blob: 1a014aaf4491463c1360fffb6f1e6935ff551b8c [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
Ingo Molnarfc0abb12006-01-18 17:42:33 -080071 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
Linus Torvalds1da177e2005-04-16 15:20:36 -070072 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
Christoph Lametere498be72005-09-09 13:03:32 -070078 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
Linus Torvalds1da177e2005-04-16 15:20:36 -070087 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
97#include <linux/seq_file.h>
98#include <linux/notifier.h>
99#include <linux/kallsyms.h>
100#include <linux/cpu.h>
101#include <linux/sysctl.h>
102#include <linux/module.h>
103#include <linux/rcupdate.h>
Paulo Marques543537b2005-06-23 00:09:02 -0700104#include <linux/string.h>
Christoph Lametere498be72005-09-09 13:03:32 -0700105#include <linux/nodemask.h>
Christoph Lameterdc85da12006-01-18 17:42:36 -0800106#include <linux/mempolicy.h>
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800107#include <linux/mutex.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700108
109#include <asm/uaccess.h>
110#include <asm/cacheflush.h>
111#include <asm/tlbflush.h>
112#include <asm/page.h>
113
114/*
115 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 * SLAB_RED_ZONE & SLAB_POISON.
117 * 0 for faster, smaller code (especially in the critical paths).
118 *
119 * STATS - 1 to collect stats for /proc/slabinfo.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
123 */
124
125#ifdef CONFIG_DEBUG_SLAB
126#define DEBUG 1
127#define STATS 1
128#define FORCED_DEBUG 1
129#else
130#define DEBUG 0
131#define STATS 0
132#define FORCED_DEBUG 0
133#endif
134
Linus Torvalds1da177e2005-04-16 15:20:36 -0700135/* Shouldn't this be in a header file somewhere? */
136#define BYTES_PER_WORD sizeof(void *)
137
138#ifndef cache_line_size
139#define cache_line_size() L1_CACHE_BYTES
140#endif
141
142#ifndef ARCH_KMALLOC_MINALIGN
143/*
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
150 */
151#define ARCH_KMALLOC_MINALIGN 0
152#endif
153
154#ifndef ARCH_SLAB_MINALIGN
155/*
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
161 */
162#define ARCH_SLAB_MINALIGN 0
163#endif
164
165#ifndef ARCH_KMALLOC_FLAGS
166#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
167#endif
168
169/* Legal flag mask for kmem_cache_create(). */
170#if DEBUG
171# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
173 SLAB_NO_REAP | SLAB_CACHE_DMA | \
174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 SLAB_DESTROY_BY_RCU)
177#else
178# define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU)
182#endif
183
184/*
185 * kmem_bufctl_t:
186 *
187 * Bufctl's are used for linking objs within a slab
188 * linked offsets.
189 *
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
201 */
202
Kyle Moffettfa5b08d2005-09-03 15:55:03 -0700203typedef unsigned int kmem_bufctl_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700204#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
207
208/* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
210 */
211static unsigned long offslab_limit;
212
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800246 struct rcu_head head;
247 kmem_cache_t *cachep;
248 void *addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700249};
250
251/*
252 * struct array_cache
253 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
Christoph Lametere498be72005-09-09 13:03:32 -0700268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700275};
276
277/* bootstrap: The caches do not work without cpuarrays anymore,
278 * but the cpuarrays are allocated from the generic caches...
279 */
280#define BOOT_CPUCACHE_ENTRIES 1
281struct arraycache_init {
282 struct array_cache cache;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800283 void *entries[BOOT_CPUCACHE_ENTRIES];
Linus Torvalds1da177e2005-04-16 15:20:36 -0700284};
285
286/*
Christoph Lametere498be72005-09-09 13:03:32 -0700287 * The slab lists for all objects.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700288 */
289struct kmem_list3 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
294 unsigned long next_reap;
295 int free_touched;
296 unsigned int free_limit;
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700300};
301
Christoph Lametere498be72005-09-09 13:03:32 -0700302/*
303 * Need this for bootstrapping a per node allocator.
304 */
305#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
306struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
307#define CACHE_CACHE 0
308#define SIZE_AC 1
309#define SIZE_L3 (1 + MAX_NUMNODES)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700310
Christoph Lametere498be72005-09-09 13:03:32 -0700311/*
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700312 * This function must be completely optimized away if
Christoph Lametere498be72005-09-09 13:03:32 -0700313 * a constant is passed to it. Mostly the same as
314 * what is in linux/slab.h except it returns an
315 * index.
316 */
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700317static __always_inline int index_of(const size_t size)
Christoph Lametere498be72005-09-09 13:03:32 -0700318{
319 if (__builtin_constant_p(size)) {
320 int i = 0;
321
322#define CACHE(x) \
323 if (size <=x) \
324 return i; \
325 else \
326 i++;
327#include "linux/kmalloc_sizes.h"
328#undef CACHE
329 {
330 extern void __bad_size(void);
331 __bad_size();
332 }
Ivan Kokshaysky7243cc02005-09-22 21:43:58 -0700333 } else
334 BUG();
Christoph Lametere498be72005-09-09 13:03:32 -0700335 return 0;
336}
337
338#define INDEX_AC index_of(sizeof(struct arraycache_init))
339#define INDEX_L3 index_of(sizeof(struct kmem_list3))
340
341static inline void kmem_list3_init(struct kmem_list3 *parent)
342{
343 INIT_LIST_HEAD(&parent->slabs_full);
344 INIT_LIST_HEAD(&parent->slabs_partial);
345 INIT_LIST_HEAD(&parent->slabs_free);
346 parent->shared = NULL;
347 parent->alien = NULL;
348 spin_lock_init(&parent->list_lock);
349 parent->free_objects = 0;
350 parent->free_touched = 0;
351}
352
353#define MAKE_LIST(cachep, listp, slab, nodeid) \
354 do { \
355 INIT_LIST_HEAD(listp); \
356 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
357 } while (0)
358
359#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
360 do { \
361 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
362 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
364 } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700365
366/*
367 * kmem_cache_t
368 *
369 * manages a cache.
370 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800371
Pekka J Enberg2109a2d2005-11-07 00:58:01 -0800372struct kmem_cache {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700373/* 1) per-cpu data, touched during every alloc/free */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800374 struct array_cache *array[NR_CPUS];
375 unsigned int batchcount;
376 unsigned int limit;
377 unsigned int shared;
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800378 unsigned int buffer_size;
Christoph Lametere498be72005-09-09 13:03:32 -0700379/* 2) touched by every alloc & free from the backend */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800380 struct kmem_list3 *nodelists[MAX_NUMNODES];
381 unsigned int flags; /* constant flags */
382 unsigned int num; /* # of objs per slab */
383 spinlock_t spinlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700384
385/* 3) cache_grow/shrink */
386 /* order of pgs per slab (2^n) */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800387 unsigned int gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700388
389 /* force GFP flags, e.g. GFP_DMA */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800390 gfp_t gfpflags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700391
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800392 size_t colour; /* cache colouring range */
393 unsigned int colour_off; /* colour offset */
394 unsigned int colour_next; /* cache colouring */
395 kmem_cache_t *slabp_cache;
396 unsigned int slab_size;
397 unsigned int dflags; /* dynamic flags */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700398
399 /* constructor func */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800400 void (*ctor) (void *, kmem_cache_t *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700401
402 /* de-constructor func */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800403 void (*dtor) (void *, kmem_cache_t *, unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700404
405/* 4) cache creation/removal */
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800406 const char *name;
407 struct list_head next;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700408
409/* 5) statistics */
410#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800411 unsigned long num_active;
412 unsigned long num_allocations;
413 unsigned long high_mark;
414 unsigned long grown;
415 unsigned long reaped;
416 unsigned long errors;
417 unsigned long max_freeable;
418 unsigned long node_allocs;
419 unsigned long node_frees;
420 atomic_t allochit;
421 atomic_t allocmiss;
422 atomic_t freehit;
423 atomic_t freemiss;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700424#endif
425#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800426 /*
427 * If debugging is enabled, then the allocator can add additional
428 * fields and/or padding to every object. buffer_size contains the total
429 * object size including these internal fields, the following two
430 * variables contain the offset to the user object and its size.
431 */
432 int obj_offset;
433 int obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700434#endif
435};
436
437#define CFLGS_OFF_SLAB (0x80000000UL)
438#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
439
440#define BATCHREFILL_LIMIT 16
441/* Optimization question: fewer reaps means less
442 * probability for unnessary cpucache drain/refill cycles.
443 *
Adrian Bunkdc6f3f22005-11-08 16:44:08 +0100444 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700445 * which could lock up otherwise freeable slabs.
446 */
447#define REAPTIMEOUT_CPUC (2*HZ)
448#define REAPTIMEOUT_LIST3 (4*HZ)
449
450#if STATS
451#define STATS_INC_ACTIVE(x) ((x)->num_active++)
452#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
453#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
454#define STATS_INC_GROWN(x) ((x)->grown++)
455#define STATS_INC_REAPED(x) ((x)->reaped++)
456#define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
457 (x)->high_mark = (x)->num_active; \
458 } while (0)
459#define STATS_INC_ERR(x) ((x)->errors++)
460#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
Christoph Lametere498be72005-09-09 13:03:32 -0700461#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700462#define STATS_SET_FREEABLE(x, i) \
463 do { if ((x)->max_freeable < i) \
464 (x)->max_freeable = i; \
465 } while (0)
466
467#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
468#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
469#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
470#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
471#else
472#define STATS_INC_ACTIVE(x) do { } while (0)
473#define STATS_DEC_ACTIVE(x) do { } while (0)
474#define STATS_INC_ALLOCED(x) do { } while (0)
475#define STATS_INC_GROWN(x) do { } while (0)
476#define STATS_INC_REAPED(x) do { } while (0)
477#define STATS_SET_HIGH(x) do { } while (0)
478#define STATS_INC_ERR(x) do { } while (0)
479#define STATS_INC_NODEALLOCS(x) do { } while (0)
Christoph Lametere498be72005-09-09 13:03:32 -0700480#define STATS_INC_NODEFREES(x) do { } while (0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700481#define STATS_SET_FREEABLE(x, i) \
482 do { } while (0)
483
484#define STATS_INC_ALLOCHIT(x) do { } while (0)
485#define STATS_INC_ALLOCMISS(x) do { } while (0)
486#define STATS_INC_FREEHIT(x) do { } while (0)
487#define STATS_INC_FREEMISS(x) do { } while (0)
488#endif
489
490#if DEBUG
491/* Magic nums for obj red zoning.
492 * Placed in the first word before and the first word after an obj.
493 */
494#define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
495#define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
496
497/* ...and for poisoning */
498#define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
499#define POISON_FREE 0x6b /* for use-after-free poisoning */
500#define POISON_END 0xa5 /* end-byte of poisoning */
501
502/* memory layout of objects:
503 * 0 : objp
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800504 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700505 * the end of an object is aligned with the end of the real
506 * allocation. Catches writes behind the end of the allocation.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800507 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700508 * redzone word.
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800509 * cachep->obj_offset: The real object.
510 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
511 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
Linus Torvalds1da177e2005-04-16 15:20:36 -0700512 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800513static int obj_offset(kmem_cache_t *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700514{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800515 return cachep->obj_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700516}
517
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800518static int obj_size(kmem_cache_t *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519{
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800520 return cachep->obj_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521}
522
523static unsigned long *dbg_redzone1(kmem_cache_t *cachep, void *objp)
524{
525 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800526 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700527}
528
529static unsigned long *dbg_redzone2(kmem_cache_t *cachep, void *objp)
530{
531 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
532 if (cachep->flags & SLAB_STORE_USER)
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800533 return (unsigned long *)(objp + cachep->buffer_size -
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800534 2 * BYTES_PER_WORD);
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800535 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700536}
537
538static void **dbg_userword(kmem_cache_t *cachep, void *objp)
539{
540 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800541 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700542}
543
544#else
545
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800546#define obj_offset(x) 0
547#define obj_size(cachep) (cachep->buffer_size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700548#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
549#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
550#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
551
552#endif
553
554/*
555 * Maximum size of an obj (in 2^order pages)
556 * and absolute limit for the gfp order.
557 */
558#if defined(CONFIG_LARGE_ALLOCS)
559#define MAX_OBJ_ORDER 13 /* up to 32Mb */
560#define MAX_GFP_ORDER 13 /* up to 32Mb */
561#elif defined(CONFIG_MMU)
562#define MAX_OBJ_ORDER 5 /* 32 pages */
563#define MAX_GFP_ORDER 5 /* 32 pages */
564#else
565#define MAX_OBJ_ORDER 8 /* up to 1Mb */
566#define MAX_GFP_ORDER 8 /* up to 1Mb */
567#endif
568
569/*
570 * Do not go above this order unless 0 objects fit into the slab.
571 */
572#define BREAK_GFP_ORDER_HI 1
573#define BREAK_GFP_ORDER_LO 0
574static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
575
Pekka Enberg065d41c2005-11-13 16:06:46 -0800576/* Functions for storing/retrieving the cachep and or slab from the
Linus Torvalds1da177e2005-04-16 15:20:36 -0700577 * global 'mem_map'. These are used to find the slab an obj belongs to.
578 * With kfree(), these are used to find the cache which an obj belongs to.
579 */
Pekka Enberg065d41c2005-11-13 16:06:46 -0800580static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
581{
582 page->lru.next = (struct list_head *)cache;
583}
584
585static inline struct kmem_cache *page_get_cache(struct page *page)
586{
587 return (struct kmem_cache *)page->lru.next;
588}
589
590static inline void page_set_slab(struct page *page, struct slab *slab)
591{
592 page->lru.prev = (struct list_head *)slab;
593}
594
595static inline struct slab *page_get_slab(struct page *page)
596{
597 return (struct slab *)page->lru.prev;
598}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700599
600/* These are the default caches for kmalloc. Custom caches can have other sizes. */
601struct cache_sizes malloc_sizes[] = {
602#define CACHE(x) { .cs_size = (x) },
603#include <linux/kmalloc_sizes.h>
604 CACHE(ULONG_MAX)
605#undef CACHE
606};
607EXPORT_SYMBOL(malloc_sizes);
608
609/* Must match cache_sizes above. Out of line to keep cache footprint low. */
610struct cache_names {
611 char *name;
612 char *name_dma;
613};
614
615static struct cache_names __initdata cache_names[] = {
616#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
617#include <linux/kmalloc_sizes.h>
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800618 {NULL,}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700619#undef CACHE
620};
621
622static struct arraycache_init initarray_cache __initdata =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800623 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700624static struct arraycache_init initarray_generic =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800625 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
Linus Torvalds1da177e2005-04-16 15:20:36 -0700626
627/* internal cache of cache description objs */
628static kmem_cache_t cache_cache = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800629 .batchcount = 1,
630 .limit = BOOT_CPUCACHE_ENTRIES,
631 .shared = 1,
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800632 .buffer_size = sizeof(kmem_cache_t),
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800633 .flags = SLAB_NO_REAP,
634 .spinlock = SPIN_LOCK_UNLOCKED,
635 .name = "kmem_cache",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700636#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -0800637 .obj_size = sizeof(kmem_cache_t),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700638#endif
639};
640
641/* Guard access to the cache-chain. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800642static DEFINE_MUTEX(cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700643static struct list_head cache_chain;
644
645/*
646 * vm_enough_memory() looks at this to determine how many
647 * slab-allocated pages are possibly freeable under pressure
648 *
649 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
650 */
651atomic_t slab_reclaim_pages;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700652
653/*
654 * chicken and egg problem: delay the per-cpu array allocation
655 * until the general caches are up.
656 */
657static enum {
658 NONE,
Christoph Lametere498be72005-09-09 13:03:32 -0700659 PARTIAL_AC,
660 PARTIAL_L3,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700661 FULL
662} g_cpucache_up;
663
664static DEFINE_PER_CPU(struct work_struct, reap_work);
665
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800666static void free_block(kmem_cache_t *cachep, void **objpp, int len, int node);
667static void enable_cpucache(kmem_cache_t *cachep);
668static void cache_reap(void *unused);
Christoph Lametere498be72005-09-09 13:03:32 -0700669static int __node_shrink(kmem_cache_t *cachep, int node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700670
671static inline struct array_cache *ac_data(kmem_cache_t *cachep)
672{
673 return cachep->array[smp_processor_id()];
674}
675
Al Virodd0fc662005-10-07 07:46:04 +0100676static inline kmem_cache_t *__find_general_cachep(size_t size, gfp_t gfpflags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700677{
678 struct cache_sizes *csizep = malloc_sizes;
679
680#if DEBUG
681 /* This happens if someone tries to call
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800682 * kmem_cache_create(), or __kmalloc(), before
683 * the generic caches are initialized.
684 */
Alok Katariac7e43c72005-09-14 12:17:53 -0700685 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700686#endif
687 while (size > csizep->cs_size)
688 csizep++;
689
690 /*
Martin Hicks0abf40c2005-09-03 15:54:54 -0700691 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
Linus Torvalds1da177e2005-04-16 15:20:36 -0700692 * has cs_{dma,}cachep==NULL. Thus no special case
693 * for large kmalloc calls required.
694 */
695 if (unlikely(gfpflags & GFP_DMA))
696 return csizep->cs_dmacachep;
697 return csizep->cs_cachep;
698}
699
Al Virodd0fc662005-10-07 07:46:04 +0100700kmem_cache_t *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
Manfred Spraul97e2bde2005-05-01 08:58:38 -0700701{
702 return __find_general_cachep(size, gfpflags);
703}
704EXPORT_SYMBOL(kmem_find_general_cachep);
705
Linus Torvalds1da177e2005-04-16 15:20:36 -0700706/* Cal the num objs, wastage, and bytes left over for a given slab size. */
707static void cache_estimate(unsigned long gfporder, size_t size, size_t align,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800708 int flags, size_t *left_over, unsigned int *num)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700709{
710 int i;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800711 size_t wastage = PAGE_SIZE << gfporder;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700712 size_t extra = 0;
713 size_t base = 0;
714
715 if (!(flags & CFLGS_OFF_SLAB)) {
716 base = sizeof(struct slab);
717 extra = sizeof(kmem_bufctl_t);
718 }
719 i = 0;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800720 while (i * size + ALIGN(base + i * extra, align) <= wastage)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700721 i++;
722 if (i > 0)
723 i--;
724
725 if (i > SLAB_LIMIT)
726 i = SLAB_LIMIT;
727
728 *num = i;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800729 wastage -= i * size;
730 wastage -= ALIGN(base + i * extra, align);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700731 *left_over = wastage;
732}
733
734#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
735
736static void __slab_error(const char *function, kmem_cache_t *cachep, char *msg)
737{
738 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800739 function, cachep->name, msg);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700740 dump_stack();
741}
742
743/*
744 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
745 * via the workqueue/eventd.
746 * Add the CPU number into the expiration time to minimize the possibility of
747 * the CPUs getting into lockstep and contending for the global cache chain
748 * lock.
749 */
750static void __devinit start_cpu_timer(int cpu)
751{
752 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
753
754 /*
755 * When this gets called from do_initcalls via cpucache_init(),
756 * init_workqueues() has already run, so keventd will be setup
757 * at that time.
758 */
759 if (keventd_up() && reap_work->func == NULL) {
760 INIT_WORK(reap_work, cache_reap, NULL);
761 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
762 }
763}
764
Christoph Lametere498be72005-09-09 13:03:32 -0700765static struct array_cache *alloc_arraycache(int node, int entries,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800766 int batchcount)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700767{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800768 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700769 struct array_cache *nc = NULL;
770
Christoph Lametere498be72005-09-09 13:03:32 -0700771 nc = kmalloc_node(memsize, GFP_KERNEL, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700772 if (nc) {
773 nc->avail = 0;
774 nc->limit = entries;
775 nc->batchcount = batchcount;
776 nc->touched = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700777 spin_lock_init(&nc->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700778 }
779 return nc;
780}
781
Christoph Lametere498be72005-09-09 13:03:32 -0700782#ifdef CONFIG_NUMA
Christoph Lameterdc85da12006-01-18 17:42:36 -0800783static void *__cache_alloc_node(kmem_cache_t *, gfp_t, int);
784
Christoph Lametere498be72005-09-09 13:03:32 -0700785static inline struct array_cache **alloc_alien_cache(int node, int limit)
786{
787 struct array_cache **ac_ptr;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800788 int memsize = sizeof(void *) * MAX_NUMNODES;
Christoph Lametere498be72005-09-09 13:03:32 -0700789 int i;
790
791 if (limit > 1)
792 limit = 12;
793 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
794 if (ac_ptr) {
795 for_each_node(i) {
796 if (i == node || !node_online(i)) {
797 ac_ptr[i] = NULL;
798 continue;
799 }
800 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
801 if (!ac_ptr[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800802 for (i--; i <= 0; i--)
Christoph Lametere498be72005-09-09 13:03:32 -0700803 kfree(ac_ptr[i]);
804 kfree(ac_ptr);
805 return NULL;
806 }
807 }
808 }
809 return ac_ptr;
810}
811
812static inline void free_alien_cache(struct array_cache **ac_ptr)
813{
814 int i;
815
816 if (!ac_ptr)
817 return;
818
819 for_each_node(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800820 kfree(ac_ptr[i]);
Christoph Lametere498be72005-09-09 13:03:32 -0700821
822 kfree(ac_ptr);
823}
824
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800825static inline void __drain_alien_cache(kmem_cache_t *cachep,
826 struct array_cache *ac, int node)
Christoph Lametere498be72005-09-09 13:03:32 -0700827{
828 struct kmem_list3 *rl3 = cachep->nodelists[node];
829
830 if (ac->avail) {
831 spin_lock(&rl3->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -0700832 free_block(cachep, ac->entry, ac->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -0700833 ac->avail = 0;
834 spin_unlock(&rl3->list_lock);
835 }
836}
837
838static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3)
839{
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800840 int i = 0;
Christoph Lametere498be72005-09-09 13:03:32 -0700841 struct array_cache *ac;
842 unsigned long flags;
843
844 for_each_online_node(i) {
845 ac = l3->alien[i];
846 if (ac) {
847 spin_lock_irqsave(&ac->lock, flags);
848 __drain_alien_cache(cachep, ac, i);
849 spin_unlock_irqrestore(&ac->lock, flags);
850 }
851 }
852}
853#else
854#define alloc_alien_cache(node, limit) do { } while (0)
855#define free_alien_cache(ac_ptr) do { } while (0)
856#define drain_alien_cache(cachep, l3) do { } while (0)
857#endif
858
Linus Torvalds1da177e2005-04-16 15:20:36 -0700859static int __devinit cpuup_callback(struct notifier_block *nfb,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800860 unsigned long action, void *hcpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700861{
862 long cpu = (long)hcpu;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800863 kmem_cache_t *cachep;
Christoph Lametere498be72005-09-09 13:03:32 -0700864 struct kmem_list3 *l3 = NULL;
865 int node = cpu_to_node(cpu);
866 int memsize = sizeof(struct kmem_list3);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700867
868 switch (action) {
869 case CPU_UP_PREPARE:
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800870 mutex_lock(&cache_chain_mutex);
Christoph Lametere498be72005-09-09 13:03:32 -0700871 /* we need to do this right in the beginning since
872 * alloc_arraycache's are going to use this list.
873 * kmalloc_node allows us to add the slab to the right
874 * kmem_list3 and not this cpu's kmem_list3
875 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700876
Christoph Lametere498be72005-09-09 13:03:32 -0700877 list_for_each_entry(cachep, &cache_chain, next) {
878 /* setup the size64 kmemlist for cpu before we can
879 * begin anything. Make sure some other cpu on this
880 * node has not already allocated this
881 */
882 if (!cachep->nodelists[node]) {
883 if (!(l3 = kmalloc_node(memsize,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800884 GFP_KERNEL, node)))
Christoph Lametere498be72005-09-09 13:03:32 -0700885 goto bad;
886 kmem_list3_init(l3);
887 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800888 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -0700889
890 cachep->nodelists[node] = l3;
891 }
892
893 spin_lock_irq(&cachep->nodelists[node]->list_lock);
894 cachep->nodelists[node]->free_limit =
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800895 (1 + nr_cpus_node(node)) *
896 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -0700897 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
898 }
899
900 /* Now we can go ahead with allocating the shared array's
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800901 & array cache's */
Christoph Lametere498be72005-09-09 13:03:32 -0700902 list_for_each_entry(cachep, &cache_chain, next) {
Tobias Klausercd105df2006-01-08 01:00:59 -0800903 struct array_cache *nc;
904
Christoph Lametere498be72005-09-09 13:03:32 -0700905 nc = alloc_arraycache(node, cachep->limit,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800906 cachep->batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700907 if (!nc)
908 goto bad;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700909 cachep->array[cpu] = nc;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700910
Christoph Lametere498be72005-09-09 13:03:32 -0700911 l3 = cachep->nodelists[node];
912 BUG_ON(!l3);
913 if (!l3->shared) {
914 if (!(nc = alloc_arraycache(node,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800915 cachep->shared *
916 cachep->batchcount,
917 0xbaadf00d)))
918 goto bad;
Christoph Lametere498be72005-09-09 13:03:32 -0700919
920 /* we are serialised from CPU_DEAD or
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800921 CPU_UP_CANCELLED by the cpucontrol lock */
Christoph Lametere498be72005-09-09 13:03:32 -0700922 l3->shared = nc;
923 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700924 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800925 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700926 break;
927 case CPU_ONLINE:
928 start_cpu_timer(cpu);
929 break;
930#ifdef CONFIG_HOTPLUG_CPU
931 case CPU_DEAD:
932 /* fall thru */
933 case CPU_UP_CANCELED:
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800934 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700935
936 list_for_each_entry(cachep, &cache_chain, next) {
937 struct array_cache *nc;
Christoph Lametere498be72005-09-09 13:03:32 -0700938 cpumask_t mask;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700939
Christoph Lametere498be72005-09-09 13:03:32 -0700940 mask = node_to_cpumask(node);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700941 spin_lock_irq(&cachep->spinlock);
942 /* cpu is dead; no one can alloc from it. */
943 nc = cachep->array[cpu];
944 cachep->array[cpu] = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -0700945 l3 = cachep->nodelists[node];
946
947 if (!l3)
948 goto unlock_cache;
949
950 spin_lock(&l3->list_lock);
951
952 /* Free limit for this kmem_list3 */
953 l3->free_limit -= cachep->batchcount;
954 if (nc)
Christoph Lameterff694162005-09-22 21:44:02 -0700955 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -0700956
957 if (!cpus_empty(mask)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800958 spin_unlock(&l3->list_lock);
959 goto unlock_cache;
960 }
Christoph Lametere498be72005-09-09 13:03:32 -0700961
962 if (l3->shared) {
963 free_block(cachep, l3->shared->entry,
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800964 l3->shared->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -0700965 kfree(l3->shared);
966 l3->shared = NULL;
967 }
968 if (l3->alien) {
969 drain_alien_cache(cachep, l3);
970 free_alien_cache(l3->alien);
971 l3->alien = NULL;
972 }
973
974 /* free slabs belonging to this node */
975 if (__node_shrink(cachep, node)) {
976 cachep->nodelists[node] = NULL;
977 spin_unlock(&l3->list_lock);
978 kfree(l3);
979 } else {
980 spin_unlock(&l3->list_lock);
981 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800982 unlock_cache:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700983 spin_unlock_irq(&cachep->spinlock);
984 kfree(nc);
985 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800986 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700987 break;
988#endif
989 }
990 return NOTIFY_OK;
Pekka Enbergb28a02d2006-01-08 01:00:37 -0800991 bad:
Ingo Molnarfc0abb12006-01-18 17:42:33 -0800992 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700993 return NOTIFY_BAD;
994}
995
996static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
997
Christoph Lametere498be72005-09-09 13:03:32 -0700998/*
999 * swap the static kmem_list3 with kmalloced memory
1000 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001001static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list, int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07001002{
1003 struct kmem_list3 *ptr;
1004
1005 BUG_ON(cachep->nodelists[nodeid] != list);
1006 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1007 BUG_ON(!ptr);
1008
1009 local_irq_disable();
1010 memcpy(ptr, list, sizeof(struct kmem_list3));
1011 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1012 cachep->nodelists[nodeid] = ptr;
1013 local_irq_enable();
1014}
1015
Linus Torvalds1da177e2005-04-16 15:20:36 -07001016/* Initialisation.
1017 * Called after the gfp() functions have been enabled, and before smp_init().
1018 */
1019void __init kmem_cache_init(void)
1020{
1021 size_t left_over;
1022 struct cache_sizes *sizes;
1023 struct cache_names *names;
Christoph Lametere498be72005-09-09 13:03:32 -07001024 int i;
1025
1026 for (i = 0; i < NUM_INIT_LISTS; i++) {
1027 kmem_list3_init(&initkmem_list3[i]);
1028 if (i < MAX_NUMNODES)
1029 cache_cache.nodelists[i] = NULL;
1030 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001031
1032 /*
1033 * Fragmentation resistance on low memory - only use bigger
1034 * page orders on machines with more than 32MB of memory.
1035 */
1036 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1037 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1038
Linus Torvalds1da177e2005-04-16 15:20:36 -07001039 /* Bootstrap is tricky, because several objects are allocated
1040 * from caches that do not exist yet:
1041 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
1042 * structures of all caches, except cache_cache itself: cache_cache
1043 * is statically allocated.
Christoph Lametere498be72005-09-09 13:03:32 -07001044 * Initially an __init data area is used for the head array and the
1045 * kmem_list3 structures, it's replaced with a kmalloc allocated
1046 * array at the end of the bootstrap.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001047 * 2) Create the first kmalloc cache.
Christoph Lametere498be72005-09-09 13:03:32 -07001048 * The kmem_cache_t for the new cache is allocated normally.
1049 * An __init data area is used for the head array.
1050 * 3) Create the remaining kmalloc caches, with minimally sized
1051 * head arrays.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001052 * 4) Replace the __init data head arrays for cache_cache and the first
1053 * kmalloc cache with kmalloc allocated arrays.
Christoph Lametere498be72005-09-09 13:03:32 -07001054 * 5) Replace the __init data for kmem_list3 for cache_cache and
1055 * the other cache's with kmalloc allocated memory.
1056 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001057 */
1058
1059 /* 1) create the cache_cache */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001060 INIT_LIST_HEAD(&cache_chain);
1061 list_add(&cache_cache.next, &cache_chain);
1062 cache_cache.colour_off = cache_line_size();
1063 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001064 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001065
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001066 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001067
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001068 cache_estimate(0, cache_cache.buffer_size, cache_line_size(), 0,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001069 &left_over, &cache_cache.num);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001070 if (!cache_cache.num)
1071 BUG();
1072
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001073 cache_cache.colour = left_over / cache_cache.colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001074 cache_cache.colour_next = 0;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001075 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1076 sizeof(struct slab), cache_line_size());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001077
1078 /* 2+3) create the kmalloc caches */
1079 sizes = malloc_sizes;
1080 names = cache_names;
1081
Christoph Lametere498be72005-09-09 13:03:32 -07001082 /* Initialize the caches that provide memory for the array cache
1083 * and the kmem_list3 structures first.
1084 * Without this, further allocations will bug
1085 */
1086
1087 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001088 sizes[INDEX_AC].cs_size,
1089 ARCH_KMALLOC_MINALIGN,
1090 (ARCH_KMALLOC_FLAGS |
1091 SLAB_PANIC), NULL, NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07001092
1093 if (INDEX_AC != INDEX_L3)
1094 sizes[INDEX_L3].cs_cachep =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001095 kmem_cache_create(names[INDEX_L3].name,
1096 sizes[INDEX_L3].cs_size,
1097 ARCH_KMALLOC_MINALIGN,
1098 (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
1099 NULL);
Christoph Lametere498be72005-09-09 13:03:32 -07001100
Linus Torvalds1da177e2005-04-16 15:20:36 -07001101 while (sizes->cs_size != ULONG_MAX) {
Christoph Lametere498be72005-09-09 13:03:32 -07001102 /*
1103 * For performance, all the general caches are L1 aligned.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001104 * This should be particularly beneficial on SMP boxes, as it
1105 * eliminates "false sharing".
1106 * Note for systems short on memory removing the alignment will
Christoph Lametere498be72005-09-09 13:03:32 -07001107 * allow tighter packing of the smaller caches.
1108 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001109 if (!sizes->cs_cachep)
Christoph Lametere498be72005-09-09 13:03:32 -07001110 sizes->cs_cachep = kmem_cache_create(names->name,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001111 sizes->cs_size,
1112 ARCH_KMALLOC_MINALIGN,
1113 (ARCH_KMALLOC_FLAGS
1114 | SLAB_PANIC),
1115 NULL, NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001116
1117 /* Inc off-slab bufctl limit until the ceiling is hit. */
1118 if (!(OFF_SLAB(sizes->cs_cachep))) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001119 offslab_limit = sizes->cs_size - sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001120 offslab_limit /= sizeof(kmem_bufctl_t);
1121 }
1122
1123 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001124 sizes->cs_size,
1125 ARCH_KMALLOC_MINALIGN,
1126 (ARCH_KMALLOC_FLAGS |
1127 SLAB_CACHE_DMA |
1128 SLAB_PANIC), NULL,
1129 NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001130
1131 sizes++;
1132 names++;
1133 }
1134 /* 4) Replace the bootstrap head arrays */
1135 {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001136 void *ptr;
Christoph Lametere498be72005-09-09 13:03:32 -07001137
Linus Torvalds1da177e2005-04-16 15:20:36 -07001138 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001139
Linus Torvalds1da177e2005-04-16 15:20:36 -07001140 local_irq_disable();
1141 BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache);
Christoph Lametere498be72005-09-09 13:03:32 -07001142 memcpy(ptr, ac_data(&cache_cache),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001143 sizeof(struct arraycache_init));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001144 cache_cache.array[smp_processor_id()] = ptr;
1145 local_irq_enable();
Christoph Lametere498be72005-09-09 13:03:32 -07001146
Linus Torvalds1da177e2005-04-16 15:20:36 -07001147 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001148
Linus Torvalds1da177e2005-04-16 15:20:36 -07001149 local_irq_disable();
Christoph Lametere498be72005-09-09 13:03:32 -07001150 BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001151 != &initarray_generic.cache);
Christoph Lametere498be72005-09-09 13:03:32 -07001152 memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001153 sizeof(struct arraycache_init));
Christoph Lametere498be72005-09-09 13:03:32 -07001154 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001155 ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001156 local_irq_enable();
1157 }
Christoph Lametere498be72005-09-09 13:03:32 -07001158 /* 5) Replace the bootstrap kmem_list3's */
1159 {
1160 int node;
1161 /* Replace the static kmem_list3 structures for the boot cpu */
1162 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001163 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07001164
Christoph Lametere498be72005-09-09 13:03:32 -07001165 for_each_online_node(node) {
1166 init_list(malloc_sizes[INDEX_AC].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001167 &initkmem_list3[SIZE_AC + node], node);
Christoph Lametere498be72005-09-09 13:03:32 -07001168
1169 if (INDEX_AC != INDEX_L3) {
1170 init_list(malloc_sizes[INDEX_L3].cs_cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001171 &initkmem_list3[SIZE_L3 + node],
1172 node);
Christoph Lametere498be72005-09-09 13:03:32 -07001173 }
1174 }
1175 }
1176
1177 /* 6) resize the head arrays to their final sizes */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001178 {
1179 kmem_cache_t *cachep;
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001180 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001181 list_for_each_entry(cachep, &cache_chain, next)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001182 enable_cpucache(cachep);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001183 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001184 }
1185
1186 /* Done! */
1187 g_cpucache_up = FULL;
1188
1189 /* Register a cpu startup notifier callback
1190 * that initializes ac_data for all new cpus
1191 */
1192 register_cpu_notifier(&cpucache_notifier);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001193
1194 /* The reap timers are started later, with a module init call:
1195 * That part of the kernel is not yet operational.
1196 */
1197}
1198
1199static int __init cpucache_init(void)
1200{
1201 int cpu;
1202
1203 /*
1204 * Register the timers that return unneeded
1205 * pages to gfp.
1206 */
Christoph Lametere498be72005-09-09 13:03:32 -07001207 for_each_online_cpu(cpu)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001208 start_cpu_timer(cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001209
1210 return 0;
1211}
1212
1213__initcall(cpucache_init);
1214
1215/*
1216 * Interface to system's page allocator. No need to hold the cache-lock.
1217 *
1218 * If we requested dmaable memory, we will get it. Even if we
1219 * did not request dmaable memory, we might get it, but that
1220 * would be relatively rare and ignorable.
1221 */
Al Virodd0fc662005-10-07 07:46:04 +01001222static void *kmem_getpages(kmem_cache_t *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001223{
1224 struct page *page;
1225 void *addr;
1226 int i;
1227
1228 flags |= cachep->gfpflags;
Christoph Lameter50c85a12005-11-13 16:06:47 -08001229 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001230 if (!page)
1231 return NULL;
1232 addr = page_address(page);
1233
1234 i = (1 << cachep->gfporder);
1235 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1236 atomic_add(i, &slab_reclaim_pages);
1237 add_page_state(nr_slab, i);
1238 while (i--) {
1239 SetPageSlab(page);
1240 page++;
1241 }
1242 return addr;
1243}
1244
1245/*
1246 * Interface to system's page release.
1247 */
1248static void kmem_freepages(kmem_cache_t *cachep, void *addr)
1249{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001250 unsigned long i = (1 << cachep->gfporder);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001251 struct page *page = virt_to_page(addr);
1252 const unsigned long nr_freed = i;
1253
1254 while (i--) {
1255 if (!TestClearPageSlab(page))
1256 BUG();
1257 page++;
1258 }
1259 sub_page_state(nr_slab, nr_freed);
1260 if (current->reclaim_state)
1261 current->reclaim_state->reclaimed_slab += nr_freed;
1262 free_pages((unsigned long)addr, cachep->gfporder);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001263 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1264 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001265}
1266
1267static void kmem_rcu_free(struct rcu_head *head)
1268{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001269 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001270 kmem_cache_t *cachep = slab_rcu->cachep;
1271
1272 kmem_freepages(cachep, slab_rcu->addr);
1273 if (OFF_SLAB(cachep))
1274 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1275}
1276
1277#if DEBUG
1278
1279#ifdef CONFIG_DEBUG_PAGEALLOC
1280static void store_stackinfo(kmem_cache_t *cachep, unsigned long *addr,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001281 unsigned long caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001282{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001283 int size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001284
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001285 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001286
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001287 if (size < 5 * sizeof(unsigned long))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001288 return;
1289
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001290 *addr++ = 0x12345678;
1291 *addr++ = caller;
1292 *addr++ = smp_processor_id();
1293 size -= 3 * sizeof(unsigned long);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001294 {
1295 unsigned long *sptr = &caller;
1296 unsigned long svalue;
1297
1298 while (!kstack_end(sptr)) {
1299 svalue = *sptr++;
1300 if (kernel_text_address(svalue)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001301 *addr++ = svalue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001302 size -= sizeof(unsigned long);
1303 if (size <= sizeof(unsigned long))
1304 break;
1305 }
1306 }
1307
1308 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001309 *addr++ = 0x87654321;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001310}
1311#endif
1312
1313static void poison_obj(kmem_cache_t *cachep, void *addr, unsigned char val)
1314{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001315 int size = obj_size(cachep);
1316 addr = &((char *)addr)[obj_offset(cachep)];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001317
1318 memset(addr, val, size);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001319 *(unsigned char *)(addr + size - 1) = POISON_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001320}
1321
1322static void dump_line(char *data, int offset, int limit)
1323{
1324 int i;
1325 printk(KERN_ERR "%03x:", offset);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001326 for (i = 0; i < limit; i++) {
1327 printk(" %02x", (unsigned char)data[offset + i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001328 }
1329 printk("\n");
1330}
1331#endif
1332
1333#if DEBUG
1334
1335static void print_objinfo(kmem_cache_t *cachep, void *objp, int lines)
1336{
1337 int i, size;
1338 char *realobj;
1339
1340 if (cachep->flags & SLAB_RED_ZONE) {
1341 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001342 *dbg_redzone1(cachep, objp),
1343 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001344 }
1345
1346 if (cachep->flags & SLAB_STORE_USER) {
1347 printk(KERN_ERR "Last user: [<%p>]",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001348 *dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001349 print_symbol("(%s)",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001350 (unsigned long)*dbg_userword(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001351 printk("\n");
1352 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001353 realobj = (char *)objp + obj_offset(cachep);
1354 size = obj_size(cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001355 for (i = 0; i < size && lines; i += 16, lines--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001356 int limit;
1357 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001358 if (i + limit > size)
1359 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001360 dump_line(realobj, i, limit);
1361 }
1362}
1363
1364static void check_poison_obj(kmem_cache_t *cachep, void *objp)
1365{
1366 char *realobj;
1367 int size, i;
1368 int lines = 0;
1369
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001370 realobj = (char *)objp + obj_offset(cachep);
1371 size = obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001372
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001373 for (i = 0; i < size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001374 char exp = POISON_FREE;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001375 if (i == size - 1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001376 exp = POISON_END;
1377 if (realobj[i] != exp) {
1378 int limit;
1379 /* Mismatch ! */
1380 /* Print header */
1381 if (lines == 0) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001382 printk(KERN_ERR
1383 "Slab corruption: start=%p, len=%d\n",
1384 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001385 print_objinfo(cachep, objp, 0);
1386 }
1387 /* Hexdump the affected line */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001388 i = (i / 16) * 16;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001389 limit = 16;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001390 if (i + limit > size)
1391 limit = size - i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001392 dump_line(realobj, i, limit);
1393 i += 16;
1394 lines++;
1395 /* Limit to 5 lines */
1396 if (lines > 5)
1397 break;
1398 }
1399 }
1400 if (lines != 0) {
1401 /* Print some data about the neighboring objects, if they
1402 * exist:
1403 */
Pekka Enberg065d41c2005-11-13 16:06:46 -08001404 struct slab *slabp = page_get_slab(virt_to_page(objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001405 int objnr;
1406
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001407 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001408 if (objnr) {
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001409 objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size;
1410 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001411 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001412 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001413 print_objinfo(cachep, objp, 2);
1414 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001415 if (objnr + 1 < cachep->num) {
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001416 objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size;
1417 realobj = (char *)objp + obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001418 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001419 realobj, size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001420 print_objinfo(cachep, objp, 2);
1421 }
1422 }
1423}
1424#endif
1425
1426/* Destroy all the objs in a slab, and release the mem back to the system.
1427 * Before calling the slab must have been unlinked from the cache.
1428 * The cache-lock is not held/needed.
1429 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001430static void slab_destroy(kmem_cache_t *cachep, struct slab *slabp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001431{
1432 void *addr = slabp->s_mem - slabp->colouroff;
1433
1434#if DEBUG
1435 int i;
1436 for (i = 0; i < cachep->num; i++) {
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001437 void *objp = slabp->s_mem + cachep->buffer_size * i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001438
1439 if (cachep->flags & SLAB_POISON) {
1440#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001441 if ((cachep->buffer_size % PAGE_SIZE) == 0
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001442 && OFF_SLAB(cachep))
1443 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001444 cachep->buffer_size / PAGE_SIZE,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001445 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001446 else
1447 check_poison_obj(cachep, objp);
1448#else
1449 check_poison_obj(cachep, objp);
1450#endif
1451 }
1452 if (cachep->flags & SLAB_RED_ZONE) {
1453 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1454 slab_error(cachep, "start of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001455 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001456 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1457 slab_error(cachep, "end of a freed object "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001458 "was overwritten");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001459 }
1460 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001461 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001462 }
1463#else
1464 if (cachep->dtor) {
1465 int i;
1466 for (i = 0; i < cachep->num; i++) {
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001467 void *objp = slabp->s_mem + cachep->buffer_size * i;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001468 (cachep->dtor) (objp, cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001469 }
1470 }
1471#endif
1472
1473 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1474 struct slab_rcu *slab_rcu;
1475
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001476 slab_rcu = (struct slab_rcu *)slabp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001477 slab_rcu->cachep = cachep;
1478 slab_rcu->addr = addr;
1479 call_rcu(&slab_rcu->head, kmem_rcu_free);
1480 } else {
1481 kmem_freepages(cachep, addr);
1482 if (OFF_SLAB(cachep))
1483 kmem_cache_free(cachep->slabp_cache, slabp);
1484 }
1485}
1486
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001487/* For setting up all the kmem_list3s for cache whose buffer_size is same
Christoph Lametere498be72005-09-09 13:03:32 -07001488 as size of kmem_list3. */
1489static inline void set_up_list3s(kmem_cache_t *cachep, int index)
1490{
1491 int node;
1492
1493 for_each_online_node(node) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001494 cachep->nodelists[node] = &initkmem_list3[index + node];
Christoph Lametere498be72005-09-09 13:03:32 -07001495 cachep->nodelists[node]->next_reap = jiffies +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001496 REAPTIMEOUT_LIST3 +
1497 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001498 }
1499}
1500
Linus Torvalds1da177e2005-04-16 15:20:36 -07001501/**
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001502 * calculate_slab_order - calculate size (page order) of slabs and the number
1503 * of objects per slab.
1504 *
1505 * This could be made much more intelligent. For now, try to avoid using
1506 * high order pages for slabs. When the gfp() functions are more friendly
1507 * towards high-order requests, this should be changed.
1508 */
1509static inline size_t calculate_slab_order(kmem_cache_t *cachep, size_t size,
1510 size_t align, gfp_t flags)
1511{
1512 size_t left_over = 0;
1513
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001514 for (;; cachep->gfporder++) {
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001515 unsigned int num;
1516 size_t remainder;
1517
1518 if (cachep->gfporder > MAX_GFP_ORDER) {
1519 cachep->num = 0;
1520 break;
1521 }
1522
1523 cache_estimate(cachep->gfporder, size, align, flags,
1524 &remainder, &num);
1525 if (!num)
1526 continue;
1527 /* More than offslab_limit objects will cause problems */
1528 if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit)
1529 break;
1530
1531 cachep->num = num;
1532 left_over = remainder;
1533
1534 /*
1535 * Large number of objects is good, but very large slabs are
1536 * currently bad for the gfp()s.
1537 */
1538 if (cachep->gfporder >= slab_break_gfp_order)
1539 break;
1540
1541 if ((left_over * 8) <= (PAGE_SIZE << cachep->gfporder))
1542 /* Acceptable internal fragmentation */
1543 break;
1544 }
1545 return left_over;
1546}
1547
1548/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001549 * kmem_cache_create - Create a cache.
1550 * @name: A string which is used in /proc/slabinfo to identify this cache.
1551 * @size: The size of objects to be created in this cache.
1552 * @align: The required alignment for the objects.
1553 * @flags: SLAB flags
1554 * @ctor: A constructor for the objects.
1555 * @dtor: A destructor for the objects.
1556 *
1557 * Returns a ptr to the cache on success, NULL on failure.
1558 * Cannot be called within a int, but can be interrupted.
1559 * The @ctor is run when new pages are allocated by the cache
1560 * and the @dtor is run before the pages are handed back.
1561 *
1562 * @name must be valid until the cache is destroyed. This implies that
1563 * the module calling this has to destroy the cache before getting
1564 * unloaded.
1565 *
1566 * The flags are
1567 *
1568 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1569 * to catch references to uninitialised memory.
1570 *
1571 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1572 * for buffer overruns.
1573 *
1574 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1575 * memory pressure.
1576 *
1577 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1578 * cacheline. This can be beneficial if you're counting cycles as closely
1579 * as davem.
1580 */
1581kmem_cache_t *
1582kmem_cache_create (const char *name, size_t size, size_t align,
1583 unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
1584 void (*dtor)(void*, kmem_cache_t *, unsigned long))
1585{
1586 size_t left_over, slab_size, ralign;
1587 kmem_cache_t *cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08001588 struct list_head *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001589
1590 /*
1591 * Sanity checks... these are all serious usage bugs.
1592 */
1593 if ((!name) ||
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001594 in_interrupt() ||
1595 (size < BYTES_PER_WORD) ||
1596 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1597 printk(KERN_ERR "%s: Early error in slab %s\n",
1598 __FUNCTION__, name);
1599 BUG();
1600 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001601
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001602 mutex_lock(&cache_chain_mutex);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001603
1604 list_for_each(p, &cache_chain) {
1605 kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
1606 mm_segment_t old_fs = get_fs();
1607 char tmp;
1608 int res;
1609
1610 /*
1611 * This happens when the module gets unloaded and doesn't
1612 * destroy its slab cache and no-one else reuses the vmalloc
1613 * area of the module. Print a warning.
1614 */
1615 set_fs(KERNEL_DS);
1616 res = __get_user(tmp, pc->name);
1617 set_fs(old_fs);
1618 if (res) {
1619 printk("SLAB: cache with size %d has lost its name\n",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001620 pc->buffer_size);
Andrew Morton4f12bb42005-11-07 00:58:00 -08001621 continue;
1622 }
1623
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001624 if (!strcmp(pc->name, name)) {
Andrew Morton4f12bb42005-11-07 00:58:00 -08001625 printk("kmem_cache_create: duplicate cache %s\n", name);
1626 dump_stack();
1627 goto oops;
1628 }
1629 }
1630
Linus Torvalds1da177e2005-04-16 15:20:36 -07001631#if DEBUG
1632 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1633 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1634 /* No constructor, but inital state check requested */
1635 printk(KERN_ERR "%s: No con, but init state check "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001636 "requested - %s\n", __FUNCTION__, name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001637 flags &= ~SLAB_DEBUG_INITIAL;
1638 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001639#if FORCED_DEBUG
1640 /*
1641 * Enable redzoning and last user accounting, except for caches with
1642 * large objects, if the increased size would increase the object size
1643 * above the next power of two: caches with object sizes just above a
1644 * power of two have a significant amount of internal fragmentation.
1645 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001646 if ((size < 4096
1647 || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
1648 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001649 if (!(flags & SLAB_DESTROY_BY_RCU))
1650 flags |= SLAB_POISON;
1651#endif
1652 if (flags & SLAB_DESTROY_BY_RCU)
1653 BUG_ON(flags & SLAB_POISON);
1654#endif
1655 if (flags & SLAB_DESTROY_BY_RCU)
1656 BUG_ON(dtor);
1657
1658 /*
1659 * Always checks flags, a caller might be expecting debug
1660 * support which isn't available.
1661 */
1662 if (flags & ~CREATE_MASK)
1663 BUG();
1664
1665 /* Check that size is in terms of words. This is needed to avoid
1666 * unaligned accesses for some archs when redzoning is used, and makes
1667 * sure any on-slab bufctl's are also correctly aligned.
1668 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001669 if (size & (BYTES_PER_WORD - 1)) {
1670 size += (BYTES_PER_WORD - 1);
1671 size &= ~(BYTES_PER_WORD - 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001672 }
1673
1674 /* calculate out the final buffer alignment: */
1675 /* 1) arch recommendation: can be overridden for debug */
1676 if (flags & SLAB_HWCACHE_ALIGN) {
1677 /* Default alignment: as specified by the arch code.
1678 * Except if an object is really small, then squeeze multiple
1679 * objects into one cacheline.
1680 */
1681 ralign = cache_line_size();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001682 while (size <= ralign / 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001683 ralign /= 2;
1684 } else {
1685 ralign = BYTES_PER_WORD;
1686 }
1687 /* 2) arch mandated alignment: disables debug if necessary */
1688 if (ralign < ARCH_SLAB_MINALIGN) {
1689 ralign = ARCH_SLAB_MINALIGN;
1690 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001691 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001692 }
1693 /* 3) caller mandated alignment: disables debug if necessary */
1694 if (ralign < align) {
1695 ralign = align;
1696 if (ralign > BYTES_PER_WORD)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001697 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001698 }
1699 /* 4) Store it. Note that the debug code below can reduce
1700 * the alignment to BYTES_PER_WORD.
1701 */
1702 align = ralign;
1703
1704 /* Get cache's description obj. */
1705 cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1706 if (!cachep)
Andrew Morton4f12bb42005-11-07 00:58:00 -08001707 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001708 memset(cachep, 0, sizeof(kmem_cache_t));
1709
1710#if DEBUG
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001711 cachep->obj_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001712
1713 if (flags & SLAB_RED_ZONE) {
1714 /* redzoning only works with word aligned caches */
1715 align = BYTES_PER_WORD;
1716
1717 /* add space for red zone words */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001718 cachep->obj_offset += BYTES_PER_WORD;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001719 size += 2 * BYTES_PER_WORD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001720 }
1721 if (flags & SLAB_STORE_USER) {
1722 /* user store requires word alignment and
1723 * one word storage behind the end of the real
1724 * object.
1725 */
1726 align = BYTES_PER_WORD;
1727 size += BYTES_PER_WORD;
1728 }
1729#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001730 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001731 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
1732 cachep->obj_offset += PAGE_SIZE - size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001733 size = PAGE_SIZE;
1734 }
1735#endif
1736#endif
1737
1738 /* Determine if the slab management is 'on' or 'off' slab. */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001739 if (size >= (PAGE_SIZE >> 3))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001740 /*
1741 * Size is large, assume best to place the slab management obj
1742 * off-slab (should allow better packing of objs).
1743 */
1744 flags |= CFLGS_OFF_SLAB;
1745
1746 size = ALIGN(size, align);
1747
1748 if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
1749 /*
1750 * A VFS-reclaimable slab tends to have most allocations
1751 * as GFP_NOFS and we really don't want to have to be allocating
1752 * higher-order pages when we are unable to shrink dcache.
1753 */
1754 cachep->gfporder = 0;
1755 cache_estimate(cachep->gfporder, size, align, flags,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001756 &left_over, &cachep->num);
Pekka Enberg4d268eb2006-01-08 01:00:36 -08001757 } else
1758 left_over = calculate_slab_order(cachep, size, align, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001759
1760 if (!cachep->num) {
1761 printk("kmem_cache_create: couldn't create cache %s.\n", name);
1762 kmem_cache_free(&cache_cache, cachep);
1763 cachep = NULL;
Andrew Morton4f12bb42005-11-07 00:58:00 -08001764 goto oops;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001765 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001766 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
1767 + sizeof(struct slab), align);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001768
1769 /*
1770 * If the slab has been placed off-slab, and we have enough space then
1771 * move it on-slab. This is at the expense of any extra colouring.
1772 */
1773 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
1774 flags &= ~CFLGS_OFF_SLAB;
1775 left_over -= slab_size;
1776 }
1777
1778 if (flags & CFLGS_OFF_SLAB) {
1779 /* really off slab. No need for manual alignment */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001780 slab_size =
1781 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001782 }
1783
1784 cachep->colour_off = cache_line_size();
1785 /* Offset must be a multiple of the alignment. */
1786 if (cachep->colour_off < align)
1787 cachep->colour_off = align;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001788 cachep->colour = left_over / cachep->colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001789 cachep->slab_size = slab_size;
1790 cachep->flags = flags;
1791 cachep->gfpflags = 0;
1792 if (flags & SLAB_CACHE_DMA)
1793 cachep->gfpflags |= GFP_DMA;
1794 spin_lock_init(&cachep->spinlock);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08001795 cachep->buffer_size = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001796
1797 if (flags & CFLGS_OFF_SLAB)
Victor Fuscob2d55072005-09-10 00:26:36 -07001798 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001799 cachep->ctor = ctor;
1800 cachep->dtor = dtor;
1801 cachep->name = name;
1802
1803 /* Don't let CPUs to come and go */
1804 lock_cpu_hotplug();
1805
1806 if (g_cpucache_up == FULL) {
1807 enable_cpucache(cachep);
1808 } else {
1809 if (g_cpucache_up == NONE) {
1810 /* Note: the first kmem_cache_create must create
1811 * the cache that's used by kmalloc(24), otherwise
1812 * the creation of further caches will BUG().
1813 */
Christoph Lametere498be72005-09-09 13:03:32 -07001814 cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001815 &initarray_generic.cache;
Christoph Lametere498be72005-09-09 13:03:32 -07001816
1817 /* If the cache that's used by
1818 * kmalloc(sizeof(kmem_list3)) is the first cache,
1819 * then we need to set up all its list3s, otherwise
1820 * the creation of further caches will BUG().
1821 */
1822 set_up_list3s(cachep, SIZE_AC);
1823 if (INDEX_AC == INDEX_L3)
1824 g_cpucache_up = PARTIAL_L3;
1825 else
1826 g_cpucache_up = PARTIAL_AC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001827 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07001828 cachep->array[smp_processor_id()] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001829 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
Christoph Lametere498be72005-09-09 13:03:32 -07001830
1831 if (g_cpucache_up == PARTIAL_AC) {
1832 set_up_list3s(cachep, SIZE_L3);
1833 g_cpucache_up = PARTIAL_L3;
1834 } else {
1835 int node;
1836 for_each_online_node(node) {
1837
1838 cachep->nodelists[node] =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001839 kmalloc_node(sizeof
1840 (struct kmem_list3),
1841 GFP_KERNEL, node);
Christoph Lametere498be72005-09-09 13:03:32 -07001842 BUG_ON(!cachep->nodelists[node]);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001843 kmem_list3_init(cachep->
1844 nodelists[node]);
Christoph Lametere498be72005-09-09 13:03:32 -07001845 }
1846 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001847 }
Christoph Lametere498be72005-09-09 13:03:32 -07001848 cachep->nodelists[numa_node_id()]->next_reap =
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001849 jiffies + REAPTIMEOUT_LIST3 +
1850 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07001851
Linus Torvalds1da177e2005-04-16 15:20:36 -07001852 BUG_ON(!ac_data(cachep));
1853 ac_data(cachep)->avail = 0;
1854 ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1855 ac_data(cachep)->batchcount = 1;
1856 ac_data(cachep)->touched = 0;
1857 cachep->batchcount = 1;
1858 cachep->limit = BOOT_CPUCACHE_ENTRIES;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001859 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001860
Linus Torvalds1da177e2005-04-16 15:20:36 -07001861 /* cache setup completed, link it into the list */
1862 list_add(&cachep->next, &cache_chain);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001863 unlock_cpu_hotplug();
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001864 oops:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001865 if (!cachep && (flags & SLAB_PANIC))
1866 panic("kmem_cache_create(): failed to create slab `%s'\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001867 name);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08001868 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001869 return cachep;
1870}
1871EXPORT_SYMBOL(kmem_cache_create);
1872
1873#if DEBUG
1874static void check_irq_off(void)
1875{
1876 BUG_ON(!irqs_disabled());
1877}
1878
1879static void check_irq_on(void)
1880{
1881 BUG_ON(irqs_disabled());
1882}
1883
1884static void check_spinlock_acquired(kmem_cache_t *cachep)
1885{
1886#ifdef CONFIG_SMP
1887 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07001888 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001889#endif
1890}
Christoph Lametere498be72005-09-09 13:03:32 -07001891
1892static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node)
1893{
1894#ifdef CONFIG_SMP
1895 check_irq_off();
1896 assert_spin_locked(&cachep->nodelists[node]->list_lock);
1897#endif
1898}
1899
Linus Torvalds1da177e2005-04-16 15:20:36 -07001900#else
1901#define check_irq_off() do { } while(0)
1902#define check_irq_on() do { } while(0)
1903#define check_spinlock_acquired(x) do { } while(0)
Christoph Lametere498be72005-09-09 13:03:32 -07001904#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001905#endif
1906
1907/*
1908 * Waits for all CPUs to execute func().
1909 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001910static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001911{
1912 check_irq_on();
1913 preempt_disable();
1914
1915 local_irq_disable();
1916 func(arg);
1917 local_irq_enable();
1918
1919 if (smp_call_function(func, arg, 1, 1))
1920 BUG();
1921
1922 preempt_enable();
1923}
1924
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001925static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
1926 int force, int node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001927
1928static void do_drain(void *arg)
1929{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001930 kmem_cache_t *cachep = (kmem_cache_t *) arg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001931 struct array_cache *ac;
Christoph Lameterff694162005-09-22 21:44:02 -07001932 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001933
1934 check_irq_off();
1935 ac = ac_data(cachep);
Christoph Lameterff694162005-09-22 21:44:02 -07001936 spin_lock(&cachep->nodelists[node]->list_lock);
1937 free_block(cachep, ac->entry, ac->avail, node);
1938 spin_unlock(&cachep->nodelists[node]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001939 ac->avail = 0;
1940}
1941
1942static void drain_cpu_caches(kmem_cache_t *cachep)
1943{
Christoph Lametere498be72005-09-09 13:03:32 -07001944 struct kmem_list3 *l3;
1945 int node;
1946
Linus Torvalds1da177e2005-04-16 15:20:36 -07001947 smp_call_function_all_cpus(do_drain, cachep);
1948 check_irq_on();
1949 spin_lock_irq(&cachep->spinlock);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001950 for_each_online_node(node) {
Christoph Lametere498be72005-09-09 13:03:32 -07001951 l3 = cachep->nodelists[node];
1952 if (l3) {
1953 spin_lock(&l3->list_lock);
1954 drain_array_locked(cachep, l3->shared, 1, node);
1955 spin_unlock(&l3->list_lock);
1956 if (l3->alien)
1957 drain_alien_cache(cachep, l3);
1958 }
1959 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001960 spin_unlock_irq(&cachep->spinlock);
1961}
1962
Christoph Lametere498be72005-09-09 13:03:32 -07001963static int __node_shrink(kmem_cache_t *cachep, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001964{
1965 struct slab *slabp;
Christoph Lametere498be72005-09-09 13:03:32 -07001966 struct kmem_list3 *l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07001967 int ret;
1968
Christoph Lametere498be72005-09-09 13:03:32 -07001969 for (;;) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001970 struct list_head *p;
1971
Christoph Lametere498be72005-09-09 13:03:32 -07001972 p = l3->slabs_free.prev;
1973 if (p == &l3->slabs_free)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001974 break;
1975
Christoph Lametere498be72005-09-09 13:03:32 -07001976 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001977#if DEBUG
1978 if (slabp->inuse)
1979 BUG();
1980#endif
1981 list_del(&slabp->list);
1982
Christoph Lametere498be72005-09-09 13:03:32 -07001983 l3->free_objects -= cachep->num;
1984 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001985 slab_destroy(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07001986 spin_lock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001987 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08001988 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001989 return ret;
1990}
1991
Christoph Lametere498be72005-09-09 13:03:32 -07001992static int __cache_shrink(kmem_cache_t *cachep)
1993{
1994 int ret = 0, i = 0;
1995 struct kmem_list3 *l3;
1996
1997 drain_cpu_caches(cachep);
1998
1999 check_irq_on();
2000 for_each_online_node(i) {
2001 l3 = cachep->nodelists[i];
2002 if (l3) {
2003 spin_lock_irq(&l3->list_lock);
2004 ret += __node_shrink(cachep, i);
2005 spin_unlock_irq(&l3->list_lock);
2006 }
2007 }
2008 return (ret ? 1 : 0);
2009}
2010
Linus Torvalds1da177e2005-04-16 15:20:36 -07002011/**
2012 * kmem_cache_shrink - Shrink a cache.
2013 * @cachep: The cache to shrink.
2014 *
2015 * Releases as many slabs as possible for a cache.
2016 * To help debugging, a zero exit status indicates all slabs were released.
2017 */
2018int kmem_cache_shrink(kmem_cache_t *cachep)
2019{
2020 if (!cachep || in_interrupt())
2021 BUG();
2022
2023 return __cache_shrink(cachep);
2024}
2025EXPORT_SYMBOL(kmem_cache_shrink);
2026
2027/**
2028 * kmem_cache_destroy - delete a cache
2029 * @cachep: the cache to destroy
2030 *
2031 * Remove a kmem_cache_t object from the slab cache.
2032 * Returns 0 on success.
2033 *
2034 * It is expected this function will be called by a module when it is
2035 * unloaded. This will remove the cache completely, and avoid a duplicate
2036 * cache being allocated each time a module is loaded and unloaded, if the
2037 * module doesn't have persistent in-kernel storage across loads and unloads.
2038 *
2039 * The cache must be empty before calling this function.
2040 *
2041 * The caller must guarantee that noone will allocate memory from the cache
2042 * during the kmem_cache_destroy().
2043 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002044int kmem_cache_destroy(kmem_cache_t *cachep)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002045{
2046 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07002047 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002048
2049 if (!cachep || in_interrupt())
2050 BUG();
2051
2052 /* Don't let CPUs to come and go */
2053 lock_cpu_hotplug();
2054
2055 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002056 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002057 /*
2058 * the chain is never empty, cache_cache is never destroyed
2059 */
2060 list_del(&cachep->next);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002061 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002062
2063 if (__cache_shrink(cachep)) {
2064 slab_error(cachep, "Can't free all objects");
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002065 mutex_lock(&cache_chain_mutex);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002066 list_add(&cachep->next, &cache_chain);
Ingo Molnarfc0abb12006-01-18 17:42:33 -08002067 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002068 unlock_cpu_hotplug();
2069 return 1;
2070 }
2071
2072 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
Paul E. McKenneyfbd568a3e2005-05-01 08:59:04 -07002073 synchronize_rcu();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002074
Christoph Lametere498be72005-09-09 13:03:32 -07002075 for_each_online_cpu(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002076 kfree(cachep->array[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002077
2078 /* NUMA: free the list3 structures */
Christoph Lametere498be72005-09-09 13:03:32 -07002079 for_each_online_node(i) {
2080 if ((l3 = cachep->nodelists[i])) {
2081 kfree(l3->shared);
2082 free_alien_cache(l3->alien);
2083 kfree(l3);
2084 }
2085 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002086 kmem_cache_free(&cache_cache, cachep);
2087
2088 unlock_cpu_hotplug();
2089
2090 return 0;
2091}
2092EXPORT_SYMBOL(kmem_cache_destroy);
2093
2094/* Get the memory for a slab management obj. */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002095static struct slab *alloc_slabmgmt(kmem_cache_t *cachep, void *objp,
2096 int colour_off, gfp_t local_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002097{
2098 struct slab *slabp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002099
Linus Torvalds1da177e2005-04-16 15:20:36 -07002100 if (OFF_SLAB(cachep)) {
2101 /* Slab management obj is off-slab. */
2102 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2103 if (!slabp)
2104 return NULL;
2105 } else {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002106 slabp = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002107 colour_off += cachep->slab_size;
2108 }
2109 slabp->inuse = 0;
2110 slabp->colouroff = colour_off;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002111 slabp->s_mem = objp + colour_off;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002112
2113 return slabp;
2114}
2115
2116static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2117{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002118 return (kmem_bufctl_t *) (slabp + 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002119}
2120
2121static void cache_init_objs(kmem_cache_t *cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002122 struct slab *slabp, unsigned long ctor_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002123{
2124 int i;
2125
2126 for (i = 0; i < cachep->num; i++) {
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002127 void *objp = slabp->s_mem + cachep->buffer_size * i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002128#if DEBUG
2129 /* need to poison the objs? */
2130 if (cachep->flags & SLAB_POISON)
2131 poison_obj(cachep, objp, POISON_FREE);
2132 if (cachep->flags & SLAB_STORE_USER)
2133 *dbg_userword(cachep, objp) = NULL;
2134
2135 if (cachep->flags & SLAB_RED_ZONE) {
2136 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2137 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2138 }
2139 /*
2140 * Constructors are not allowed to allocate memory from
2141 * the same cache which they are a constructor for.
2142 * Otherwise, deadlock. They must also be threaded.
2143 */
2144 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002145 cachep->ctor(objp + obj_offset(cachep), cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002146 ctor_flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002147
2148 if (cachep->flags & SLAB_RED_ZONE) {
2149 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2150 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002151 " end of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002152 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2153 slab_error(cachep, "constructor overwrote the"
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002154 " start of an object");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002155 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002156 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002157 && cachep->flags & SLAB_POISON)
2158 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002159 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002160#else
2161 if (cachep->ctor)
2162 cachep->ctor(objp, cachep, ctor_flags);
2163#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002164 slab_bufctl(slabp)[i] = i + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002165 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002166 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002167 slabp->free = 0;
2168}
2169
Al Viro6daa0e22005-10-21 03:18:50 -04002170static void kmem_flagcheck(kmem_cache_t *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002171{
2172 if (flags & SLAB_DMA) {
2173 if (!(cachep->gfpflags & GFP_DMA))
2174 BUG();
2175 } else {
2176 if (cachep->gfpflags & GFP_DMA)
2177 BUG();
2178 }
2179}
2180
2181static void set_slab_attr(kmem_cache_t *cachep, struct slab *slabp, void *objp)
2182{
2183 int i;
2184 struct page *page;
2185
2186 /* Nasty!!!!!! I hope this is OK. */
2187 i = 1 << cachep->gfporder;
2188 page = virt_to_page(objp);
2189 do {
Pekka Enberg065d41c2005-11-13 16:06:46 -08002190 page_set_cache(page, cachep);
2191 page_set_slab(page, slabp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002192 page++;
2193 } while (--i);
2194}
2195
2196/*
2197 * Grow (by 1) the number of slabs within a cache. This is called by
2198 * kmem_cache_alloc() when there are no active objs left in a cache.
2199 */
Al Virodd0fc662005-10-07 07:46:04 +01002200static int cache_grow(kmem_cache_t *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002201{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002202 struct slab *slabp;
2203 void *objp;
2204 size_t offset;
2205 gfp_t local_flags;
2206 unsigned long ctor_flags;
Christoph Lametere498be72005-09-09 13:03:32 -07002207 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002208
2209 /* Be lazy and only check for valid flags here,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002210 * keeping it out of the critical path in kmem_cache_alloc().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002211 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002212 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002213 BUG();
2214 if (flags & SLAB_NO_GROW)
2215 return 0;
2216
2217 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2218 local_flags = (flags & SLAB_LEVEL_MASK);
2219 if (!(local_flags & __GFP_WAIT))
2220 /*
2221 * Not allowed to sleep. Need to tell a constructor about
2222 * this - it might need to know...
2223 */
2224 ctor_flags |= SLAB_CTOR_ATOMIC;
2225
2226 /* About to mess with non-constant members - lock. */
2227 check_irq_off();
2228 spin_lock(&cachep->spinlock);
2229
2230 /* Get colour for the slab, and cal the next value. */
2231 offset = cachep->colour_next;
2232 cachep->colour_next++;
2233 if (cachep->colour_next >= cachep->colour)
2234 cachep->colour_next = 0;
2235 offset *= cachep->colour_off;
2236
2237 spin_unlock(&cachep->spinlock);
2238
Christoph Lametere498be72005-09-09 13:03:32 -07002239 check_irq_off();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002240 if (local_flags & __GFP_WAIT)
2241 local_irq_enable();
2242
2243 /*
2244 * The test for missing atomic flag is performed here, rather than
2245 * the more obvious place, simply to reduce the critical path length
2246 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2247 * will eventually be caught here (where it matters).
2248 */
2249 kmem_flagcheck(cachep, flags);
2250
Christoph Lametere498be72005-09-09 13:03:32 -07002251 /* Get mem for the objs.
2252 * Attempt to allocate a physical page from 'nodeid',
2253 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002254 if (!(objp = kmem_getpages(cachep, flags, nodeid)))
2255 goto failed;
2256
2257 /* Get slab management. */
2258 if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
2259 goto opps1;
2260
Christoph Lametere498be72005-09-09 13:03:32 -07002261 slabp->nodeid = nodeid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002262 set_slab_attr(cachep, slabp, objp);
2263
2264 cache_init_objs(cachep, slabp, ctor_flags);
2265
2266 if (local_flags & __GFP_WAIT)
2267 local_irq_disable();
2268 check_irq_off();
Christoph Lametere498be72005-09-09 13:03:32 -07002269 l3 = cachep->nodelists[nodeid];
2270 spin_lock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002271
2272 /* Make slab active. */
Christoph Lametere498be72005-09-09 13:03:32 -07002273 list_add_tail(&slabp->list, &(l3->slabs_free));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002274 STATS_INC_GROWN(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002275 l3->free_objects += cachep->num;
2276 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002277 return 1;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002278 opps1:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002279 kmem_freepages(cachep, objp);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002280 failed:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002281 if (local_flags & __GFP_WAIT)
2282 local_irq_disable();
2283 return 0;
2284}
2285
2286#if DEBUG
2287
2288/*
2289 * Perform extra freeing checks:
2290 * - detect bad pointers.
2291 * - POISON/RED_ZONE checking
2292 * - destructor calls, for caches with POISON+dtor
2293 */
2294static void kfree_debugcheck(const void *objp)
2295{
2296 struct page *page;
2297
2298 if (!virt_addr_valid(objp)) {
2299 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002300 (unsigned long)objp);
2301 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002302 }
2303 page = virt_to_page(objp);
2304 if (!PageSlab(page)) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002305 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2306 (unsigned long)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002307 BUG();
2308 }
2309}
2310
2311static void *cache_free_debugcheck(kmem_cache_t *cachep, void *objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002312 void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002313{
2314 struct page *page;
2315 unsigned int objnr;
2316 struct slab *slabp;
2317
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002318 objp -= obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002319 kfree_debugcheck(objp);
2320 page = virt_to_page(objp);
2321
Pekka Enberg065d41c2005-11-13 16:06:46 -08002322 if (page_get_cache(page) != cachep) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002323 printk(KERN_ERR
2324 "mismatch in kmem_cache_free: expected cache %p, got %p\n",
2325 page_get_cache(page), cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002326 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002327 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2328 page_get_cache(page)->name);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002329 WARN_ON(1);
2330 }
Pekka Enberg065d41c2005-11-13 16:06:46 -08002331 slabp = page_get_slab(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002332
2333 if (cachep->flags & SLAB_RED_ZONE) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002334 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
2335 || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2336 slab_error(cachep,
2337 "double free, or memory outside"
2338 " object was overwritten");
2339 printk(KERN_ERR
2340 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2341 objp, *dbg_redzone1(cachep, objp),
2342 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002343 }
2344 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2345 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2346 }
2347 if (cachep->flags & SLAB_STORE_USER)
2348 *dbg_userword(cachep, objp) = caller;
2349
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002350 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002351
2352 BUG_ON(objnr >= cachep->num);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002353 BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002354
2355 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2356 /* Need to call the slab's constructor so the
2357 * caller can perform a verify of its state (debugging).
2358 * Called without the cache-lock held.
2359 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002360 cachep->ctor(objp + obj_offset(cachep),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002361 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002362 }
2363 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2364 /* we want to cache poison the object,
2365 * call the destruction callback
2366 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002367 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002368 }
2369 if (cachep->flags & SLAB_POISON) {
2370#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002371 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002372 store_stackinfo(cachep, objp, (unsigned long)caller);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002373 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002374 cachep->buffer_size / PAGE_SIZE, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002375 } else {
2376 poison_obj(cachep, objp, POISON_FREE);
2377 }
2378#else
2379 poison_obj(cachep, objp, POISON_FREE);
2380#endif
2381 }
2382 return objp;
2383}
2384
2385static void check_slabp(kmem_cache_t *cachep, struct slab *slabp)
2386{
2387 kmem_bufctl_t i;
2388 int entries = 0;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002389
Linus Torvalds1da177e2005-04-16 15:20:36 -07002390 /* Check slab's freelist to see if this obj is there. */
2391 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2392 entries++;
2393 if (entries > cachep->num || i >= cachep->num)
2394 goto bad;
2395 }
2396 if (entries != cachep->num - slabp->inuse) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002397 bad:
2398 printk(KERN_ERR
2399 "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2400 cachep->name, cachep->num, slabp, slabp->inuse);
2401 for (i = 0;
2402 i < sizeof(slabp) + cachep->num * sizeof(kmem_bufctl_t);
2403 i++) {
2404 if ((i % 16) == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002405 printk("\n%03x:", i);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002406 printk(" %02x", ((unsigned char *)slabp)[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002407 }
2408 printk("\n");
2409 BUG();
2410 }
2411}
2412#else
2413#define kfree_debugcheck(x) do { } while(0)
2414#define cache_free_debugcheck(x,objp,z) (objp)
2415#define check_slabp(x,y) do { } while(0)
2416#endif
2417
Al Virodd0fc662005-10-07 07:46:04 +01002418static void *cache_alloc_refill(kmem_cache_t *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002419{
2420 int batchcount;
2421 struct kmem_list3 *l3;
2422 struct array_cache *ac;
2423
2424 check_irq_off();
2425 ac = ac_data(cachep);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002426 retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002427 batchcount = ac->batchcount;
2428 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2429 /* if there was little recent activity on this
2430 * cache, then perform only a partial refill.
2431 * Otherwise we could generate refill bouncing.
2432 */
2433 batchcount = BATCHREFILL_LIMIT;
2434 }
Christoph Lametere498be72005-09-09 13:03:32 -07002435 l3 = cachep->nodelists[numa_node_id()];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002436
Christoph Lametere498be72005-09-09 13:03:32 -07002437 BUG_ON(ac->avail > 0 || !l3);
2438 spin_lock(&l3->list_lock);
2439
Linus Torvalds1da177e2005-04-16 15:20:36 -07002440 if (l3->shared) {
2441 struct array_cache *shared_array = l3->shared;
2442 if (shared_array->avail) {
2443 if (batchcount > shared_array->avail)
2444 batchcount = shared_array->avail;
2445 shared_array->avail -= batchcount;
2446 ac->avail = batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07002447 memcpy(ac->entry,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002448 &(shared_array->entry[shared_array->avail]),
2449 sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002450 shared_array->touched = 1;
2451 goto alloc_done;
2452 }
2453 }
2454 while (batchcount > 0) {
2455 struct list_head *entry;
2456 struct slab *slabp;
2457 /* Get slab alloc is to come from. */
2458 entry = l3->slabs_partial.next;
2459 if (entry == &l3->slabs_partial) {
2460 l3->free_touched = 1;
2461 entry = l3->slabs_free.next;
2462 if (entry == &l3->slabs_free)
2463 goto must_grow;
2464 }
2465
2466 slabp = list_entry(entry, struct slab, list);
2467 check_slabp(cachep, slabp);
2468 check_spinlock_acquired(cachep);
2469 while (slabp->inuse < cachep->num && batchcount--) {
2470 kmem_bufctl_t next;
2471 STATS_INC_ALLOCED(cachep);
2472 STATS_INC_ACTIVE(cachep);
2473 STATS_SET_HIGH(cachep);
2474
2475 /* get obj pointer */
Christoph Lametere498be72005-09-09 13:03:32 -07002476 ac->entry[ac->avail++] = slabp->s_mem +
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002477 slabp->free * cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002478
2479 slabp->inuse++;
2480 next = slab_bufctl(slabp)[slabp->free];
2481#if DEBUG
2482 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
Christoph Lameter09ad4bb2005-10-29 18:15:52 -07002483 WARN_ON(numa_node_id() != slabp->nodeid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002484#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002485 slabp->free = next;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002486 }
2487 check_slabp(cachep, slabp);
2488
2489 /* move slabp to correct slabp list: */
2490 list_del(&slabp->list);
2491 if (slabp->free == BUFCTL_END)
2492 list_add(&slabp->list, &l3->slabs_full);
2493 else
2494 list_add(&slabp->list, &l3->slabs_partial);
2495 }
2496
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002497 must_grow:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002498 l3->free_objects -= ac->avail;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002499 alloc_done:
Christoph Lametere498be72005-09-09 13:03:32 -07002500 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002501
2502 if (unlikely(!ac->avail)) {
2503 int x;
Christoph Lametere498be72005-09-09 13:03:32 -07002504 x = cache_grow(cachep, flags, numa_node_id());
2505
Linus Torvalds1da177e2005-04-16 15:20:36 -07002506 // cache_grow can reenable interrupts, then ac could change.
2507 ac = ac_data(cachep);
2508 if (!x && ac->avail == 0) // no objects in sight? abort
2509 return NULL;
2510
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002511 if (!ac->avail) // objects refilled by interrupt?
Linus Torvalds1da177e2005-04-16 15:20:36 -07002512 goto retry;
2513 }
2514 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002515 return ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002516}
2517
2518static inline void
Al Virodd0fc662005-10-07 07:46:04 +01002519cache_alloc_debugcheck_before(kmem_cache_t *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002520{
2521 might_sleep_if(flags & __GFP_WAIT);
2522#if DEBUG
2523 kmem_flagcheck(cachep, flags);
2524#endif
2525}
2526
2527#if DEBUG
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002528static void *cache_alloc_debugcheck_after(kmem_cache_t *cachep, gfp_t flags,
2529 void *objp, void *caller)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002530{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002531 if (!objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002532 return objp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002533 if (cachep->flags & SLAB_POISON) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002534#ifdef CONFIG_DEBUG_PAGEALLOC
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002535 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002536 kernel_map_pages(virt_to_page(objp),
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002537 cachep->buffer_size / PAGE_SIZE, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002538 else
2539 check_poison_obj(cachep, objp);
2540#else
2541 check_poison_obj(cachep, objp);
2542#endif
2543 poison_obj(cachep, objp, POISON_INUSE);
2544 }
2545 if (cachep->flags & SLAB_STORE_USER)
2546 *dbg_userword(cachep, objp) = caller;
2547
2548 if (cachep->flags & SLAB_RED_ZONE) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002549 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
2550 || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2551 slab_error(cachep,
2552 "double free, or memory outside"
2553 " object was overwritten");
2554 printk(KERN_ERR
2555 "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2556 objp, *dbg_redzone1(cachep, objp),
2557 *dbg_redzone2(cachep, objp));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002558 }
2559 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2560 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2561 }
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002562 objp += obj_offset(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002563 if (cachep->ctor && cachep->flags & SLAB_POISON) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002564 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002565
2566 if (!(flags & __GFP_WAIT))
2567 ctor_flags |= SLAB_CTOR_ATOMIC;
2568
2569 cachep->ctor(objp, cachep, ctor_flags);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002570 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002571 return objp;
2572}
2573#else
2574#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2575#endif
2576
Al Virodd0fc662005-10-07 07:46:04 +01002577static inline void *____cache_alloc(kmem_cache_t *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002578{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002579 void *objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002580 struct array_cache *ac;
2581
Christoph Lameterdc85da12006-01-18 17:42:36 -08002582#ifdef CONFIG_NUMA
Christoph Lameter86c562a2006-01-18 17:42:37 -08002583 if (unlikely(current->mempolicy && !in_interrupt())) {
Christoph Lameterdc85da12006-01-18 17:42:36 -08002584 int nid = slab_node(current->mempolicy);
2585
2586 if (nid != numa_node_id())
2587 return __cache_alloc_node(cachep, flags, nid);
2588 }
2589#endif
2590
Alok N Kataria5c382302005-09-27 21:45:46 -07002591 check_irq_off();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002592 ac = ac_data(cachep);
2593 if (likely(ac->avail)) {
2594 STATS_INC_ALLOCHIT(cachep);
2595 ac->touched = 1;
Christoph Lametere498be72005-09-09 13:03:32 -07002596 objp = ac->entry[--ac->avail];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002597 } else {
2598 STATS_INC_ALLOCMISS(cachep);
2599 objp = cache_alloc_refill(cachep, flags);
2600 }
Alok N Kataria5c382302005-09-27 21:45:46 -07002601 return objp;
2602}
2603
Al Virodd0fc662005-10-07 07:46:04 +01002604static inline void *__cache_alloc(kmem_cache_t *cachep, gfp_t flags)
Alok N Kataria5c382302005-09-27 21:45:46 -07002605{
2606 unsigned long save_flags;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002607 void *objp;
Alok N Kataria5c382302005-09-27 21:45:46 -07002608
2609 cache_alloc_debugcheck_before(cachep, flags);
2610
2611 local_irq_save(save_flags);
2612 objp = ____cache_alloc(cachep, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002613 local_irq_restore(save_flags);
Eric Dumazet34342e82005-09-03 15:55:06 -07002614 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002615 __builtin_return_address(0));
Eric Dumazet34342e82005-09-03 15:55:06 -07002616 prefetchw(objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002617 return objp;
2618}
2619
Christoph Lametere498be72005-09-09 13:03:32 -07002620#ifdef CONFIG_NUMA
2621/*
2622 * A interface to enable slab creation on nodeid
Linus Torvalds1da177e2005-04-16 15:20:36 -07002623 */
Al Viro6daa0e22005-10-21 03:18:50 -04002624static void *__cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
Christoph Lametere498be72005-09-09 13:03:32 -07002625{
2626 struct list_head *entry;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002627 struct slab *slabp;
2628 struct kmem_list3 *l3;
2629 void *obj;
2630 kmem_bufctl_t next;
2631 int x;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002632
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002633 l3 = cachep->nodelists[nodeid];
2634 BUG_ON(!l3);
Christoph Lametere498be72005-09-09 13:03:32 -07002635
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002636 retry:
2637 spin_lock(&l3->list_lock);
2638 entry = l3->slabs_partial.next;
2639 if (entry == &l3->slabs_partial) {
2640 l3->free_touched = 1;
2641 entry = l3->slabs_free.next;
2642 if (entry == &l3->slabs_free)
2643 goto must_grow;
2644 }
Christoph Lametere498be72005-09-09 13:03:32 -07002645
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002646 slabp = list_entry(entry, struct slab, list);
2647 check_spinlock_acquired_node(cachep, nodeid);
2648 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07002649
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002650 STATS_INC_NODEALLOCS(cachep);
2651 STATS_INC_ACTIVE(cachep);
2652 STATS_SET_HIGH(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002653
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002654 BUG_ON(slabp->inuse == cachep->num);
Christoph Lametere498be72005-09-09 13:03:32 -07002655
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002656 /* get obj pointer */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002657 obj = slabp->s_mem + slabp->free * cachep->buffer_size;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002658 slabp->inuse++;
2659 next = slab_bufctl(slabp)[slabp->free];
Christoph Lametere498be72005-09-09 13:03:32 -07002660#if DEBUG
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002661 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
Christoph Lametere498be72005-09-09 13:03:32 -07002662#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002663 slabp->free = next;
2664 check_slabp(cachep, slabp);
2665 l3->free_objects--;
2666 /* move slabp to correct slabp list: */
2667 list_del(&slabp->list);
Christoph Lametere498be72005-09-09 13:03:32 -07002668
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002669 if (slabp->free == BUFCTL_END) {
2670 list_add(&slabp->list, &l3->slabs_full);
2671 } else {
2672 list_add(&slabp->list, &l3->slabs_partial);
2673 }
Christoph Lametere498be72005-09-09 13:03:32 -07002674
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002675 spin_unlock(&l3->list_lock);
2676 goto done;
Christoph Lametere498be72005-09-09 13:03:32 -07002677
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002678 must_grow:
2679 spin_unlock(&l3->list_lock);
2680 x = cache_grow(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07002681
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002682 if (!x)
2683 return NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07002684
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002685 goto retry;
2686 done:
2687 return obj;
Christoph Lametere498be72005-09-09 13:03:32 -07002688}
2689#endif
2690
2691/*
2692 * Caller needs to acquire correct kmem_list's list_lock
2693 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002694static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects,
2695 int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002696{
2697 int i;
Christoph Lametere498be72005-09-09 13:03:32 -07002698 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002699
2700 for (i = 0; i < nr_objects; i++) {
2701 void *objp = objpp[i];
2702 struct slab *slabp;
2703 unsigned int objnr;
2704
Pekka Enberg065d41c2005-11-13 16:06:46 -08002705 slabp = page_get_slab(virt_to_page(objp));
Christoph Lameterff694162005-09-22 21:44:02 -07002706 l3 = cachep->nodelists[node];
Linus Torvalds1da177e2005-04-16 15:20:36 -07002707 list_del(&slabp->list);
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002708 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
Christoph Lameterff694162005-09-22 21:44:02 -07002709 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002710 check_slabp(cachep, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07002711
Linus Torvalds1da177e2005-04-16 15:20:36 -07002712#if DEBUG
Christoph Lameter09ad4bb2005-10-29 18:15:52 -07002713 /* Verify that the slab belongs to the intended node */
2714 WARN_ON(slabp->nodeid != node);
2715
Linus Torvalds1da177e2005-04-16 15:20:36 -07002716 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
Christoph Lametere498be72005-09-09 13:03:32 -07002717 printk(KERN_ERR "slab: double free detected in cache "
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002718 "'%s', objp %p\n", cachep->name, objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002719 BUG();
2720 }
2721#endif
2722 slab_bufctl(slabp)[objnr] = slabp->free;
2723 slabp->free = objnr;
2724 STATS_DEC_ACTIVE(cachep);
2725 slabp->inuse--;
Christoph Lametere498be72005-09-09 13:03:32 -07002726 l3->free_objects++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002727 check_slabp(cachep, slabp);
2728
2729 /* fixup slab chains */
2730 if (slabp->inuse == 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07002731 if (l3->free_objects > l3->free_limit) {
2732 l3->free_objects -= cachep->num;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002733 slab_destroy(cachep, slabp);
2734 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07002735 list_add(&slabp->list, &l3->slabs_free);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002736 }
2737 } else {
2738 /* Unconditionally move a slab to the end of the
2739 * partial list on free - maximum time for the
2740 * other objects to be freed, too.
2741 */
Christoph Lametere498be72005-09-09 13:03:32 -07002742 list_add_tail(&slabp->list, &l3->slabs_partial);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002743 }
2744 }
2745}
2746
2747static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac)
2748{
2749 int batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07002750 struct kmem_list3 *l3;
Christoph Lameterff694162005-09-22 21:44:02 -07002751 int node = numa_node_id();
Linus Torvalds1da177e2005-04-16 15:20:36 -07002752
2753 batchcount = ac->batchcount;
2754#if DEBUG
2755 BUG_ON(!batchcount || batchcount > ac->avail);
2756#endif
2757 check_irq_off();
Christoph Lameterff694162005-09-22 21:44:02 -07002758 l3 = cachep->nodelists[node];
Christoph Lametere498be72005-09-09 13:03:32 -07002759 spin_lock(&l3->list_lock);
2760 if (l3->shared) {
2761 struct array_cache *shared_array = l3->shared;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002762 int max = shared_array->limit - shared_array->avail;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002763 if (max) {
2764 if (batchcount > max)
2765 batchcount = max;
Christoph Lametere498be72005-09-09 13:03:32 -07002766 memcpy(&(shared_array->entry[shared_array->avail]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002767 ac->entry, sizeof(void *) * batchcount);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002768 shared_array->avail += batchcount;
2769 goto free_done;
2770 }
2771 }
2772
Christoph Lameterff694162005-09-22 21:44:02 -07002773 free_block(cachep, ac->entry, batchcount, node);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002774 free_done:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002775#if STATS
2776 {
2777 int i = 0;
2778 struct list_head *p;
2779
Christoph Lametere498be72005-09-09 13:03:32 -07002780 p = l3->slabs_free.next;
2781 while (p != &(l3->slabs_free)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002782 struct slab *slabp;
2783
2784 slabp = list_entry(p, struct slab, list);
2785 BUG_ON(slabp->inuse);
2786
2787 i++;
2788 p = p->next;
2789 }
2790 STATS_SET_FREEABLE(cachep, i);
2791 }
2792#endif
Christoph Lametere498be72005-09-09 13:03:32 -07002793 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002794 ac->avail -= batchcount;
Christoph Lametere498be72005-09-09 13:03:32 -07002795 memmove(ac->entry, &(ac->entry[batchcount]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002796 sizeof(void *) * ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002797}
2798
2799/*
2800 * __cache_free
2801 * Release an obj back to its cache. If the obj has a constructed
2802 * state, it must be in this state _before_ it is released.
2803 *
2804 * Called with disabled ints.
2805 */
2806static inline void __cache_free(kmem_cache_t *cachep, void *objp)
2807{
2808 struct array_cache *ac = ac_data(cachep);
2809
2810 check_irq_off();
2811 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
2812
Christoph Lametere498be72005-09-09 13:03:32 -07002813 /* Make sure we are not freeing a object from another
2814 * node to the array cache on this cpu.
2815 */
2816#ifdef CONFIG_NUMA
2817 {
2818 struct slab *slabp;
Pekka Enberg065d41c2005-11-13 16:06:46 -08002819 slabp = page_get_slab(virt_to_page(objp));
Christoph Lametere498be72005-09-09 13:03:32 -07002820 if (unlikely(slabp->nodeid != numa_node_id())) {
2821 struct array_cache *alien = NULL;
2822 int nodeid = slabp->nodeid;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002823 struct kmem_list3 *l3 =
2824 cachep->nodelists[numa_node_id()];
Christoph Lametere498be72005-09-09 13:03:32 -07002825
2826 STATS_INC_NODEFREES(cachep);
2827 if (l3->alien && l3->alien[nodeid]) {
2828 alien = l3->alien[nodeid];
2829 spin_lock(&alien->lock);
2830 if (unlikely(alien->avail == alien->limit))
2831 __drain_alien_cache(cachep,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002832 alien, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07002833 alien->entry[alien->avail++] = objp;
2834 spin_unlock(&alien->lock);
2835 } else {
2836 spin_lock(&(cachep->nodelists[nodeid])->
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002837 list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07002838 free_block(cachep, &objp, 1, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07002839 spin_unlock(&(cachep->nodelists[nodeid])->
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002840 list_lock);
Christoph Lametere498be72005-09-09 13:03:32 -07002841 }
2842 return;
2843 }
2844 }
2845#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07002846 if (likely(ac->avail < ac->limit)) {
2847 STATS_INC_FREEHIT(cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07002848 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002849 return;
2850 } else {
2851 STATS_INC_FREEMISS(cachep);
2852 cache_flusharray(cachep, ac);
Christoph Lametere498be72005-09-09 13:03:32 -07002853 ac->entry[ac->avail++] = objp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002854 }
2855}
2856
2857/**
2858 * kmem_cache_alloc - Allocate an object
2859 * @cachep: The cache to allocate from.
2860 * @flags: See kmalloc().
2861 *
2862 * Allocate an object from this cache. The flags are only relevant
2863 * if the cache has no available objects.
2864 */
Al Virodd0fc662005-10-07 07:46:04 +01002865void *kmem_cache_alloc(kmem_cache_t *cachep, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002866{
2867 return __cache_alloc(cachep, flags);
2868}
2869EXPORT_SYMBOL(kmem_cache_alloc);
2870
2871/**
2872 * kmem_ptr_validate - check if an untrusted pointer might
2873 * be a slab entry.
2874 * @cachep: the cache we're checking against
2875 * @ptr: pointer to validate
2876 *
2877 * This verifies that the untrusted pointer looks sane:
2878 * it is _not_ a guarantee that the pointer is actually
2879 * part of the slab cache in question, but it at least
2880 * validates that the pointer can be dereferenced and
2881 * looks half-way sane.
2882 *
2883 * Currently only used for dentry validation.
2884 */
2885int fastcall kmem_ptr_validate(kmem_cache_t *cachep, void *ptr)
2886{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002887 unsigned long addr = (unsigned long)ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002888 unsigned long min_addr = PAGE_OFFSET;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002889 unsigned long align_mask = BYTES_PER_WORD - 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08002890 unsigned long size = cachep->buffer_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002891 struct page *page;
2892
2893 if (unlikely(addr < min_addr))
2894 goto out;
2895 if (unlikely(addr > (unsigned long)high_memory - size))
2896 goto out;
2897 if (unlikely(addr & align_mask))
2898 goto out;
2899 if (unlikely(!kern_addr_valid(addr)))
2900 goto out;
2901 if (unlikely(!kern_addr_valid(addr + size - 1)))
2902 goto out;
2903 page = virt_to_page(ptr);
2904 if (unlikely(!PageSlab(page)))
2905 goto out;
Pekka Enberg065d41c2005-11-13 16:06:46 -08002906 if (unlikely(page_get_cache(page) != cachep))
Linus Torvalds1da177e2005-04-16 15:20:36 -07002907 goto out;
2908 return 1;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002909 out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002910 return 0;
2911}
2912
2913#ifdef CONFIG_NUMA
2914/**
2915 * kmem_cache_alloc_node - Allocate an object on the specified node
2916 * @cachep: The cache to allocate from.
2917 * @flags: See kmalloc().
2918 * @nodeid: node number of the target node.
2919 *
2920 * Identical to kmem_cache_alloc, except that this function is slow
2921 * and can sleep. And it will allocate memory on the given node, which
2922 * can improve the performance for cpu bound structures.
Christoph Lametere498be72005-09-09 13:03:32 -07002923 * New and improved: it will now make sure that the object gets
2924 * put on the correct node list so that there is no false sharing.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002925 */
Al Virodd0fc662005-10-07 07:46:04 +01002926void *kmem_cache_alloc_node(kmem_cache_t *cachep, gfp_t flags, int nodeid)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002927{
Christoph Lametere498be72005-09-09 13:03:32 -07002928 unsigned long save_flags;
2929 void *ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002930
Christoph Lameterff694162005-09-22 21:44:02 -07002931 if (nodeid == -1)
Christoph Lametere498be72005-09-09 13:03:32 -07002932 return __cache_alloc(cachep, flags);
Christoph Lameter83b78bd2005-07-06 10:47:07 -07002933
Christoph Lametere498be72005-09-09 13:03:32 -07002934 if (unlikely(!cachep->nodelists[nodeid])) {
2935 /* Fall back to __cache_alloc if we run into trouble */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002936 printk(KERN_WARNING
2937 "slab: not allocating in inactive node %d for cache %s\n",
2938 nodeid, cachep->name);
2939 return __cache_alloc(cachep, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002940 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002941
Christoph Lametere498be72005-09-09 13:03:32 -07002942 cache_alloc_debugcheck_before(cachep, flags);
2943 local_irq_save(save_flags);
Alok N Kataria5c382302005-09-27 21:45:46 -07002944 if (nodeid == numa_node_id())
2945 ptr = ____cache_alloc(cachep, flags);
2946 else
2947 ptr = __cache_alloc_node(cachep, flags, nodeid);
Christoph Lametere498be72005-09-09 13:03:32 -07002948 local_irq_restore(save_flags);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08002949 ptr =
2950 cache_alloc_debugcheck_after(cachep, flags, ptr,
2951 __builtin_return_address(0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002952
Christoph Lametere498be72005-09-09 13:03:32 -07002953 return ptr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002954}
2955EXPORT_SYMBOL(kmem_cache_alloc_node);
2956
Al Virodd0fc662005-10-07 07:46:04 +01002957void *kmalloc_node(size_t size, gfp_t flags, int node)
Manfred Spraul97e2bde2005-05-01 08:58:38 -07002958{
2959 kmem_cache_t *cachep;
2960
2961 cachep = kmem_find_general_cachep(size, flags);
2962 if (unlikely(cachep == NULL))
2963 return NULL;
2964 return kmem_cache_alloc_node(cachep, flags, node);
2965}
2966EXPORT_SYMBOL(kmalloc_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002967#endif
2968
2969/**
2970 * kmalloc - allocate memory
2971 * @size: how many bytes of memory are required.
2972 * @flags: the type of memory to allocate.
2973 *
2974 * kmalloc is the normal method of allocating memory
2975 * in the kernel.
2976 *
2977 * The @flags argument may be one of:
2978 *
2979 * %GFP_USER - Allocate memory on behalf of user. May sleep.
2980 *
2981 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
2982 *
2983 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
2984 *
2985 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2986 * must be suitable for DMA. This can mean different things on different
2987 * platforms. For example, on i386, it means that the memory must come
2988 * from the first 16MB.
2989 */
Al Virodd0fc662005-10-07 07:46:04 +01002990void *__kmalloc(size_t size, gfp_t flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002991{
2992 kmem_cache_t *cachep;
2993
Manfred Spraul97e2bde2005-05-01 08:58:38 -07002994 /* If you want to save a few bytes .text space: replace
2995 * __ with kmem_.
2996 * Then kmalloc uses the uninlined functions instead of the inline
2997 * functions.
2998 */
2999 cachep = __find_general_cachep(size, flags);
Andrew Mortondbdb9042005-09-23 13:24:10 -07003000 if (unlikely(cachep == NULL))
3001 return NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003002 return __cache_alloc(cachep, flags);
3003}
3004EXPORT_SYMBOL(__kmalloc);
3005
3006#ifdef CONFIG_SMP
3007/**
3008 * __alloc_percpu - allocate one copy of the object for every present
3009 * cpu in the system, zeroing them.
3010 * Objects should be dereferenced using the per_cpu_ptr macro only.
3011 *
3012 * @size: how many bytes of memory are required.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003013 */
Pekka Enbergf9f75002006-01-08 01:00:33 -08003014void *__alloc_percpu(size_t size)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003015{
3016 int i;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003017 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003018
3019 if (!pdata)
3020 return NULL;
3021
Christoph Lametere498be72005-09-09 13:03:32 -07003022 /*
3023 * Cannot use for_each_online_cpu since a cpu may come online
3024 * and we have no way of figuring out how to fix the array
3025 * that we have allocated then....
3026 */
3027 for_each_cpu(i) {
3028 int node = cpu_to_node(i);
3029
3030 if (node_online(node))
3031 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3032 else
3033 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003034
3035 if (!pdata->ptrs[i])
3036 goto unwind_oom;
3037 memset(pdata->ptrs[i], 0, size);
3038 }
3039
3040 /* Catch derefs w/o wrappers */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003041 return (void *)(~(unsigned long)pdata);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003042
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003043 unwind_oom:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003044 while (--i >= 0) {
3045 if (!cpu_possible(i))
3046 continue;
3047 kfree(pdata->ptrs[i]);
3048 }
3049 kfree(pdata);
3050 return NULL;
3051}
3052EXPORT_SYMBOL(__alloc_percpu);
3053#endif
3054
3055/**
3056 * kmem_cache_free - Deallocate an object
3057 * @cachep: The cache the allocation was from.
3058 * @objp: The previously allocated object.
3059 *
3060 * Free an object which was previously allocated from this
3061 * cache.
3062 */
3063void kmem_cache_free(kmem_cache_t *cachep, void *objp)
3064{
3065 unsigned long flags;
3066
3067 local_irq_save(flags);
3068 __cache_free(cachep, objp);
3069 local_irq_restore(flags);
3070}
3071EXPORT_SYMBOL(kmem_cache_free);
3072
3073/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07003074 * kfree - free previously allocated memory
3075 * @objp: pointer returned by kmalloc.
3076 *
Pekka Enberg80e93ef2005-09-09 13:10:16 -07003077 * If @objp is NULL, no operation is performed.
3078 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07003079 * Don't free memory not originally allocated by kmalloc()
3080 * or you will run into trouble.
3081 */
3082void kfree(const void *objp)
3083{
3084 kmem_cache_t *c;
3085 unsigned long flags;
3086
3087 if (unlikely(!objp))
3088 return;
3089 local_irq_save(flags);
3090 kfree_debugcheck(objp);
Pekka Enberg065d41c2005-11-13 16:06:46 -08003091 c = page_get_cache(virt_to_page(objp));
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003092 mutex_debug_check_no_locks_freed(objp, obj_size(c));
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003093 __cache_free(c, (void *)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003094 local_irq_restore(flags);
3095}
3096EXPORT_SYMBOL(kfree);
3097
3098#ifdef CONFIG_SMP
3099/**
3100 * free_percpu - free previously allocated percpu memory
3101 * @objp: pointer returned by alloc_percpu.
3102 *
3103 * Don't free memory not originally allocated by alloc_percpu()
3104 * The complemented objp is to check for that.
3105 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003106void free_percpu(const void *objp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003107{
3108 int i;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003109 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003110
Christoph Lametere498be72005-09-09 13:03:32 -07003111 /*
3112 * We allocate for all cpus so we cannot use for online cpu here.
3113 */
3114 for_each_cpu(i)
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003115 kfree(p->ptrs[i]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003116 kfree(p);
3117}
3118EXPORT_SYMBOL(free_percpu);
3119#endif
3120
3121unsigned int kmem_cache_size(kmem_cache_t *cachep)
3122{
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003123 return obj_size(cachep);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003124}
3125EXPORT_SYMBOL(kmem_cache_size);
3126
Arnaldo Carvalho de Melo19449722005-06-18 22:46:19 -07003127const char *kmem_cache_name(kmem_cache_t *cachep)
3128{
3129 return cachep->name;
3130}
3131EXPORT_SYMBOL_GPL(kmem_cache_name);
3132
Christoph Lametere498be72005-09-09 13:03:32 -07003133/*
3134 * This initializes kmem_list3 for all nodes.
3135 */
3136static int alloc_kmemlist(kmem_cache_t *cachep)
3137{
3138 int node;
3139 struct kmem_list3 *l3;
3140 int err = 0;
3141
3142 for_each_online_node(node) {
3143 struct array_cache *nc = NULL, *new;
3144 struct array_cache **new_alien = NULL;
3145#ifdef CONFIG_NUMA
3146 if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
3147 goto fail;
3148#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003149 if (!(new = alloc_arraycache(node, (cachep->shared *
3150 cachep->batchcount),
3151 0xbaadf00d)))
Christoph Lametere498be72005-09-09 13:03:32 -07003152 goto fail;
3153 if ((l3 = cachep->nodelists[node])) {
3154
3155 spin_lock_irq(&l3->list_lock);
3156
3157 if ((nc = cachep->nodelists[node]->shared))
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003158 free_block(cachep, nc->entry, nc->avail, node);
Christoph Lametere498be72005-09-09 13:03:32 -07003159
3160 l3->shared = new;
3161 if (!cachep->nodelists[node]->alien) {
3162 l3->alien = new_alien;
3163 new_alien = NULL;
3164 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003165 l3->free_limit = (1 + nr_cpus_node(node)) *
3166 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003167 spin_unlock_irq(&l3->list_lock);
3168 kfree(nc);
3169 free_alien_cache(new_alien);
3170 continue;
3171 }
3172 if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003173 GFP_KERNEL, node)))
Christoph Lametere498be72005-09-09 13:03:32 -07003174 goto fail;
3175
3176 kmem_list3_init(l3);
3177 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003178 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
Christoph Lametere498be72005-09-09 13:03:32 -07003179 l3->shared = new;
3180 l3->alien = new_alien;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003181 l3->free_limit = (1 + nr_cpus_node(node)) *
3182 cachep->batchcount + cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003183 cachep->nodelists[node] = l3;
3184 }
3185 return err;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003186 fail:
Christoph Lametere498be72005-09-09 13:03:32 -07003187 err = -ENOMEM;
3188 return err;
3189}
3190
Linus Torvalds1da177e2005-04-16 15:20:36 -07003191struct ccupdate_struct {
3192 kmem_cache_t *cachep;
3193 struct array_cache *new[NR_CPUS];
3194};
3195
3196static void do_ccupdate_local(void *info)
3197{
3198 struct ccupdate_struct *new = (struct ccupdate_struct *)info;
3199 struct array_cache *old;
3200
3201 check_irq_off();
3202 old = ac_data(new->cachep);
Christoph Lametere498be72005-09-09 13:03:32 -07003203
Linus Torvalds1da177e2005-04-16 15:20:36 -07003204 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3205 new->new[smp_processor_id()] = old;
3206}
3207
Linus Torvalds1da177e2005-04-16 15:20:36 -07003208static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003209 int shared)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003210{
3211 struct ccupdate_struct new;
Christoph Lametere498be72005-09-09 13:03:32 -07003212 int i, err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003213
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003214 memset(&new.new, 0, sizeof(new.new));
Christoph Lametere498be72005-09-09 13:03:32 -07003215 for_each_online_cpu(i) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003216 new.new[i] =
3217 alloc_arraycache(cpu_to_node(i), limit, batchcount);
Christoph Lametere498be72005-09-09 13:03:32 -07003218 if (!new.new[i]) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003219 for (i--; i >= 0; i--)
3220 kfree(new.new[i]);
Christoph Lametere498be72005-09-09 13:03:32 -07003221 return -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003222 }
3223 }
3224 new.cachep = cachep;
3225
3226 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
Christoph Lametere498be72005-09-09 13:03:32 -07003227
Linus Torvalds1da177e2005-04-16 15:20:36 -07003228 check_irq_on();
3229 spin_lock_irq(&cachep->spinlock);
3230 cachep->batchcount = batchcount;
3231 cachep->limit = limit;
Christoph Lametere498be72005-09-09 13:03:32 -07003232 cachep->shared = shared;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003233 spin_unlock_irq(&cachep->spinlock);
3234
Christoph Lametere498be72005-09-09 13:03:32 -07003235 for_each_online_cpu(i) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003236 struct array_cache *ccold = new.new[i];
3237 if (!ccold)
3238 continue;
Christoph Lametere498be72005-09-09 13:03:32 -07003239 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Christoph Lameterff694162005-09-22 21:44:02 -07003240 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
Christoph Lametere498be72005-09-09 13:03:32 -07003241 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003242 kfree(ccold);
3243 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003244
Christoph Lametere498be72005-09-09 13:03:32 -07003245 err = alloc_kmemlist(cachep);
3246 if (err) {
3247 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003248 cachep->name, -err);
Christoph Lametere498be72005-09-09 13:03:32 -07003249 BUG();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003250 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003251 return 0;
3252}
3253
Linus Torvalds1da177e2005-04-16 15:20:36 -07003254static void enable_cpucache(kmem_cache_t *cachep)
3255{
3256 int err;
3257 int limit, shared;
3258
3259 /* The head array serves three purposes:
3260 * - create a LIFO ordering, i.e. return objects that are cache-warm
3261 * - reduce the number of spinlock operations.
3262 * - reduce the number of linked list operations on the slab and
3263 * bufctl chains: array operations are cheaper.
3264 * The numbers are guessed, we should auto-tune as described by
3265 * Bonwick.
3266 */
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003267 if (cachep->buffer_size > 131072)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003268 limit = 1;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003269 else if (cachep->buffer_size > PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003270 limit = 8;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003271 else if (cachep->buffer_size > 1024)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003272 limit = 24;
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003273 else if (cachep->buffer_size > 256)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003274 limit = 54;
3275 else
3276 limit = 120;
3277
3278 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3279 * allocation behaviour: Most allocs on one cpu, most free operations
3280 * on another cpu. For these cases, an efficient object passing between
3281 * cpus is necessary. This is provided by a shared array. The array
3282 * replaces Bonwick's magazine layer.
3283 * On uniprocessor, it's functionally equivalent (but less efficient)
3284 * to a larger limit. Thus disabled by default.
3285 */
3286 shared = 0;
3287#ifdef CONFIG_SMP
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003288 if (cachep->buffer_size <= PAGE_SIZE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003289 shared = 8;
3290#endif
3291
3292#if DEBUG
3293 /* With debugging enabled, large batchcount lead to excessively
3294 * long periods with disabled local interrupts. Limit the
3295 * batchcount
3296 */
3297 if (limit > 32)
3298 limit = 32;
3299#endif
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003300 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003301 if (err)
3302 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003303 cachep->name, -err);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003304}
3305
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003306static void drain_array_locked(kmem_cache_t *cachep, struct array_cache *ac,
3307 int force, int node)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003308{
3309 int tofree;
3310
Christoph Lametere498be72005-09-09 13:03:32 -07003311 check_spinlock_acquired_node(cachep, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003312 if (ac->touched && !force) {
3313 ac->touched = 0;
3314 } else if (ac->avail) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003315 tofree = force ? ac->avail : (ac->limit + 4) / 5;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003316 if (tofree > ac->avail) {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003317 tofree = (ac->avail + 1) / 2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003318 }
Christoph Lameterff694162005-09-22 21:44:02 -07003319 free_block(cachep, ac->entry, tofree, node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003320 ac->avail -= tofree;
Christoph Lametere498be72005-09-09 13:03:32 -07003321 memmove(ac->entry, &(ac->entry[tofree]),
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003322 sizeof(void *) * ac->avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003323 }
3324}
3325
3326/**
3327 * cache_reap - Reclaim memory from caches.
Randy Dunlap1e5d5332005-11-07 01:01:06 -08003328 * @unused: unused parameter
Linus Torvalds1da177e2005-04-16 15:20:36 -07003329 *
3330 * Called from workqueue/eventd every few seconds.
3331 * Purpose:
3332 * - clear the per-cpu caches for this CPU.
3333 * - return freeable pages to the main free memory pool.
3334 *
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003335 * If we cannot acquire the cache chain mutex then just give up - we'll
Linus Torvalds1da177e2005-04-16 15:20:36 -07003336 * try again on the next iteration.
3337 */
3338static void cache_reap(void *unused)
3339{
3340 struct list_head *walk;
Christoph Lametere498be72005-09-09 13:03:32 -07003341 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003342
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003343 if (!mutex_trylock(&cache_chain_mutex)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003344 /* Give up. Setup the next iteration. */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003345 schedule_delayed_work(&__get_cpu_var(reap_work),
3346 REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003347 return;
3348 }
3349
3350 list_for_each(walk, &cache_chain) {
3351 kmem_cache_t *searchp;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003352 struct list_head *p;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003353 int tofree;
3354 struct slab *slabp;
3355
3356 searchp = list_entry(walk, kmem_cache_t, next);
3357
3358 if (searchp->flags & SLAB_NO_REAP)
3359 goto next;
3360
3361 check_irq_on();
3362
Christoph Lametere498be72005-09-09 13:03:32 -07003363 l3 = searchp->nodelists[numa_node_id()];
3364 if (l3->alien)
3365 drain_alien_cache(searchp, l3);
3366 spin_lock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003367
Christoph Lametere498be72005-09-09 13:03:32 -07003368 drain_array_locked(searchp, ac_data(searchp), 0,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003369 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07003370
Christoph Lametere498be72005-09-09 13:03:32 -07003371 if (time_after(l3->next_reap, jiffies))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003372 goto next_unlock;
3373
Christoph Lametere498be72005-09-09 13:03:32 -07003374 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003375
Christoph Lametere498be72005-09-09 13:03:32 -07003376 if (l3->shared)
3377 drain_array_locked(searchp, l3->shared, 0,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003378 numa_node_id());
Linus Torvalds1da177e2005-04-16 15:20:36 -07003379
Christoph Lametere498be72005-09-09 13:03:32 -07003380 if (l3->free_touched) {
3381 l3->free_touched = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003382 goto next_unlock;
3383 }
3384
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003385 tofree =
3386 (l3->free_limit + 5 * searchp->num -
3387 1) / (5 * searchp->num);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003388 do {
Christoph Lametere498be72005-09-09 13:03:32 -07003389 p = l3->slabs_free.next;
3390 if (p == &(l3->slabs_free))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003391 break;
3392
3393 slabp = list_entry(p, struct slab, list);
3394 BUG_ON(slabp->inuse);
3395 list_del(&slabp->list);
3396 STATS_INC_REAPED(searchp);
3397
3398 /* Safe to drop the lock. The slab is no longer
3399 * linked to the cache.
3400 * searchp cannot disappear, we hold
3401 * cache_chain_lock
3402 */
Christoph Lametere498be72005-09-09 13:03:32 -07003403 l3->free_objects -= searchp->num;
3404 spin_unlock_irq(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003405 slab_destroy(searchp, slabp);
Christoph Lametere498be72005-09-09 13:03:32 -07003406 spin_lock_irq(&l3->list_lock);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003407 } while (--tofree > 0);
3408 next_unlock:
Christoph Lametere498be72005-09-09 13:03:32 -07003409 spin_unlock_irq(&l3->list_lock);
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003410 next:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003411 cond_resched();
3412 }
3413 check_irq_on();
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003414 mutex_unlock(&cache_chain_mutex);
Christoph Lameter4ae7c032005-06-21 17:14:57 -07003415 drain_remote_pages();
Linus Torvalds1da177e2005-04-16 15:20:36 -07003416 /* Setup the next iteration */
Manfred Spraulcd61ef62005-11-07 00:58:02 -08003417 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003418}
3419
3420#ifdef CONFIG_PROC_FS
3421
Pekka Enberg85289f92006-01-08 01:00:36 -08003422static void print_slabinfo_header(struct seq_file *m)
3423{
3424 /*
3425 * Output format version, so at least we can change it
3426 * without _too_ many complaints.
3427 */
3428#if STATS
3429 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3430#else
3431 seq_puts(m, "slabinfo - version: 2.1\n");
3432#endif
3433 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3434 "<objperslab> <pagesperslab>");
3435 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3436 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3437#if STATS
3438 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3439 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3440 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3441#endif
3442 seq_putc(m, '\n');
3443}
3444
Linus Torvalds1da177e2005-04-16 15:20:36 -07003445static void *s_start(struct seq_file *m, loff_t *pos)
3446{
3447 loff_t n = *pos;
3448 struct list_head *p;
3449
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003450 mutex_lock(&cache_chain_mutex);
Pekka Enberg85289f92006-01-08 01:00:36 -08003451 if (!n)
3452 print_slabinfo_header(m);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003453 p = cache_chain.next;
3454 while (n--) {
3455 p = p->next;
3456 if (p == &cache_chain)
3457 return NULL;
3458 }
3459 return list_entry(p, kmem_cache_t, next);
3460}
3461
3462static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3463{
3464 kmem_cache_t *cachep = p;
3465 ++*pos;
3466 return cachep->next.next == &cache_chain ? NULL
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003467 : list_entry(cachep->next.next, kmem_cache_t, next);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003468}
3469
3470static void s_stop(struct seq_file *m, void *p)
3471{
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003472 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003473}
3474
3475static int s_show(struct seq_file *m, void *p)
3476{
3477 kmem_cache_t *cachep = p;
3478 struct list_head *q;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003479 struct slab *slabp;
3480 unsigned long active_objs;
3481 unsigned long num_objs;
3482 unsigned long active_slabs = 0;
3483 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003484 const char *name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003485 char *error = NULL;
Christoph Lametere498be72005-09-09 13:03:32 -07003486 int node;
3487 struct kmem_list3 *l3;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003488
3489 check_irq_on();
3490 spin_lock_irq(&cachep->spinlock);
3491 active_objs = 0;
3492 num_slabs = 0;
Christoph Lametere498be72005-09-09 13:03:32 -07003493 for_each_online_node(node) {
3494 l3 = cachep->nodelists[node];
3495 if (!l3)
3496 continue;
3497
3498 spin_lock(&l3->list_lock);
3499
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003500 list_for_each(q, &l3->slabs_full) {
Christoph Lametere498be72005-09-09 13:03:32 -07003501 slabp = list_entry(q, struct slab, list);
3502 if (slabp->inuse != cachep->num && !error)
3503 error = "slabs_full accounting error";
3504 active_objs += cachep->num;
3505 active_slabs++;
3506 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003507 list_for_each(q, &l3->slabs_partial) {
Christoph Lametere498be72005-09-09 13:03:32 -07003508 slabp = list_entry(q, struct slab, list);
3509 if (slabp->inuse == cachep->num && !error)
3510 error = "slabs_partial inuse accounting error";
3511 if (!slabp->inuse && !error)
3512 error = "slabs_partial/inuse accounting error";
3513 active_objs += slabp->inuse;
3514 active_slabs++;
3515 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003516 list_for_each(q, &l3->slabs_free) {
Christoph Lametere498be72005-09-09 13:03:32 -07003517 slabp = list_entry(q, struct slab, list);
3518 if (slabp->inuse && !error)
3519 error = "slabs_free/inuse accounting error";
3520 num_slabs++;
3521 }
3522 free_objects += l3->free_objects;
3523 shared_avail += l3->shared->avail;
3524
3525 spin_unlock(&l3->list_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003526 }
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003527 num_slabs += active_slabs;
3528 num_objs = num_slabs * cachep->num;
Christoph Lametere498be72005-09-09 13:03:32 -07003529 if (num_objs - active_objs != free_objects && !error)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003530 error = "free_objects accounting error";
3531
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003532 name = cachep->name;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003533 if (error)
3534 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3535
3536 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003537 name, active_objs, num_objs, cachep->buffer_size,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003538 cachep->num, (1 << cachep->gfporder));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003539 seq_printf(m, " : tunables %4u %4u %4u",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003540 cachep->limit, cachep->batchcount, cachep->shared);
Christoph Lametere498be72005-09-09 13:03:32 -07003541 seq_printf(m, " : slabdata %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003542 active_slabs, num_slabs, shared_avail);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003543#if STATS
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003544 { /* list3 stats */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003545 unsigned long high = cachep->high_mark;
3546 unsigned long allocs = cachep->num_allocations;
3547 unsigned long grown = cachep->grown;
3548 unsigned long reaped = cachep->reaped;
3549 unsigned long errors = cachep->errors;
3550 unsigned long max_freeable = cachep->max_freeable;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003551 unsigned long node_allocs = cachep->node_allocs;
Christoph Lametere498be72005-09-09 13:03:32 -07003552 unsigned long node_frees = cachep->node_frees;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003553
Christoph Lametere498be72005-09-09 13:03:32 -07003554 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003555 %4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003556 }
3557 /* cpu stats */
3558 {
3559 unsigned long allochit = atomic_read(&cachep->allochit);
3560 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3561 unsigned long freehit = atomic_read(&cachep->freehit);
3562 unsigned long freemiss = atomic_read(&cachep->freemiss);
3563
3564 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003565 allochit, allocmiss, freehit, freemiss);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003566 }
3567#endif
3568 seq_putc(m, '\n');
3569 spin_unlock_irq(&cachep->spinlock);
3570 return 0;
3571}
3572
3573/*
3574 * slabinfo_op - iterator that generates /proc/slabinfo
3575 *
3576 * Output layout:
3577 * cache-name
3578 * num-active-objs
3579 * total-objs
3580 * object size
3581 * num-active-slabs
3582 * total-slabs
3583 * num-pages-per-slab
3584 * + further values on SMP and with statistics enabled
3585 */
3586
3587struct seq_operations slabinfo_op = {
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003588 .start = s_start,
3589 .next = s_next,
3590 .stop = s_stop,
3591 .show = s_show,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003592};
3593
3594#define MAX_SLABINFO_WRITE 128
3595/**
3596 * slabinfo_write - Tuning for the slab allocator
3597 * @file: unused
3598 * @buffer: user buffer
3599 * @count: data length
3600 * @ppos: unused
3601 */
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003602ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3603 size_t count, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003604{
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003605 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003606 int limit, batchcount, shared, res;
3607 struct list_head *p;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003608
Linus Torvalds1da177e2005-04-16 15:20:36 -07003609 if (count > MAX_SLABINFO_WRITE)
3610 return -EINVAL;
3611 if (copy_from_user(&kbuf, buffer, count))
3612 return -EFAULT;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003613 kbuf[MAX_SLABINFO_WRITE] = '\0';
Linus Torvalds1da177e2005-04-16 15:20:36 -07003614
3615 tmp = strchr(kbuf, ' ');
3616 if (!tmp)
3617 return -EINVAL;
3618 *tmp = '\0';
3619 tmp++;
3620 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3621 return -EINVAL;
3622
3623 /* Find the cache in the chain of caches. */
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003624 mutex_lock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003625 res = -EINVAL;
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003626 list_for_each(p, &cache_chain) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003627 kmem_cache_t *cachep = list_entry(p, kmem_cache_t, next);
3628
3629 if (!strcmp(cachep->name, kbuf)) {
3630 if (limit < 1 ||
3631 batchcount < 1 ||
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003632 batchcount > limit || shared < 0) {
Christoph Lametere498be72005-09-09 13:03:32 -07003633 res = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003634 } else {
Christoph Lametere498be72005-09-09 13:03:32 -07003635 res = do_tune_cpucache(cachep, limit,
Pekka Enbergb28a02d2006-01-08 01:00:37 -08003636 batchcount, shared);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003637 }
3638 break;
3639 }
3640 }
Ingo Molnarfc0abb12006-01-18 17:42:33 -08003641 mutex_unlock(&cache_chain_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003642 if (res >= 0)
3643 res = count;
3644 return res;
3645}
3646#endif
3647
Manfred Spraul00e145b2005-09-03 15:55:07 -07003648/**
3649 * ksize - get the actual amount of memory allocated for a given object
3650 * @objp: Pointer to the object
3651 *
3652 * kmalloc may internally round up allocations and return more memory
3653 * than requested. ksize() can be used to determine the actual amount of
3654 * memory allocated. The caller may use this additional memory, even though
3655 * a smaller amount of memory was initially specified with the kmalloc call.
3656 * The caller must guarantee that objp points to a valid object previously
3657 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3658 * must not be freed during the duration of the call.
3659 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003660unsigned int ksize(const void *objp)
3661{
Manfred Spraul00e145b2005-09-03 15:55:07 -07003662 if (unlikely(objp == NULL))
3663 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003664
Manfred Spraul3dafccf2006-02-01 03:05:42 -08003665 return obj_size(page_get_cache(virt_to_page(objp)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003666}