Martyn Welch | 3a47024 | 2008-10-01 09:32:39 +0100 | [diff] [blame^] | 1 | /* |
| 2 | * Interrupt handling for GE Fanuc's FPGA based PIC |
| 3 | * |
| 4 | * Author: Martyn Welch <martyn.welch@gefanuc.com> |
| 5 | * |
| 6 | * 2008 (c) GE Fanuc Intelligent Platforms Embedded Systems, Inc. |
| 7 | * |
| 8 | * This file is licensed under the terms of the GNU General Public License |
| 9 | * version 2. This program is licensed "as is" without any warranty of any |
| 10 | * kind, whether express or implied. |
| 11 | */ |
| 12 | |
| 13 | #include <linux/stddef.h> |
| 14 | #include <linux/kernel.h> |
| 15 | #include <linux/init.h> |
| 16 | #include <linux/irq.h> |
| 17 | #include <linux/interrupt.h> |
| 18 | #include <linux/spinlock.h> |
| 19 | |
| 20 | #include <asm/byteorder.h> |
| 21 | #include <asm/io.h> |
| 22 | #include <asm/prom.h> |
| 23 | #include <asm/irq.h> |
| 24 | |
| 25 | #include "gef_pic.h" |
| 26 | |
| 27 | #define DEBUG |
| 28 | #undef DEBUG |
| 29 | |
| 30 | #ifdef DEBUG |
| 31 | #define DBG(fmt...) do { printk(KERN_DEBUG "gef_pic: " fmt); } while (0) |
| 32 | #else |
| 33 | #define DBG(fmt...) do { } while (0) |
| 34 | #endif |
| 35 | |
| 36 | #define GEF_PIC_NUM_IRQS 32 |
| 37 | |
| 38 | /* Interrupt Controller Interface Registers */ |
| 39 | #define GEF_PIC_INTR_STATUS 0x0000 |
| 40 | |
| 41 | #define GEF_PIC_INTR_MASK(cpu) (0x0010 + (0x4 * cpu)) |
| 42 | #define GEF_PIC_CPU0_INTR_MASK GEF_PIC_INTR_MASK(0) |
| 43 | #define GEF_PIC_CPU1_INTR_MASK GEF_PIC_INTR_MASK(1) |
| 44 | |
| 45 | #define GEF_PIC_MCP_MASK(cpu) (0x0018 + (0x4 * cpu)) |
| 46 | #define GEF_PIC_CPU0_MCP_MASK GEF_PIC_MCP_MASK(0) |
| 47 | #define GEF_PIC_CPU1_MCP_MASK GEF_PIC_MCP_MASK(1) |
| 48 | |
| 49 | #define gef_irq_to_hw(virq) ((unsigned int)irq_map[virq].hwirq) |
| 50 | |
| 51 | |
| 52 | static DEFINE_SPINLOCK(gef_pic_lock); |
| 53 | |
| 54 | static void __iomem *gef_pic_irq_reg_base; |
| 55 | static struct irq_host *gef_pic_irq_host; |
| 56 | static int gef_pic_cascade_irq; |
| 57 | |
| 58 | /* |
| 59 | * Interrupt Controller Handling |
| 60 | * |
| 61 | * The interrupt controller handles interrupts for most on board interrupts, |
| 62 | * apart from PCI interrupts. For example on SBC610: |
| 63 | * |
| 64 | * 17:31 RO Reserved |
| 65 | * 16 RO PCI Express Doorbell 3 Status |
| 66 | * 15 RO PCI Express Doorbell 2 Status |
| 67 | * 14 RO PCI Express Doorbell 1 Status |
| 68 | * 13 RO PCI Express Doorbell 0 Status |
| 69 | * 12 RO Real Time Clock Interrupt Status |
| 70 | * 11 RO Temperature Interrupt Status |
| 71 | * 10 RO Temperature Critical Interrupt Status |
| 72 | * 9 RO Ethernet PHY1 Interrupt Status |
| 73 | * 8 RO Ethernet PHY3 Interrupt Status |
| 74 | * 7 RO PEX8548 Interrupt Status |
| 75 | * 6 RO Reserved |
| 76 | * 5 RO Watchdog 0 Interrupt Status |
| 77 | * 4 RO Watchdog 1 Interrupt Status |
| 78 | * 3 RO AXIS Message FIFO A Interrupt Status |
| 79 | * 2 RO AXIS Message FIFO B Interrupt Status |
| 80 | * 1 RO AXIS Message FIFO C Interrupt Status |
| 81 | * 0 RO AXIS Message FIFO D Interrupt Status |
| 82 | * |
| 83 | * Interrupts can be forwarded to one of two output lines. Nothing |
| 84 | * clever is done, so if the masks are incorrectly set, a single input |
| 85 | * interrupt could generate interrupts on both output lines! |
| 86 | * |
| 87 | * The dual lines are there to allow the chained interrupts to be easily |
| 88 | * passed into two different cores. We currently do not use this functionality |
| 89 | * in this driver. |
| 90 | * |
| 91 | * Controller can also be configured to generate Machine checks (MCP), again on |
| 92 | * two lines, to be attached to two different cores. It is suggested that these |
| 93 | * should be masked out. |
| 94 | */ |
| 95 | |
| 96 | void gef_pic_cascade(unsigned int irq, struct irq_desc *desc) |
| 97 | { |
| 98 | unsigned int cascade_irq; |
| 99 | |
| 100 | /* |
| 101 | * See if we actually have an interrupt, call generic handling code if |
| 102 | * we do. |
| 103 | */ |
| 104 | cascade_irq = gef_pic_get_irq(); |
| 105 | |
| 106 | if (cascade_irq != NO_IRQ) |
| 107 | generic_handle_irq(cascade_irq); |
| 108 | |
| 109 | desc->chip->eoi(irq); |
| 110 | |
| 111 | } |
| 112 | |
| 113 | static void gef_pic_mask(unsigned int virq) |
| 114 | { |
| 115 | unsigned long flags; |
| 116 | unsigned int hwirq; |
| 117 | u32 mask; |
| 118 | |
| 119 | hwirq = gef_irq_to_hw(virq); |
| 120 | |
| 121 | spin_lock_irqsave(&gef_pic_lock, flags); |
| 122 | mask = in_be32(gef_pic_irq_reg_base + GEF_PIC_INTR_MASK(0)); |
| 123 | mask &= ~(1 << hwirq); |
| 124 | out_be32(gef_pic_irq_reg_base + GEF_PIC_INTR_MASK(0), mask); |
| 125 | spin_unlock_irqrestore(&gef_pic_lock, flags); |
| 126 | } |
| 127 | |
| 128 | static void gef_pic_mask_ack(unsigned int virq) |
| 129 | { |
| 130 | /* Don't think we actually have to do anything to ack an interrupt, |
| 131 | * we just need to clear down the devices interrupt and it will go away |
| 132 | */ |
| 133 | gef_pic_mask(virq); |
| 134 | } |
| 135 | |
| 136 | static void gef_pic_unmask(unsigned int virq) |
| 137 | { |
| 138 | unsigned long flags; |
| 139 | unsigned int hwirq; |
| 140 | u32 mask; |
| 141 | |
| 142 | hwirq = gef_irq_to_hw(virq); |
| 143 | |
| 144 | spin_lock_irqsave(&gef_pic_lock, flags); |
| 145 | mask = in_be32(gef_pic_irq_reg_base + GEF_PIC_INTR_MASK(0)); |
| 146 | mask |= (1 << hwirq); |
| 147 | out_be32(gef_pic_irq_reg_base + GEF_PIC_INTR_MASK(0), mask); |
| 148 | spin_unlock_irqrestore(&gef_pic_lock, flags); |
| 149 | } |
| 150 | |
| 151 | static struct irq_chip gef_pic_chip = { |
| 152 | .typename = "gefp", |
| 153 | .mask = gef_pic_mask, |
| 154 | .mask_ack = gef_pic_mask_ack, |
| 155 | .unmask = gef_pic_unmask, |
| 156 | }; |
| 157 | |
| 158 | |
| 159 | /* When an interrupt is being configured, this call allows some flexibilty |
| 160 | * in deciding which irq_chip structure is used |
| 161 | */ |
| 162 | static int gef_pic_host_map(struct irq_host *h, unsigned int virq, |
| 163 | irq_hw_number_t hwirq) |
| 164 | { |
| 165 | /* All interrupts are LEVEL sensitive */ |
| 166 | get_irq_desc(virq)->status |= IRQ_LEVEL; |
| 167 | set_irq_chip_and_handler(virq, &gef_pic_chip, handle_level_irq); |
| 168 | |
| 169 | return 0; |
| 170 | } |
| 171 | |
| 172 | static int gef_pic_host_xlate(struct irq_host *h, struct device_node *ct, |
| 173 | u32 *intspec, unsigned int intsize, |
| 174 | irq_hw_number_t *out_hwirq, unsigned int *out_flags) |
| 175 | { |
| 176 | |
| 177 | *out_hwirq = intspec[0]; |
| 178 | if (intsize > 1) |
| 179 | *out_flags = intspec[1]; |
| 180 | else |
| 181 | *out_flags = IRQ_TYPE_LEVEL_HIGH; |
| 182 | |
| 183 | return 0; |
| 184 | } |
| 185 | |
| 186 | static struct irq_host_ops gef_pic_host_ops = { |
| 187 | .map = gef_pic_host_map, |
| 188 | .xlate = gef_pic_host_xlate, |
| 189 | }; |
| 190 | |
| 191 | |
| 192 | /* |
| 193 | * Initialisation of PIC, this should be called in BSP |
| 194 | */ |
| 195 | void __init gef_pic_init(struct device_node *np) |
| 196 | { |
| 197 | unsigned long flags; |
| 198 | |
| 199 | /* Map the devices registers into memory */ |
| 200 | gef_pic_irq_reg_base = of_iomap(np, 0); |
| 201 | |
| 202 | spin_lock_irqsave(&gef_pic_lock, flags); |
| 203 | |
| 204 | /* Initialise everything as masked. */ |
| 205 | out_be32(gef_pic_irq_reg_base + GEF_PIC_CPU0_INTR_MASK, 0); |
| 206 | out_be32(gef_pic_irq_reg_base + GEF_PIC_CPU1_INTR_MASK, 0); |
| 207 | |
| 208 | out_be32(gef_pic_irq_reg_base + GEF_PIC_CPU0_MCP_MASK, 0); |
| 209 | out_be32(gef_pic_irq_reg_base + GEF_PIC_CPU1_MCP_MASK, 0); |
| 210 | |
| 211 | spin_unlock_irqrestore(&gef_pic_lock, flags); |
| 212 | |
| 213 | /* Map controller */ |
| 214 | gef_pic_cascade_irq = irq_of_parse_and_map(np, 0); |
| 215 | if (gef_pic_cascade_irq == NO_IRQ) { |
| 216 | printk(KERN_ERR "SBC610: failed to map cascade interrupt"); |
| 217 | return; |
| 218 | } |
| 219 | |
| 220 | /* Setup an irq_host structure */ |
| 221 | gef_pic_irq_host = irq_alloc_host(np, IRQ_HOST_MAP_LINEAR, |
| 222 | GEF_PIC_NUM_IRQS, |
| 223 | &gef_pic_host_ops, NO_IRQ); |
| 224 | if (gef_pic_irq_host == NULL) |
| 225 | return; |
| 226 | |
| 227 | /* Chain with parent controller */ |
| 228 | set_irq_chained_handler(gef_pic_cascade_irq, gef_pic_cascade); |
| 229 | } |
| 230 | |
| 231 | /* |
| 232 | * This is called when we receive an interrupt with apparently comes from this |
| 233 | * chip - check, returning the highest interrupt generated or return NO_IRQ |
| 234 | */ |
| 235 | unsigned int gef_pic_get_irq(void) |
| 236 | { |
| 237 | u32 cause, mask, active; |
| 238 | unsigned int virq = NO_IRQ; |
| 239 | int hwirq; |
| 240 | |
| 241 | cause = in_be32(gef_pic_irq_reg_base + GEF_PIC_INTR_STATUS); |
| 242 | |
| 243 | mask = in_be32(gef_pic_irq_reg_base + GEF_PIC_INTR_MASK(0)); |
| 244 | |
| 245 | active = cause & mask; |
| 246 | |
| 247 | if (active) { |
| 248 | for (hwirq = GEF_PIC_NUM_IRQS - 1; hwirq > -1; hwirq--) { |
| 249 | if (active & (0x1 << hwirq)) |
| 250 | break; |
| 251 | } |
| 252 | virq = irq_linear_revmap(gef_pic_irq_host, |
| 253 | (irq_hw_number_t)hwirq); |
| 254 | } |
| 255 | |
| 256 | return virq; |
| 257 | } |
| 258 | |