Felipe Balbi | a48b2d4 | 2009-05-15 20:12:47 -0700 | [diff] [blame] | 1 | /* |
| 2 | * drivers/i2c/chips/lm8323.c |
| 3 | * |
| 4 | * Copyright (C) 2007-2009 Nokia Corporation |
| 5 | * |
| 6 | * Written by Daniel Stone <daniel.stone@nokia.com> |
| 7 | * Timo O. Karjalainen <timo.o.karjalainen@nokia.com> |
| 8 | * |
| 9 | * Updated by Felipe Balbi <felipe.balbi@nokia.com> |
| 10 | * |
| 11 | * This program is free software; you can redistribute it and/or modify |
| 12 | * it under the terms of the GNU General Public License as published by |
| 13 | * the Free Software Foundation (version 2 of the License only). |
| 14 | * |
| 15 | * This program is distributed in the hope that it will be useful, |
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 18 | * GNU General Public License for more details. |
| 19 | * |
| 20 | * You should have received a copy of the GNU General Public License |
| 21 | * along with this program; if not, write to the Free Software |
| 22 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 23 | */ |
| 24 | |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/i2c.h> |
| 27 | #include <linux/interrupt.h> |
| 28 | #include <linux/sched.h> |
| 29 | #include <linux/mutex.h> |
| 30 | #include <linux/delay.h> |
| 31 | #include <linux/input.h> |
| 32 | #include <linux/leds.h> |
| 33 | #include <linux/i2c/lm8323.h> |
Tejun Heo | 5a0e3ad | 2010-03-24 17:04:11 +0900 | [diff] [blame] | 34 | #include <linux/slab.h> |
Felipe Balbi | a48b2d4 | 2009-05-15 20:12:47 -0700 | [diff] [blame] | 35 | |
| 36 | /* Commands to send to the chip. */ |
| 37 | #define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */ |
| 38 | #define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */ |
| 39 | #define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */ |
| 40 | #define LM8323_CMD_RESET 0x83 /* Reset, same as external one */ |
| 41 | #define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */ |
| 42 | #define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */ |
| 43 | #define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */ |
| 44 | #define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */ |
| 45 | #define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */ |
| 46 | #define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */ |
| 47 | #define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */ |
| 48 | #define LM8323_CMD_READ_ERR 0x8c /* Get error status. */ |
| 49 | #define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */ |
| 50 | #define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */ |
| 51 | #define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */ |
| 52 | #define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */ |
| 53 | #define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */ |
| 54 | #define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */ |
| 55 | #define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */ |
| 56 | #define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */ |
| 57 | #define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */ |
| 58 | #define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */ |
| 59 | |
| 60 | /* Interrupt status. */ |
| 61 | #define INT_KEYPAD 0x01 /* Key event. */ |
| 62 | #define INT_ROTATOR 0x02 /* Rotator event. */ |
| 63 | #define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */ |
| 64 | #define INT_NOINIT 0x10 /* Lost configuration. */ |
| 65 | #define INT_PWM1 0x20 /* PWM1 stopped. */ |
| 66 | #define INT_PWM2 0x40 /* PWM2 stopped. */ |
| 67 | #define INT_PWM3 0x80 /* PWM3 stopped. */ |
| 68 | |
| 69 | /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */ |
| 70 | #define ERR_BADPAR 0x01 /* Bad parameter. */ |
| 71 | #define ERR_CMDUNK 0x02 /* Unknown command. */ |
| 72 | #define ERR_KEYOVR 0x04 /* Too many keys pressed. */ |
| 73 | #define ERR_FIFOOVER 0x40 /* FIFO overflow. */ |
| 74 | |
| 75 | /* Configuration keys (CMD_{WRITE,READ}_CFG). */ |
| 76 | #define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */ |
| 77 | #define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */ |
| 78 | #define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */ |
| 79 | #define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */ |
| 80 | #define CFG_PSIZE 0x20 /* Package size (must be 0). */ |
| 81 | #define CFG_ROTEN 0x40 /* Enable rotator. */ |
| 82 | |
| 83 | /* Clock settings (CMD_{WRITE,READ}_CLOCK). */ |
| 84 | #define CLK_RCPWM_INTERNAL 0x00 |
| 85 | #define CLK_RCPWM_EXTERNAL 0x03 |
| 86 | #define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */ |
| 87 | #define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */ |
| 88 | |
| 89 | /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */ |
| 90 | #define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */ |
| 91 | #define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */ |
| 92 | #define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */ |
| 93 | #define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */ |
| 94 | |
| 95 | /* Key event fifo length */ |
| 96 | #define LM8323_FIFO_LEN 15 |
| 97 | |
| 98 | /* Commands for PWM engine; feed in with PWM_WRITE. */ |
| 99 | /* Load ramp counter from duty cycle field (range 0 - 0xff). */ |
| 100 | #define PWM_SET(v) (0x4000 | ((v) & 0xff)) |
| 101 | /* Go to start of script. */ |
| 102 | #define PWM_GOTOSTART 0x0000 |
| 103 | /* |
| 104 | * Stop engine (generates interrupt). If reset is 1, clear the program |
| 105 | * counter, else leave it. |
| 106 | */ |
| 107 | #define PWM_END(reset) (0xc000 | (!!(reset) << 11)) |
| 108 | /* |
| 109 | * Ramp. If s is 1, divide clock by 512, else divide clock by 16. |
| 110 | * Take t clock scales (up to 63) per step, for n steps (up to 126). |
| 111 | * If u is set, ramp up, else ramp down. |
| 112 | */ |
| 113 | #define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \ |
| 114 | ((n) & 0x7f) | ((u) ? 0 : 0x80)) |
| 115 | /* |
| 116 | * Loop (i.e. jump back to pos) for a given number of iterations (up to 63). |
| 117 | * If cnt is zero, execute until PWM_END is encountered. |
| 118 | */ |
| 119 | #define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \ |
| 120 | ((pos) & 0x3f)) |
| 121 | /* |
| 122 | * Wait for trigger. Argument is a mask of channels, shifted by the channel |
| 123 | * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered |
| 124 | * from 1, not 0. |
| 125 | */ |
| 126 | #define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6)) |
| 127 | /* Send trigger. Argument is same as PWM_WAIT_TRIG. */ |
| 128 | #define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7)) |
| 129 | |
| 130 | struct lm8323_pwm { |
| 131 | int id; |
| 132 | int fade_time; |
| 133 | int brightness; |
| 134 | int desired_brightness; |
| 135 | bool enabled; |
| 136 | bool running; |
| 137 | /* pwm lock */ |
| 138 | struct mutex lock; |
| 139 | struct work_struct work; |
| 140 | struct led_classdev cdev; |
| 141 | struct lm8323_chip *chip; |
| 142 | }; |
| 143 | |
| 144 | struct lm8323_chip { |
| 145 | /* device lock */ |
| 146 | struct mutex lock; |
| 147 | struct i2c_client *client; |
| 148 | struct work_struct work; |
| 149 | struct input_dev *idev; |
| 150 | bool kp_enabled; |
| 151 | bool pm_suspend; |
| 152 | unsigned keys_down; |
| 153 | char phys[32]; |
| 154 | unsigned short keymap[LM8323_KEYMAP_SIZE]; |
| 155 | int size_x; |
| 156 | int size_y; |
| 157 | int debounce_time; |
| 158 | int active_time; |
| 159 | struct lm8323_pwm pwm[LM8323_NUM_PWMS]; |
| 160 | }; |
| 161 | |
| 162 | #define client_to_lm8323(c) container_of(c, struct lm8323_chip, client) |
| 163 | #define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev) |
| 164 | #define work_to_lm8323(w) container_of(w, struct lm8323_chip, work) |
| 165 | #define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev) |
| 166 | #define work_to_pwm(w) container_of(w, struct lm8323_pwm, work) |
| 167 | |
| 168 | #define LM8323_MAX_DATA 8 |
| 169 | |
| 170 | /* |
| 171 | * To write, we just access the chip's address in write mode, and dump the |
| 172 | * command and data out on the bus. The command byte and data are taken as |
| 173 | * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA. |
| 174 | */ |
| 175 | static int lm8323_write(struct lm8323_chip *lm, int len, ...) |
| 176 | { |
| 177 | int ret, i; |
| 178 | va_list ap; |
| 179 | u8 data[LM8323_MAX_DATA]; |
| 180 | |
| 181 | va_start(ap, len); |
| 182 | |
| 183 | if (unlikely(len > LM8323_MAX_DATA)) { |
| 184 | dev_err(&lm->client->dev, "tried to send %d bytes\n", len); |
| 185 | va_end(ap); |
| 186 | return 0; |
| 187 | } |
| 188 | |
| 189 | for (i = 0; i < len; i++) |
| 190 | data[i] = va_arg(ap, int); |
| 191 | |
| 192 | va_end(ap); |
| 193 | |
| 194 | /* |
| 195 | * If the host is asleep while we send the data, we can get a NACK |
| 196 | * back while it wakes up, so try again, once. |
| 197 | */ |
| 198 | ret = i2c_master_send(lm->client, data, len); |
| 199 | if (unlikely(ret == -EREMOTEIO)) |
| 200 | ret = i2c_master_send(lm->client, data, len); |
| 201 | if (unlikely(ret != len)) |
| 202 | dev_err(&lm->client->dev, "sent %d bytes of %d total\n", |
| 203 | len, ret); |
| 204 | |
| 205 | return ret; |
| 206 | } |
| 207 | |
| 208 | /* |
| 209 | * To read, we first send the command byte to the chip and end the transaction, |
| 210 | * then access the chip in read mode, at which point it will send the data. |
| 211 | */ |
| 212 | static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len) |
| 213 | { |
| 214 | int ret; |
| 215 | |
| 216 | /* |
| 217 | * If the host is asleep while we send the byte, we can get a NACK |
| 218 | * back while it wakes up, so try again, once. |
| 219 | */ |
| 220 | ret = i2c_master_send(lm->client, &cmd, 1); |
| 221 | if (unlikely(ret == -EREMOTEIO)) |
| 222 | ret = i2c_master_send(lm->client, &cmd, 1); |
| 223 | if (unlikely(ret != 1)) { |
| 224 | dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n", |
| 225 | cmd); |
| 226 | return 0; |
| 227 | } |
| 228 | |
| 229 | ret = i2c_master_recv(lm->client, buf, len); |
| 230 | if (unlikely(ret != len)) |
| 231 | dev_err(&lm->client->dev, "wanted %d bytes, got %d\n", |
| 232 | len, ret); |
| 233 | |
| 234 | return ret; |
| 235 | } |
| 236 | |
| 237 | /* |
| 238 | * Set the chip active time (idle time before it enters halt). |
| 239 | */ |
| 240 | static void lm8323_set_active_time(struct lm8323_chip *lm, int time) |
| 241 | { |
| 242 | lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2); |
| 243 | } |
| 244 | |
| 245 | /* |
| 246 | * The signals are AT-style: the low 7 bits are the keycode, and the top |
| 247 | * bit indicates the state (1 for down, 0 for up). |
| 248 | */ |
| 249 | static inline u8 lm8323_whichkey(u8 event) |
| 250 | { |
| 251 | return event & 0x7f; |
| 252 | } |
| 253 | |
| 254 | static inline int lm8323_ispress(u8 event) |
| 255 | { |
| 256 | return (event & 0x80) ? 1 : 0; |
| 257 | } |
| 258 | |
| 259 | static void process_keys(struct lm8323_chip *lm) |
| 260 | { |
| 261 | u8 event; |
| 262 | u8 key_fifo[LM8323_FIFO_LEN + 1]; |
| 263 | int old_keys_down = lm->keys_down; |
| 264 | int ret; |
| 265 | int i = 0; |
| 266 | |
| 267 | /* |
| 268 | * Read all key events from the FIFO at once. Next READ_FIFO clears the |
| 269 | * FIFO even if we didn't read all events previously. |
| 270 | */ |
| 271 | ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN); |
| 272 | |
| 273 | if (ret < 0) { |
| 274 | dev_err(&lm->client->dev, "Failed reading fifo \n"); |
| 275 | return; |
| 276 | } |
| 277 | key_fifo[ret] = 0; |
| 278 | |
| 279 | while ((event = key_fifo[i++])) { |
| 280 | u8 key = lm8323_whichkey(event); |
| 281 | int isdown = lm8323_ispress(event); |
| 282 | unsigned short keycode = lm->keymap[key]; |
| 283 | |
| 284 | dev_vdbg(&lm->client->dev, "key 0x%02x %s\n", |
| 285 | key, isdown ? "down" : "up"); |
| 286 | |
| 287 | if (lm->kp_enabled) { |
| 288 | input_event(lm->idev, EV_MSC, MSC_SCAN, key); |
| 289 | input_report_key(lm->idev, keycode, isdown); |
| 290 | input_sync(lm->idev); |
| 291 | } |
| 292 | |
| 293 | if (isdown) |
| 294 | lm->keys_down++; |
| 295 | else |
| 296 | lm->keys_down--; |
| 297 | } |
| 298 | |
| 299 | /* |
| 300 | * Errata: We need to ensure that the chip never enters halt mode |
| 301 | * during a keypress, so set active time to 0. When it's released, |
| 302 | * we can enter halt again, so set the active time back to normal. |
| 303 | */ |
| 304 | if (!old_keys_down && lm->keys_down) |
| 305 | lm8323_set_active_time(lm, 0); |
| 306 | if (old_keys_down && !lm->keys_down) |
| 307 | lm8323_set_active_time(lm, lm->active_time); |
| 308 | } |
| 309 | |
| 310 | static void lm8323_process_error(struct lm8323_chip *lm) |
| 311 | { |
| 312 | u8 error; |
| 313 | |
| 314 | if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) { |
| 315 | if (error & ERR_FIFOOVER) |
| 316 | dev_vdbg(&lm->client->dev, "fifo overflow!\n"); |
| 317 | if (error & ERR_KEYOVR) |
| 318 | dev_vdbg(&lm->client->dev, |
| 319 | "more than two keys pressed\n"); |
| 320 | if (error & ERR_CMDUNK) |
| 321 | dev_vdbg(&lm->client->dev, |
| 322 | "unknown command submitted\n"); |
| 323 | if (error & ERR_BADPAR) |
| 324 | dev_vdbg(&lm->client->dev, "bad command parameter\n"); |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | static void lm8323_reset(struct lm8323_chip *lm) |
| 329 | { |
| 330 | /* The docs say we must pass 0xAA as the data byte. */ |
| 331 | lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA); |
| 332 | } |
| 333 | |
| 334 | static int lm8323_configure(struct lm8323_chip *lm) |
| 335 | { |
| 336 | int keysize = (lm->size_x << 4) | lm->size_y; |
| 337 | int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL); |
| 338 | int debounce = lm->debounce_time >> 2; |
| 339 | int active = lm->active_time >> 2; |
| 340 | |
| 341 | /* |
| 342 | * Active time must be greater than the debounce time: if it's |
| 343 | * a close-run thing, give ourselves a 12ms buffer. |
| 344 | */ |
| 345 | if (debounce >= active) |
| 346 | active = debounce + 3; |
| 347 | |
| 348 | lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0); |
| 349 | lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock); |
| 350 | lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize); |
| 351 | lm8323_set_active_time(lm, lm->active_time); |
| 352 | lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce); |
| 353 | lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff); |
| 354 | lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0); |
| 355 | |
| 356 | /* |
| 357 | * Not much we can do about errors at this point, so just hope |
| 358 | * for the best. |
| 359 | */ |
| 360 | |
| 361 | return 0; |
| 362 | } |
| 363 | |
| 364 | static void pwm_done(struct lm8323_pwm *pwm) |
| 365 | { |
| 366 | mutex_lock(&pwm->lock); |
| 367 | pwm->running = false; |
| 368 | if (pwm->desired_brightness != pwm->brightness) |
| 369 | schedule_work(&pwm->work); |
| 370 | mutex_unlock(&pwm->lock); |
| 371 | } |
| 372 | |
| 373 | /* |
| 374 | * Bottom half: handle the interrupt by posting key events, or dealing with |
| 375 | * errors appropriately. |
| 376 | */ |
| 377 | static void lm8323_work(struct work_struct *work) |
| 378 | { |
| 379 | struct lm8323_chip *lm = work_to_lm8323(work); |
| 380 | u8 ints; |
| 381 | int i; |
| 382 | |
| 383 | mutex_lock(&lm->lock); |
| 384 | |
| 385 | while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) { |
| 386 | if (likely(ints & INT_KEYPAD)) |
| 387 | process_keys(lm); |
| 388 | if (ints & INT_ROTATOR) { |
| 389 | /* We don't currently support the rotator. */ |
| 390 | dev_vdbg(&lm->client->dev, "rotator fired\n"); |
| 391 | } |
| 392 | if (ints & INT_ERROR) { |
| 393 | dev_vdbg(&lm->client->dev, "error!\n"); |
| 394 | lm8323_process_error(lm); |
| 395 | } |
| 396 | if (ints & INT_NOINIT) { |
| 397 | dev_err(&lm->client->dev, "chip lost config; " |
| 398 | "reinitialising\n"); |
| 399 | lm8323_configure(lm); |
| 400 | } |
| 401 | for (i = 0; i < LM8323_NUM_PWMS; i++) { |
| 402 | if (ints & (1 << (INT_PWM1 + i))) { |
| 403 | dev_vdbg(&lm->client->dev, |
| 404 | "pwm%d engine completed\n", i); |
| 405 | pwm_done(&lm->pwm[i]); |
| 406 | } |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | mutex_unlock(&lm->lock); |
| 411 | } |
| 412 | |
| 413 | /* |
| 414 | * We cannot use I2C in interrupt context, so we just schedule work. |
| 415 | */ |
| 416 | static irqreturn_t lm8323_irq(int irq, void *data) |
| 417 | { |
| 418 | struct lm8323_chip *lm = data; |
| 419 | |
| 420 | schedule_work(&lm->work); |
| 421 | |
| 422 | return IRQ_HANDLED; |
| 423 | } |
| 424 | |
| 425 | /* |
| 426 | * Read the chip ID. |
| 427 | */ |
| 428 | static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf) |
| 429 | { |
| 430 | int bytes; |
| 431 | |
| 432 | bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2); |
| 433 | if (unlikely(bytes != 2)) |
| 434 | return -EIO; |
| 435 | |
| 436 | return 0; |
| 437 | } |
| 438 | |
| 439 | static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd) |
| 440 | { |
| 441 | lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id, |
| 442 | (cmd & 0xff00) >> 8, cmd & 0x00ff); |
| 443 | } |
| 444 | |
| 445 | /* |
| 446 | * Write a script into a given PWM engine, concluding with PWM_END. |
| 447 | * If 'kill' is nonzero, the engine will be shut down at the end |
| 448 | * of the script, producing a zero output. Otherwise the engine |
| 449 | * will be kept running at the final PWM level indefinitely. |
| 450 | */ |
| 451 | static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill, |
| 452 | int len, const u16 *cmds) |
| 453 | { |
| 454 | int i; |
| 455 | |
| 456 | for (i = 0; i < len; i++) |
| 457 | lm8323_write_pwm_one(pwm, i, cmds[i]); |
| 458 | |
| 459 | lm8323_write_pwm_one(pwm, i++, PWM_END(kill)); |
| 460 | lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id); |
| 461 | pwm->running = true; |
| 462 | } |
| 463 | |
| 464 | static void lm8323_pwm_work(struct work_struct *work) |
| 465 | { |
| 466 | struct lm8323_pwm *pwm = work_to_pwm(work); |
| 467 | int div512, perstep, steps, hz, up, kill; |
| 468 | u16 pwm_cmds[3]; |
| 469 | int num_cmds = 0; |
| 470 | |
| 471 | mutex_lock(&pwm->lock); |
| 472 | |
| 473 | /* |
| 474 | * Do nothing if we're already at the requested level, |
| 475 | * or previous setting is not yet complete. In the latter |
| 476 | * case we will be called again when the previous PWM script |
| 477 | * finishes. |
| 478 | */ |
| 479 | if (pwm->running || pwm->desired_brightness == pwm->brightness) |
| 480 | goto out; |
| 481 | |
| 482 | kill = (pwm->desired_brightness == 0); |
| 483 | up = (pwm->desired_brightness > pwm->brightness); |
| 484 | steps = abs(pwm->desired_brightness - pwm->brightness); |
| 485 | |
| 486 | /* |
| 487 | * Convert time (in ms) into a divisor (512 or 16 on a refclk of |
| 488 | * 32768Hz), and number of ticks per step. |
| 489 | */ |
| 490 | if ((pwm->fade_time / steps) > (32768 / 512)) { |
| 491 | div512 = 1; |
| 492 | hz = 32768 / 512; |
| 493 | } else { |
| 494 | div512 = 0; |
| 495 | hz = 32768 / 16; |
| 496 | } |
| 497 | |
| 498 | perstep = (hz * pwm->fade_time) / (steps * 1000); |
| 499 | |
| 500 | if (perstep == 0) |
| 501 | perstep = 1; |
| 502 | else if (perstep > 63) |
| 503 | perstep = 63; |
| 504 | |
| 505 | while (steps) { |
| 506 | int s; |
| 507 | |
| 508 | s = min(126, steps); |
| 509 | pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up); |
| 510 | steps -= s; |
| 511 | } |
| 512 | |
| 513 | lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds); |
| 514 | pwm->brightness = pwm->desired_brightness; |
| 515 | |
| 516 | out: |
| 517 | mutex_unlock(&pwm->lock); |
| 518 | } |
| 519 | |
| 520 | static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev, |
| 521 | enum led_brightness brightness) |
| 522 | { |
| 523 | struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); |
| 524 | struct lm8323_chip *lm = pwm->chip; |
| 525 | |
| 526 | mutex_lock(&pwm->lock); |
| 527 | pwm->desired_brightness = brightness; |
| 528 | mutex_unlock(&pwm->lock); |
| 529 | |
| 530 | if (in_interrupt()) { |
| 531 | schedule_work(&pwm->work); |
| 532 | } else { |
| 533 | /* |
| 534 | * Schedule PWM work as usual unless we are going into suspend |
| 535 | */ |
| 536 | mutex_lock(&lm->lock); |
| 537 | if (likely(!lm->pm_suspend)) |
| 538 | schedule_work(&pwm->work); |
| 539 | else |
| 540 | lm8323_pwm_work(&pwm->work); |
| 541 | mutex_unlock(&lm->lock); |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | static ssize_t lm8323_pwm_show_time(struct device *dev, |
| 546 | struct device_attribute *attr, char *buf) |
| 547 | { |
| 548 | struct led_classdev *led_cdev = dev_get_drvdata(dev); |
| 549 | struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); |
| 550 | |
| 551 | return sprintf(buf, "%d\n", pwm->fade_time); |
| 552 | } |
| 553 | |
| 554 | static ssize_t lm8323_pwm_store_time(struct device *dev, |
| 555 | struct device_attribute *attr, const char *buf, size_t len) |
| 556 | { |
| 557 | struct led_classdev *led_cdev = dev_get_drvdata(dev); |
| 558 | struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev); |
| 559 | int ret; |
| 560 | unsigned long time; |
| 561 | |
| 562 | ret = strict_strtoul(buf, 10, &time); |
| 563 | /* Numbers only, please. */ |
| 564 | if (ret) |
| 565 | return -EINVAL; |
| 566 | |
| 567 | pwm->fade_time = time; |
| 568 | |
| 569 | return strlen(buf); |
| 570 | } |
| 571 | static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time); |
| 572 | |
| 573 | static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev, |
| 574 | const char *name) |
| 575 | { |
| 576 | struct lm8323_pwm *pwm; |
| 577 | |
| 578 | BUG_ON(id > 3); |
| 579 | |
| 580 | pwm = &lm->pwm[id - 1]; |
| 581 | |
| 582 | pwm->id = id; |
| 583 | pwm->fade_time = 0; |
| 584 | pwm->brightness = 0; |
| 585 | pwm->desired_brightness = 0; |
| 586 | pwm->running = false; |
| 587 | pwm->enabled = false; |
| 588 | INIT_WORK(&pwm->work, lm8323_pwm_work); |
| 589 | mutex_init(&pwm->lock); |
| 590 | pwm->chip = lm; |
| 591 | |
| 592 | if (name) { |
| 593 | pwm->cdev.name = name; |
| 594 | pwm->cdev.brightness_set = lm8323_pwm_set_brightness; |
| 595 | if (led_classdev_register(dev, &pwm->cdev) < 0) { |
| 596 | dev_err(dev, "couldn't register PWM %d\n", id); |
| 597 | return -1; |
| 598 | } |
| 599 | if (device_create_file(pwm->cdev.dev, |
| 600 | &dev_attr_time) < 0) { |
| 601 | dev_err(dev, "couldn't register time attribute\n"); |
| 602 | led_classdev_unregister(&pwm->cdev); |
| 603 | return -1; |
| 604 | } |
| 605 | pwm->enabled = true; |
| 606 | } |
| 607 | |
| 608 | return 0; |
| 609 | } |
| 610 | |
| 611 | static struct i2c_driver lm8323_i2c_driver; |
| 612 | |
| 613 | static ssize_t lm8323_show_disable(struct device *dev, |
| 614 | struct device_attribute *attr, char *buf) |
| 615 | { |
| 616 | struct lm8323_chip *lm = dev_get_drvdata(dev); |
| 617 | |
| 618 | return sprintf(buf, "%u\n", !lm->kp_enabled); |
| 619 | } |
| 620 | |
| 621 | static ssize_t lm8323_set_disable(struct device *dev, |
| 622 | struct device_attribute *attr, |
| 623 | const char *buf, size_t count) |
| 624 | { |
| 625 | struct lm8323_chip *lm = dev_get_drvdata(dev); |
| 626 | int ret; |
| 627 | unsigned long i; |
| 628 | |
| 629 | ret = strict_strtoul(buf, 10, &i); |
| 630 | |
| 631 | mutex_lock(&lm->lock); |
| 632 | lm->kp_enabled = !i; |
| 633 | mutex_unlock(&lm->lock); |
| 634 | |
| 635 | return count; |
| 636 | } |
| 637 | static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable); |
| 638 | |
| 639 | static int __devinit lm8323_probe(struct i2c_client *client, |
| 640 | const struct i2c_device_id *id) |
| 641 | { |
| 642 | struct lm8323_platform_data *pdata = client->dev.platform_data; |
| 643 | struct input_dev *idev; |
| 644 | struct lm8323_chip *lm; |
| 645 | int i, err; |
| 646 | unsigned long tmo; |
| 647 | u8 data[2]; |
| 648 | |
| 649 | if (!pdata || !pdata->size_x || !pdata->size_y) { |
| 650 | dev_err(&client->dev, "missing platform_data\n"); |
| 651 | return -EINVAL; |
| 652 | } |
| 653 | |
| 654 | if (pdata->size_x > 8) { |
| 655 | dev_err(&client->dev, "invalid x size %d specified\n", |
| 656 | pdata->size_x); |
| 657 | return -EINVAL; |
| 658 | } |
| 659 | |
| 660 | if (pdata->size_y > 12) { |
| 661 | dev_err(&client->dev, "invalid y size %d specified\n", |
| 662 | pdata->size_y); |
| 663 | return -EINVAL; |
| 664 | } |
| 665 | |
| 666 | lm = kzalloc(sizeof *lm, GFP_KERNEL); |
| 667 | idev = input_allocate_device(); |
| 668 | if (!lm || !idev) { |
| 669 | err = -ENOMEM; |
| 670 | goto fail1; |
| 671 | } |
| 672 | |
Felipe Balbi | a48b2d4 | 2009-05-15 20:12:47 -0700 | [diff] [blame] | 673 | lm->client = client; |
| 674 | lm->idev = idev; |
| 675 | mutex_init(&lm->lock); |
| 676 | INIT_WORK(&lm->work, lm8323_work); |
| 677 | |
| 678 | lm->size_x = pdata->size_x; |
| 679 | lm->size_y = pdata->size_y; |
| 680 | dev_vdbg(&client->dev, "Keypad size: %d x %d\n", |
| 681 | lm->size_x, lm->size_y); |
| 682 | |
| 683 | lm->debounce_time = pdata->debounce_time; |
| 684 | lm->active_time = pdata->active_time; |
| 685 | |
| 686 | lm8323_reset(lm); |
| 687 | |
| 688 | /* Nothing's set up to service the IRQ yet, so just spin for max. |
| 689 | * 100ms until we can configure. */ |
| 690 | tmo = jiffies + msecs_to_jiffies(100); |
| 691 | while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) { |
| 692 | if (data[0] & INT_NOINIT) |
| 693 | break; |
| 694 | |
| 695 | if (time_after(jiffies, tmo)) { |
| 696 | dev_err(&client->dev, |
| 697 | "timeout waiting for initialisation\n"); |
| 698 | break; |
| 699 | } |
| 700 | |
| 701 | msleep(1); |
| 702 | } |
| 703 | |
| 704 | lm8323_configure(lm); |
| 705 | |
| 706 | /* If a true probe check the device */ |
| 707 | if (lm8323_read_id(lm, data) != 0) { |
| 708 | dev_err(&client->dev, "device not found\n"); |
| 709 | err = -ENODEV; |
| 710 | goto fail1; |
| 711 | } |
| 712 | |
| 713 | for (i = 0; i < LM8323_NUM_PWMS; i++) { |
| 714 | err = init_pwm(lm, i + 1, &client->dev, pdata->pwm_names[i]); |
| 715 | if (err < 0) |
| 716 | goto fail2; |
| 717 | } |
| 718 | |
| 719 | lm->kp_enabled = true; |
| 720 | err = device_create_file(&client->dev, &dev_attr_disable_kp); |
| 721 | if (err < 0) |
| 722 | goto fail2; |
| 723 | |
| 724 | idev->name = pdata->name ? : "LM8323 keypad"; |
| 725 | snprintf(lm->phys, sizeof(lm->phys), |
| 726 | "%s/input-kp", dev_name(&client->dev)); |
| 727 | idev->phys = lm->phys; |
| 728 | |
| 729 | idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC); |
| 730 | __set_bit(MSC_SCAN, idev->mscbit); |
| 731 | for (i = 0; i < LM8323_KEYMAP_SIZE; i++) { |
| 732 | __set_bit(pdata->keymap[i], idev->keybit); |
| 733 | lm->keymap[i] = pdata->keymap[i]; |
| 734 | } |
| 735 | __clear_bit(KEY_RESERVED, idev->keybit); |
| 736 | |
| 737 | if (pdata->repeat) |
| 738 | __set_bit(EV_REP, idev->evbit); |
| 739 | |
| 740 | err = input_register_device(idev); |
| 741 | if (err) { |
| 742 | dev_dbg(&client->dev, "error registering input device\n"); |
| 743 | goto fail3; |
| 744 | } |
| 745 | |
| 746 | err = request_irq(client->irq, lm8323_irq, |
| 747 | IRQF_TRIGGER_FALLING | IRQF_DISABLED, |
| 748 | "lm8323", lm); |
| 749 | if (err) { |
| 750 | dev_err(&client->dev, "could not get IRQ %d\n", client->irq); |
| 751 | goto fail4; |
| 752 | } |
| 753 | |
Wolfram Sang | a5b33e6 | 2010-03-21 22:31:26 -0700 | [diff] [blame] | 754 | i2c_set_clientdata(client, lm); |
| 755 | |
Felipe Balbi | a48b2d4 | 2009-05-15 20:12:47 -0700 | [diff] [blame] | 756 | device_init_wakeup(&client->dev, 1); |
| 757 | enable_irq_wake(client->irq); |
| 758 | |
| 759 | return 0; |
| 760 | |
| 761 | fail4: |
| 762 | input_unregister_device(idev); |
| 763 | idev = NULL; |
| 764 | fail3: |
| 765 | device_remove_file(&client->dev, &dev_attr_disable_kp); |
| 766 | fail2: |
| 767 | while (--i >= 0) |
| 768 | if (lm->pwm[i].enabled) |
| 769 | led_classdev_unregister(&lm->pwm[i].cdev); |
| 770 | fail1: |
| 771 | input_free_device(idev); |
| 772 | kfree(lm); |
| 773 | return err; |
| 774 | } |
| 775 | |
| 776 | static int __devexit lm8323_remove(struct i2c_client *client) |
| 777 | { |
| 778 | struct lm8323_chip *lm = i2c_get_clientdata(client); |
| 779 | int i; |
| 780 | |
Wolfram Sang | a5b33e6 | 2010-03-21 22:31:26 -0700 | [diff] [blame] | 781 | i2c_set_clientdata(client, NULL); |
| 782 | |
Felipe Balbi | a48b2d4 | 2009-05-15 20:12:47 -0700 | [diff] [blame] | 783 | disable_irq_wake(client->irq); |
| 784 | free_irq(client->irq, lm); |
| 785 | cancel_work_sync(&lm->work); |
| 786 | |
| 787 | input_unregister_device(lm->idev); |
| 788 | |
| 789 | device_remove_file(&lm->client->dev, &dev_attr_disable_kp); |
| 790 | |
| 791 | for (i = 0; i < 3; i++) |
| 792 | if (lm->pwm[i].enabled) |
| 793 | led_classdev_unregister(&lm->pwm[i].cdev); |
| 794 | |
| 795 | kfree(lm); |
| 796 | |
| 797 | return 0; |
| 798 | } |
| 799 | |
| 800 | #ifdef CONFIG_PM |
| 801 | /* |
| 802 | * We don't need to explicitly suspend the chip, as it already switches off |
| 803 | * when there's no activity. |
| 804 | */ |
| 805 | static int lm8323_suspend(struct i2c_client *client, pm_message_t mesg) |
| 806 | { |
| 807 | struct lm8323_chip *lm = i2c_get_clientdata(client); |
| 808 | int i; |
| 809 | |
| 810 | set_irq_wake(client->irq, 0); |
| 811 | disable_irq(client->irq); |
| 812 | |
| 813 | mutex_lock(&lm->lock); |
| 814 | lm->pm_suspend = true; |
| 815 | mutex_unlock(&lm->lock); |
| 816 | |
| 817 | for (i = 0; i < 3; i++) |
| 818 | if (lm->pwm[i].enabled) |
| 819 | led_classdev_suspend(&lm->pwm[i].cdev); |
| 820 | |
| 821 | return 0; |
| 822 | } |
| 823 | |
| 824 | static int lm8323_resume(struct i2c_client *client) |
| 825 | { |
| 826 | struct lm8323_chip *lm = i2c_get_clientdata(client); |
| 827 | int i; |
| 828 | |
| 829 | mutex_lock(&lm->lock); |
| 830 | lm->pm_suspend = false; |
| 831 | mutex_unlock(&lm->lock); |
| 832 | |
| 833 | for (i = 0; i < 3; i++) |
| 834 | if (lm->pwm[i].enabled) |
| 835 | led_classdev_resume(&lm->pwm[i].cdev); |
| 836 | |
| 837 | enable_irq(client->irq); |
| 838 | set_irq_wake(client->irq, 1); |
| 839 | |
| 840 | return 0; |
| 841 | } |
| 842 | #else |
| 843 | #define lm8323_suspend NULL |
| 844 | #define lm8323_resume NULL |
| 845 | #endif |
| 846 | |
| 847 | static const struct i2c_device_id lm8323_id[] = { |
| 848 | { "lm8323", 0 }, |
| 849 | { } |
| 850 | }; |
| 851 | |
| 852 | static struct i2c_driver lm8323_i2c_driver = { |
| 853 | .driver = { |
| 854 | .name = "lm8323", |
| 855 | }, |
| 856 | .probe = lm8323_probe, |
| 857 | .remove = __devexit_p(lm8323_remove), |
| 858 | .suspend = lm8323_suspend, |
| 859 | .resume = lm8323_resume, |
| 860 | .id_table = lm8323_id, |
| 861 | }; |
| 862 | MODULE_DEVICE_TABLE(i2c, lm8323_id); |
| 863 | |
| 864 | static int __init lm8323_init(void) |
| 865 | { |
| 866 | return i2c_add_driver(&lm8323_i2c_driver); |
| 867 | } |
| 868 | module_init(lm8323_init); |
| 869 | |
| 870 | static void __exit lm8323_exit(void) |
| 871 | { |
| 872 | i2c_del_driver(&lm8323_i2c_driver); |
| 873 | } |
| 874 | module_exit(lm8323_exit); |
| 875 | |
| 876 | MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>"); |
| 877 | MODULE_AUTHOR("Daniel Stone"); |
| 878 | MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>"); |
| 879 | MODULE_DESCRIPTION("LM8323 keypad driver"); |
| 880 | MODULE_LICENSE("GPL"); |
| 881 | |