blob: 5f160082aafc2b07af083c25a4ae7d39ea1456af [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Generic address resolution entity
3 *
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
16 */
17
18#include <linux/config.h>
19#include <linux/types.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/socket.h>
23#include <linux/sched.h>
24#include <linux/netdevice.h>
25#include <linux/proc_fs.h>
26#ifdef CONFIG_SYSCTL
27#include <linux/sysctl.h>
28#endif
29#include <linux/times.h>
30#include <net/neighbour.h>
31#include <net/dst.h>
32#include <net/sock.h>
33#include <linux/rtnetlink.h>
34#include <linux/random.h>
Paulo Marques543537b2005-06-23 00:09:02 -070035#include <linux/string.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070036
37#define NEIGH_DEBUG 1
38
39#define NEIGH_PRINTK(x...) printk(x)
40#define NEIGH_NOPRINTK(x...) do { ; } while(0)
41#define NEIGH_PRINTK0 NEIGH_PRINTK
42#define NEIGH_PRINTK1 NEIGH_NOPRINTK
43#define NEIGH_PRINTK2 NEIGH_NOPRINTK
44
45#if NEIGH_DEBUG >= 1
46#undef NEIGH_PRINTK1
47#define NEIGH_PRINTK1 NEIGH_PRINTK
48#endif
49#if NEIGH_DEBUG >= 2
50#undef NEIGH_PRINTK2
51#define NEIGH_PRINTK2 NEIGH_PRINTK
52#endif
53
54#define PNEIGH_HASHMASK 0xF
55
56static void neigh_timer_handler(unsigned long arg);
57#ifdef CONFIG_ARPD
58static void neigh_app_notify(struct neighbour *n);
59#endif
60static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
61void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev);
62
63static struct neigh_table *neigh_tables;
Amos Waterland45fc3b12005-09-24 16:53:16 -070064#ifdef CONFIG_PROC_FS
Linus Torvalds1da177e2005-04-16 15:20:36 -070065static struct file_operations neigh_stat_seq_fops;
Amos Waterland45fc3b12005-09-24 16:53:16 -070066#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -070067
68/*
69 Neighbour hash table buckets are protected with rwlock tbl->lock.
70
71 - All the scans/updates to hash buckets MUST be made under this lock.
72 - NOTHING clever should be made under this lock: no callbacks
73 to protocol backends, no attempts to send something to network.
74 It will result in deadlocks, if backend/driver wants to use neighbour
75 cache.
76 - If the entry requires some non-trivial actions, increase
77 its reference count and release table lock.
78
79 Neighbour entries are protected:
80 - with reference count.
81 - with rwlock neigh->lock
82
83 Reference count prevents destruction.
84
85 neigh->lock mainly serializes ll address data and its validity state.
86 However, the same lock is used to protect another entry fields:
87 - timer
88 - resolution queue
89
90 Again, nothing clever shall be made under neigh->lock,
91 the most complicated procedure, which we allow is dev->hard_header.
92 It is supposed, that dev->hard_header is simplistic and does
93 not make callbacks to neighbour tables.
94
95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
96 list of neighbour tables. This list is used only in process context,
97 */
98
99static DEFINE_RWLOCK(neigh_tbl_lock);
100
101static int neigh_blackhole(struct sk_buff *skb)
102{
103 kfree_skb(skb);
104 return -ENETDOWN;
105}
106
107/*
108 * It is random distribution in the interval (1/2)*base...(3/2)*base.
109 * It corresponds to default IPv6 settings and is not overridable,
110 * because it is really reasonable choice.
111 */
112
113unsigned long neigh_rand_reach_time(unsigned long base)
114{
115 return (base ? (net_random() % base) + (base >> 1) : 0);
116}
117
118
119static int neigh_forced_gc(struct neigh_table *tbl)
120{
121 int shrunk = 0;
122 int i;
123
124 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
125
126 write_lock_bh(&tbl->lock);
127 for (i = 0; i <= tbl->hash_mask; i++) {
128 struct neighbour *n, **np;
129
130 np = &tbl->hash_buckets[i];
131 while ((n = *np) != NULL) {
132 /* Neighbour record may be discarded if:
133 * - nobody refers to it.
134 * - it is not permanent
135 */
136 write_lock(&n->lock);
137 if (atomic_read(&n->refcnt) == 1 &&
138 !(n->nud_state & NUD_PERMANENT)) {
139 *np = n->next;
140 n->dead = 1;
141 shrunk = 1;
142 write_unlock(&n->lock);
143 neigh_release(n);
144 continue;
145 }
146 write_unlock(&n->lock);
147 np = &n->next;
148 }
149 }
150
151 tbl->last_flush = jiffies;
152
153 write_unlock_bh(&tbl->lock);
154
155 return shrunk;
156}
157
158static int neigh_del_timer(struct neighbour *n)
159{
160 if ((n->nud_state & NUD_IN_TIMER) &&
161 del_timer(&n->timer)) {
162 neigh_release(n);
163 return 1;
164 }
165 return 0;
166}
167
168static void pneigh_queue_purge(struct sk_buff_head *list)
169{
170 struct sk_buff *skb;
171
172 while ((skb = skb_dequeue(list)) != NULL) {
173 dev_put(skb->dev);
174 kfree_skb(skb);
175 }
176}
177
178void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
179{
180 int i;
181
182 write_lock_bh(&tbl->lock);
183
184 for (i=0; i <= tbl->hash_mask; i++) {
185 struct neighbour *n, **np;
186
187 np = &tbl->hash_buckets[i];
188 while ((n = *np) != NULL) {
189 if (dev && n->dev != dev) {
190 np = &n->next;
191 continue;
192 }
193 *np = n->next;
194 write_lock_bh(&n->lock);
195 n->dead = 1;
196 neigh_del_timer(n);
197 write_unlock_bh(&n->lock);
198 neigh_release(n);
199 }
200 }
201
202 write_unlock_bh(&tbl->lock);
203}
204
205int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
206{
207 int i;
208
209 write_lock_bh(&tbl->lock);
210
211 for (i = 0; i <= tbl->hash_mask; i++) {
212 struct neighbour *n, **np = &tbl->hash_buckets[i];
213
214 while ((n = *np) != NULL) {
215 if (dev && n->dev != dev) {
216 np = &n->next;
217 continue;
218 }
219 *np = n->next;
220 write_lock(&n->lock);
221 neigh_del_timer(n);
222 n->dead = 1;
223
224 if (atomic_read(&n->refcnt) != 1) {
225 /* The most unpleasant situation.
226 We must destroy neighbour entry,
227 but someone still uses it.
228
229 The destroy will be delayed until
230 the last user releases us, but
231 we must kill timers etc. and move
232 it to safe state.
233 */
234 skb_queue_purge(&n->arp_queue);
235 n->output = neigh_blackhole;
236 if (n->nud_state & NUD_VALID)
237 n->nud_state = NUD_NOARP;
238 else
239 n->nud_state = NUD_NONE;
240 NEIGH_PRINTK2("neigh %p is stray.\n", n);
241 }
242 write_unlock(&n->lock);
243 neigh_release(n);
244 }
245 }
246
247 pneigh_ifdown(tbl, dev);
248 write_unlock_bh(&tbl->lock);
249
250 del_timer_sync(&tbl->proxy_timer);
251 pneigh_queue_purge(&tbl->proxy_queue);
252 return 0;
253}
254
255static struct neighbour *neigh_alloc(struct neigh_table *tbl)
256{
257 struct neighbour *n = NULL;
258 unsigned long now = jiffies;
259 int entries;
260
261 entries = atomic_inc_return(&tbl->entries) - 1;
262 if (entries >= tbl->gc_thresh3 ||
263 (entries >= tbl->gc_thresh2 &&
264 time_after(now, tbl->last_flush + 5 * HZ))) {
265 if (!neigh_forced_gc(tbl) &&
266 entries >= tbl->gc_thresh3)
267 goto out_entries;
268 }
269
270 n = kmem_cache_alloc(tbl->kmem_cachep, SLAB_ATOMIC);
271 if (!n)
272 goto out_entries;
273
274 memset(n, 0, tbl->entry_size);
275
276 skb_queue_head_init(&n->arp_queue);
277 rwlock_init(&n->lock);
278 n->updated = n->used = now;
279 n->nud_state = NUD_NONE;
280 n->output = neigh_blackhole;
281 n->parms = neigh_parms_clone(&tbl->parms);
282 init_timer(&n->timer);
283 n->timer.function = neigh_timer_handler;
284 n->timer.data = (unsigned long)n;
285
286 NEIGH_CACHE_STAT_INC(tbl, allocs);
287 n->tbl = tbl;
288 atomic_set(&n->refcnt, 1);
289 n->dead = 1;
290out:
291 return n;
292
293out_entries:
294 atomic_dec(&tbl->entries);
295 goto out;
296}
297
298static struct neighbour **neigh_hash_alloc(unsigned int entries)
299{
300 unsigned long size = entries * sizeof(struct neighbour *);
301 struct neighbour **ret;
302
303 if (size <= PAGE_SIZE) {
304 ret = kmalloc(size, GFP_ATOMIC);
305 } else {
306 ret = (struct neighbour **)
307 __get_free_pages(GFP_ATOMIC, get_order(size));
308 }
309 if (ret)
310 memset(ret, 0, size);
311
312 return ret;
313}
314
315static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
316{
317 unsigned long size = entries * sizeof(struct neighbour *);
318
319 if (size <= PAGE_SIZE)
320 kfree(hash);
321 else
322 free_pages((unsigned long)hash, get_order(size));
323}
324
325static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
326{
327 struct neighbour **new_hash, **old_hash;
328 unsigned int i, new_hash_mask, old_entries;
329
330 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
331
332 BUG_ON(new_entries & (new_entries - 1));
333 new_hash = neigh_hash_alloc(new_entries);
334 if (!new_hash)
335 return;
336
337 old_entries = tbl->hash_mask + 1;
338 new_hash_mask = new_entries - 1;
339 old_hash = tbl->hash_buckets;
340
341 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
342 for (i = 0; i < old_entries; i++) {
343 struct neighbour *n, *next;
344
345 for (n = old_hash[i]; n; n = next) {
346 unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
347
348 hash_val &= new_hash_mask;
349 next = n->next;
350
351 n->next = new_hash[hash_val];
352 new_hash[hash_val] = n;
353 }
354 }
355 tbl->hash_buckets = new_hash;
356 tbl->hash_mask = new_hash_mask;
357
358 neigh_hash_free(old_hash, old_entries);
359}
360
361struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
362 struct net_device *dev)
363{
364 struct neighbour *n;
365 int key_len = tbl->key_len;
366 u32 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
367
368 NEIGH_CACHE_STAT_INC(tbl, lookups);
369
370 read_lock_bh(&tbl->lock);
371 for (n = tbl->hash_buckets[hash_val]; n; n = n->next) {
372 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
373 neigh_hold(n);
374 NEIGH_CACHE_STAT_INC(tbl, hits);
375 break;
376 }
377 }
378 read_unlock_bh(&tbl->lock);
379 return n;
380}
381
382struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, const void *pkey)
383{
384 struct neighbour *n;
385 int key_len = tbl->key_len;
386 u32 hash_val = tbl->hash(pkey, NULL) & tbl->hash_mask;
387
388 NEIGH_CACHE_STAT_INC(tbl, lookups);
389
390 read_lock_bh(&tbl->lock);
391 for (n = tbl->hash_buckets[hash_val]; n; n = n->next) {
392 if (!memcmp(n->primary_key, pkey, key_len)) {
393 neigh_hold(n);
394 NEIGH_CACHE_STAT_INC(tbl, hits);
395 break;
396 }
397 }
398 read_unlock_bh(&tbl->lock);
399 return n;
400}
401
402struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
403 struct net_device *dev)
404{
405 u32 hash_val;
406 int key_len = tbl->key_len;
407 int error;
408 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
409
410 if (!n) {
411 rc = ERR_PTR(-ENOBUFS);
412 goto out;
413 }
414
415 memcpy(n->primary_key, pkey, key_len);
416 n->dev = dev;
417 dev_hold(dev);
418
419 /* Protocol specific setup. */
420 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
421 rc = ERR_PTR(error);
422 goto out_neigh_release;
423 }
424
425 /* Device specific setup. */
426 if (n->parms->neigh_setup &&
427 (error = n->parms->neigh_setup(n)) < 0) {
428 rc = ERR_PTR(error);
429 goto out_neigh_release;
430 }
431
432 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
433
434 write_lock_bh(&tbl->lock);
435
436 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
437 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
438
439 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
440
441 if (n->parms->dead) {
442 rc = ERR_PTR(-EINVAL);
443 goto out_tbl_unlock;
444 }
445
446 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
447 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
448 neigh_hold(n1);
449 rc = n1;
450 goto out_tbl_unlock;
451 }
452 }
453
454 n->next = tbl->hash_buckets[hash_val];
455 tbl->hash_buckets[hash_val] = n;
456 n->dead = 0;
457 neigh_hold(n);
458 write_unlock_bh(&tbl->lock);
459 NEIGH_PRINTK2("neigh %p is created.\n", n);
460 rc = n;
461out:
462 return rc;
463out_tbl_unlock:
464 write_unlock_bh(&tbl->lock);
465out_neigh_release:
466 neigh_release(n);
467 goto out;
468}
469
470struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, const void *pkey,
471 struct net_device *dev, int creat)
472{
473 struct pneigh_entry *n;
474 int key_len = tbl->key_len;
475 u32 hash_val = *(u32 *)(pkey + key_len - 4);
476
477 hash_val ^= (hash_val >> 16);
478 hash_val ^= hash_val >> 8;
479 hash_val ^= hash_val >> 4;
480 hash_val &= PNEIGH_HASHMASK;
481
482 read_lock_bh(&tbl->lock);
483
484 for (n = tbl->phash_buckets[hash_val]; n; n = n->next) {
485 if (!memcmp(n->key, pkey, key_len) &&
486 (n->dev == dev || !n->dev)) {
487 read_unlock_bh(&tbl->lock);
488 goto out;
489 }
490 }
491 read_unlock_bh(&tbl->lock);
492 n = NULL;
493 if (!creat)
494 goto out;
495
496 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
497 if (!n)
498 goto out;
499
500 memcpy(n->key, pkey, key_len);
501 n->dev = dev;
502 if (dev)
503 dev_hold(dev);
504
505 if (tbl->pconstructor && tbl->pconstructor(n)) {
506 if (dev)
507 dev_put(dev);
508 kfree(n);
509 n = NULL;
510 goto out;
511 }
512
513 write_lock_bh(&tbl->lock);
514 n->next = tbl->phash_buckets[hash_val];
515 tbl->phash_buckets[hash_val] = n;
516 write_unlock_bh(&tbl->lock);
517out:
518 return n;
519}
520
521
522int pneigh_delete(struct neigh_table *tbl, const void *pkey,
523 struct net_device *dev)
524{
525 struct pneigh_entry *n, **np;
526 int key_len = tbl->key_len;
527 u32 hash_val = *(u32 *)(pkey + key_len - 4);
528
529 hash_val ^= (hash_val >> 16);
530 hash_val ^= hash_val >> 8;
531 hash_val ^= hash_val >> 4;
532 hash_val &= PNEIGH_HASHMASK;
533
534 write_lock_bh(&tbl->lock);
535 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
536 np = &n->next) {
537 if (!memcmp(n->key, pkey, key_len) && n->dev == dev) {
538 *np = n->next;
539 write_unlock_bh(&tbl->lock);
540 if (tbl->pdestructor)
541 tbl->pdestructor(n);
542 if (n->dev)
543 dev_put(n->dev);
544 kfree(n);
545 return 0;
546 }
547 }
548 write_unlock_bh(&tbl->lock);
549 return -ENOENT;
550}
551
552static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
553{
554 struct pneigh_entry *n, **np;
555 u32 h;
556
557 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
558 np = &tbl->phash_buckets[h];
559 while ((n = *np) != NULL) {
560 if (!dev || n->dev == dev) {
561 *np = n->next;
562 if (tbl->pdestructor)
563 tbl->pdestructor(n);
564 if (n->dev)
565 dev_put(n->dev);
566 kfree(n);
567 continue;
568 }
569 np = &n->next;
570 }
571 }
572 return -ENOENT;
573}
574
575
576/*
577 * neighbour must already be out of the table;
578 *
579 */
580void neigh_destroy(struct neighbour *neigh)
581{
582 struct hh_cache *hh;
583
584 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
585
586 if (!neigh->dead) {
587 printk(KERN_WARNING
588 "Destroying alive neighbour %p\n", neigh);
589 dump_stack();
590 return;
591 }
592
593 if (neigh_del_timer(neigh))
594 printk(KERN_WARNING "Impossible event.\n");
595
596 while ((hh = neigh->hh) != NULL) {
597 neigh->hh = hh->hh_next;
598 hh->hh_next = NULL;
599 write_lock_bh(&hh->hh_lock);
600 hh->hh_output = neigh_blackhole;
601 write_unlock_bh(&hh->hh_lock);
602 if (atomic_dec_and_test(&hh->hh_refcnt))
603 kfree(hh);
604 }
605
606 if (neigh->ops && neigh->ops->destructor)
607 (neigh->ops->destructor)(neigh);
608
609 skb_queue_purge(&neigh->arp_queue);
610
611 dev_put(neigh->dev);
612 neigh_parms_put(neigh->parms);
613
614 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
615
616 atomic_dec(&neigh->tbl->entries);
617 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
618}
619
620/* Neighbour state is suspicious;
621 disable fast path.
622
623 Called with write_locked neigh.
624 */
625static void neigh_suspect(struct neighbour *neigh)
626{
627 struct hh_cache *hh;
628
629 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
630
631 neigh->output = neigh->ops->output;
632
633 for (hh = neigh->hh; hh; hh = hh->hh_next)
634 hh->hh_output = neigh->ops->output;
635}
636
637/* Neighbour state is OK;
638 enable fast path.
639
640 Called with write_locked neigh.
641 */
642static void neigh_connect(struct neighbour *neigh)
643{
644 struct hh_cache *hh;
645
646 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
647
648 neigh->output = neigh->ops->connected_output;
649
650 for (hh = neigh->hh; hh; hh = hh->hh_next)
651 hh->hh_output = neigh->ops->hh_output;
652}
653
654static void neigh_periodic_timer(unsigned long arg)
655{
656 struct neigh_table *tbl = (struct neigh_table *)arg;
657 struct neighbour *n, **np;
658 unsigned long expire, now = jiffies;
659
660 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
661
662 write_lock(&tbl->lock);
663
664 /*
665 * periodically recompute ReachableTime from random function
666 */
667
668 if (time_after(now, tbl->last_rand + 300 * HZ)) {
669 struct neigh_parms *p;
670 tbl->last_rand = now;
671 for (p = &tbl->parms; p; p = p->next)
672 p->reachable_time =
673 neigh_rand_reach_time(p->base_reachable_time);
674 }
675
676 np = &tbl->hash_buckets[tbl->hash_chain_gc];
677 tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask);
678
679 while ((n = *np) != NULL) {
680 unsigned int state;
681
682 write_lock(&n->lock);
683
684 state = n->nud_state;
685 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
686 write_unlock(&n->lock);
687 goto next_elt;
688 }
689
690 if (time_before(n->used, n->confirmed))
691 n->used = n->confirmed;
692
693 if (atomic_read(&n->refcnt) == 1 &&
694 (state == NUD_FAILED ||
695 time_after(now, n->used + n->parms->gc_staletime))) {
696 *np = n->next;
697 n->dead = 1;
698 write_unlock(&n->lock);
699 neigh_release(n);
700 continue;
701 }
702 write_unlock(&n->lock);
703
704next_elt:
705 np = &n->next;
706 }
707
708 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
709 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
710 * base_reachable_time.
711 */
712 expire = tbl->parms.base_reachable_time >> 1;
713 expire /= (tbl->hash_mask + 1);
714 if (!expire)
715 expire = 1;
716
717 mod_timer(&tbl->gc_timer, now + expire);
718
719 write_unlock(&tbl->lock);
720}
721
722static __inline__ int neigh_max_probes(struct neighbour *n)
723{
724 struct neigh_parms *p = n->parms;
725 return (n->nud_state & NUD_PROBE ?
726 p->ucast_probes :
727 p->ucast_probes + p->app_probes + p->mcast_probes);
728}
729
730
731/* Called when a timer expires for a neighbour entry. */
732
733static void neigh_timer_handler(unsigned long arg)
734{
735 unsigned long now, next;
736 struct neighbour *neigh = (struct neighbour *)arg;
737 unsigned state;
738 int notify = 0;
739
740 write_lock(&neigh->lock);
741
742 state = neigh->nud_state;
743 now = jiffies;
744 next = now + HZ;
745
746 if (!(state & NUD_IN_TIMER)) {
747#ifndef CONFIG_SMP
748 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
749#endif
750 goto out;
751 }
752
753 if (state & NUD_REACHABLE) {
754 if (time_before_eq(now,
755 neigh->confirmed + neigh->parms->reachable_time)) {
756 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
757 next = neigh->confirmed + neigh->parms->reachable_time;
758 } else if (time_before_eq(now,
759 neigh->used + neigh->parms->delay_probe_time)) {
760 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
761 neigh->nud_state = NUD_DELAY;
762 neigh_suspect(neigh);
763 next = now + neigh->parms->delay_probe_time;
764 } else {
765 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
766 neigh->nud_state = NUD_STALE;
767 neigh_suspect(neigh);
768 }
769 } else if (state & NUD_DELAY) {
770 if (time_before_eq(now,
771 neigh->confirmed + neigh->parms->delay_probe_time)) {
772 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
773 neigh->nud_state = NUD_REACHABLE;
774 neigh_connect(neigh);
775 next = neigh->confirmed + neigh->parms->reachable_time;
776 } else {
777 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
778 neigh->nud_state = NUD_PROBE;
779 atomic_set(&neigh->probes, 0);
780 next = now + neigh->parms->retrans_time;
781 }
782 } else {
783 /* NUD_PROBE|NUD_INCOMPLETE */
784 next = now + neigh->parms->retrans_time;
785 }
786
787 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
788 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
789 struct sk_buff *skb;
790
791 neigh->nud_state = NUD_FAILED;
792 notify = 1;
793 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
794 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
795
796 /* It is very thin place. report_unreachable is very complicated
797 routine. Particularly, it can hit the same neighbour entry!
798
799 So that, we try to be accurate and avoid dead loop. --ANK
800 */
801 while (neigh->nud_state == NUD_FAILED &&
802 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
803 write_unlock(&neigh->lock);
804 neigh->ops->error_report(neigh, skb);
805 write_lock(&neigh->lock);
806 }
807 skb_queue_purge(&neigh->arp_queue);
808 }
809
810 if (neigh->nud_state & NUD_IN_TIMER) {
811 neigh_hold(neigh);
812 if (time_before(next, jiffies + HZ/2))
813 next = jiffies + HZ/2;
814 neigh->timer.expires = next;
815 add_timer(&neigh->timer);
816 }
817 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
818 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
819 /* keep skb alive even if arp_queue overflows */
820 if (skb)
821 skb_get(skb);
822 write_unlock(&neigh->lock);
823 neigh->ops->solicit(neigh, skb);
824 atomic_inc(&neigh->probes);
825 if (skb)
826 kfree_skb(skb);
827 } else {
828out:
829 write_unlock(&neigh->lock);
830 }
831
832#ifdef CONFIG_ARPD
833 if (notify && neigh->parms->app_probes)
834 neigh_app_notify(neigh);
835#endif
836 neigh_release(neigh);
837}
838
839int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
840{
841 int rc;
842 unsigned long now;
843
844 write_lock_bh(&neigh->lock);
845
846 rc = 0;
847 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
848 goto out_unlock_bh;
849
850 now = jiffies;
851
852 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
853 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
854 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
855 neigh->nud_state = NUD_INCOMPLETE;
856 neigh_hold(neigh);
857 neigh->timer.expires = now + 1;
858 add_timer(&neigh->timer);
859 } else {
860 neigh->nud_state = NUD_FAILED;
861 write_unlock_bh(&neigh->lock);
862
863 if (skb)
864 kfree_skb(skb);
865 return 1;
866 }
867 } else if (neigh->nud_state & NUD_STALE) {
868 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
869 neigh_hold(neigh);
870 neigh->nud_state = NUD_DELAY;
871 neigh->timer.expires = jiffies + neigh->parms->delay_probe_time;
872 add_timer(&neigh->timer);
873 }
874
875 if (neigh->nud_state == NUD_INCOMPLETE) {
876 if (skb) {
877 if (skb_queue_len(&neigh->arp_queue) >=
878 neigh->parms->queue_len) {
879 struct sk_buff *buff;
880 buff = neigh->arp_queue.next;
881 __skb_unlink(buff, &neigh->arp_queue);
882 kfree_skb(buff);
883 }
884 __skb_queue_tail(&neigh->arp_queue, skb);
885 }
886 rc = 1;
887 }
888out_unlock_bh:
889 write_unlock_bh(&neigh->lock);
890 return rc;
891}
892
893static __inline__ void neigh_update_hhs(struct neighbour *neigh)
894{
895 struct hh_cache *hh;
896 void (*update)(struct hh_cache*, struct net_device*, unsigned char *) =
897 neigh->dev->header_cache_update;
898
899 if (update) {
900 for (hh = neigh->hh; hh; hh = hh->hh_next) {
901 write_lock_bh(&hh->hh_lock);
902 update(hh, neigh->dev, neigh->ha);
903 write_unlock_bh(&hh->hh_lock);
904 }
905 }
906}
907
908
909
910/* Generic update routine.
911 -- lladdr is new lladdr or NULL, if it is not supplied.
912 -- new is new state.
913 -- flags
914 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
915 if it is different.
916 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
917 lladdr instead of overriding it
918 if it is different.
919 It also allows to retain current state
920 if lladdr is unchanged.
921 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
922
923 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
924 NTF_ROUTER flag.
925 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
926 a router.
927
928 Caller MUST hold reference count on the entry.
929 */
930
931int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
932 u32 flags)
933{
934 u8 old;
935 int err;
936#ifdef CONFIG_ARPD
937 int notify = 0;
938#endif
939 struct net_device *dev;
940 int update_isrouter = 0;
941
942 write_lock_bh(&neigh->lock);
943
944 dev = neigh->dev;
945 old = neigh->nud_state;
946 err = -EPERM;
947
948 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
949 (old & (NUD_NOARP | NUD_PERMANENT)))
950 goto out;
951
952 if (!(new & NUD_VALID)) {
953 neigh_del_timer(neigh);
954 if (old & NUD_CONNECTED)
955 neigh_suspect(neigh);
956 neigh->nud_state = new;
957 err = 0;
958#ifdef CONFIG_ARPD
959 notify = old & NUD_VALID;
960#endif
961 goto out;
962 }
963
964 /* Compare new lladdr with cached one */
965 if (!dev->addr_len) {
966 /* First case: device needs no address. */
967 lladdr = neigh->ha;
968 } else if (lladdr) {
969 /* The second case: if something is already cached
970 and a new address is proposed:
971 - compare new & old
972 - if they are different, check override flag
973 */
974 if ((old & NUD_VALID) &&
975 !memcmp(lladdr, neigh->ha, dev->addr_len))
976 lladdr = neigh->ha;
977 } else {
978 /* No address is supplied; if we know something,
979 use it, otherwise discard the request.
980 */
981 err = -EINVAL;
982 if (!(old & NUD_VALID))
983 goto out;
984 lladdr = neigh->ha;
985 }
986
987 if (new & NUD_CONNECTED)
988 neigh->confirmed = jiffies;
989 neigh->updated = jiffies;
990
991 /* If entry was valid and address is not changed,
992 do not change entry state, if new one is STALE.
993 */
994 err = 0;
995 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
996 if (old & NUD_VALID) {
997 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
998 update_isrouter = 0;
999 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1000 (old & NUD_CONNECTED)) {
1001 lladdr = neigh->ha;
1002 new = NUD_STALE;
1003 } else
1004 goto out;
1005 } else {
1006 if (lladdr == neigh->ha && new == NUD_STALE &&
1007 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1008 (old & NUD_CONNECTED))
1009 )
1010 new = old;
1011 }
1012 }
1013
1014 if (new != old) {
1015 neigh_del_timer(neigh);
1016 if (new & NUD_IN_TIMER) {
1017 neigh_hold(neigh);
1018 neigh->timer.expires = jiffies +
1019 ((new & NUD_REACHABLE) ?
1020 neigh->parms->reachable_time : 0);
1021 add_timer(&neigh->timer);
1022 }
1023 neigh->nud_state = new;
1024 }
1025
1026 if (lladdr != neigh->ha) {
1027 memcpy(&neigh->ha, lladdr, dev->addr_len);
1028 neigh_update_hhs(neigh);
1029 if (!(new & NUD_CONNECTED))
1030 neigh->confirmed = jiffies -
1031 (neigh->parms->base_reachable_time << 1);
1032#ifdef CONFIG_ARPD
1033 notify = 1;
1034#endif
1035 }
1036 if (new == old)
1037 goto out;
1038 if (new & NUD_CONNECTED)
1039 neigh_connect(neigh);
1040 else
1041 neigh_suspect(neigh);
1042 if (!(old & NUD_VALID)) {
1043 struct sk_buff *skb;
1044
1045 /* Again: avoid dead loop if something went wrong */
1046
1047 while (neigh->nud_state & NUD_VALID &&
1048 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1049 struct neighbour *n1 = neigh;
1050 write_unlock_bh(&neigh->lock);
1051 /* On shaper/eql skb->dst->neighbour != neigh :( */
1052 if (skb->dst && skb->dst->neighbour)
1053 n1 = skb->dst->neighbour;
1054 n1->output(skb);
1055 write_lock_bh(&neigh->lock);
1056 }
1057 skb_queue_purge(&neigh->arp_queue);
1058 }
1059out:
1060 if (update_isrouter) {
1061 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1062 (neigh->flags | NTF_ROUTER) :
1063 (neigh->flags & ~NTF_ROUTER);
1064 }
1065 write_unlock_bh(&neigh->lock);
1066#ifdef CONFIG_ARPD
1067 if (notify && neigh->parms->app_probes)
1068 neigh_app_notify(neigh);
1069#endif
1070 return err;
1071}
1072
1073struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1074 u8 *lladdr, void *saddr,
1075 struct net_device *dev)
1076{
1077 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1078 lladdr || !dev->addr_len);
1079 if (neigh)
1080 neigh_update(neigh, lladdr, NUD_STALE,
1081 NEIGH_UPDATE_F_OVERRIDE);
1082 return neigh;
1083}
1084
1085static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1086 u16 protocol)
1087{
1088 struct hh_cache *hh;
1089 struct net_device *dev = dst->dev;
1090
1091 for (hh = n->hh; hh; hh = hh->hh_next)
1092 if (hh->hh_type == protocol)
1093 break;
1094
1095 if (!hh && (hh = kmalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1096 memset(hh, 0, sizeof(struct hh_cache));
1097 rwlock_init(&hh->hh_lock);
1098 hh->hh_type = protocol;
1099 atomic_set(&hh->hh_refcnt, 0);
1100 hh->hh_next = NULL;
1101 if (dev->hard_header_cache(n, hh)) {
1102 kfree(hh);
1103 hh = NULL;
1104 } else {
1105 atomic_inc(&hh->hh_refcnt);
1106 hh->hh_next = n->hh;
1107 n->hh = hh;
1108 if (n->nud_state & NUD_CONNECTED)
1109 hh->hh_output = n->ops->hh_output;
1110 else
1111 hh->hh_output = n->ops->output;
1112 }
1113 }
1114 if (hh) {
1115 atomic_inc(&hh->hh_refcnt);
1116 dst->hh = hh;
1117 }
1118}
1119
1120/* This function can be used in contexts, where only old dev_queue_xmit
1121 worked, f.e. if you want to override normal output path (eql, shaper),
1122 but resolution is not made yet.
1123 */
1124
1125int neigh_compat_output(struct sk_buff *skb)
1126{
1127 struct net_device *dev = skb->dev;
1128
1129 __skb_pull(skb, skb->nh.raw - skb->data);
1130
1131 if (dev->hard_header &&
1132 dev->hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1133 skb->len) < 0 &&
1134 dev->rebuild_header(skb))
1135 return 0;
1136
1137 return dev_queue_xmit(skb);
1138}
1139
1140/* Slow and careful. */
1141
1142int neigh_resolve_output(struct sk_buff *skb)
1143{
1144 struct dst_entry *dst = skb->dst;
1145 struct neighbour *neigh;
1146 int rc = 0;
1147
1148 if (!dst || !(neigh = dst->neighbour))
1149 goto discard;
1150
1151 __skb_pull(skb, skb->nh.raw - skb->data);
1152
1153 if (!neigh_event_send(neigh, skb)) {
1154 int err;
1155 struct net_device *dev = neigh->dev;
1156 if (dev->hard_header_cache && !dst->hh) {
1157 write_lock_bh(&neigh->lock);
1158 if (!dst->hh)
1159 neigh_hh_init(neigh, dst, dst->ops->protocol);
1160 err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1161 neigh->ha, NULL, skb->len);
1162 write_unlock_bh(&neigh->lock);
1163 } else {
1164 read_lock_bh(&neigh->lock);
1165 err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1166 neigh->ha, NULL, skb->len);
1167 read_unlock_bh(&neigh->lock);
1168 }
1169 if (err >= 0)
1170 rc = neigh->ops->queue_xmit(skb);
1171 else
1172 goto out_kfree_skb;
1173 }
1174out:
1175 return rc;
1176discard:
1177 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1178 dst, dst ? dst->neighbour : NULL);
1179out_kfree_skb:
1180 rc = -EINVAL;
1181 kfree_skb(skb);
1182 goto out;
1183}
1184
1185/* As fast as possible without hh cache */
1186
1187int neigh_connected_output(struct sk_buff *skb)
1188{
1189 int err;
1190 struct dst_entry *dst = skb->dst;
1191 struct neighbour *neigh = dst->neighbour;
1192 struct net_device *dev = neigh->dev;
1193
1194 __skb_pull(skb, skb->nh.raw - skb->data);
1195
1196 read_lock_bh(&neigh->lock);
1197 err = dev->hard_header(skb, dev, ntohs(skb->protocol),
1198 neigh->ha, NULL, skb->len);
1199 read_unlock_bh(&neigh->lock);
1200 if (err >= 0)
1201 err = neigh->ops->queue_xmit(skb);
1202 else {
1203 err = -EINVAL;
1204 kfree_skb(skb);
1205 }
1206 return err;
1207}
1208
1209static void neigh_proxy_process(unsigned long arg)
1210{
1211 struct neigh_table *tbl = (struct neigh_table *)arg;
1212 long sched_next = 0;
1213 unsigned long now = jiffies;
1214 struct sk_buff *skb;
1215
1216 spin_lock(&tbl->proxy_queue.lock);
1217
1218 skb = tbl->proxy_queue.next;
1219
1220 while (skb != (struct sk_buff *)&tbl->proxy_queue) {
1221 struct sk_buff *back = skb;
Patrick McHardya61bbcf2005-08-14 17:24:31 -07001222 long tdif = NEIGH_CB(back)->sched_next - now;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001223
1224 skb = skb->next;
1225 if (tdif <= 0) {
1226 struct net_device *dev = back->dev;
1227 __skb_unlink(back, &tbl->proxy_queue);
1228 if (tbl->proxy_redo && netif_running(dev))
1229 tbl->proxy_redo(back);
1230 else
1231 kfree_skb(back);
1232
1233 dev_put(dev);
1234 } else if (!sched_next || tdif < sched_next)
1235 sched_next = tdif;
1236 }
1237 del_timer(&tbl->proxy_timer);
1238 if (sched_next)
1239 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1240 spin_unlock(&tbl->proxy_queue.lock);
1241}
1242
1243void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1244 struct sk_buff *skb)
1245{
1246 unsigned long now = jiffies;
1247 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1248
1249 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1250 kfree_skb(skb);
1251 return;
1252 }
Patrick McHardya61bbcf2005-08-14 17:24:31 -07001253
1254 NEIGH_CB(skb)->sched_next = sched_next;
1255 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001256
1257 spin_lock(&tbl->proxy_queue.lock);
1258 if (del_timer(&tbl->proxy_timer)) {
1259 if (time_before(tbl->proxy_timer.expires, sched_next))
1260 sched_next = tbl->proxy_timer.expires;
1261 }
1262 dst_release(skb->dst);
1263 skb->dst = NULL;
1264 dev_hold(skb->dev);
1265 __skb_queue_tail(&tbl->proxy_queue, skb);
1266 mod_timer(&tbl->proxy_timer, sched_next);
1267 spin_unlock(&tbl->proxy_queue.lock);
1268}
1269
1270
1271struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1272 struct neigh_table *tbl)
1273{
1274 struct neigh_parms *p = kmalloc(sizeof(*p), GFP_KERNEL);
1275
1276 if (p) {
1277 memcpy(p, &tbl->parms, sizeof(*p));
1278 p->tbl = tbl;
1279 atomic_set(&p->refcnt, 1);
1280 INIT_RCU_HEAD(&p->rcu_head);
1281 p->reachable_time =
1282 neigh_rand_reach_time(p->base_reachable_time);
Thomas Grafc7fb64d2005-06-18 22:50:55 -07001283 if (dev) {
1284 if (dev->neigh_setup && dev->neigh_setup(dev, p)) {
1285 kfree(p);
1286 return NULL;
1287 }
1288
1289 dev_hold(dev);
1290 p->dev = dev;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001291 }
1292 p->sysctl_table = NULL;
1293 write_lock_bh(&tbl->lock);
1294 p->next = tbl->parms.next;
1295 tbl->parms.next = p;
1296 write_unlock_bh(&tbl->lock);
1297 }
1298 return p;
1299}
1300
1301static void neigh_rcu_free_parms(struct rcu_head *head)
1302{
1303 struct neigh_parms *parms =
1304 container_of(head, struct neigh_parms, rcu_head);
1305
1306 neigh_parms_put(parms);
1307}
1308
1309void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1310{
1311 struct neigh_parms **p;
1312
1313 if (!parms || parms == &tbl->parms)
1314 return;
1315 write_lock_bh(&tbl->lock);
1316 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1317 if (*p == parms) {
1318 *p = parms->next;
1319 parms->dead = 1;
1320 write_unlock_bh(&tbl->lock);
Thomas Grafc7fb64d2005-06-18 22:50:55 -07001321 if (parms->dev)
1322 dev_put(parms->dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001323 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1324 return;
1325 }
1326 }
1327 write_unlock_bh(&tbl->lock);
1328 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1329}
1330
1331void neigh_parms_destroy(struct neigh_parms *parms)
1332{
1333 kfree(parms);
1334}
1335
1336
1337void neigh_table_init(struct neigh_table *tbl)
1338{
1339 unsigned long now = jiffies;
1340 unsigned long phsize;
1341
1342 atomic_set(&tbl->parms.refcnt, 1);
1343 INIT_RCU_HEAD(&tbl->parms.rcu_head);
1344 tbl->parms.reachable_time =
1345 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1346
1347 if (!tbl->kmem_cachep)
1348 tbl->kmem_cachep = kmem_cache_create(tbl->id,
1349 tbl->entry_size,
1350 0, SLAB_HWCACHE_ALIGN,
1351 NULL, NULL);
1352
1353 if (!tbl->kmem_cachep)
1354 panic("cannot create neighbour cache");
1355
1356 tbl->stats = alloc_percpu(struct neigh_statistics);
1357 if (!tbl->stats)
1358 panic("cannot create neighbour cache statistics");
1359
1360#ifdef CONFIG_PROC_FS
1361 tbl->pde = create_proc_entry(tbl->id, 0, proc_net_stat);
1362 if (!tbl->pde)
1363 panic("cannot create neighbour proc dir entry");
1364 tbl->pde->proc_fops = &neigh_stat_seq_fops;
1365 tbl->pde->data = tbl;
1366#endif
1367
1368 tbl->hash_mask = 1;
1369 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1370
1371 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1372 tbl->phash_buckets = kmalloc(phsize, GFP_KERNEL);
1373
1374 if (!tbl->hash_buckets || !tbl->phash_buckets)
1375 panic("cannot allocate neighbour cache hashes");
1376
1377 memset(tbl->phash_buckets, 0, phsize);
1378
1379 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1380
1381 rwlock_init(&tbl->lock);
1382 init_timer(&tbl->gc_timer);
1383 tbl->gc_timer.data = (unsigned long)tbl;
1384 tbl->gc_timer.function = neigh_periodic_timer;
1385 tbl->gc_timer.expires = now + 1;
1386 add_timer(&tbl->gc_timer);
1387
1388 init_timer(&tbl->proxy_timer);
1389 tbl->proxy_timer.data = (unsigned long)tbl;
1390 tbl->proxy_timer.function = neigh_proxy_process;
1391 skb_queue_head_init(&tbl->proxy_queue);
1392
1393 tbl->last_flush = now;
1394 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1395 write_lock(&neigh_tbl_lock);
1396 tbl->next = neigh_tables;
1397 neigh_tables = tbl;
1398 write_unlock(&neigh_tbl_lock);
1399}
1400
1401int neigh_table_clear(struct neigh_table *tbl)
1402{
1403 struct neigh_table **tp;
1404
1405 /* It is not clean... Fix it to unload IPv6 module safely */
1406 del_timer_sync(&tbl->gc_timer);
1407 del_timer_sync(&tbl->proxy_timer);
1408 pneigh_queue_purge(&tbl->proxy_queue);
1409 neigh_ifdown(tbl, NULL);
1410 if (atomic_read(&tbl->entries))
1411 printk(KERN_CRIT "neighbour leakage\n");
1412 write_lock(&neigh_tbl_lock);
1413 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1414 if (*tp == tbl) {
1415 *tp = tbl->next;
1416 break;
1417 }
1418 }
1419 write_unlock(&neigh_tbl_lock);
1420
1421 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1422 tbl->hash_buckets = NULL;
1423
1424 kfree(tbl->phash_buckets);
1425 tbl->phash_buckets = NULL;
1426
1427 return 0;
1428}
1429
1430int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1431{
1432 struct ndmsg *ndm = NLMSG_DATA(nlh);
1433 struct rtattr **nda = arg;
1434 struct neigh_table *tbl;
1435 struct net_device *dev = NULL;
1436 int err = -ENODEV;
1437
1438 if (ndm->ndm_ifindex &&
1439 (dev = dev_get_by_index(ndm->ndm_ifindex)) == NULL)
1440 goto out;
1441
1442 read_lock(&neigh_tbl_lock);
1443 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1444 struct rtattr *dst_attr = nda[NDA_DST - 1];
1445 struct neighbour *n;
1446
1447 if (tbl->family != ndm->ndm_family)
1448 continue;
1449 read_unlock(&neigh_tbl_lock);
1450
1451 err = -EINVAL;
1452 if (!dst_attr || RTA_PAYLOAD(dst_attr) < tbl->key_len)
1453 goto out_dev_put;
1454
1455 if (ndm->ndm_flags & NTF_PROXY) {
1456 err = pneigh_delete(tbl, RTA_DATA(dst_attr), dev);
1457 goto out_dev_put;
1458 }
1459
1460 if (!dev)
1461 goto out;
1462
1463 n = neigh_lookup(tbl, RTA_DATA(dst_attr), dev);
1464 if (n) {
1465 err = neigh_update(n, NULL, NUD_FAILED,
1466 NEIGH_UPDATE_F_OVERRIDE|
1467 NEIGH_UPDATE_F_ADMIN);
1468 neigh_release(n);
1469 }
1470 goto out_dev_put;
1471 }
1472 read_unlock(&neigh_tbl_lock);
1473 err = -EADDRNOTAVAIL;
1474out_dev_put:
1475 if (dev)
1476 dev_put(dev);
1477out:
1478 return err;
1479}
1480
1481int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1482{
1483 struct ndmsg *ndm = NLMSG_DATA(nlh);
1484 struct rtattr **nda = arg;
1485 struct neigh_table *tbl;
1486 struct net_device *dev = NULL;
1487 int err = -ENODEV;
1488
1489 if (ndm->ndm_ifindex &&
1490 (dev = dev_get_by_index(ndm->ndm_ifindex)) == NULL)
1491 goto out;
1492
1493 read_lock(&neigh_tbl_lock);
1494 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1495 struct rtattr *lladdr_attr = nda[NDA_LLADDR - 1];
1496 struct rtattr *dst_attr = nda[NDA_DST - 1];
1497 int override = 1;
1498 struct neighbour *n;
1499
1500 if (tbl->family != ndm->ndm_family)
1501 continue;
1502 read_unlock(&neigh_tbl_lock);
1503
1504 err = -EINVAL;
1505 if (!dst_attr || RTA_PAYLOAD(dst_attr) < tbl->key_len)
1506 goto out_dev_put;
1507
1508 if (ndm->ndm_flags & NTF_PROXY) {
1509 err = -ENOBUFS;
1510 if (pneigh_lookup(tbl, RTA_DATA(dst_attr), dev, 1))
1511 err = 0;
1512 goto out_dev_put;
1513 }
1514
1515 err = -EINVAL;
1516 if (!dev)
1517 goto out;
1518 if (lladdr_attr && RTA_PAYLOAD(lladdr_attr) < dev->addr_len)
1519 goto out_dev_put;
1520
1521 n = neigh_lookup(tbl, RTA_DATA(dst_attr), dev);
1522 if (n) {
1523 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1524 err = -EEXIST;
1525 neigh_release(n);
1526 goto out_dev_put;
1527 }
1528
1529 override = nlh->nlmsg_flags & NLM_F_REPLACE;
1530 } else if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1531 err = -ENOENT;
1532 goto out_dev_put;
1533 } else {
1534 n = __neigh_lookup_errno(tbl, RTA_DATA(dst_attr), dev);
1535 if (IS_ERR(n)) {
1536 err = PTR_ERR(n);
1537 goto out_dev_put;
1538 }
1539 }
1540
1541 err = neigh_update(n,
1542 lladdr_attr ? RTA_DATA(lladdr_attr) : NULL,
1543 ndm->ndm_state,
1544 (override ? NEIGH_UPDATE_F_OVERRIDE : 0) |
1545 NEIGH_UPDATE_F_ADMIN);
1546
1547 neigh_release(n);
1548 goto out_dev_put;
1549 }
1550
1551 read_unlock(&neigh_tbl_lock);
1552 err = -EADDRNOTAVAIL;
1553out_dev_put:
1554 if (dev)
1555 dev_put(dev);
1556out:
1557 return err;
1558}
1559
Thomas Grafc7fb64d2005-06-18 22:50:55 -07001560static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1561{
Thomas Grafe386c6e2005-06-18 22:52:09 -07001562 struct rtattr *nest = NULL;
1563
1564 nest = RTA_NEST(skb, NDTA_PARMS);
Thomas Grafc7fb64d2005-06-18 22:50:55 -07001565
1566 if (parms->dev)
1567 RTA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1568
1569 RTA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1570 RTA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1571 RTA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1572 RTA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1573 RTA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1574 RTA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1575 RTA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1576 RTA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1577 parms->base_reachable_time);
1578 RTA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1579 RTA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1580 RTA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1581 RTA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1582 RTA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1583 RTA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1584
1585 return RTA_NEST_END(skb, nest);
1586
1587rtattr_failure:
1588 return RTA_NEST_CANCEL(skb, nest);
1589}
1590
1591static int neightbl_fill_info(struct neigh_table *tbl, struct sk_buff *skb,
1592 struct netlink_callback *cb)
1593{
1594 struct nlmsghdr *nlh;
1595 struct ndtmsg *ndtmsg;
1596
Thomas Graf17977542005-06-18 22:53:48 -07001597 nlh = NLMSG_NEW_ANSWER(skb, cb, RTM_NEWNEIGHTBL, sizeof(struct ndtmsg),
1598 NLM_F_MULTI);
Thomas Grafc7fb64d2005-06-18 22:50:55 -07001599
Thomas Graf4b6ea822005-06-18 22:51:43 -07001600 ndtmsg = NLMSG_DATA(nlh);
Thomas Grafc7fb64d2005-06-18 22:50:55 -07001601
1602 read_lock_bh(&tbl->lock);
1603 ndtmsg->ndtm_family = tbl->family;
Patrick McHardy9ef1d4c2005-06-28 12:55:30 -07001604 ndtmsg->ndtm_pad1 = 0;
1605 ndtmsg->ndtm_pad2 = 0;
Thomas Grafc7fb64d2005-06-18 22:50:55 -07001606
1607 RTA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1608 RTA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1609 RTA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1610 RTA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1611 RTA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1612
1613 {
1614 unsigned long now = jiffies;
1615 unsigned int flush_delta = now - tbl->last_flush;
1616 unsigned int rand_delta = now - tbl->last_rand;
1617
1618 struct ndt_config ndc = {
1619 .ndtc_key_len = tbl->key_len,
1620 .ndtc_entry_size = tbl->entry_size,
1621 .ndtc_entries = atomic_read(&tbl->entries),
1622 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1623 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1624 .ndtc_hash_rnd = tbl->hash_rnd,
1625 .ndtc_hash_mask = tbl->hash_mask,
1626 .ndtc_hash_chain_gc = tbl->hash_chain_gc,
1627 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1628 };
1629
1630 RTA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1631 }
1632
1633 {
1634 int cpu;
1635 struct ndt_stats ndst;
1636
1637 memset(&ndst, 0, sizeof(ndst));
1638
1639 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1640 struct neigh_statistics *st;
1641
1642 if (!cpu_possible(cpu))
1643 continue;
1644
1645 st = per_cpu_ptr(tbl->stats, cpu);
1646 ndst.ndts_allocs += st->allocs;
1647 ndst.ndts_destroys += st->destroys;
1648 ndst.ndts_hash_grows += st->hash_grows;
1649 ndst.ndts_res_failed += st->res_failed;
1650 ndst.ndts_lookups += st->lookups;
1651 ndst.ndts_hits += st->hits;
1652 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1653 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1654 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1655 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1656 }
1657
1658 RTA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1659 }
1660
1661 BUG_ON(tbl->parms.dev);
1662 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1663 goto rtattr_failure;
1664
1665 read_unlock_bh(&tbl->lock);
1666 return NLMSG_END(skb, nlh);
1667
1668rtattr_failure:
1669 read_unlock_bh(&tbl->lock);
1670 return NLMSG_CANCEL(skb, nlh);
1671
1672nlmsg_failure:
1673 return -1;
1674}
1675
1676static int neightbl_fill_param_info(struct neigh_table *tbl,
1677 struct neigh_parms *parms,
1678 struct sk_buff *skb,
1679 struct netlink_callback *cb)
1680{
1681 struct ndtmsg *ndtmsg;
1682 struct nlmsghdr *nlh;
1683
Thomas Graf17977542005-06-18 22:53:48 -07001684 nlh = NLMSG_NEW_ANSWER(skb, cb, RTM_NEWNEIGHTBL, sizeof(struct ndtmsg),
1685 NLM_F_MULTI);
Thomas Grafc7fb64d2005-06-18 22:50:55 -07001686
Thomas Graf4b6ea822005-06-18 22:51:43 -07001687 ndtmsg = NLMSG_DATA(nlh);
Thomas Grafc7fb64d2005-06-18 22:50:55 -07001688
1689 read_lock_bh(&tbl->lock);
1690 ndtmsg->ndtm_family = tbl->family;
Patrick McHardy9ef1d4c2005-06-28 12:55:30 -07001691 ndtmsg->ndtm_pad1 = 0;
1692 ndtmsg->ndtm_pad2 = 0;
Thomas Grafc7fb64d2005-06-18 22:50:55 -07001693 RTA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1694
1695 if (neightbl_fill_parms(skb, parms) < 0)
1696 goto rtattr_failure;
1697
1698 read_unlock_bh(&tbl->lock);
1699 return NLMSG_END(skb, nlh);
1700
1701rtattr_failure:
1702 read_unlock_bh(&tbl->lock);
1703 return NLMSG_CANCEL(skb, nlh);
1704
1705nlmsg_failure:
1706 return -1;
1707}
1708
1709static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl,
1710 int ifindex)
1711{
1712 struct neigh_parms *p;
1713
1714 for (p = &tbl->parms; p; p = p->next)
1715 if ((p->dev && p->dev->ifindex == ifindex) ||
1716 (!p->dev && !ifindex))
1717 return p;
1718
1719 return NULL;
1720}
1721
1722int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1723{
1724 struct neigh_table *tbl;
1725 struct ndtmsg *ndtmsg = NLMSG_DATA(nlh);
1726 struct rtattr **tb = arg;
1727 int err = -EINVAL;
1728
1729 if (!tb[NDTA_NAME - 1] || !RTA_PAYLOAD(tb[NDTA_NAME - 1]))
1730 return -EINVAL;
1731
1732 read_lock(&neigh_tbl_lock);
1733 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1734 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1735 continue;
1736
1737 if (!rtattr_strcmp(tb[NDTA_NAME - 1], tbl->id))
1738 break;
1739 }
1740
1741 if (tbl == NULL) {
1742 err = -ENOENT;
1743 goto errout;
1744 }
1745
1746 /*
1747 * We acquire tbl->lock to be nice to the periodic timers and
1748 * make sure they always see a consistent set of values.
1749 */
1750 write_lock_bh(&tbl->lock);
1751
1752 if (tb[NDTA_THRESH1 - 1])
1753 tbl->gc_thresh1 = RTA_GET_U32(tb[NDTA_THRESH1 - 1]);
1754
1755 if (tb[NDTA_THRESH2 - 1])
1756 tbl->gc_thresh2 = RTA_GET_U32(tb[NDTA_THRESH2 - 1]);
1757
1758 if (tb[NDTA_THRESH3 - 1])
1759 tbl->gc_thresh3 = RTA_GET_U32(tb[NDTA_THRESH3 - 1]);
1760
1761 if (tb[NDTA_GC_INTERVAL - 1])
1762 tbl->gc_interval = RTA_GET_MSECS(tb[NDTA_GC_INTERVAL - 1]);
1763
1764 if (tb[NDTA_PARMS - 1]) {
1765 struct rtattr *tbp[NDTPA_MAX];
1766 struct neigh_parms *p;
1767 u32 ifindex = 0;
1768
1769 if (rtattr_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS - 1]) < 0)
1770 goto rtattr_failure;
1771
1772 if (tbp[NDTPA_IFINDEX - 1])
1773 ifindex = RTA_GET_U32(tbp[NDTPA_IFINDEX - 1]);
1774
1775 p = lookup_neigh_params(tbl, ifindex);
1776 if (p == NULL) {
1777 err = -ENOENT;
1778 goto rtattr_failure;
1779 }
1780
1781 if (tbp[NDTPA_QUEUE_LEN - 1])
1782 p->queue_len = RTA_GET_U32(tbp[NDTPA_QUEUE_LEN - 1]);
1783
1784 if (tbp[NDTPA_PROXY_QLEN - 1])
1785 p->proxy_qlen = RTA_GET_U32(tbp[NDTPA_PROXY_QLEN - 1]);
1786
1787 if (tbp[NDTPA_APP_PROBES - 1])
1788 p->app_probes = RTA_GET_U32(tbp[NDTPA_APP_PROBES - 1]);
1789
1790 if (tbp[NDTPA_UCAST_PROBES - 1])
1791 p->ucast_probes =
1792 RTA_GET_U32(tbp[NDTPA_UCAST_PROBES - 1]);
1793
1794 if (tbp[NDTPA_MCAST_PROBES - 1])
1795 p->mcast_probes =
1796 RTA_GET_U32(tbp[NDTPA_MCAST_PROBES - 1]);
1797
1798 if (tbp[NDTPA_BASE_REACHABLE_TIME - 1])
1799 p->base_reachable_time =
1800 RTA_GET_MSECS(tbp[NDTPA_BASE_REACHABLE_TIME - 1]);
1801
1802 if (tbp[NDTPA_GC_STALETIME - 1])
1803 p->gc_staletime =
1804 RTA_GET_MSECS(tbp[NDTPA_GC_STALETIME - 1]);
1805
1806 if (tbp[NDTPA_DELAY_PROBE_TIME - 1])
1807 p->delay_probe_time =
1808 RTA_GET_MSECS(tbp[NDTPA_DELAY_PROBE_TIME - 1]);
1809
1810 if (tbp[NDTPA_RETRANS_TIME - 1])
1811 p->retrans_time =
1812 RTA_GET_MSECS(tbp[NDTPA_RETRANS_TIME - 1]);
1813
1814 if (tbp[NDTPA_ANYCAST_DELAY - 1])
1815 p->anycast_delay =
1816 RTA_GET_MSECS(tbp[NDTPA_ANYCAST_DELAY - 1]);
1817
1818 if (tbp[NDTPA_PROXY_DELAY - 1])
1819 p->proxy_delay =
1820 RTA_GET_MSECS(tbp[NDTPA_PROXY_DELAY - 1]);
1821
1822 if (tbp[NDTPA_LOCKTIME - 1])
1823 p->locktime = RTA_GET_MSECS(tbp[NDTPA_LOCKTIME - 1]);
1824 }
1825
1826 err = 0;
1827
1828rtattr_failure:
1829 write_unlock_bh(&tbl->lock);
1830errout:
1831 read_unlock(&neigh_tbl_lock);
1832 return err;
1833}
1834
1835int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1836{
1837 int idx, family;
1838 int s_idx = cb->args[0];
1839 struct neigh_table *tbl;
1840
1841 family = ((struct rtgenmsg *)NLMSG_DATA(cb->nlh))->rtgen_family;
1842
1843 read_lock(&neigh_tbl_lock);
1844 for (tbl = neigh_tables, idx = 0; tbl; tbl = tbl->next) {
1845 struct neigh_parms *p;
1846
1847 if (idx < s_idx || (family && tbl->family != family))
1848 continue;
1849
1850 if (neightbl_fill_info(tbl, skb, cb) <= 0)
1851 break;
1852
1853 for (++idx, p = tbl->parms.next; p; p = p->next, idx++) {
1854 if (idx < s_idx)
1855 continue;
1856
1857 if (neightbl_fill_param_info(tbl, p, skb, cb) <= 0)
1858 goto out;
1859 }
1860
1861 }
1862out:
1863 read_unlock(&neigh_tbl_lock);
1864 cb->args[0] = idx;
1865
1866 return skb->len;
1867}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001868
1869static int neigh_fill_info(struct sk_buff *skb, struct neighbour *n,
Jamal Hadi Salimb6544c02005-06-18 22:54:12 -07001870 u32 pid, u32 seq, int event, unsigned int flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001871{
1872 unsigned long now = jiffies;
1873 unsigned char *b = skb->tail;
1874 struct nda_cacheinfo ci;
1875 int locked = 0;
1876 u32 probes;
Jamal Hadi Salimb6544c02005-06-18 22:54:12 -07001877 struct nlmsghdr *nlh = NLMSG_NEW(skb, pid, seq, event,
1878 sizeof(struct ndmsg), flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001879 struct ndmsg *ndm = NLMSG_DATA(nlh);
1880
Linus Torvalds1da177e2005-04-16 15:20:36 -07001881 ndm->ndm_family = n->ops->family;
Patrick McHardy9ef1d4c2005-06-28 12:55:30 -07001882 ndm->ndm_pad1 = 0;
1883 ndm->ndm_pad2 = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001884 ndm->ndm_flags = n->flags;
1885 ndm->ndm_type = n->type;
1886 ndm->ndm_ifindex = n->dev->ifindex;
1887 RTA_PUT(skb, NDA_DST, n->tbl->key_len, n->primary_key);
1888 read_lock_bh(&n->lock);
1889 locked = 1;
1890 ndm->ndm_state = n->nud_state;
1891 if (n->nud_state & NUD_VALID)
1892 RTA_PUT(skb, NDA_LLADDR, n->dev->addr_len, n->ha);
1893 ci.ndm_used = now - n->used;
1894 ci.ndm_confirmed = now - n->confirmed;
1895 ci.ndm_updated = now - n->updated;
1896 ci.ndm_refcnt = atomic_read(&n->refcnt) - 1;
1897 probes = atomic_read(&n->probes);
1898 read_unlock_bh(&n->lock);
1899 locked = 0;
1900 RTA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
1901 RTA_PUT(skb, NDA_PROBES, sizeof(probes), &probes);
1902 nlh->nlmsg_len = skb->tail - b;
1903 return skb->len;
1904
1905nlmsg_failure:
1906rtattr_failure:
1907 if (locked)
1908 read_unlock_bh(&n->lock);
1909 skb_trim(skb, b - skb->data);
1910 return -1;
1911}
1912
1913
1914static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
1915 struct netlink_callback *cb)
1916{
1917 struct neighbour *n;
1918 int rc, h, s_h = cb->args[1];
1919 int idx, s_idx = idx = cb->args[2];
1920
1921 for (h = 0; h <= tbl->hash_mask; h++) {
1922 if (h < s_h)
1923 continue;
1924 if (h > s_h)
1925 s_idx = 0;
1926 read_lock_bh(&tbl->lock);
1927 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next, idx++) {
1928 if (idx < s_idx)
1929 continue;
1930 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
1931 cb->nlh->nlmsg_seq,
Jamal Hadi Salimb6544c02005-06-18 22:54:12 -07001932 RTM_NEWNEIGH,
1933 NLM_F_MULTI) <= 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001934 read_unlock_bh(&tbl->lock);
1935 rc = -1;
1936 goto out;
1937 }
1938 }
1939 read_unlock_bh(&tbl->lock);
1940 }
1941 rc = skb->len;
1942out:
1943 cb->args[1] = h;
1944 cb->args[2] = idx;
1945 return rc;
1946}
1947
1948int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1949{
1950 struct neigh_table *tbl;
1951 int t, family, s_t;
1952
1953 read_lock(&neigh_tbl_lock);
1954 family = ((struct rtgenmsg *)NLMSG_DATA(cb->nlh))->rtgen_family;
1955 s_t = cb->args[0];
1956
1957 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
1958 if (t < s_t || (family && tbl->family != family))
1959 continue;
1960 if (t > s_t)
1961 memset(&cb->args[1], 0, sizeof(cb->args) -
1962 sizeof(cb->args[0]));
1963 if (neigh_dump_table(tbl, skb, cb) < 0)
1964 break;
1965 }
1966 read_unlock(&neigh_tbl_lock);
1967
1968 cb->args[0] = t;
1969 return skb->len;
1970}
1971
1972void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
1973{
1974 int chain;
1975
1976 read_lock_bh(&tbl->lock);
1977 for (chain = 0; chain <= tbl->hash_mask; chain++) {
1978 struct neighbour *n;
1979
1980 for (n = tbl->hash_buckets[chain]; n; n = n->next)
1981 cb(n, cookie);
1982 }
1983 read_unlock_bh(&tbl->lock);
1984}
1985EXPORT_SYMBOL(neigh_for_each);
1986
1987/* The tbl->lock must be held as a writer and BH disabled. */
1988void __neigh_for_each_release(struct neigh_table *tbl,
1989 int (*cb)(struct neighbour *))
1990{
1991 int chain;
1992
1993 for (chain = 0; chain <= tbl->hash_mask; chain++) {
1994 struct neighbour *n, **np;
1995
1996 np = &tbl->hash_buckets[chain];
1997 while ((n = *np) != NULL) {
1998 int release;
1999
2000 write_lock(&n->lock);
2001 release = cb(n);
2002 if (release) {
2003 *np = n->next;
2004 n->dead = 1;
2005 } else
2006 np = &n->next;
2007 write_unlock(&n->lock);
2008 if (release)
2009 neigh_release(n);
2010 }
2011 }
2012}
2013EXPORT_SYMBOL(__neigh_for_each_release);
2014
2015#ifdef CONFIG_PROC_FS
2016
2017static struct neighbour *neigh_get_first(struct seq_file *seq)
2018{
2019 struct neigh_seq_state *state = seq->private;
2020 struct neigh_table *tbl = state->tbl;
2021 struct neighbour *n = NULL;
2022 int bucket = state->bucket;
2023
2024 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2025 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2026 n = tbl->hash_buckets[bucket];
2027
2028 while (n) {
2029 if (state->neigh_sub_iter) {
2030 loff_t fakep = 0;
2031 void *v;
2032
2033 v = state->neigh_sub_iter(state, n, &fakep);
2034 if (!v)
2035 goto next;
2036 }
2037 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2038 break;
2039 if (n->nud_state & ~NUD_NOARP)
2040 break;
2041 next:
2042 n = n->next;
2043 }
2044
2045 if (n)
2046 break;
2047 }
2048 state->bucket = bucket;
2049
2050 return n;
2051}
2052
2053static struct neighbour *neigh_get_next(struct seq_file *seq,
2054 struct neighbour *n,
2055 loff_t *pos)
2056{
2057 struct neigh_seq_state *state = seq->private;
2058 struct neigh_table *tbl = state->tbl;
2059
2060 if (state->neigh_sub_iter) {
2061 void *v = state->neigh_sub_iter(state, n, pos);
2062 if (v)
2063 return n;
2064 }
2065 n = n->next;
2066
2067 while (1) {
2068 while (n) {
2069 if (state->neigh_sub_iter) {
2070 void *v = state->neigh_sub_iter(state, n, pos);
2071 if (v)
2072 return n;
2073 goto next;
2074 }
2075 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2076 break;
2077
2078 if (n->nud_state & ~NUD_NOARP)
2079 break;
2080 next:
2081 n = n->next;
2082 }
2083
2084 if (n)
2085 break;
2086
2087 if (++state->bucket > tbl->hash_mask)
2088 break;
2089
2090 n = tbl->hash_buckets[state->bucket];
2091 }
2092
2093 if (n && pos)
2094 --(*pos);
2095 return n;
2096}
2097
2098static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2099{
2100 struct neighbour *n = neigh_get_first(seq);
2101
2102 if (n) {
2103 while (*pos) {
2104 n = neigh_get_next(seq, n, pos);
2105 if (!n)
2106 break;
2107 }
2108 }
2109 return *pos ? NULL : n;
2110}
2111
2112static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2113{
2114 struct neigh_seq_state *state = seq->private;
2115 struct neigh_table *tbl = state->tbl;
2116 struct pneigh_entry *pn = NULL;
2117 int bucket = state->bucket;
2118
2119 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2120 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2121 pn = tbl->phash_buckets[bucket];
2122 if (pn)
2123 break;
2124 }
2125 state->bucket = bucket;
2126
2127 return pn;
2128}
2129
2130static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2131 struct pneigh_entry *pn,
2132 loff_t *pos)
2133{
2134 struct neigh_seq_state *state = seq->private;
2135 struct neigh_table *tbl = state->tbl;
2136
2137 pn = pn->next;
2138 while (!pn) {
2139 if (++state->bucket > PNEIGH_HASHMASK)
2140 break;
2141 pn = tbl->phash_buckets[state->bucket];
2142 if (pn)
2143 break;
2144 }
2145
2146 if (pn && pos)
2147 --(*pos);
2148
2149 return pn;
2150}
2151
2152static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2153{
2154 struct pneigh_entry *pn = pneigh_get_first(seq);
2155
2156 if (pn) {
2157 while (*pos) {
2158 pn = pneigh_get_next(seq, pn, pos);
2159 if (!pn)
2160 break;
2161 }
2162 }
2163 return *pos ? NULL : pn;
2164}
2165
2166static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2167{
2168 struct neigh_seq_state *state = seq->private;
2169 void *rc;
2170
2171 rc = neigh_get_idx(seq, pos);
2172 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2173 rc = pneigh_get_idx(seq, pos);
2174
2175 return rc;
2176}
2177
2178void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2179{
2180 struct neigh_seq_state *state = seq->private;
2181 loff_t pos_minus_one;
2182
2183 state->tbl = tbl;
2184 state->bucket = 0;
2185 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2186
2187 read_lock_bh(&tbl->lock);
2188
2189 pos_minus_one = *pos - 1;
2190 return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN;
2191}
2192EXPORT_SYMBOL(neigh_seq_start);
2193
2194void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2195{
2196 struct neigh_seq_state *state;
2197 void *rc;
2198
2199 if (v == SEQ_START_TOKEN) {
2200 rc = neigh_get_idx(seq, pos);
2201 goto out;
2202 }
2203
2204 state = seq->private;
2205 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2206 rc = neigh_get_next(seq, v, NULL);
2207 if (rc)
2208 goto out;
2209 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2210 rc = pneigh_get_first(seq);
2211 } else {
2212 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2213 rc = pneigh_get_next(seq, v, NULL);
2214 }
2215out:
2216 ++(*pos);
2217 return rc;
2218}
2219EXPORT_SYMBOL(neigh_seq_next);
2220
2221void neigh_seq_stop(struct seq_file *seq, void *v)
2222{
2223 struct neigh_seq_state *state = seq->private;
2224 struct neigh_table *tbl = state->tbl;
2225
2226 read_unlock_bh(&tbl->lock);
2227}
2228EXPORT_SYMBOL(neigh_seq_stop);
2229
2230/* statistics via seq_file */
2231
2232static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2233{
2234 struct proc_dir_entry *pde = seq->private;
2235 struct neigh_table *tbl = pde->data;
2236 int cpu;
2237
2238 if (*pos == 0)
2239 return SEQ_START_TOKEN;
2240
2241 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) {
2242 if (!cpu_possible(cpu))
2243 continue;
2244 *pos = cpu+1;
2245 return per_cpu_ptr(tbl->stats, cpu);
2246 }
2247 return NULL;
2248}
2249
2250static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2251{
2252 struct proc_dir_entry *pde = seq->private;
2253 struct neigh_table *tbl = pde->data;
2254 int cpu;
2255
2256 for (cpu = *pos; cpu < NR_CPUS; ++cpu) {
2257 if (!cpu_possible(cpu))
2258 continue;
2259 *pos = cpu+1;
2260 return per_cpu_ptr(tbl->stats, cpu);
2261 }
2262 return NULL;
2263}
2264
2265static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2266{
2267
2268}
2269
2270static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2271{
2272 struct proc_dir_entry *pde = seq->private;
2273 struct neigh_table *tbl = pde->data;
2274 struct neigh_statistics *st = v;
2275
2276 if (v == SEQ_START_TOKEN) {
Olaf Rempel5bec0032005-04-28 12:16:08 -07002277 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002278 return 0;
2279 }
2280
2281 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2282 "%08lx %08lx %08lx %08lx\n",
2283 atomic_read(&tbl->entries),
2284
2285 st->allocs,
2286 st->destroys,
2287 st->hash_grows,
2288
2289 st->lookups,
2290 st->hits,
2291
2292 st->res_failed,
2293
2294 st->rcv_probes_mcast,
2295 st->rcv_probes_ucast,
2296
2297 st->periodic_gc_runs,
2298 st->forced_gc_runs
2299 );
2300
2301 return 0;
2302}
2303
2304static struct seq_operations neigh_stat_seq_ops = {
2305 .start = neigh_stat_seq_start,
2306 .next = neigh_stat_seq_next,
2307 .stop = neigh_stat_seq_stop,
2308 .show = neigh_stat_seq_show,
2309};
2310
2311static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2312{
2313 int ret = seq_open(file, &neigh_stat_seq_ops);
2314
2315 if (!ret) {
2316 struct seq_file *sf = file->private_data;
2317 sf->private = PDE(inode);
2318 }
2319 return ret;
2320};
2321
2322static struct file_operations neigh_stat_seq_fops = {
2323 .owner = THIS_MODULE,
2324 .open = neigh_stat_seq_open,
2325 .read = seq_read,
2326 .llseek = seq_lseek,
2327 .release = seq_release,
2328};
2329
2330#endif /* CONFIG_PROC_FS */
2331
2332#ifdef CONFIG_ARPD
2333void neigh_app_ns(struct neighbour *n)
2334{
2335 struct nlmsghdr *nlh;
2336 int size = NLMSG_SPACE(sizeof(struct ndmsg) + 256);
2337 struct sk_buff *skb = alloc_skb(size, GFP_ATOMIC);
2338
2339 if (!skb)
2340 return;
2341
Jamal Hadi Salimb6544c02005-06-18 22:54:12 -07002342 if (neigh_fill_info(skb, n, 0, 0, RTM_GETNEIGH, 0) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002343 kfree_skb(skb);
2344 return;
2345 }
2346 nlh = (struct nlmsghdr *)skb->data;
2347 nlh->nlmsg_flags = NLM_F_REQUEST;
Patrick McHardyac6d4392005-08-14 19:29:52 -07002348 NETLINK_CB(skb).dst_group = RTNLGRP_NEIGH;
2349 netlink_broadcast(rtnl, skb, 0, RTNLGRP_NEIGH, GFP_ATOMIC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002350}
2351
2352static void neigh_app_notify(struct neighbour *n)
2353{
2354 struct nlmsghdr *nlh;
2355 int size = NLMSG_SPACE(sizeof(struct ndmsg) + 256);
2356 struct sk_buff *skb = alloc_skb(size, GFP_ATOMIC);
2357
2358 if (!skb)
2359 return;
2360
Jamal Hadi Salimb6544c02005-06-18 22:54:12 -07002361 if (neigh_fill_info(skb, n, 0, 0, RTM_NEWNEIGH, 0) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002362 kfree_skb(skb);
2363 return;
2364 }
2365 nlh = (struct nlmsghdr *)skb->data;
Patrick McHardyac6d4392005-08-14 19:29:52 -07002366 NETLINK_CB(skb).dst_group = RTNLGRP_NEIGH;
2367 netlink_broadcast(rtnl, skb, 0, RTNLGRP_NEIGH, GFP_ATOMIC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002368}
2369
2370#endif /* CONFIG_ARPD */
2371
2372#ifdef CONFIG_SYSCTL
2373
2374static struct neigh_sysctl_table {
2375 struct ctl_table_header *sysctl_header;
2376 ctl_table neigh_vars[__NET_NEIGH_MAX];
2377 ctl_table neigh_dev[2];
2378 ctl_table neigh_neigh_dir[2];
2379 ctl_table neigh_proto_dir[2];
2380 ctl_table neigh_root_dir[2];
2381} neigh_sysctl_template = {
2382 .neigh_vars = {
2383 {
2384 .ctl_name = NET_NEIGH_MCAST_SOLICIT,
2385 .procname = "mcast_solicit",
2386 .maxlen = sizeof(int),
2387 .mode = 0644,
2388 .proc_handler = &proc_dointvec,
2389 },
2390 {
2391 .ctl_name = NET_NEIGH_UCAST_SOLICIT,
2392 .procname = "ucast_solicit",
2393 .maxlen = sizeof(int),
2394 .mode = 0644,
2395 .proc_handler = &proc_dointvec,
2396 },
2397 {
2398 .ctl_name = NET_NEIGH_APP_SOLICIT,
2399 .procname = "app_solicit",
2400 .maxlen = sizeof(int),
2401 .mode = 0644,
2402 .proc_handler = &proc_dointvec,
2403 },
2404 {
2405 .ctl_name = NET_NEIGH_RETRANS_TIME,
2406 .procname = "retrans_time",
2407 .maxlen = sizeof(int),
2408 .mode = 0644,
2409 .proc_handler = &proc_dointvec_userhz_jiffies,
2410 },
2411 {
2412 .ctl_name = NET_NEIGH_REACHABLE_TIME,
2413 .procname = "base_reachable_time",
2414 .maxlen = sizeof(int),
2415 .mode = 0644,
2416 .proc_handler = &proc_dointvec_jiffies,
2417 .strategy = &sysctl_jiffies,
2418 },
2419 {
2420 .ctl_name = NET_NEIGH_DELAY_PROBE_TIME,
2421 .procname = "delay_first_probe_time",
2422 .maxlen = sizeof(int),
2423 .mode = 0644,
2424 .proc_handler = &proc_dointvec_jiffies,
2425 .strategy = &sysctl_jiffies,
2426 },
2427 {
2428 .ctl_name = NET_NEIGH_GC_STALE_TIME,
2429 .procname = "gc_stale_time",
2430 .maxlen = sizeof(int),
2431 .mode = 0644,
2432 .proc_handler = &proc_dointvec_jiffies,
2433 .strategy = &sysctl_jiffies,
2434 },
2435 {
2436 .ctl_name = NET_NEIGH_UNRES_QLEN,
2437 .procname = "unres_qlen",
2438 .maxlen = sizeof(int),
2439 .mode = 0644,
2440 .proc_handler = &proc_dointvec,
2441 },
2442 {
2443 .ctl_name = NET_NEIGH_PROXY_QLEN,
2444 .procname = "proxy_qlen",
2445 .maxlen = sizeof(int),
2446 .mode = 0644,
2447 .proc_handler = &proc_dointvec,
2448 },
2449 {
2450 .ctl_name = NET_NEIGH_ANYCAST_DELAY,
2451 .procname = "anycast_delay",
2452 .maxlen = sizeof(int),
2453 .mode = 0644,
2454 .proc_handler = &proc_dointvec_userhz_jiffies,
2455 },
2456 {
2457 .ctl_name = NET_NEIGH_PROXY_DELAY,
2458 .procname = "proxy_delay",
2459 .maxlen = sizeof(int),
2460 .mode = 0644,
2461 .proc_handler = &proc_dointvec_userhz_jiffies,
2462 },
2463 {
2464 .ctl_name = NET_NEIGH_LOCKTIME,
2465 .procname = "locktime",
2466 .maxlen = sizeof(int),
2467 .mode = 0644,
2468 .proc_handler = &proc_dointvec_userhz_jiffies,
2469 },
2470 {
2471 .ctl_name = NET_NEIGH_GC_INTERVAL,
2472 .procname = "gc_interval",
2473 .maxlen = sizeof(int),
2474 .mode = 0644,
2475 .proc_handler = &proc_dointvec_jiffies,
2476 .strategy = &sysctl_jiffies,
2477 },
2478 {
2479 .ctl_name = NET_NEIGH_GC_THRESH1,
2480 .procname = "gc_thresh1",
2481 .maxlen = sizeof(int),
2482 .mode = 0644,
2483 .proc_handler = &proc_dointvec,
2484 },
2485 {
2486 .ctl_name = NET_NEIGH_GC_THRESH2,
2487 .procname = "gc_thresh2",
2488 .maxlen = sizeof(int),
2489 .mode = 0644,
2490 .proc_handler = &proc_dointvec,
2491 },
2492 {
2493 .ctl_name = NET_NEIGH_GC_THRESH3,
2494 .procname = "gc_thresh3",
2495 .maxlen = sizeof(int),
2496 .mode = 0644,
2497 .proc_handler = &proc_dointvec,
2498 },
2499 {
2500 .ctl_name = NET_NEIGH_RETRANS_TIME_MS,
2501 .procname = "retrans_time_ms",
2502 .maxlen = sizeof(int),
2503 .mode = 0644,
2504 .proc_handler = &proc_dointvec_ms_jiffies,
2505 .strategy = &sysctl_ms_jiffies,
2506 },
2507 {
2508 .ctl_name = NET_NEIGH_REACHABLE_TIME_MS,
2509 .procname = "base_reachable_time_ms",
2510 .maxlen = sizeof(int),
2511 .mode = 0644,
2512 .proc_handler = &proc_dointvec_ms_jiffies,
2513 .strategy = &sysctl_ms_jiffies,
2514 },
2515 },
2516 .neigh_dev = {
2517 {
2518 .ctl_name = NET_PROTO_CONF_DEFAULT,
2519 .procname = "default",
2520 .mode = 0555,
2521 },
2522 },
2523 .neigh_neigh_dir = {
2524 {
2525 .procname = "neigh",
2526 .mode = 0555,
2527 },
2528 },
2529 .neigh_proto_dir = {
2530 {
2531 .mode = 0555,
2532 },
2533 },
2534 .neigh_root_dir = {
2535 {
2536 .ctl_name = CTL_NET,
2537 .procname = "net",
2538 .mode = 0555,
2539 },
2540 },
2541};
2542
2543int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2544 int p_id, int pdev_id, char *p_name,
2545 proc_handler *handler, ctl_handler *strategy)
2546{
2547 struct neigh_sysctl_table *t = kmalloc(sizeof(*t), GFP_KERNEL);
2548 const char *dev_name_source = NULL;
2549 char *dev_name = NULL;
2550 int err = 0;
2551
2552 if (!t)
2553 return -ENOBUFS;
2554 memcpy(t, &neigh_sysctl_template, sizeof(*t));
2555 t->neigh_vars[0].data = &p->mcast_probes;
2556 t->neigh_vars[1].data = &p->ucast_probes;
2557 t->neigh_vars[2].data = &p->app_probes;
2558 t->neigh_vars[3].data = &p->retrans_time;
2559 t->neigh_vars[4].data = &p->base_reachable_time;
2560 t->neigh_vars[5].data = &p->delay_probe_time;
2561 t->neigh_vars[6].data = &p->gc_staletime;
2562 t->neigh_vars[7].data = &p->queue_len;
2563 t->neigh_vars[8].data = &p->proxy_qlen;
2564 t->neigh_vars[9].data = &p->anycast_delay;
2565 t->neigh_vars[10].data = &p->proxy_delay;
2566 t->neigh_vars[11].data = &p->locktime;
2567
2568 if (dev) {
2569 dev_name_source = dev->name;
2570 t->neigh_dev[0].ctl_name = dev->ifindex;
2571 t->neigh_vars[12].procname = NULL;
2572 t->neigh_vars[13].procname = NULL;
2573 t->neigh_vars[14].procname = NULL;
2574 t->neigh_vars[15].procname = NULL;
2575 } else {
2576 dev_name_source = t->neigh_dev[0].procname;
2577 t->neigh_vars[12].data = (int *)(p + 1);
2578 t->neigh_vars[13].data = (int *)(p + 1) + 1;
2579 t->neigh_vars[14].data = (int *)(p + 1) + 2;
2580 t->neigh_vars[15].data = (int *)(p + 1) + 3;
2581 }
2582
2583 t->neigh_vars[16].data = &p->retrans_time;
2584 t->neigh_vars[17].data = &p->base_reachable_time;
2585
2586 if (handler || strategy) {
2587 /* RetransTime */
2588 t->neigh_vars[3].proc_handler = handler;
2589 t->neigh_vars[3].strategy = strategy;
2590 t->neigh_vars[3].extra1 = dev;
2591 /* ReachableTime */
2592 t->neigh_vars[4].proc_handler = handler;
2593 t->neigh_vars[4].strategy = strategy;
2594 t->neigh_vars[4].extra1 = dev;
2595 /* RetransTime (in milliseconds)*/
2596 t->neigh_vars[16].proc_handler = handler;
2597 t->neigh_vars[16].strategy = strategy;
2598 t->neigh_vars[16].extra1 = dev;
2599 /* ReachableTime (in milliseconds) */
2600 t->neigh_vars[17].proc_handler = handler;
2601 t->neigh_vars[17].strategy = strategy;
2602 t->neigh_vars[17].extra1 = dev;
2603 }
2604
Paulo Marques543537b2005-06-23 00:09:02 -07002605 dev_name = kstrdup(dev_name_source, GFP_KERNEL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002606 if (!dev_name) {
2607 err = -ENOBUFS;
2608 goto free;
2609 }
2610
2611 t->neigh_dev[0].procname = dev_name;
2612
2613 t->neigh_neigh_dir[0].ctl_name = pdev_id;
2614
2615 t->neigh_proto_dir[0].procname = p_name;
2616 t->neigh_proto_dir[0].ctl_name = p_id;
2617
2618 t->neigh_dev[0].child = t->neigh_vars;
2619 t->neigh_neigh_dir[0].child = t->neigh_dev;
2620 t->neigh_proto_dir[0].child = t->neigh_neigh_dir;
2621 t->neigh_root_dir[0].child = t->neigh_proto_dir;
2622
2623 t->sysctl_header = register_sysctl_table(t->neigh_root_dir, 0);
2624 if (!t->sysctl_header) {
2625 err = -ENOBUFS;
2626 goto free_procname;
2627 }
2628 p->sysctl_table = t;
2629 return 0;
2630
2631 /* error path */
2632 free_procname:
2633 kfree(dev_name);
2634 free:
2635 kfree(t);
2636
2637 return err;
2638}
2639
2640void neigh_sysctl_unregister(struct neigh_parms *p)
2641{
2642 if (p->sysctl_table) {
2643 struct neigh_sysctl_table *t = p->sysctl_table;
2644 p->sysctl_table = NULL;
2645 unregister_sysctl_table(t->sysctl_header);
2646 kfree(t->neigh_dev[0].procname);
2647 kfree(t);
2648 }
2649}
2650
2651#endif /* CONFIG_SYSCTL */
2652
2653EXPORT_SYMBOL(__neigh_event_send);
2654EXPORT_SYMBOL(neigh_add);
2655EXPORT_SYMBOL(neigh_changeaddr);
2656EXPORT_SYMBOL(neigh_compat_output);
2657EXPORT_SYMBOL(neigh_connected_output);
2658EXPORT_SYMBOL(neigh_create);
2659EXPORT_SYMBOL(neigh_delete);
2660EXPORT_SYMBOL(neigh_destroy);
2661EXPORT_SYMBOL(neigh_dump_info);
2662EXPORT_SYMBOL(neigh_event_ns);
2663EXPORT_SYMBOL(neigh_ifdown);
2664EXPORT_SYMBOL(neigh_lookup);
2665EXPORT_SYMBOL(neigh_lookup_nodev);
2666EXPORT_SYMBOL(neigh_parms_alloc);
2667EXPORT_SYMBOL(neigh_parms_release);
2668EXPORT_SYMBOL(neigh_rand_reach_time);
2669EXPORT_SYMBOL(neigh_resolve_output);
2670EXPORT_SYMBOL(neigh_table_clear);
2671EXPORT_SYMBOL(neigh_table_init);
2672EXPORT_SYMBOL(neigh_update);
2673EXPORT_SYMBOL(neigh_update_hhs);
2674EXPORT_SYMBOL(pneigh_enqueue);
2675EXPORT_SYMBOL(pneigh_lookup);
Thomas Grafc7fb64d2005-06-18 22:50:55 -07002676EXPORT_SYMBOL(neightbl_dump_info);
2677EXPORT_SYMBOL(neightbl_set);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002678
2679#ifdef CONFIG_ARPD
2680EXPORT_SYMBOL(neigh_app_ns);
2681#endif
2682#ifdef CONFIG_SYSCTL
2683EXPORT_SYMBOL(neigh_sysctl_register);
2684EXPORT_SYMBOL(neigh_sysctl_unregister);
2685#endif