all its ports via the
360 uart_remove_one_port() if it registered them with uart_add_one_port().
361
362 Locking: none
363 Interrupts: enabled
364
365uart_suspend_port()
366
367uart_resume_port()
368
369uart_add_one_port()
370
371uart_remove_one_port()
372
Linus Torvalds1da177e2005-04-16 15:20:36 -0700373Other notes
374-----------
375
376It is intended some day to drop the 'unused' entries from uart_port, and
377allow low level drivers to register their own individual uart_port's with
378the core. This will allow drivers to use uart_port as a pointer to a
379structure containing both the uart_port entry with their own extensions,
380thus:
381
382 struct my_port {
383 struct uart_port port;
384 int my_stuff;
385 };