blob: 521a0f8974ac688b20c083e1e71c410b2f26252a [file] [log] [blame]
Linus Walleije8689e62010-09-28 15:57:37 +02001/*
2 * linux/amba/pl08x.h - ARM PrimeCell DMA Controller driver
3 *
4 * Copyright (C) 2005 ARM Ltd
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * pl08x information required by platform code
12 *
13 * Please credit ARM.com
14 * Documentation: ARM DDI 0196D
15 *
16 */
17
18#ifndef AMBA_PL08X_H
19#define AMBA_PL08X_H
20
21/* We need sizes of structs from this header */
22#include <linux/dmaengine.h>
23#include <linux/interrupt.h>
24
25/**
26 * struct pl08x_channel_data - data structure to pass info between
27 * platform and PL08x driver regarding channel configuration
28 * @bus_id: name of this device channel, not just a device name since
29 * devices may have more than one channel e.g. "foo_tx"
30 * @min_signal: the minimum DMA signal number to be muxed in for this
31 * channel (for platforms supporting muxed signals). If you have
32 * static assignments, make sure this is set to the assigned signal
33 * number, PL08x have 16 possible signals in number 0 thru 15 so
34 * when these are not enough they often get muxed (in hardware)
35 * disabling simultaneous use of the same channel for two devices.
36 * @max_signal: the maximum DMA signal number to be muxed in for
37 * the channel. Set to the same as min_signal for
38 * devices with static assignments
39 * @muxval: a number usually used to poke into some mux regiser to
40 * mux in the signal to this channel
41 * @cctl_opt: default options for the channel control register
42 * @addr: source/target address in physical memory for this DMA channel,
43 * can be the address of a FIFO register for burst requests for example.
44 * This can be left undefined if the PrimeCell API is used for configuring
45 * this.
46 * @circular_buffer: whether the buffer passed in is circular and
47 * shall simply be looped round round (like a record baby round
48 * round round round)
49 * @single: the device connected to this channel will request single
50 * DMA transfers, not bursts. (Bursts are default.)
51 */
52struct pl08x_channel_data {
53 char *bus_id;
54 int min_signal;
55 int max_signal;
56 u32 muxval;
57 u32 cctl;
58 u32 ccfg;
59 dma_addr_t addr;
60 bool circular_buffer;
61 bool single;
62};
63
64/**
65 * Struct pl08x_bus_data - information of source or destination
66 * busses for a transfer
67 * @addr: current address
68 * @maxwidth: the maximum width of a transfer on this bus
69 * @buswidth: the width of this bus in bytes: 1, 2 or 4
70 * @fill_bytes: bytes required to fill to the next bus memory
71 * boundary
72 */
73struct pl08x_bus_data {
74 dma_addr_t addr;
75 u8 maxwidth;
76 u8 buswidth;
77 u32 fill_bytes;
78};
79
80/**
81 * struct pl08x_phy_chan - holder for the physical channels
82 * @id: physical index to this channel
83 * @lock: a lock to use when altering an instance of this struct
84 * @signal: the physical signal (aka channel) serving this
85 * physical channel right now
86 * @serving: the virtual channel currently being served by this
87 * physical channel
88 */
89struct pl08x_phy_chan {
90 unsigned int id;
91 void __iomem *base;
92 spinlock_t lock;
93 int signal;
94 struct pl08x_dma_chan *serving;
95 u32 csrc;
96 u32 cdst;
97 u32 clli;
98 u32 cctl;
99 u32 ccfg;
100};
101
102/**
103 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
104 * @llis_bus: DMA memory address (physical) start for the LLIs
105 * @llis_va: virtual memory address start for the LLIs
106 */
107struct pl08x_txd {
108 struct dma_async_tx_descriptor tx;
109 struct list_head node;
110 enum dma_data_direction direction;
111 struct pl08x_bus_data srcbus;
112 struct pl08x_bus_data dstbus;
113 int len;
114 dma_addr_t llis_bus;
115 void *llis_va;
116 struct pl08x_channel_data *cd;
117 bool active;
118 /*
119 * Settings to be put into the physical channel when we
120 * trigger this txd
121 */
122 u32 csrc;
123 u32 cdst;
124 u32 clli;
125 u32 cctl;
126};
127
128/**
129 * struct pl08x_dma_chan_state - holds the PL08x specific virtual
130 * channel states
131 * @PL08X_CHAN_IDLE: the channel is idle
132 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
133 * channel and is running a transfer on it
134 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
135 * channel, but the transfer is currently paused
136 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
137 * channel to become available (only pertains to memcpy channels)
138 */
139enum pl08x_dma_chan_state {
140 PL08X_CHAN_IDLE,
141 PL08X_CHAN_RUNNING,
142 PL08X_CHAN_PAUSED,
143 PL08X_CHAN_WAITING,
144};
145
146/**
147 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
148 * @chan: wrappped abstract channel
149 * @phychan: the physical channel utilized by this channel, if there is one
150 * @tasklet: tasklet scheduled by the IRQ to handle actual work etc
151 * @name: name of channel
152 * @cd: channel platform data
153 * @runtime_addr: address for RX/TX according to the runtime config
154 * @runtime_direction: current direction of this channel according to
155 * runtime config
156 * @lc: last completed transaction on this channel
157 * @desc_list: queued transactions pending on this channel
158 * @at: active transaction on this channel
159 * @lockflags: sometimes we let a lock last between two function calls,
160 * especially prep/submit, and then we need to store the IRQ flags
161 * in the channel state, here
162 * @lock: a lock for this channel data
163 * @host: a pointer to the host (internal use)
164 * @state: whether the channel is idle, paused, running etc
165 * @slave: whether this channel is a device (slave) or for memcpy
166 * @waiting: a TX descriptor on this channel which is waiting for
167 * a physical channel to become available
168 */
169struct pl08x_dma_chan {
170 struct dma_chan chan;
171 struct pl08x_phy_chan *phychan;
172 struct tasklet_struct tasklet;
173 char *name;
174 struct pl08x_channel_data *cd;
175 dma_addr_t runtime_addr;
176 enum dma_data_direction runtime_direction;
177 atomic_t last_issued;
178 dma_cookie_t lc;
179 struct list_head desc_list;
180 struct pl08x_txd *at;
181 unsigned long lockflags;
182 spinlock_t lock;
183 void *host;
184 enum pl08x_dma_chan_state state;
185 bool slave;
186 struct pl08x_txd *waiting;
187};
188
189/**
190 * struct pl08x_platform_data - the platform configuration for the
191 * PL08x PrimeCells.
192 * @slave_channels: the channels defined for the different devices on the
193 * platform, all inclusive, including multiplexed channels. The available
194 * physical channels will be multiplexed around these signals as they
195 * are requested, just enumerate all possible channels.
196 * @get_signal: request a physical signal to be used for a DMA
197 * transfer immediately: if there is some multiplexing or similar blocking
198 * the use of the channel the transfer can be denied by returning
199 * less than zero, else it returns the allocated signal number
200 * @put_signal: indicate to the platform that this physical signal is not
201 * running any DMA transfer and multiplexing can be recycled
202 * @bus_bit_lli: Bit[0] of the address indicated which AHB bus master the
203 * LLI addresses are on 0/1 Master 1/2.
204 */
205struct pl08x_platform_data {
206 struct pl08x_channel_data *slave_channels;
207 unsigned int num_slave_channels;
208 struct pl08x_channel_data memcpy_channel;
209 int (*get_signal)(struct pl08x_dma_chan *);
210 void (*put_signal)(struct pl08x_dma_chan *);
211};
212
213#ifdef CONFIG_AMBA_PL08X
214bool pl08x_filter_id(struct dma_chan *chan, void *chan_id);
215#else
216static inline bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
217{
218 return false;
219}
220#endif
221
222#endif /* AMBA_PL08X_H */