Paul Walmsley | 0b96af6 | 2010-01-26 20:13:03 -0700 | [diff] [blame] | 1 | /* |
| 2 | * OMAP2/3/4 DPLL clock functions |
| 3 | * |
| 4 | * Copyright (C) 2005-2008 Texas Instruments, Inc. |
| 5 | * Copyright (C) 2004-2010 Nokia Corporation |
| 6 | * |
| 7 | * Contacts: |
| 8 | * Richard Woodruff <r-woodruff2@ti.com> |
| 9 | * Paul Walmsley |
| 10 | * |
| 11 | * This program is free software; you can redistribute it and/or modify |
| 12 | * it under the terms of the GNU General Public License version 2 as |
| 13 | * published by the Free Software Foundation. |
| 14 | */ |
| 15 | #undef DEBUG |
| 16 | |
| 17 | #include <linux/kernel.h> |
| 18 | #include <linux/errno.h> |
| 19 | #include <linux/clk.h> |
| 20 | #include <linux/io.h> |
| 21 | |
| 22 | #include <asm/div64.h> |
| 23 | |
| 24 | #include <plat/clock.h> |
| 25 | |
| 26 | #include "clock.h" |
| 27 | #include "cm.h" |
| 28 | #include "cm-regbits-24xx.h" |
| 29 | #include "cm-regbits-34xx.h" |
| 30 | |
| 31 | /* DPLL rate rounding: minimum DPLL multiplier, divider values */ |
Paul Walmsley | 93340a2 | 2010-02-22 22:09:12 -0700 | [diff] [blame] | 32 | #define DPLL_MIN_MULTIPLIER 2 |
Paul Walmsley | 0b96af6 | 2010-01-26 20:13:03 -0700 | [diff] [blame] | 33 | #define DPLL_MIN_DIVIDER 1 |
| 34 | |
| 35 | /* Possible error results from _dpll_test_mult */ |
| 36 | #define DPLL_MULT_UNDERFLOW -1 |
| 37 | |
| 38 | /* |
| 39 | * Scale factor to mitigate roundoff errors in DPLL rate rounding. |
| 40 | * The higher the scale factor, the greater the risk of arithmetic overflow, |
| 41 | * but the closer the rounded rate to the target rate. DPLL_SCALE_FACTOR |
| 42 | * must be a power of DPLL_SCALE_BASE. |
| 43 | */ |
| 44 | #define DPLL_SCALE_FACTOR 64 |
| 45 | #define DPLL_SCALE_BASE 2 |
| 46 | #define DPLL_ROUNDING_VAL ((DPLL_SCALE_BASE / 2) * \ |
| 47 | (DPLL_SCALE_FACTOR / DPLL_SCALE_BASE)) |
| 48 | |
| 49 | /* DPLL valid Fint frequency band limits - from 34xx TRM Section 4.7.6.2 */ |
| 50 | #define DPLL_FINT_BAND1_MIN 750000 |
| 51 | #define DPLL_FINT_BAND1_MAX 2100000 |
| 52 | #define DPLL_FINT_BAND2_MIN 7500000 |
| 53 | #define DPLL_FINT_BAND2_MAX 21000000 |
| 54 | |
| 55 | /* _dpll_test_fint() return codes */ |
| 56 | #define DPLL_FINT_UNDERFLOW -1 |
| 57 | #define DPLL_FINT_INVALID -2 |
| 58 | |
| 59 | /* Private functions */ |
| 60 | |
| 61 | /* |
| 62 | * _dpll_test_fint - test whether an Fint value is valid for the DPLL |
| 63 | * @clk: DPLL struct clk to test |
| 64 | * @n: divider value (N) to test |
| 65 | * |
| 66 | * Tests whether a particular divider @n will result in a valid DPLL |
| 67 | * internal clock frequency Fint. See the 34xx TRM 4.7.6.2 "DPLL Jitter |
| 68 | * Correction". Returns 0 if OK, -1 if the enclosing loop can terminate |
| 69 | * (assuming that it is counting N upwards), or -2 if the enclosing loop |
| 70 | * should skip to the next iteration (again assuming N is increasing). |
| 71 | */ |
| 72 | static int _dpll_test_fint(struct clk *clk, u8 n) |
| 73 | { |
| 74 | struct dpll_data *dd; |
| 75 | long fint; |
| 76 | int ret = 0; |
| 77 | |
| 78 | dd = clk->dpll_data; |
| 79 | |
| 80 | /* DPLL divider must result in a valid jitter correction val */ |
| 81 | fint = clk->parent->rate / (n + 1); |
| 82 | if (fint < DPLL_FINT_BAND1_MIN) { |
| 83 | |
| 84 | pr_debug("rejecting n=%d due to Fint failure, " |
| 85 | "lowering max_divider\n", n); |
| 86 | dd->max_divider = n; |
| 87 | ret = DPLL_FINT_UNDERFLOW; |
| 88 | |
| 89 | } else if (fint > DPLL_FINT_BAND1_MAX && |
| 90 | fint < DPLL_FINT_BAND2_MIN) { |
| 91 | |
| 92 | pr_debug("rejecting n=%d due to Fint failure\n", n); |
| 93 | ret = DPLL_FINT_INVALID; |
| 94 | |
| 95 | } else if (fint > DPLL_FINT_BAND2_MAX) { |
| 96 | |
| 97 | pr_debug("rejecting n=%d due to Fint failure, " |
| 98 | "boosting min_divider\n", n); |
| 99 | dd->min_divider = n; |
| 100 | ret = DPLL_FINT_INVALID; |
| 101 | |
| 102 | } |
| 103 | |
| 104 | return ret; |
| 105 | } |
| 106 | |
| 107 | static unsigned long _dpll_compute_new_rate(unsigned long parent_rate, |
| 108 | unsigned int m, unsigned int n) |
| 109 | { |
| 110 | unsigned long long num; |
| 111 | |
| 112 | num = (unsigned long long)parent_rate * m; |
| 113 | do_div(num, n); |
| 114 | return num; |
| 115 | } |
| 116 | |
| 117 | /* |
| 118 | * _dpll_test_mult - test a DPLL multiplier value |
| 119 | * @m: pointer to the DPLL m (multiplier) value under test |
| 120 | * @n: current DPLL n (divider) value under test |
| 121 | * @new_rate: pointer to storage for the resulting rounded rate |
| 122 | * @target_rate: the desired DPLL rate |
| 123 | * @parent_rate: the DPLL's parent clock rate |
| 124 | * |
| 125 | * This code tests a DPLL multiplier value, ensuring that the |
| 126 | * resulting rate will not be higher than the target_rate, and that |
| 127 | * the multiplier value itself is valid for the DPLL. Initially, the |
| 128 | * integer pointed to by the m argument should be prescaled by |
| 129 | * multiplying by DPLL_SCALE_FACTOR. The code will replace this with |
| 130 | * a non-scaled m upon return. This non-scaled m will result in a |
| 131 | * new_rate as close as possible to target_rate (but not greater than |
| 132 | * target_rate) given the current (parent_rate, n, prescaled m) |
| 133 | * triple. Returns DPLL_MULT_UNDERFLOW in the event that the |
| 134 | * non-scaled m attempted to underflow, which can allow the calling |
| 135 | * function to bail out early; or 0 upon success. |
| 136 | */ |
| 137 | static int _dpll_test_mult(int *m, int n, unsigned long *new_rate, |
| 138 | unsigned long target_rate, |
| 139 | unsigned long parent_rate) |
| 140 | { |
| 141 | int r = 0, carry = 0; |
| 142 | |
| 143 | /* Unscale m and round if necessary */ |
| 144 | if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL) |
| 145 | carry = 1; |
| 146 | *m = (*m / DPLL_SCALE_FACTOR) + carry; |
| 147 | |
| 148 | /* |
| 149 | * The new rate must be <= the target rate to avoid programming |
| 150 | * a rate that is impossible for the hardware to handle |
| 151 | */ |
| 152 | *new_rate = _dpll_compute_new_rate(parent_rate, *m, n); |
| 153 | if (*new_rate > target_rate) { |
| 154 | (*m)--; |
| 155 | *new_rate = 0; |
| 156 | } |
| 157 | |
| 158 | /* Guard against m underflow */ |
| 159 | if (*m < DPLL_MIN_MULTIPLIER) { |
| 160 | *m = DPLL_MIN_MULTIPLIER; |
| 161 | *new_rate = 0; |
| 162 | r = DPLL_MULT_UNDERFLOW; |
| 163 | } |
| 164 | |
| 165 | if (*new_rate == 0) |
| 166 | *new_rate = _dpll_compute_new_rate(parent_rate, *m, n); |
| 167 | |
| 168 | return r; |
| 169 | } |
| 170 | |
| 171 | /* Public functions */ |
| 172 | |
| 173 | void omap2_init_dpll_parent(struct clk *clk) |
| 174 | { |
| 175 | u32 v; |
| 176 | struct dpll_data *dd; |
| 177 | |
| 178 | dd = clk->dpll_data; |
| 179 | if (!dd) |
| 180 | return; |
| 181 | |
| 182 | /* Return bypass rate if DPLL is bypassed */ |
| 183 | v = __raw_readl(dd->control_reg); |
| 184 | v &= dd->enable_mask; |
| 185 | v >>= __ffs(dd->enable_mask); |
| 186 | |
| 187 | /* Reparent in case the dpll is in bypass */ |
| 188 | if (cpu_is_omap24xx()) { |
| 189 | if (v == OMAP2XXX_EN_DPLL_LPBYPASS || |
| 190 | v == OMAP2XXX_EN_DPLL_FRBYPASS) |
| 191 | clk_reparent(clk, dd->clk_bypass); |
| 192 | } else if (cpu_is_omap34xx()) { |
| 193 | if (v == OMAP3XXX_EN_DPLL_LPBYPASS || |
| 194 | v == OMAP3XXX_EN_DPLL_FRBYPASS) |
| 195 | clk_reparent(clk, dd->clk_bypass); |
| 196 | } else if (cpu_is_omap44xx()) { |
| 197 | if (v == OMAP4XXX_EN_DPLL_LPBYPASS || |
| 198 | v == OMAP4XXX_EN_DPLL_FRBYPASS || |
| 199 | v == OMAP4XXX_EN_DPLL_MNBYPASS) |
| 200 | clk_reparent(clk, dd->clk_bypass); |
| 201 | } |
| 202 | return; |
| 203 | } |
| 204 | |
| 205 | /** |
| 206 | * omap2_get_dpll_rate - returns the current DPLL CLKOUT rate |
| 207 | * @clk: struct clk * of a DPLL |
| 208 | * |
| 209 | * DPLLs can be locked or bypassed - basically, enabled or disabled. |
| 210 | * When locked, the DPLL output depends on the M and N values. When |
| 211 | * bypassed, on OMAP2xxx, the output rate is either the 32KiHz clock |
| 212 | * or sys_clk. Bypass rates on OMAP3 depend on the DPLL: DPLLs 1 and |
| 213 | * 2 are bypassed with dpll1_fclk and dpll2_fclk respectively |
| 214 | * (generated by DPLL3), while DPLL 3, 4, and 5 bypass rates are sys_clk. |
| 215 | * Returns the current DPLL CLKOUT rate (*not* CLKOUTX2) if the DPLL is |
| 216 | * locked, or the appropriate bypass rate if the DPLL is bypassed, or 0 |
| 217 | * if the clock @clk is not a DPLL. |
| 218 | */ |
| 219 | u32 omap2_get_dpll_rate(struct clk *clk) |
| 220 | { |
| 221 | long long dpll_clk; |
| 222 | u32 dpll_mult, dpll_div, v; |
| 223 | struct dpll_data *dd; |
| 224 | |
| 225 | dd = clk->dpll_data; |
| 226 | if (!dd) |
| 227 | return 0; |
| 228 | |
| 229 | /* Return bypass rate if DPLL is bypassed */ |
| 230 | v = __raw_readl(dd->control_reg); |
| 231 | v &= dd->enable_mask; |
| 232 | v >>= __ffs(dd->enable_mask); |
| 233 | |
| 234 | if (cpu_is_omap24xx()) { |
| 235 | if (v == OMAP2XXX_EN_DPLL_LPBYPASS || |
| 236 | v == OMAP2XXX_EN_DPLL_FRBYPASS) |
| 237 | return dd->clk_bypass->rate; |
| 238 | } else if (cpu_is_omap34xx()) { |
| 239 | if (v == OMAP3XXX_EN_DPLL_LPBYPASS || |
| 240 | v == OMAP3XXX_EN_DPLL_FRBYPASS) |
| 241 | return dd->clk_bypass->rate; |
| 242 | } else if (cpu_is_omap44xx()) { |
| 243 | if (v == OMAP4XXX_EN_DPLL_LPBYPASS || |
| 244 | v == OMAP4XXX_EN_DPLL_FRBYPASS || |
| 245 | v == OMAP4XXX_EN_DPLL_MNBYPASS) |
| 246 | return dd->clk_bypass->rate; |
| 247 | } |
| 248 | |
| 249 | v = __raw_readl(dd->mult_div1_reg); |
| 250 | dpll_mult = v & dd->mult_mask; |
| 251 | dpll_mult >>= __ffs(dd->mult_mask); |
| 252 | dpll_div = v & dd->div1_mask; |
| 253 | dpll_div >>= __ffs(dd->div1_mask); |
| 254 | |
| 255 | dpll_clk = (long long)dd->clk_ref->rate * dpll_mult; |
| 256 | do_div(dpll_clk, dpll_div + 1); |
| 257 | |
| 258 | return dpll_clk; |
| 259 | } |
| 260 | |
| 261 | /* DPLL rate rounding code */ |
| 262 | |
| 263 | /** |
| 264 | * omap2_dpll_set_rate_tolerance: set the error tolerance during rate rounding |
| 265 | * @clk: struct clk * of the DPLL |
| 266 | * @tolerance: maximum rate error tolerance |
| 267 | * |
| 268 | * Set the maximum DPLL rate error tolerance for the rate rounding |
| 269 | * algorithm. The rate tolerance is an attempt to balance DPLL power |
| 270 | * saving (the least divider value "n") vs. rate fidelity (the least |
| 271 | * difference between the desired DPLL target rate and the rounded |
| 272 | * rate out of the algorithm). So, increasing the tolerance is likely |
| 273 | * to decrease DPLL power consumption and increase DPLL rate error. |
| 274 | * Returns -EINVAL if provided a null clock ptr or a clk that is not a |
| 275 | * DPLL; or 0 upon success. |
| 276 | */ |
| 277 | int omap2_dpll_set_rate_tolerance(struct clk *clk, unsigned int tolerance) |
| 278 | { |
| 279 | if (!clk || !clk->dpll_data) |
| 280 | return -EINVAL; |
| 281 | |
| 282 | clk->dpll_data->rate_tolerance = tolerance; |
| 283 | |
| 284 | return 0; |
| 285 | } |
| 286 | |
| 287 | /** |
| 288 | * omap2_dpll_round_rate - round a target rate for an OMAP DPLL |
| 289 | * @clk: struct clk * for a DPLL |
| 290 | * @target_rate: desired DPLL clock rate |
| 291 | * |
| 292 | * Given a DPLL, a desired target rate, and a rate tolerance, round |
| 293 | * the target rate to a possible, programmable rate for this DPLL. |
| 294 | * Rate tolerance is assumed to be set by the caller before this |
| 295 | * function is called. Attempts to select the minimum possible n |
| 296 | * within the tolerance to reduce power consumption. Stores the |
| 297 | * computed (m, n) in the DPLL's dpll_data structure so set_rate() |
| 298 | * will not need to call this (expensive) function again. Returns ~0 |
| 299 | * if the target rate cannot be rounded, either because the rate is |
| 300 | * too low or because the rate tolerance is set too tightly; or the |
| 301 | * rounded rate upon success. |
| 302 | */ |
| 303 | long omap2_dpll_round_rate(struct clk *clk, unsigned long target_rate) |
| 304 | { |
| 305 | int m, n, r, e, scaled_max_m; |
| 306 | unsigned long scaled_rt_rp, new_rate; |
| 307 | int min_e = -1, min_e_m = -1, min_e_n = -1; |
| 308 | struct dpll_data *dd; |
| 309 | |
| 310 | if (!clk || !clk->dpll_data) |
| 311 | return ~0; |
| 312 | |
| 313 | dd = clk->dpll_data; |
| 314 | |
| 315 | pr_debug("clock: starting DPLL round_rate for clock %s, target rate " |
| 316 | "%ld\n", clk->name, target_rate); |
| 317 | |
| 318 | scaled_rt_rp = target_rate / (dd->clk_ref->rate / DPLL_SCALE_FACTOR); |
| 319 | scaled_max_m = dd->max_multiplier * DPLL_SCALE_FACTOR; |
| 320 | |
| 321 | dd->last_rounded_rate = 0; |
| 322 | |
| 323 | for (n = dd->min_divider; n <= dd->max_divider; n++) { |
| 324 | |
| 325 | /* Is the (input clk, divider) pair valid for the DPLL? */ |
| 326 | r = _dpll_test_fint(clk, n); |
| 327 | if (r == DPLL_FINT_UNDERFLOW) |
| 328 | break; |
| 329 | else if (r == DPLL_FINT_INVALID) |
| 330 | continue; |
| 331 | |
| 332 | /* Compute the scaled DPLL multiplier, based on the divider */ |
| 333 | m = scaled_rt_rp * n; |
| 334 | |
| 335 | /* |
| 336 | * Since we're counting n up, a m overflow means we |
| 337 | * can bail out completely (since as n increases in |
| 338 | * the next iteration, there's no way that m can |
| 339 | * increase beyond the current m) |
| 340 | */ |
| 341 | if (m > scaled_max_m) |
| 342 | break; |
| 343 | |
| 344 | r = _dpll_test_mult(&m, n, &new_rate, target_rate, |
| 345 | dd->clk_ref->rate); |
| 346 | |
| 347 | /* m can't be set low enough for this n - try with a larger n */ |
| 348 | if (r == DPLL_MULT_UNDERFLOW) |
| 349 | continue; |
| 350 | |
| 351 | e = target_rate - new_rate; |
| 352 | pr_debug("clock: n = %d: m = %d: rate error is %d " |
| 353 | "(new_rate = %ld)\n", n, m, e, new_rate); |
| 354 | |
| 355 | if (min_e == -1 || |
| 356 | min_e >= (int)(abs(e) - dd->rate_tolerance)) { |
| 357 | min_e = e; |
| 358 | min_e_m = m; |
| 359 | min_e_n = n; |
| 360 | |
| 361 | pr_debug("clock: found new least error %d\n", min_e); |
| 362 | |
| 363 | /* We found good settings -- bail out now */ |
| 364 | if (min_e <= dd->rate_tolerance) |
| 365 | break; |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | if (min_e < 0) { |
| 370 | pr_debug("clock: error: target rate or tolerance too low\n"); |
| 371 | return ~0; |
| 372 | } |
| 373 | |
| 374 | dd->last_rounded_m = min_e_m; |
| 375 | dd->last_rounded_n = min_e_n; |
| 376 | dd->last_rounded_rate = _dpll_compute_new_rate(dd->clk_ref->rate, |
| 377 | min_e_m, min_e_n); |
| 378 | |
| 379 | pr_debug("clock: final least error: e = %d, m = %d, n = %d\n", |
| 380 | min_e, min_e_m, min_e_n); |
| 381 | pr_debug("clock: final rate: %ld (target rate: %ld)\n", |
| 382 | dd->last_rounded_rate, target_rate); |
| 383 | |
| 384 | return dd->last_rounded_rate; |
| 385 | } |
| 386 | |