Lennert Buytenhek | d01e889 | 2005-11-01 19:53:50 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Generic library functions for the microengines found on the Intel |
| 3 | * IXP2000 series of network processors. |
| 4 | * |
| 5 | * Copyright (C) 2004, 2005 Lennert Buytenhek <buytenh@wantstofly.org> |
| 6 | * Dedicated to Marija Kulikova. |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify |
| 9 | * it under the terms of the GNU Lesser General Public License as |
| 10 | * published by the Free Software Foundation; either version 2.1 of the |
| 11 | * License, or (at your option) any later version. |
| 12 | */ |
| 13 | |
| 14 | #include <linux/config.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/slab.h> |
| 18 | #include <linux/module.h> |
| 19 | #include <linux/string.h> |
| 20 | #include <asm/hardware.h> |
| 21 | #include <asm/arch/ixp2000-regs.h> |
| 22 | #include <asm/arch/uengine.h> |
| 23 | #include <asm/io.h> |
| 24 | |
| 25 | #define USTORE_ADDRESS 0x000 |
| 26 | #define USTORE_DATA_LOWER 0x004 |
| 27 | #define USTORE_DATA_UPPER 0x008 |
| 28 | #define CTX_ENABLES 0x018 |
| 29 | #define CC_ENABLE 0x01c |
| 30 | #define CSR_CTX_POINTER 0x020 |
| 31 | #define INDIRECT_CTX_STS 0x040 |
| 32 | #define ACTIVE_CTX_STS 0x044 |
| 33 | #define INDIRECT_CTX_SIG_EVENTS 0x048 |
| 34 | #define INDIRECT_CTX_WAKEUP_EVENTS 0x050 |
| 35 | #define NN_PUT 0x080 |
| 36 | #define NN_GET 0x084 |
| 37 | #define TIMESTAMP_LOW 0x0c0 |
| 38 | #define TIMESTAMP_HIGH 0x0c4 |
| 39 | #define T_INDEX_BYTE_INDEX 0x0f4 |
| 40 | #define LOCAL_CSR_STATUS 0x180 |
| 41 | |
| 42 | u32 ixp2000_uengine_mask; |
| 43 | |
| 44 | static void *ixp2000_uengine_csr_area(int uengine) |
| 45 | { |
| 46 | return ((void *)IXP2000_UENGINE_CSR_VIRT_BASE) + (uengine << 10); |
| 47 | } |
| 48 | |
| 49 | /* |
| 50 | * LOCAL_CSR_STATUS=1 after a read or write to a microengine's CSR |
| 51 | * space means that the microengine we tried to access was also trying |
| 52 | * to access its own CSR space on the same clock cycle as we did. When |
| 53 | * this happens, we lose the arbitration process by default, and the |
| 54 | * read or write we tried to do was not actually performed, so we try |
| 55 | * again until it succeeds. |
| 56 | */ |
| 57 | u32 ixp2000_uengine_csr_read(int uengine, int offset) |
| 58 | { |
| 59 | void *uebase; |
| 60 | u32 *local_csr_status; |
| 61 | u32 *reg; |
| 62 | u32 value; |
| 63 | |
| 64 | uebase = ixp2000_uengine_csr_area(uengine); |
| 65 | |
| 66 | local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS); |
| 67 | reg = (u32 *)(uebase + offset); |
| 68 | do { |
| 69 | value = ixp2000_reg_read(reg); |
| 70 | } while (ixp2000_reg_read(local_csr_status) & 1); |
| 71 | |
| 72 | return value; |
| 73 | } |
| 74 | EXPORT_SYMBOL(ixp2000_uengine_csr_read); |
| 75 | |
| 76 | void ixp2000_uengine_csr_write(int uengine, int offset, u32 value) |
| 77 | { |
| 78 | void *uebase; |
| 79 | u32 *local_csr_status; |
| 80 | u32 *reg; |
| 81 | |
| 82 | uebase = ixp2000_uengine_csr_area(uengine); |
| 83 | |
| 84 | local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS); |
| 85 | reg = (u32 *)(uebase + offset); |
| 86 | do { |
| 87 | ixp2000_reg_write(reg, value); |
| 88 | } while (ixp2000_reg_read(local_csr_status) & 1); |
| 89 | } |
| 90 | EXPORT_SYMBOL(ixp2000_uengine_csr_write); |
| 91 | |
| 92 | void ixp2000_uengine_reset(u32 uengine_mask) |
| 93 | { |
Lennert Buytenhek | 7240f1f | 2005-11-06 14:34:13 +0000 | [diff] [blame] | 94 | ixp2000_reg_wrb(IXP2000_RESET1, uengine_mask & ixp2000_uengine_mask); |
| 95 | ixp2000_reg_wrb(IXP2000_RESET1, 0); |
Lennert Buytenhek | d01e889 | 2005-11-01 19:53:50 +0000 | [diff] [blame] | 96 | } |
| 97 | EXPORT_SYMBOL(ixp2000_uengine_reset); |
| 98 | |
| 99 | void ixp2000_uengine_set_mode(int uengine, u32 mode) |
| 100 | { |
| 101 | /* |
| 102 | * CTL_STR_PAR_EN: unconditionally enable parity checking on |
| 103 | * control store. |
| 104 | */ |
| 105 | mode |= 0x10000000; |
| 106 | ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mode); |
| 107 | |
| 108 | /* |
| 109 | * Enable updating of condition codes. |
| 110 | */ |
| 111 | ixp2000_uengine_csr_write(uengine, CC_ENABLE, 0x00002000); |
| 112 | |
| 113 | /* |
| 114 | * Initialise other per-microengine registers. |
| 115 | */ |
| 116 | ixp2000_uengine_csr_write(uengine, NN_PUT, 0x00); |
| 117 | ixp2000_uengine_csr_write(uengine, NN_GET, 0x00); |
| 118 | ixp2000_uengine_csr_write(uengine, T_INDEX_BYTE_INDEX, 0); |
| 119 | } |
| 120 | EXPORT_SYMBOL(ixp2000_uengine_set_mode); |
| 121 | |
| 122 | static int make_even_parity(u32 x) |
| 123 | { |
| 124 | return hweight32(x) & 1; |
| 125 | } |
| 126 | |
| 127 | static void ustore_write(int uengine, u64 insn) |
| 128 | { |
| 129 | /* |
| 130 | * Generate even parity for top and bottom 20 bits. |
| 131 | */ |
| 132 | insn |= (u64)make_even_parity((insn >> 20) & 0x000fffff) << 41; |
| 133 | insn |= (u64)make_even_parity(insn & 0x000fffff) << 40; |
| 134 | |
| 135 | /* |
| 136 | * Write to microstore. The second write auto-increments |
| 137 | * the USTORE_ADDRESS index register. |
| 138 | */ |
| 139 | ixp2000_uengine_csr_write(uengine, USTORE_DATA_LOWER, (u32)insn); |
| 140 | ixp2000_uengine_csr_write(uengine, USTORE_DATA_UPPER, (u32)(insn >> 32)); |
| 141 | } |
| 142 | |
| 143 | void ixp2000_uengine_load_microcode(int uengine, u8 *ucode, int insns) |
| 144 | { |
| 145 | int i; |
| 146 | |
| 147 | /* |
| 148 | * Start writing to microstore at address 0. |
| 149 | */ |
| 150 | ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x80000000); |
| 151 | for (i = 0; i < insns; i++) { |
| 152 | u64 insn; |
| 153 | |
| 154 | insn = (((u64)ucode[0]) << 32) | |
| 155 | (((u64)ucode[1]) << 24) | |
| 156 | (((u64)ucode[2]) << 16) | |
| 157 | (((u64)ucode[3]) << 8) | |
| 158 | ((u64)ucode[4]); |
| 159 | ucode += 5; |
| 160 | |
| 161 | ustore_write(uengine, insn); |
| 162 | } |
| 163 | |
| 164 | /* |
| 165 | * Pad with a few NOPs at the end (to avoid the microengine |
| 166 | * aborting as it prefetches beyond the last instruction), unless |
| 167 | * we run off the end of the instruction store first, at which |
| 168 | * point the address register will wrap back to zero. |
| 169 | */ |
| 170 | for (i = 0; i < 4; i++) { |
| 171 | u32 addr; |
| 172 | |
| 173 | addr = ixp2000_uengine_csr_read(uengine, USTORE_ADDRESS); |
| 174 | if (addr == 0x80000000) |
| 175 | break; |
| 176 | ustore_write(uengine, 0xf0000c0300ULL); |
| 177 | } |
| 178 | |
| 179 | /* |
| 180 | * End programming. |
| 181 | */ |
| 182 | ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x00000000); |
| 183 | } |
| 184 | EXPORT_SYMBOL(ixp2000_uengine_load_microcode); |
| 185 | |
| 186 | void ixp2000_uengine_init_context(int uengine, int context, int pc) |
| 187 | { |
| 188 | /* |
| 189 | * Select the right context for indirect access. |
| 190 | */ |
| 191 | ixp2000_uengine_csr_write(uengine, CSR_CTX_POINTER, context); |
| 192 | |
| 193 | /* |
| 194 | * Initialise signal masks to immediately go to Ready state. |
| 195 | */ |
| 196 | ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_SIG_EVENTS, 1); |
| 197 | ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_WAKEUP_EVENTS, 1); |
| 198 | |
| 199 | /* |
| 200 | * Set program counter. |
| 201 | */ |
| 202 | ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_STS, pc); |
| 203 | } |
| 204 | EXPORT_SYMBOL(ixp2000_uengine_init_context); |
| 205 | |
| 206 | void ixp2000_uengine_start_contexts(int uengine, u8 ctx_mask) |
| 207 | { |
| 208 | u32 mask; |
| 209 | |
| 210 | /* |
| 211 | * Enable the specified context to go to Executing state. |
| 212 | */ |
| 213 | mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES); |
| 214 | mask |= ctx_mask << 8; |
| 215 | ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask); |
| 216 | } |
| 217 | EXPORT_SYMBOL(ixp2000_uengine_start_contexts); |
| 218 | |
| 219 | void ixp2000_uengine_stop_contexts(int uengine, u8 ctx_mask) |
| 220 | { |
| 221 | u32 mask; |
| 222 | |
| 223 | /* |
| 224 | * Disable the Ready->Executing transition. Note that this |
| 225 | * does not stop the context until it voluntarily yields. |
| 226 | */ |
| 227 | mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES); |
| 228 | mask &= ~(ctx_mask << 8); |
| 229 | ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask); |
| 230 | } |
| 231 | EXPORT_SYMBOL(ixp2000_uengine_stop_contexts); |
| 232 | |
| 233 | static int check_ixp_type(struct ixp2000_uengine_code *c) |
| 234 | { |
| 235 | u32 product_id; |
| 236 | u32 rev; |
| 237 | |
| 238 | product_id = ixp2000_reg_read(IXP2000_PRODUCT_ID); |
| 239 | if (((product_id >> 16) & 0x1f) != 0) |
| 240 | return 0; |
| 241 | |
| 242 | switch ((product_id >> 8) & 0xff) { |
| 243 | case 0: /* IXP2800 */ |
| 244 | if (!(c->cpu_model_bitmask & 4)) |
| 245 | return 0; |
| 246 | break; |
| 247 | |
| 248 | case 1: /* IXP2850 */ |
| 249 | if (!(c->cpu_model_bitmask & 8)) |
| 250 | return 0; |
| 251 | break; |
| 252 | |
| 253 | case 2: /* IXP2400 */ |
| 254 | if (!(c->cpu_model_bitmask & 2)) |
| 255 | return 0; |
| 256 | break; |
| 257 | |
| 258 | default: |
| 259 | return 0; |
| 260 | } |
| 261 | |
| 262 | rev = product_id & 0xff; |
| 263 | if (rev < c->cpu_min_revision || rev > c->cpu_max_revision) |
| 264 | return 0; |
| 265 | |
| 266 | return 1; |
| 267 | } |
| 268 | |
| 269 | static void generate_ucode(u8 *ucode, u32 *gpr_a, u32 *gpr_b) |
| 270 | { |
| 271 | int offset; |
| 272 | int i; |
| 273 | |
| 274 | offset = 0; |
| 275 | |
| 276 | for (i = 0; i < 128; i++) { |
| 277 | u8 b3; |
| 278 | u8 b2; |
| 279 | u8 b1; |
| 280 | u8 b0; |
| 281 | |
| 282 | b3 = (gpr_a[i] >> 24) & 0xff; |
| 283 | b2 = (gpr_a[i] >> 16) & 0xff; |
| 284 | b1 = (gpr_a[i] >> 8) & 0xff; |
| 285 | b0 = gpr_a[i] & 0xff; |
| 286 | |
| 287 | // immed[@ai, (b1 << 8) | b0] |
| 288 | // 11110000 0000VVVV VVVV11VV VVVVVV00 1IIIIIII |
| 289 | ucode[offset++] = 0xf0; |
| 290 | ucode[offset++] = (b1 >> 4); |
| 291 | ucode[offset++] = (b1 << 4) | 0x0c | (b0 >> 6); |
| 292 | ucode[offset++] = (b0 << 2); |
| 293 | ucode[offset++] = 0x80 | i; |
| 294 | |
| 295 | // immed_w1[@ai, (b3 << 8) | b2] |
| 296 | // 11110100 0100VVVV VVVV11VV VVVVVV00 1IIIIIII |
| 297 | ucode[offset++] = 0xf4; |
| 298 | ucode[offset++] = 0x40 | (b3 >> 4); |
| 299 | ucode[offset++] = (b3 << 4) | 0x0c | (b2 >> 6); |
| 300 | ucode[offset++] = (b2 << 2); |
| 301 | ucode[offset++] = 0x80 | i; |
| 302 | } |
| 303 | |
| 304 | for (i = 0; i < 128; i++) { |
| 305 | u8 b3; |
| 306 | u8 b2; |
| 307 | u8 b1; |
| 308 | u8 b0; |
| 309 | |
| 310 | b3 = (gpr_b[i] >> 24) & 0xff; |
| 311 | b2 = (gpr_b[i] >> 16) & 0xff; |
| 312 | b1 = (gpr_b[i] >> 8) & 0xff; |
| 313 | b0 = gpr_b[i] & 0xff; |
| 314 | |
| 315 | // immed[@bi, (b1 << 8) | b0] |
| 316 | // 11110000 0000VVVV VVVV001I IIIIII11 VVVVVVVV |
| 317 | ucode[offset++] = 0xf0; |
| 318 | ucode[offset++] = (b1 >> 4); |
| 319 | ucode[offset++] = (b1 << 4) | 0x02 | (i >> 6); |
| 320 | ucode[offset++] = (i << 2) | 0x03; |
| 321 | ucode[offset++] = b0; |
| 322 | |
| 323 | // immed_w1[@bi, (b3 << 8) | b2] |
| 324 | // 11110100 0100VVVV VVVV001I IIIIII11 VVVVVVVV |
| 325 | ucode[offset++] = 0xf4; |
| 326 | ucode[offset++] = 0x40 | (b3 >> 4); |
| 327 | ucode[offset++] = (b3 << 4) | 0x02 | (i >> 6); |
| 328 | ucode[offset++] = (i << 2) | 0x03; |
| 329 | ucode[offset++] = b2; |
| 330 | } |
| 331 | |
| 332 | // ctx_arb[kill] |
| 333 | ucode[offset++] = 0xe0; |
| 334 | ucode[offset++] = 0x00; |
| 335 | ucode[offset++] = 0x01; |
| 336 | ucode[offset++] = 0x00; |
| 337 | ucode[offset++] = 0x00; |
| 338 | } |
| 339 | |
| 340 | static int set_initial_registers(int uengine, struct ixp2000_uengine_code *c) |
| 341 | { |
| 342 | int per_ctx_regs; |
| 343 | u32 *gpr_a; |
| 344 | u32 *gpr_b; |
| 345 | u8 *ucode; |
| 346 | int i; |
| 347 | |
| 348 | gpr_a = kmalloc(128 * sizeof(u32), GFP_KERNEL); |
| 349 | gpr_b = kmalloc(128 * sizeof(u32), GFP_KERNEL); |
| 350 | ucode = kmalloc(513 * 5, GFP_KERNEL); |
| 351 | if (gpr_a == NULL || gpr_b == NULL || ucode == NULL) { |
| 352 | kfree(ucode); |
| 353 | kfree(gpr_b); |
| 354 | kfree(gpr_a); |
| 355 | return 1; |
| 356 | } |
| 357 | |
| 358 | per_ctx_regs = 16; |
| 359 | if (c->uengine_parameters & IXP2000_UENGINE_4_CONTEXTS) |
| 360 | per_ctx_regs = 32; |
| 361 | |
| 362 | memset(gpr_a, 0, sizeof(gpr_a)); |
| 363 | memset(gpr_b, 0, sizeof(gpr_b)); |
| 364 | for (i = 0; i < 256; i++) { |
| 365 | struct ixp2000_reg_value *r = c->initial_reg_values + i; |
| 366 | u32 *bank; |
| 367 | int inc; |
| 368 | int j; |
| 369 | |
| 370 | if (r->reg == -1) |
| 371 | break; |
| 372 | |
| 373 | bank = (r->reg & 0x400) ? gpr_b : gpr_a; |
| 374 | inc = (r->reg & 0x80) ? 128 : per_ctx_regs; |
| 375 | |
| 376 | j = r->reg & 0x7f; |
| 377 | while (j < 128) { |
| 378 | bank[j] = r->value; |
| 379 | j += inc; |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | generate_ucode(ucode, gpr_a, gpr_b); |
| 384 | ixp2000_uengine_load_microcode(uengine, ucode, 513); |
| 385 | ixp2000_uengine_init_context(uengine, 0, 0); |
| 386 | ixp2000_uengine_start_contexts(uengine, 0x01); |
| 387 | for (i = 0; i < 100; i++) { |
| 388 | u32 status; |
| 389 | |
| 390 | status = ixp2000_uengine_csr_read(uengine, ACTIVE_CTX_STS); |
| 391 | if (!(status & 0x80000000)) |
| 392 | break; |
| 393 | } |
| 394 | ixp2000_uengine_stop_contexts(uengine, 0x01); |
| 395 | |
| 396 | kfree(ucode); |
| 397 | kfree(gpr_b); |
| 398 | kfree(gpr_a); |
| 399 | |
| 400 | return !!(i == 100); |
| 401 | } |
| 402 | |
| 403 | int ixp2000_uengine_load(int uengine, struct ixp2000_uengine_code *c) |
| 404 | { |
| 405 | int ctx; |
| 406 | |
| 407 | if (!check_ixp_type(c)) |
| 408 | return 1; |
| 409 | |
| 410 | if (!(ixp2000_uengine_mask & (1 << uengine))) |
| 411 | return 1; |
| 412 | |
| 413 | ixp2000_uengine_reset(1 << uengine); |
| 414 | ixp2000_uengine_set_mode(uengine, c->uengine_parameters); |
| 415 | if (set_initial_registers(uengine, c)) |
| 416 | return 1; |
| 417 | ixp2000_uengine_load_microcode(uengine, c->insns, c->num_insns); |
| 418 | |
| 419 | for (ctx = 0; ctx < 8; ctx++) |
| 420 | ixp2000_uengine_init_context(uengine, ctx, 0); |
| 421 | |
| 422 | return 0; |
| 423 | } |
| 424 | EXPORT_SYMBOL(ixp2000_uengine_load); |
| 425 | |
| 426 | |
| 427 | static int __init ixp2000_uengine_init(void) |
| 428 | { |
| 429 | int uengine; |
| 430 | u32 value; |
| 431 | |
| 432 | /* |
| 433 | * Determine number of microengines present. |
| 434 | */ |
| 435 | switch ((ixp2000_reg_read(IXP2000_PRODUCT_ID) >> 8) & 0x1fff) { |
| 436 | case 0: /* IXP2800 */ |
| 437 | case 1: /* IXP2850 */ |
| 438 | ixp2000_uengine_mask = 0x00ff00ff; |
| 439 | break; |
| 440 | |
| 441 | case 2: /* IXP2400 */ |
| 442 | ixp2000_uengine_mask = 0x000f000f; |
| 443 | break; |
| 444 | |
| 445 | default: |
| 446 | printk(KERN_INFO "Detected unknown IXP2000 model (%.8x)\n", |
| 447 | (unsigned int)ixp2000_reg_read(IXP2000_PRODUCT_ID)); |
| 448 | ixp2000_uengine_mask = 0x00000000; |
| 449 | break; |
| 450 | } |
| 451 | |
| 452 | /* |
| 453 | * Reset microengines. |
| 454 | */ |
Lennert Buytenhek | 7240f1f | 2005-11-06 14:34:13 +0000 | [diff] [blame] | 455 | ixp2000_uengine_reset(ixp2000_uengine_mask); |
Lennert Buytenhek | d01e889 | 2005-11-01 19:53:50 +0000 | [diff] [blame] | 456 | |
| 457 | /* |
| 458 | * Synchronise timestamp counters across all microengines. |
| 459 | */ |
| 460 | value = ixp2000_reg_read(IXP2000_MISC_CONTROL); |
Lennert Buytenhek | 7240f1f | 2005-11-06 14:34:13 +0000 | [diff] [blame] | 461 | ixp2000_reg_wrb(IXP2000_MISC_CONTROL, value & ~0x80); |
Lennert Buytenhek | d01e889 | 2005-11-01 19:53:50 +0000 | [diff] [blame] | 462 | for (uengine = 0; uengine < 32; uengine++) { |
| 463 | if (ixp2000_uengine_mask & (1 << uengine)) { |
| 464 | ixp2000_uengine_csr_write(uengine, TIMESTAMP_LOW, 0); |
| 465 | ixp2000_uengine_csr_write(uengine, TIMESTAMP_HIGH, 0); |
| 466 | } |
| 467 | } |
Lennert Buytenhek | 7240f1f | 2005-11-06 14:34:13 +0000 | [diff] [blame] | 468 | ixp2000_reg_wrb(IXP2000_MISC_CONTROL, value | 0x80); |
Lennert Buytenhek | d01e889 | 2005-11-01 19:53:50 +0000 | [diff] [blame] | 469 | |
| 470 | return 0; |
| 471 | } |
| 472 | |
| 473 | subsys_initcall(ixp2000_uengine_init); |