Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * This file is subject to the terms and conditions of the GNU General Public |
| 3 | * License. See the file "COPYING" in the main directory of this archive |
| 4 | * for more details. |
| 5 | * |
| 6 | * Copyright (C) 1994, 1995 Waldorf GmbH |
| 7 | * Copyright (C) 1994 - 2000 Ralf Baechle |
| 8 | * Copyright (C) 1999, 2000 Silicon Graphics, Inc. |
| 9 | * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved. |
| 10 | * Author: Maciej W. Rozycki <macro@mips.com> |
| 11 | */ |
| 12 | #ifndef _ASM_IO_H |
| 13 | #define _ASM_IO_H |
| 14 | |
| 15 | #include <linux/config.h> |
| 16 | #include <linux/compiler.h> |
| 17 | #include <linux/kernel.h> |
| 18 | #include <linux/types.h> |
| 19 | |
| 20 | #include <asm/addrspace.h> |
| 21 | #include <asm/bug.h> |
| 22 | #include <asm/byteorder.h> |
| 23 | #include <asm/cpu.h> |
| 24 | #include <asm/cpu-features.h> |
| 25 | #include <asm/page.h> |
| 26 | #include <asm/pgtable-bits.h> |
| 27 | #include <asm/processor.h> |
| 28 | |
| 29 | #include <mangle-port.h> |
| 30 | |
| 31 | /* |
| 32 | * Slowdown I/O port space accesses for antique hardware. |
| 33 | */ |
| 34 | #undef CONF_SLOWDOWN_IO |
| 35 | |
| 36 | /* |
| 37 | * Raw operations are never swapped in software. Otoh values that raw |
| 38 | * operations are working on may or may not have been swapped by the bus |
| 39 | * hardware. An example use would be for flash memory that's used for |
| 40 | * execute in place. |
| 41 | */ |
| 42 | # define __raw_ioswabb(x) (x) |
| 43 | # define __raw_ioswabw(x) (x) |
| 44 | # define __raw_ioswabl(x) (x) |
| 45 | # define __raw_ioswabq(x) (x) |
| 46 | |
| 47 | /* |
| 48 | * Sane hardware offers swapping of PCI/ISA I/O space accesses in hardware; |
| 49 | * less sane hardware forces software to fiddle with this... |
| 50 | */ |
| 51 | #if defined(CONFIG_SWAP_IO_SPACE) |
| 52 | |
| 53 | # define ioswabb(x) (x) |
| 54 | # ifdef CONFIG_SGI_IP22 |
| 55 | /* |
| 56 | * IP22 seems braindead enough to swap 16bits values in hardware, but |
| 57 | * not 32bits. Go figure... Can't tell without documentation. |
| 58 | */ |
| 59 | # define ioswabw(x) (x) |
| 60 | # else |
| 61 | # define ioswabw(x) le16_to_cpu(x) |
| 62 | # endif |
| 63 | # define ioswabl(x) le32_to_cpu(x) |
| 64 | # define ioswabq(x) le64_to_cpu(x) |
| 65 | |
| 66 | #else |
| 67 | |
| 68 | # define ioswabb(x) (x) |
| 69 | # define ioswabw(x) (x) |
| 70 | # define ioswabl(x) (x) |
| 71 | # define ioswabq(x) (x) |
| 72 | |
| 73 | #endif |
| 74 | |
| 75 | /* |
| 76 | * Native bus accesses never swapped. |
| 77 | */ |
| 78 | #define bus_ioswabb(x) (x) |
| 79 | #define bus_ioswabw(x) (x) |
| 80 | #define bus_ioswabl(x) (x) |
| 81 | #define bus_ioswabq(x) (x) |
| 82 | |
| 83 | #define __bus_ioswabq bus_ioswabq |
| 84 | |
| 85 | #define IO_SPACE_LIMIT 0xffff |
| 86 | |
| 87 | /* |
| 88 | * On MIPS I/O ports are memory mapped, so we access them using normal |
| 89 | * load/store instructions. mips_io_port_base is the virtual address to |
| 90 | * which all ports are being mapped. For sake of efficiency some code |
| 91 | * assumes that this is an address that can be loaded with a single lui |
| 92 | * instruction, so the lower 16 bits must be zero. Should be true on |
| 93 | * on any sane architecture; generic code does not use this assumption. |
| 94 | */ |
| 95 | extern const unsigned long mips_io_port_base; |
| 96 | |
| 97 | #define set_io_port_base(base) \ |
| 98 | do { * (unsigned long *) &mips_io_port_base = (base); } while (0) |
| 99 | |
| 100 | /* |
| 101 | * Thanks to James van Artsdalen for a better timing-fix than |
| 102 | * the two short jumps: using outb's to a nonexistent port seems |
| 103 | * to guarantee better timings even on fast machines. |
| 104 | * |
| 105 | * On the other hand, I'd like to be sure of a non-existent port: |
| 106 | * I feel a bit unsafe about using 0x80 (should be safe, though) |
| 107 | * |
| 108 | * Linus |
| 109 | * |
| 110 | */ |
| 111 | |
| 112 | #define __SLOW_DOWN_IO \ |
| 113 | __asm__ __volatile__( \ |
| 114 | "sb\t$0,0x80(%0)" \ |
| 115 | : : "r" (mips_io_port_base)); |
| 116 | |
| 117 | #ifdef CONF_SLOWDOWN_IO |
| 118 | #ifdef REALLY_SLOW_IO |
| 119 | #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; } |
| 120 | #else |
| 121 | #define SLOW_DOWN_IO __SLOW_DOWN_IO |
| 122 | #endif |
| 123 | #else |
| 124 | #define SLOW_DOWN_IO |
| 125 | #endif |
| 126 | |
| 127 | /* |
| 128 | * virt_to_phys - map virtual addresses to physical |
| 129 | * @address: address to remap |
| 130 | * |
| 131 | * The returned physical address is the physical (CPU) mapping for |
| 132 | * the memory address given. It is only valid to use this function on |
| 133 | * addresses directly mapped or allocated via kmalloc. |
| 134 | * |
| 135 | * This function does not give bus mappings for DMA transfers. In |
| 136 | * almost all conceivable cases a device driver should not be using |
| 137 | * this function |
| 138 | */ |
| 139 | static inline unsigned long virt_to_phys(volatile void * address) |
| 140 | { |
| 141 | return (unsigned long)address - PAGE_OFFSET; |
| 142 | } |
| 143 | |
| 144 | /* |
| 145 | * phys_to_virt - map physical address to virtual |
| 146 | * @address: address to remap |
| 147 | * |
| 148 | * The returned virtual address is a current CPU mapping for |
| 149 | * the memory address given. It is only valid to use this function on |
| 150 | * addresses that have a kernel mapping |
| 151 | * |
| 152 | * This function does not handle bus mappings for DMA transfers. In |
| 153 | * almost all conceivable cases a device driver should not be using |
| 154 | * this function |
| 155 | */ |
| 156 | static inline void * phys_to_virt(unsigned long address) |
| 157 | { |
| 158 | return (void *)(address + PAGE_OFFSET); |
| 159 | } |
| 160 | |
| 161 | /* |
| 162 | * ISA I/O bus memory addresses are 1:1 with the physical address. |
| 163 | */ |
| 164 | static inline unsigned long isa_virt_to_bus(volatile void * address) |
| 165 | { |
| 166 | return (unsigned long)address - PAGE_OFFSET; |
| 167 | } |
| 168 | |
| 169 | static inline void * isa_bus_to_virt(unsigned long address) |
| 170 | { |
| 171 | return (void *)(address + PAGE_OFFSET); |
| 172 | } |
| 173 | |
| 174 | #define isa_page_to_bus page_to_phys |
| 175 | |
| 176 | /* |
| 177 | * However PCI ones are not necessarily 1:1 and therefore these interfaces |
| 178 | * are forbidden in portable PCI drivers. |
| 179 | * |
| 180 | * Allow them for x86 for legacy drivers, though. |
| 181 | */ |
| 182 | #define virt_to_bus virt_to_phys |
| 183 | #define bus_to_virt phys_to_virt |
| 184 | |
| 185 | /* |
| 186 | * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped |
| 187 | * for the processor. This implies the assumption that there is only |
| 188 | * one of these busses. |
| 189 | */ |
| 190 | extern unsigned long isa_slot_offset; |
| 191 | |
| 192 | /* |
| 193 | * Change "struct page" to physical address. |
| 194 | */ |
| 195 | #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT) |
| 196 | |
| 197 | extern void * __ioremap(phys_t offset, phys_t size, unsigned long flags); |
| 198 | extern void __iounmap(volatile void __iomem *addr); |
| 199 | |
| 200 | static inline void * __ioremap_mode(phys_t offset, unsigned long size, |
| 201 | unsigned long flags) |
| 202 | { |
| 203 | if (cpu_has_64bit_addresses) { |
| 204 | u64 base = UNCAC_BASE; |
| 205 | |
| 206 | /* |
| 207 | * R10000 supports a 2 bit uncached attribute therefore |
| 208 | * UNCAC_BASE may not equal IO_BASE. |
| 209 | */ |
| 210 | if (flags == _CACHE_UNCACHED) |
| 211 | base = (u64) IO_BASE; |
| 212 | return (void *) (unsigned long) (base + offset); |
| 213 | } |
| 214 | |
| 215 | return __ioremap(offset, size, flags); |
| 216 | } |
| 217 | |
| 218 | /* |
| 219 | * ioremap - map bus memory into CPU space |
| 220 | * @offset: bus address of the memory |
| 221 | * @size: size of the resource to map |
| 222 | * |
| 223 | * ioremap performs a platform specific sequence of operations to |
| 224 | * make bus memory CPU accessible via the readb/readw/readl/writeb/ |
| 225 | * writew/writel functions and the other mmio helpers. The returned |
| 226 | * address is not guaranteed to be usable directly as a virtual |
| 227 | * address. |
| 228 | */ |
| 229 | #define ioremap(offset, size) \ |
| 230 | __ioremap_mode((offset), (size), _CACHE_UNCACHED) |
| 231 | |
| 232 | /* |
| 233 | * ioremap_nocache - map bus memory into CPU space |
| 234 | * @offset: bus address of the memory |
| 235 | * @size: size of the resource to map |
| 236 | * |
| 237 | * ioremap_nocache performs a platform specific sequence of operations to |
| 238 | * make bus memory CPU accessible via the readb/readw/readl/writeb/ |
| 239 | * writew/writel functions and the other mmio helpers. The returned |
| 240 | * address is not guaranteed to be usable directly as a virtual |
| 241 | * address. |
| 242 | * |
| 243 | * This version of ioremap ensures that the memory is marked uncachable |
| 244 | * on the CPU as well as honouring existing caching rules from things like |
| 245 | * the PCI bus. Note that there are other caches and buffers on many |
| 246 | * busses. In paticular driver authors should read up on PCI writes |
| 247 | * |
| 248 | * It's useful if some control registers are in such an area and |
| 249 | * write combining or read caching is not desirable: |
| 250 | */ |
| 251 | #define ioremap_nocache(offset, size) \ |
| 252 | __ioremap_mode((offset), (size), _CACHE_UNCACHED) |
| 253 | |
| 254 | /* |
| 255 | * These two are MIPS specific ioremap variant. ioremap_cacheable_cow |
| 256 | * requests a cachable mapping, ioremap_uncached_accelerated requests a |
| 257 | * mapping using the uncached accelerated mode which isn't supported on |
| 258 | * all processors. |
| 259 | */ |
| 260 | #define ioremap_cacheable_cow(offset, size) \ |
| 261 | __ioremap_mode((offset), (size), _CACHE_CACHABLE_COW) |
| 262 | #define ioremap_uncached_accelerated(offset, size) \ |
| 263 | __ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED) |
| 264 | |
| 265 | static inline void iounmap(volatile void __iomem *addr) |
| 266 | { |
| 267 | if (cpu_has_64bit_addresses) |
| 268 | return; |
| 269 | |
| 270 | __iounmap(addr); |
| 271 | } |
| 272 | |
| 273 | |
| 274 | #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \ |
| 275 | \ |
| 276 | static inline void pfx##write##bwlq(type val, \ |
| 277 | volatile void __iomem *mem) \ |
| 278 | { \ |
| 279 | volatile type *__mem; \ |
| 280 | type __val; \ |
| 281 | \ |
| 282 | __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ |
| 283 | \ |
| 284 | __val = pfx##ioswab##bwlq(val); \ |
| 285 | \ |
| 286 | if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ |
| 287 | *__mem = __val; \ |
| 288 | else if (cpu_has_64bits) { \ |
| 289 | unsigned long __flags; \ |
| 290 | type __tmp; \ |
| 291 | \ |
| 292 | if (irq) \ |
| 293 | local_irq_save(__flags); \ |
| 294 | __asm__ __volatile__( \ |
| 295 | ".set mips3" "\t\t# __writeq""\n\t" \ |
| 296 | "dsll32 %L0, %L0, 0" "\n\t" \ |
| 297 | "dsrl32 %L0, %L0, 0" "\n\t" \ |
| 298 | "dsll32 %M0, %M0, 0" "\n\t" \ |
| 299 | "or %L0, %L0, %M0" "\n\t" \ |
| 300 | "sd %L0, %2" "\n\t" \ |
| 301 | ".set mips0" "\n" \ |
| 302 | : "=r" (__tmp) \ |
| 303 | : "0" (__val), "m" (*__mem)); \ |
| 304 | if (irq) \ |
| 305 | local_irq_restore(__flags); \ |
| 306 | } else \ |
| 307 | BUG(); \ |
| 308 | } \ |
| 309 | \ |
| 310 | static inline type pfx##read##bwlq(volatile void __iomem *mem) \ |
| 311 | { \ |
| 312 | volatile type *__mem; \ |
| 313 | type __val; \ |
| 314 | \ |
| 315 | __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ |
| 316 | \ |
| 317 | if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ |
| 318 | __val = *__mem; \ |
| 319 | else if (cpu_has_64bits) { \ |
| 320 | unsigned long __flags; \ |
| 321 | \ |
| 322 | local_irq_save(__flags); \ |
| 323 | __asm__ __volatile__( \ |
| 324 | ".set mips3" "\t\t# __readq" "\n\t" \ |
| 325 | "ld %L0, %1" "\n\t" \ |
| 326 | "dsra32 %M0, %L0, 0" "\n\t" \ |
| 327 | "sll %L0, %L0, 0" "\n\t" \ |
| 328 | ".set mips0" "\n" \ |
| 329 | : "=r" (__val) \ |
| 330 | : "m" (*__mem)); \ |
| 331 | local_irq_restore(__flags); \ |
| 332 | } else { \ |
| 333 | __val = 0; \ |
| 334 | BUG(); \ |
| 335 | } \ |
| 336 | \ |
| 337 | return pfx##ioswab##bwlq(__val); \ |
| 338 | } |
| 339 | |
| 340 | #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \ |
| 341 | \ |
| 342 | static inline void pfx##out##bwlq##p(type val, unsigned long port) \ |
| 343 | { \ |
| 344 | volatile type *__addr; \ |
| 345 | type __val; \ |
| 346 | \ |
| 347 | port = __swizzle_addr_##bwlq(port); \ |
| 348 | __addr = (void *)(mips_io_port_base + port); \ |
| 349 | \ |
| 350 | __val = pfx##ioswab##bwlq(val); \ |
| 351 | \ |
| 352 | if (sizeof(type) != sizeof(u64)) { \ |
| 353 | *__addr = __val; \ |
| 354 | slow; \ |
| 355 | } else \ |
| 356 | BUILD_BUG(); \ |
| 357 | } \ |
| 358 | \ |
| 359 | static inline type pfx##in##bwlq##p(unsigned long port) \ |
| 360 | { \ |
| 361 | volatile type *__addr; \ |
| 362 | type __val; \ |
| 363 | \ |
| 364 | port = __swizzle_addr_##bwlq(port); \ |
| 365 | __addr = (void *)(mips_io_port_base + port); \ |
| 366 | \ |
| 367 | if (sizeof(type) != sizeof(u64)) { \ |
| 368 | __val = *__addr; \ |
| 369 | slow; \ |
| 370 | } else { \ |
| 371 | __val = 0; \ |
| 372 | BUILD_BUG(); \ |
| 373 | } \ |
| 374 | \ |
| 375 | return pfx##ioswab##bwlq(__val); \ |
| 376 | } |
| 377 | |
| 378 | #define __BUILD_MEMORY_PFX(bus, bwlq, type) \ |
| 379 | \ |
| 380 | __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1) |
| 381 | |
| 382 | #define __BUILD_IOPORT_PFX(bus, bwlq, type) \ |
| 383 | \ |
| 384 | __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \ |
| 385 | __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO) |
| 386 | |
| 387 | #define BUILDIO(bwlq, type) \ |
| 388 | \ |
| 389 | __BUILD_MEMORY_PFX(, bwlq, type) \ |
| 390 | __BUILD_MEMORY_PFX(__raw_, bwlq, type) \ |
| 391 | __BUILD_MEMORY_PFX(bus_, bwlq, type) \ |
| 392 | __BUILD_IOPORT_PFX(, bwlq, type) \ |
| 393 | __BUILD_IOPORT_PFX(__raw_, bwlq, type) |
| 394 | |
| 395 | #define __BUILDIO(bwlq, type) \ |
| 396 | \ |
| 397 | __BUILD_MEMORY_SINGLE(__bus_, bwlq, type, 0) |
| 398 | |
| 399 | BUILDIO(b, u8) |
| 400 | BUILDIO(w, u16) |
| 401 | BUILDIO(l, u32) |
| 402 | BUILDIO(q, u64) |
| 403 | |
| 404 | __BUILDIO(q, u64) |
| 405 | |
| 406 | #define readb_relaxed readb |
| 407 | #define readw_relaxed readw |
| 408 | #define readl_relaxed readl |
| 409 | #define readq_relaxed readq |
| 410 | |
| 411 | /* |
| 412 | * Some code tests for these symbols |
| 413 | */ |
| 414 | #define readq readq |
| 415 | #define writeq writeq |
| 416 | |
| 417 | #define __BUILD_MEMORY_STRING(bwlq, type) \ |
| 418 | \ |
| 419 | static inline void writes##bwlq(volatile void __iomem *mem, void *addr, \ |
| 420 | unsigned int count) \ |
| 421 | { \ |
| 422 | volatile type *__addr = addr; \ |
| 423 | \ |
| 424 | while (count--) { \ |
| 425 | __raw_write##bwlq(*__addr, mem); \ |
| 426 | __addr++; \ |
| 427 | } \ |
| 428 | } \ |
| 429 | \ |
| 430 | static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \ |
| 431 | unsigned int count) \ |
| 432 | { \ |
| 433 | volatile type *__addr = addr; \ |
| 434 | \ |
| 435 | while (count--) { \ |
| 436 | *__addr = __raw_read##bwlq(mem); \ |
| 437 | __addr++; \ |
| 438 | } \ |
| 439 | } |
| 440 | |
| 441 | #define __BUILD_IOPORT_STRING(bwlq, type) \ |
| 442 | \ |
| 443 | static inline void outs##bwlq(unsigned long port, void *addr, \ |
| 444 | unsigned int count) \ |
| 445 | { \ |
| 446 | volatile type *__addr = addr; \ |
| 447 | \ |
| 448 | while (count--) { \ |
| 449 | __raw_out##bwlq(*__addr, port); \ |
| 450 | __addr++; \ |
| 451 | } \ |
| 452 | } \ |
| 453 | \ |
| 454 | static inline void ins##bwlq(unsigned long port, void *addr, \ |
| 455 | unsigned int count) \ |
| 456 | { \ |
| 457 | volatile type *__addr = addr; \ |
| 458 | \ |
| 459 | while (count--) { \ |
| 460 | *__addr = __raw_in##bwlq(port); \ |
| 461 | __addr++; \ |
| 462 | } \ |
| 463 | } |
| 464 | |
| 465 | #define BUILDSTRING(bwlq, type) \ |
| 466 | \ |
| 467 | __BUILD_MEMORY_STRING(bwlq, type) \ |
| 468 | __BUILD_IOPORT_STRING(bwlq, type) |
| 469 | |
| 470 | BUILDSTRING(b, u8) |
| 471 | BUILDSTRING(w, u16) |
| 472 | BUILDSTRING(l, u32) |
| 473 | BUILDSTRING(q, u64) |
| 474 | |
| 475 | |
| 476 | /* Depends on MIPS II instruction set */ |
| 477 | #define mmiowb() asm volatile ("sync" ::: "memory") |
| 478 | |
| 479 | #define memset_io(a,b,c) memset((void *)(a),(b),(c)) |
| 480 | #define memcpy_fromio(a,b,c) memcpy((a),(void *)(b),(c)) |
| 481 | #define memcpy_toio(a,b,c) memcpy((void *)(a),(b),(c)) |
| 482 | |
| 483 | /* |
| 484 | * Memory Mapped I/O |
| 485 | */ |
| 486 | #define ioread8(addr) readb(addr) |
| 487 | #define ioread16(addr) readw(addr) |
| 488 | #define ioread32(addr) readl(addr) |
| 489 | |
| 490 | #define iowrite8(b,addr) writeb(b,addr) |
| 491 | #define iowrite16(w,addr) writew(w,addr) |
| 492 | #define iowrite32(l,addr) writel(l,addr) |
| 493 | |
| 494 | #define ioread8_rep(a,b,c) readsb(a,b,c) |
| 495 | #define ioread16_rep(a,b,c) readsw(a,b,c) |
| 496 | #define ioread32_rep(a,b,c) readsl(a,b,c) |
| 497 | |
| 498 | #define iowrite8_rep(a,b,c) writesb(a,b,c) |
| 499 | #define iowrite16_rep(a,b,c) writesw(a,b,c) |
| 500 | #define iowrite32_rep(a,b,c) writesl(a,b,c) |
| 501 | |
| 502 | /* Create a virtual mapping cookie for an IO port range */ |
| 503 | extern void __iomem *ioport_map(unsigned long port, unsigned int nr); |
| 504 | extern void ioport_unmap(void __iomem *); |
| 505 | |
| 506 | /* Create a virtual mapping cookie for a PCI BAR (memory or IO) */ |
| 507 | struct pci_dev; |
| 508 | extern void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max); |
| 509 | extern void pci_iounmap(struct pci_dev *dev, void __iomem *); |
| 510 | |
| 511 | /* |
| 512 | * ISA space is 'always mapped' on currently supported MIPS systems, no need |
| 513 | * to explicitly ioremap() it. The fact that the ISA IO space is mapped |
| 514 | * to PAGE_OFFSET is pure coincidence - it does not mean ISA values |
| 515 | * are physical addresses. The following constant pointer can be |
| 516 | * used as the IO-area pointer (it can be iounmapped as well, so the |
| 517 | * analogy with PCI is quite large): |
| 518 | */ |
| 519 | #define __ISA_IO_base ((char *)(isa_slot_offset)) |
| 520 | |
| 521 | #define isa_readb(a) readb(__ISA_IO_base + (a)) |
| 522 | #define isa_readw(a) readw(__ISA_IO_base + (a)) |
| 523 | #define isa_readl(a) readl(__ISA_IO_base + (a)) |
| 524 | #define isa_readq(a) readq(__ISA_IO_base + (a)) |
| 525 | #define isa_writeb(b,a) writeb(b,__ISA_IO_base + (a)) |
| 526 | #define isa_writew(w,a) writew(w,__ISA_IO_base + (a)) |
| 527 | #define isa_writel(l,a) writel(l,__ISA_IO_base + (a)) |
| 528 | #define isa_writeq(q,a) writeq(q,__ISA_IO_base + (a)) |
| 529 | #define isa_memset_io(a,b,c) memset_io(__ISA_IO_base + (a),(b),(c)) |
| 530 | #define isa_memcpy_fromio(a,b,c) memcpy_fromio((a),__ISA_IO_base + (b),(c)) |
| 531 | #define isa_memcpy_toio(a,b,c) memcpy_toio(__ISA_IO_base + (a),(b),(c)) |
| 532 | |
| 533 | /* |
| 534 | * We don't have csum_partial_copy_fromio() yet, so we cheat here and |
| 535 | * just copy it. The net code will then do the checksum later. |
| 536 | */ |
| 537 | #define eth_io_copy_and_sum(skb,src,len,unused) memcpy_fromio((skb)->data,(src),(len)) |
| 538 | #define isa_eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(b),(c),(d)) |
| 539 | |
| 540 | /* |
| 541 | * check_signature - find BIOS signatures |
| 542 | * @io_addr: mmio address to check |
| 543 | * @signature: signature block |
| 544 | * @length: length of signature |
| 545 | * |
| 546 | * Perform a signature comparison with the mmio address io_addr. This |
| 547 | * address should have been obtained by ioremap. |
| 548 | * Returns 1 on a match. |
| 549 | */ |
| 550 | static inline int check_signature(char __iomem *io_addr, |
| 551 | const unsigned char *signature, int length) |
| 552 | { |
| 553 | int retval = 0; |
| 554 | do { |
| 555 | if (readb(io_addr) != *signature) |
| 556 | goto out; |
| 557 | io_addr++; |
| 558 | signature++; |
| 559 | length--; |
| 560 | } while (length); |
| 561 | retval = 1; |
| 562 | out: |
| 563 | return retval; |
| 564 | } |
| 565 | |
| 566 | /* |
| 567 | * The caches on some architectures aren't dma-coherent and have need to |
| 568 | * handle this in software. There are three types of operations that |
| 569 | * can be applied to dma buffers. |
| 570 | * |
| 571 | * - dma_cache_wback_inv(start, size) makes caches and coherent by |
| 572 | * writing the content of the caches back to memory, if necessary. |
| 573 | * The function also invalidates the affected part of the caches as |
| 574 | * necessary before DMA transfers from outside to memory. |
| 575 | * - dma_cache_wback(start, size) makes caches and coherent by |
| 576 | * writing the content of the caches back to memory, if necessary. |
| 577 | * The function also invalidates the affected part of the caches as |
| 578 | * necessary before DMA transfers from outside to memory. |
| 579 | * - dma_cache_inv(start, size) invalidates the affected parts of the |
| 580 | * caches. Dirty lines of the caches may be written back or simply |
| 581 | * be discarded. This operation is necessary before dma operations |
| 582 | * to the memory. |
| 583 | */ |
| 584 | #ifdef CONFIG_DMA_NONCOHERENT |
| 585 | |
| 586 | extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size); |
| 587 | extern void (*_dma_cache_wback)(unsigned long start, unsigned long size); |
| 588 | extern void (*_dma_cache_inv)(unsigned long start, unsigned long size); |
| 589 | |
| 590 | #define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start,size) |
| 591 | #define dma_cache_wback(start, size) _dma_cache_wback(start,size) |
| 592 | #define dma_cache_inv(start, size) _dma_cache_inv(start,size) |
| 593 | |
| 594 | #else /* Sane hardware */ |
| 595 | |
| 596 | #define dma_cache_wback_inv(start,size) \ |
| 597 | do { (void) (start); (void) (size); } while (0) |
| 598 | #define dma_cache_wback(start,size) \ |
| 599 | do { (void) (start); (void) (size); } while (0) |
| 600 | #define dma_cache_inv(start,size) \ |
| 601 | do { (void) (start); (void) (size); } while (0) |
| 602 | |
| 603 | #endif /* CONFIG_DMA_NONCOHERENT */ |
| 604 | |
| 605 | /* |
| 606 | * Read a 32-bit register that requires a 64-bit read cycle on the bus. |
| 607 | * Avoid interrupt mucking, just adjust the address for 4-byte access. |
| 608 | * Assume the addresses are 8-byte aligned. |
| 609 | */ |
| 610 | #ifdef __MIPSEB__ |
| 611 | #define __CSR_32_ADJUST 4 |
| 612 | #else |
| 613 | #define __CSR_32_ADJUST 0 |
| 614 | #endif |
| 615 | |
| 616 | #define csr_out32(v,a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v)) |
| 617 | #define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST)) |
| 618 | |
| 619 | /* |
| 620 | * Convert a physical pointer to a virtual kernel pointer for /dev/mem |
| 621 | * access |
| 622 | */ |
| 623 | #define xlate_dev_mem_ptr(p) __va(p) |
| 624 | |
| 625 | /* |
| 626 | * Convert a virtual cached pointer to an uncached pointer |
| 627 | */ |
| 628 | #define xlate_dev_kmem_ptr(p) p |
| 629 | |
| 630 | #endif /* _ASM_IO_H */ |