Bob Nelson | 1474855 | 2007-07-20 21:39:53 +0200 | [diff] [blame] | 1 | /* |
| 2 | * Cell Broadband Engine OProfile Support |
| 3 | * |
| 4 | * (C) Copyright IBM Corporation 2006 |
| 5 | * |
| 6 | * Authors: Maynard Johnson <maynardj@us.ibm.com> |
| 7 | * Carl Love <carll@us.ibm.com> |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or |
| 10 | * modify it under the terms of the GNU General Public License |
| 11 | * as published by the Free Software Foundation; either version |
| 12 | * 2 of the License, or (at your option) any later version. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/hrtimer.h> |
| 16 | #include <linux/smp.h> |
| 17 | #include <linux/slab.h> |
| 18 | #include <asm/cell-pmu.h> |
| 19 | #include "pr_util.h" |
| 20 | |
| 21 | #define TRACE_ARRAY_SIZE 1024 |
| 22 | #define SCALE_SHIFT 14 |
| 23 | |
| 24 | static u32 *samples; |
| 25 | |
| 26 | static int spu_prof_running; |
| 27 | static unsigned int profiling_interval; |
| 28 | |
| 29 | #define NUM_SPU_BITS_TRBUF 16 |
| 30 | #define SPUS_PER_TB_ENTRY 4 |
| 31 | #define SPUS_PER_NODE 8 |
| 32 | |
| 33 | #define SPU_PC_MASK 0xFFFF |
| 34 | |
| 35 | static DEFINE_SPINLOCK(sample_array_lock); |
| 36 | unsigned long sample_array_lock_flags; |
| 37 | |
| 38 | void set_spu_profiling_frequency(unsigned int freq_khz, unsigned int cycles_reset) |
| 39 | { |
| 40 | unsigned long ns_per_cyc; |
| 41 | |
| 42 | if (!freq_khz) |
| 43 | freq_khz = ppc_proc_freq/1000; |
| 44 | |
| 45 | /* To calculate a timeout in nanoseconds, the basic |
| 46 | * formula is ns = cycles_reset * (NSEC_PER_SEC / cpu frequency). |
| 47 | * To avoid floating point math, we use the scale math |
| 48 | * technique as described in linux/jiffies.h. We use |
| 49 | * a scale factor of SCALE_SHIFT, which provides 4 decimal places |
| 50 | * of precision. This is close enough for the purpose at hand. |
| 51 | * |
| 52 | * The value of the timeout should be small enough that the hw |
| 53 | * trace buffer will not get more then about 1/3 full for the |
| 54 | * maximum user specified (the LFSR value) hw sampling frequency. |
| 55 | * This is to ensure the trace buffer will never fill even if the |
| 56 | * kernel thread scheduling varies under a heavy system load. |
| 57 | */ |
| 58 | |
| 59 | ns_per_cyc = (USEC_PER_SEC << SCALE_SHIFT)/freq_khz; |
| 60 | profiling_interval = (ns_per_cyc * cycles_reset) >> SCALE_SHIFT; |
| 61 | |
| 62 | } |
| 63 | |
| 64 | /* |
| 65 | * Extract SPU PC from trace buffer entry |
| 66 | */ |
| 67 | static void spu_pc_extract(int cpu, int entry) |
| 68 | { |
| 69 | /* the trace buffer is 128 bits */ |
| 70 | u64 trace_buffer[2]; |
| 71 | u64 spu_mask; |
| 72 | int spu; |
| 73 | |
| 74 | spu_mask = SPU_PC_MASK; |
| 75 | |
| 76 | /* Each SPU PC is 16 bits; hence, four spus in each of |
| 77 | * the two 64-bit buffer entries that make up the |
| 78 | * 128-bit trace_buffer entry. Process two 64-bit values |
| 79 | * simultaneously. |
| 80 | * trace[0] SPU PC contents are: 0 1 2 3 |
| 81 | * trace[1] SPU PC contents are: 4 5 6 7 |
| 82 | */ |
| 83 | |
| 84 | cbe_read_trace_buffer(cpu, trace_buffer); |
| 85 | |
| 86 | for (spu = SPUS_PER_TB_ENTRY-1; spu >= 0; spu--) { |
| 87 | /* spu PC trace entry is upper 16 bits of the |
| 88 | * 18 bit SPU program counter |
| 89 | */ |
| 90 | samples[spu * TRACE_ARRAY_SIZE + entry] |
| 91 | = (spu_mask & trace_buffer[0]) << 2; |
| 92 | samples[(spu + SPUS_PER_TB_ENTRY) * TRACE_ARRAY_SIZE + entry] |
| 93 | = (spu_mask & trace_buffer[1]) << 2; |
| 94 | |
| 95 | trace_buffer[0] = trace_buffer[0] >> NUM_SPU_BITS_TRBUF; |
| 96 | trace_buffer[1] = trace_buffer[1] >> NUM_SPU_BITS_TRBUF; |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | static int cell_spu_pc_collection(int cpu) |
| 101 | { |
| 102 | u32 trace_addr; |
| 103 | int entry; |
| 104 | |
| 105 | /* process the collected SPU PC for the node */ |
| 106 | |
| 107 | entry = 0; |
| 108 | |
| 109 | trace_addr = cbe_read_pm(cpu, trace_address); |
| 110 | while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) { |
| 111 | /* there is data in the trace buffer to process */ |
| 112 | spu_pc_extract(cpu, entry); |
| 113 | |
| 114 | entry++; |
| 115 | |
| 116 | if (entry >= TRACE_ARRAY_SIZE) |
| 117 | /* spu_samples is full */ |
| 118 | break; |
| 119 | |
| 120 | trace_addr = cbe_read_pm(cpu, trace_address); |
| 121 | } |
| 122 | |
| 123 | return entry; |
| 124 | } |
| 125 | |
| 126 | |
| 127 | static enum hrtimer_restart profile_spus(struct hrtimer *timer) |
| 128 | { |
| 129 | ktime_t kt; |
| 130 | int cpu, node, k, num_samples, spu_num; |
| 131 | |
| 132 | if (!spu_prof_running) |
| 133 | goto stop; |
| 134 | |
| 135 | for_each_online_cpu(cpu) { |
| 136 | if (cbe_get_hw_thread_id(cpu)) |
| 137 | continue; |
| 138 | |
| 139 | node = cbe_cpu_to_node(cpu); |
| 140 | |
| 141 | /* There should only be one kernel thread at a time processing |
| 142 | * the samples. In the very unlikely case that the processing |
| 143 | * is taking a very long time and multiple kernel threads are |
| 144 | * started to process the samples. Make sure only one kernel |
| 145 | * thread is working on the samples array at a time. The |
| 146 | * sample array must be loaded and then processed for a given |
| 147 | * cpu. The sample array is not per cpu. |
| 148 | */ |
| 149 | spin_lock_irqsave(&sample_array_lock, |
| 150 | sample_array_lock_flags); |
| 151 | num_samples = cell_spu_pc_collection(cpu); |
| 152 | |
| 153 | if (num_samples == 0) { |
| 154 | spin_unlock_irqrestore(&sample_array_lock, |
| 155 | sample_array_lock_flags); |
| 156 | continue; |
| 157 | } |
| 158 | |
| 159 | for (k = 0; k < SPUS_PER_NODE; k++) { |
| 160 | spu_num = k + (node * SPUS_PER_NODE); |
| 161 | spu_sync_buffer(spu_num, |
| 162 | samples + (k * TRACE_ARRAY_SIZE), |
| 163 | num_samples); |
| 164 | } |
| 165 | |
| 166 | spin_unlock_irqrestore(&sample_array_lock, |
| 167 | sample_array_lock_flags); |
| 168 | |
| 169 | } |
| 170 | smp_wmb(); /* insure spu event buffer updates are written */ |
| 171 | /* don't want events intermingled... */ |
| 172 | |
| 173 | kt = ktime_set(0, profiling_interval); |
| 174 | if (!spu_prof_running) |
| 175 | goto stop; |
| 176 | hrtimer_forward(timer, timer->base->get_time(), kt); |
| 177 | return HRTIMER_RESTART; |
| 178 | |
| 179 | stop: |
| 180 | printk(KERN_INFO "SPU_PROF: spu-prof timer ending\n"); |
| 181 | return HRTIMER_NORESTART; |
| 182 | } |
| 183 | |
| 184 | static struct hrtimer timer; |
| 185 | /* |
| 186 | * Entry point for SPU profiling. |
| 187 | * NOTE: SPU profiling is done system-wide, not per-CPU. |
| 188 | * |
| 189 | * cycles_reset is the count value specified by the user when |
| 190 | * setting up OProfile to count SPU_CYCLES. |
| 191 | */ |
| 192 | int start_spu_profiling(unsigned int cycles_reset) |
| 193 | { |
| 194 | ktime_t kt; |
| 195 | |
| 196 | pr_debug("timer resolution: %lu\n", TICK_NSEC); |
| 197 | kt = ktime_set(0, profiling_interval); |
| 198 | hrtimer_init(&timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| 199 | timer.expires = kt; |
| 200 | timer.function = profile_spus; |
| 201 | |
| 202 | /* Allocate arrays for collecting SPU PC samples */ |
| 203 | samples = kzalloc(SPUS_PER_NODE * |
| 204 | TRACE_ARRAY_SIZE * sizeof(u32), GFP_KERNEL); |
| 205 | |
| 206 | if (!samples) |
| 207 | return -ENOMEM; |
| 208 | |
| 209 | spu_prof_running = 1; |
| 210 | hrtimer_start(&timer, kt, HRTIMER_MODE_REL); |
| 211 | |
| 212 | return 0; |
| 213 | } |
| 214 | |
| 215 | void stop_spu_profiling(void) |
| 216 | { |
| 217 | spu_prof_running = 0; |
| 218 | hrtimer_cancel(&timer); |
| 219 | kfree(samples); |
| 220 | pr_debug("SPU_PROF: stop_spu_profiling issued\n"); |
| 221 | } |