blob: 136fc031e4ad555d168a8b0ac002b460ebea8ebb [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*******************************************************************************
2
3
Malli Chilakala26483452005-04-28 19:44:46 -07004 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/* e1000_hw.c
30 * Shared functions for accessing and configuring the MAC
31 */
32
33#include "e1000_hw.h"
34
35static int32_t e1000_set_phy_type(struct e1000_hw *hw);
36static void e1000_phy_init_script(struct e1000_hw *hw);
37static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
38static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
39static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
40static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
41static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
42static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
43static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
44static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
45 uint16_t count);
46static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
47static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
48static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
49 uint16_t words, uint16_t *data);
50static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
51 uint16_t offset, uint16_t words,
52 uint16_t *data);
53static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
54static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
55static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
56static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
57 uint16_t count);
58static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
59 uint16_t phy_data);
60static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
61 uint16_t *phy_data);
62static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
63static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
64static void e1000_release_eeprom(struct e1000_hw *hw);
65static void e1000_standby_eeprom(struct e1000_hw *hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -070066static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
67static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
68static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -070069static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
70static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
Adrian Bunk3ad2cc62005-10-30 16:53:34 +010071static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw);
72static int32_t e1000_check_downshift(struct e1000_hw *hw);
73static int32_t e1000_check_polarity(struct e1000_hw *hw, uint16_t *polarity);
74static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
75static void e1000_clear_vfta(struct e1000_hw *hw);
76static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw);
77static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw,
78 boolean_t link_up);
79static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw);
80static int32_t e1000_detect_gig_phy(struct e1000_hw *hw);
81static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw);
82static int32_t e1000_get_cable_length(struct e1000_hw *hw,
83 uint16_t *min_length,
84 uint16_t *max_length);
85static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
86static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw);
87static int32_t e1000_id_led_init(struct e1000_hw * hw);
88static void e1000_init_rx_addrs(struct e1000_hw *hw);
89static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
90static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
91static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
92static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset,
93 uint16_t words, uint16_t *data);
94static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active);
95static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
96static int32_t e1000_wait_autoneg(struct e1000_hw *hw);
97
98static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset,
99 uint32_t value);
100
101#define E1000_WRITE_REG_IO(a, reg, val) \
102 e1000_write_reg_io((a), E1000_##reg, val)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700103
104/* IGP cable length table */
105static const
106uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
107 { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
108 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
109 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
110 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
111 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
112 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
113 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
114 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
115
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700116static const
117uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400118 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
119 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
120 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
121 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
122 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
123 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
124 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
125 104, 109, 114, 118, 121, 124};
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700126
Linus Torvalds1da177e2005-04-16 15:20:36 -0700127
128/******************************************************************************
129 * Set the phy type member in the hw struct.
130 *
131 * hw - Struct containing variables accessed by shared code
132 *****************************************************************************/
133int32_t
134e1000_set_phy_type(struct e1000_hw *hw)
135{
136 DEBUGFUNC("e1000_set_phy_type");
137
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700138 if(hw->mac_type == e1000_undefined)
139 return -E1000_ERR_PHY_TYPE;
140
Linus Torvalds1da177e2005-04-16 15:20:36 -0700141 switch(hw->phy_id) {
142 case M88E1000_E_PHY_ID:
143 case M88E1000_I_PHY_ID:
144 case M88E1011_I_PHY_ID:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700145 case M88E1111_I_PHY_ID:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700146 hw->phy_type = e1000_phy_m88;
147 break;
148 case IGP01E1000_I_PHY_ID:
149 if(hw->mac_type == e1000_82541 ||
150 hw->mac_type == e1000_82541_rev_2 ||
151 hw->mac_type == e1000_82547 ||
152 hw->mac_type == e1000_82547_rev_2) {
153 hw->phy_type = e1000_phy_igp;
154 break;
155 }
156 /* Fall Through */
157 default:
158 /* Should never have loaded on this device */
159 hw->phy_type = e1000_phy_undefined;
160 return -E1000_ERR_PHY_TYPE;
161 }
162
163 return E1000_SUCCESS;
164}
165
166/******************************************************************************
167 * IGP phy init script - initializes the GbE PHY
168 *
169 * hw - Struct containing variables accessed by shared code
170 *****************************************************************************/
171static void
172e1000_phy_init_script(struct e1000_hw *hw)
173{
174 uint32_t ret_val;
175 uint16_t phy_saved_data;
176
177 DEBUGFUNC("e1000_phy_init_script");
178
Linus Torvalds1da177e2005-04-16 15:20:36 -0700179 if(hw->phy_init_script) {
180 msec_delay(20);
181
182 /* Save off the current value of register 0x2F5B to be restored at
183 * the end of this routine. */
184 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
185
186 /* Disabled the PHY transmitter */
187 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
188
189 msec_delay(20);
190
191 e1000_write_phy_reg(hw,0x0000,0x0140);
192
193 msec_delay(5);
194
195 switch(hw->mac_type) {
196 case e1000_82541:
197 case e1000_82547:
198 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
199
200 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
201
202 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
203
204 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
205
206 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
207
208 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
209
210 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
211
212 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
213
214 e1000_write_phy_reg(hw, 0x2010, 0x0008);
215 break;
216
217 case e1000_82541_rev_2:
218 case e1000_82547_rev_2:
219 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
220 break;
221 default:
222 break;
223 }
224
225 e1000_write_phy_reg(hw, 0x0000, 0x3300);
226
227 msec_delay(20);
228
229 /* Now enable the transmitter */
230 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
231
232 if(hw->mac_type == e1000_82547) {
233 uint16_t fused, fine, coarse;
234
235 /* Move to analog registers page */
236 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
237
238 if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
239 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
240
241 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
242 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
243
244 if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
245 coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
246 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
247 } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
248 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
249
250 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
251 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
252 (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
253
254 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
255 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
256 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
257 }
258 }
259 }
260}
261
262/******************************************************************************
263 * Set the mac type member in the hw struct.
264 *
265 * hw - Struct containing variables accessed by shared code
266 *****************************************************************************/
267int32_t
268e1000_set_mac_type(struct e1000_hw *hw)
269{
270 DEBUGFUNC("e1000_set_mac_type");
271
272 switch (hw->device_id) {
273 case E1000_DEV_ID_82542:
274 switch (hw->revision_id) {
275 case E1000_82542_2_0_REV_ID:
276 hw->mac_type = e1000_82542_rev2_0;
277 break;
278 case E1000_82542_2_1_REV_ID:
279 hw->mac_type = e1000_82542_rev2_1;
280 break;
281 default:
282 /* Invalid 82542 revision ID */
283 return -E1000_ERR_MAC_TYPE;
284 }
285 break;
286 case E1000_DEV_ID_82543GC_FIBER:
287 case E1000_DEV_ID_82543GC_COPPER:
288 hw->mac_type = e1000_82543;
289 break;
290 case E1000_DEV_ID_82544EI_COPPER:
291 case E1000_DEV_ID_82544EI_FIBER:
292 case E1000_DEV_ID_82544GC_COPPER:
293 case E1000_DEV_ID_82544GC_LOM:
294 hw->mac_type = e1000_82544;
295 break;
296 case E1000_DEV_ID_82540EM:
297 case E1000_DEV_ID_82540EM_LOM:
298 case E1000_DEV_ID_82540EP:
299 case E1000_DEV_ID_82540EP_LOM:
300 case E1000_DEV_ID_82540EP_LP:
301 hw->mac_type = e1000_82540;
302 break;
303 case E1000_DEV_ID_82545EM_COPPER:
304 case E1000_DEV_ID_82545EM_FIBER:
305 hw->mac_type = e1000_82545;
306 break;
307 case E1000_DEV_ID_82545GM_COPPER:
308 case E1000_DEV_ID_82545GM_FIBER:
309 case E1000_DEV_ID_82545GM_SERDES:
310 hw->mac_type = e1000_82545_rev_3;
311 break;
312 case E1000_DEV_ID_82546EB_COPPER:
313 case E1000_DEV_ID_82546EB_FIBER:
314 case E1000_DEV_ID_82546EB_QUAD_COPPER:
315 hw->mac_type = e1000_82546;
316 break;
317 case E1000_DEV_ID_82546GB_COPPER:
318 case E1000_DEV_ID_82546GB_FIBER:
319 case E1000_DEV_ID_82546GB_SERDES:
320 case E1000_DEV_ID_82546GB_PCIE:
321 hw->mac_type = e1000_82546_rev_3;
322 break;
323 case E1000_DEV_ID_82541EI:
324 case E1000_DEV_ID_82541EI_MOBILE:
325 hw->mac_type = e1000_82541;
326 break;
327 case E1000_DEV_ID_82541ER:
328 case E1000_DEV_ID_82541GI:
329 case E1000_DEV_ID_82541GI_LF:
330 case E1000_DEV_ID_82541GI_MOBILE:
331 hw->mac_type = e1000_82541_rev_2;
332 break;
333 case E1000_DEV_ID_82547EI:
334 hw->mac_type = e1000_82547;
335 break;
336 case E1000_DEV_ID_82547GI:
337 hw->mac_type = e1000_82547_rev_2;
338 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400339 case E1000_DEV_ID_82571EB_COPPER:
340 case E1000_DEV_ID_82571EB_FIBER:
341 case E1000_DEV_ID_82571EB_SERDES:
342 hw->mac_type = e1000_82571;
343 break;
344 case E1000_DEV_ID_82572EI_COPPER:
345 case E1000_DEV_ID_82572EI_FIBER:
346 case E1000_DEV_ID_82572EI_SERDES:
347 hw->mac_type = e1000_82572;
348 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700349 case E1000_DEV_ID_82573E:
350 case E1000_DEV_ID_82573E_IAMT:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400351 case E1000_DEV_ID_82573L:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700352 hw->mac_type = e1000_82573;
353 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700354 default:
355 /* Should never have loaded on this device */
356 return -E1000_ERR_MAC_TYPE;
357 }
358
359 switch(hw->mac_type) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400360 case e1000_82571:
361 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700362 case e1000_82573:
363 hw->eeprom_semaphore_present = TRUE;
364 /* fall through */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700365 case e1000_82541:
366 case e1000_82547:
367 case e1000_82541_rev_2:
368 case e1000_82547_rev_2:
369 hw->asf_firmware_present = TRUE;
370 break;
371 default:
372 break;
373 }
374
375 return E1000_SUCCESS;
376}
377
378/*****************************************************************************
379 * Set media type and TBI compatibility.
380 *
381 * hw - Struct containing variables accessed by shared code
382 * **************************************************************************/
383void
384e1000_set_media_type(struct e1000_hw *hw)
385{
386 uint32_t status;
387
388 DEBUGFUNC("e1000_set_media_type");
389
390 if(hw->mac_type != e1000_82543) {
391 /* tbi_compatibility is only valid on 82543 */
392 hw->tbi_compatibility_en = FALSE;
393 }
394
395 switch (hw->device_id) {
396 case E1000_DEV_ID_82545GM_SERDES:
397 case E1000_DEV_ID_82546GB_SERDES:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400398 case E1000_DEV_ID_82571EB_SERDES:
399 case E1000_DEV_ID_82572EI_SERDES:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700400 hw->media_type = e1000_media_type_internal_serdes;
401 break;
402 default:
Malli Chilakala3893d542005-06-17 17:44:49 -0700403 switch (hw->mac_type) {
404 case e1000_82542_rev2_0:
405 case e1000_82542_rev2_1:
406 hw->media_type = e1000_media_type_fiber;
407 break;
408 case e1000_82573:
409 /* The STATUS_TBIMODE bit is reserved or reused for the this
410 * device.
411 */
412 hw->media_type = e1000_media_type_copper;
413 break;
414 default:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700415 status = E1000_READ_REG(hw, STATUS);
Malli Chilakala3893d542005-06-17 17:44:49 -0700416 if (status & E1000_STATUS_TBIMODE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700417 hw->media_type = e1000_media_type_fiber;
418 /* tbi_compatibility not valid on fiber */
419 hw->tbi_compatibility_en = FALSE;
420 } else {
421 hw->media_type = e1000_media_type_copper;
422 }
Malli Chilakala3893d542005-06-17 17:44:49 -0700423 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700424 }
425 }
426}
427
428/******************************************************************************
429 * Reset the transmit and receive units; mask and clear all interrupts.
430 *
431 * hw - Struct containing variables accessed by shared code
432 *****************************************************************************/
433int32_t
434e1000_reset_hw(struct e1000_hw *hw)
435{
436 uint32_t ctrl;
437 uint32_t ctrl_ext;
438 uint32_t icr;
439 uint32_t manc;
440 uint32_t led_ctrl;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700441 uint32_t timeout;
442 uint32_t extcnf_ctrl;
443 int32_t ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700444
445 DEBUGFUNC("e1000_reset_hw");
446
447 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
448 if(hw->mac_type == e1000_82542_rev2_0) {
449 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
450 e1000_pci_clear_mwi(hw);
451 }
452
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700453 if(hw->bus_type == e1000_bus_type_pci_express) {
454 /* Prevent the PCI-E bus from sticking if there is no TLP connection
455 * on the last TLP read/write transaction when MAC is reset.
456 */
457 if(e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
458 DEBUGOUT("PCI-E Master disable polling has failed.\n");
459 }
460 }
461
Linus Torvalds1da177e2005-04-16 15:20:36 -0700462 /* Clear interrupt mask to stop board from generating interrupts */
463 DEBUGOUT("Masking off all interrupts\n");
464 E1000_WRITE_REG(hw, IMC, 0xffffffff);
465
466 /* Disable the Transmit and Receive units. Then delay to allow
467 * any pending transactions to complete before we hit the MAC with
468 * the global reset.
469 */
470 E1000_WRITE_REG(hw, RCTL, 0);
471 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
472 E1000_WRITE_FLUSH(hw);
473
474 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
475 hw->tbi_compatibility_on = FALSE;
476
477 /* Delay to allow any outstanding PCI transactions to complete before
478 * resetting the device
479 */
480 msec_delay(10);
481
482 ctrl = E1000_READ_REG(hw, CTRL);
483
484 /* Must reset the PHY before resetting the MAC */
485 if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700486 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700487 msec_delay(5);
488 }
489
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700490 /* Must acquire the MDIO ownership before MAC reset.
491 * Ownership defaults to firmware after a reset. */
492 if(hw->mac_type == e1000_82573) {
493 timeout = 10;
494
495 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
496 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
497
498 do {
499 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
500 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
501
502 if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
503 break;
504 else
505 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
506
507 msec_delay(2);
508 timeout--;
509 } while(timeout);
510 }
511
Linus Torvalds1da177e2005-04-16 15:20:36 -0700512 /* Issue a global reset to the MAC. This will reset the chip's
513 * transmit, receive, DMA, and link units. It will not effect
514 * the current PCI configuration. The global reset bit is self-
515 * clearing, and should clear within a microsecond.
516 */
517 DEBUGOUT("Issuing a global reset to MAC\n");
518
519 switch(hw->mac_type) {
520 case e1000_82544:
521 case e1000_82540:
522 case e1000_82545:
523 case e1000_82546:
524 case e1000_82541:
525 case e1000_82541_rev_2:
526 /* These controllers can't ack the 64-bit write when issuing the
527 * reset, so use IO-mapping as a workaround to issue the reset */
528 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
529 break;
530 case e1000_82545_rev_3:
531 case e1000_82546_rev_3:
532 /* Reset is performed on a shadow of the control register */
533 E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
534 break;
535 default:
536 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
537 break;
538 }
539
540 /* After MAC reset, force reload of EEPROM to restore power-on settings to
541 * device. Later controllers reload the EEPROM automatically, so just wait
542 * for reload to complete.
543 */
544 switch(hw->mac_type) {
545 case e1000_82542_rev2_0:
546 case e1000_82542_rev2_1:
547 case e1000_82543:
548 case e1000_82544:
549 /* Wait for reset to complete */
550 udelay(10);
551 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
552 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
553 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
554 E1000_WRITE_FLUSH(hw);
555 /* Wait for EEPROM reload */
556 msec_delay(2);
557 break;
558 case e1000_82541:
559 case e1000_82541_rev_2:
560 case e1000_82547:
561 case e1000_82547_rev_2:
562 /* Wait for EEPROM reload */
563 msec_delay(20);
564 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700565 case e1000_82573:
Jeff Kirsherfd803242005-12-13 00:06:22 -0500566 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
567 udelay(10);
568 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
569 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
570 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
571 E1000_WRITE_FLUSH(hw);
572 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700573 /* fall through */
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400574 case e1000_82571:
575 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700576 ret_val = e1000_get_auto_rd_done(hw);
577 if(ret_val)
578 /* We don't want to continue accessing MAC registers. */
579 return ret_val;
580 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700581 default:
582 /* Wait for EEPROM reload (it happens automatically) */
583 msec_delay(5);
584 break;
585 }
586
587 /* Disable HW ARPs on ASF enabled adapters */
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700588 if(hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700589 manc = E1000_READ_REG(hw, MANC);
590 manc &= ~(E1000_MANC_ARP_EN);
591 E1000_WRITE_REG(hw, MANC, manc);
592 }
593
594 if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
595 e1000_phy_init_script(hw);
596
597 /* Configure activity LED after PHY reset */
598 led_ctrl = E1000_READ_REG(hw, LEDCTL);
599 led_ctrl &= IGP_ACTIVITY_LED_MASK;
600 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
601 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
602 }
603
604 /* Clear interrupt mask to stop board from generating interrupts */
605 DEBUGOUT("Masking off all interrupts\n");
606 E1000_WRITE_REG(hw, IMC, 0xffffffff);
607
608 /* Clear any pending interrupt events. */
609 icr = E1000_READ_REG(hw, ICR);
610
611 /* If MWI was previously enabled, reenable it. */
612 if(hw->mac_type == e1000_82542_rev2_0) {
613 if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
614 e1000_pci_set_mwi(hw);
615 }
616
617 return E1000_SUCCESS;
618}
619
620/******************************************************************************
621 * Performs basic configuration of the adapter.
622 *
623 * hw - Struct containing variables accessed by shared code
624 *
625 * Assumes that the controller has previously been reset and is in a
626 * post-reset uninitialized state. Initializes the receive address registers,
627 * multicast table, and VLAN filter table. Calls routines to setup link
628 * configuration and flow control settings. Clears all on-chip counters. Leaves
629 * the transmit and receive units disabled and uninitialized.
630 *****************************************************************************/
631int32_t
632e1000_init_hw(struct e1000_hw *hw)
633{
634 uint32_t ctrl;
635 uint32_t i;
636 int32_t ret_val;
637 uint16_t pcix_cmd_word;
638 uint16_t pcix_stat_hi_word;
639 uint16_t cmd_mmrbc;
640 uint16_t stat_mmrbc;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700641 uint32_t mta_size;
642
Linus Torvalds1da177e2005-04-16 15:20:36 -0700643 DEBUGFUNC("e1000_init_hw");
644
645 /* Initialize Identification LED */
646 ret_val = e1000_id_led_init(hw);
647 if(ret_val) {
648 DEBUGOUT("Error Initializing Identification LED\n");
649 return ret_val;
650 }
651
652 /* Set the media type and TBI compatibility */
653 e1000_set_media_type(hw);
654
655 /* Disabling VLAN filtering. */
656 DEBUGOUT("Initializing the IEEE VLAN\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700657 if (hw->mac_type < e1000_82545_rev_3)
658 E1000_WRITE_REG(hw, VET, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700659 e1000_clear_vfta(hw);
660
661 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
662 if(hw->mac_type == e1000_82542_rev2_0) {
663 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
664 e1000_pci_clear_mwi(hw);
665 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
666 E1000_WRITE_FLUSH(hw);
667 msec_delay(5);
668 }
669
670 /* Setup the receive address. This involves initializing all of the Receive
671 * Address Registers (RARs 0 - 15).
672 */
673 e1000_init_rx_addrs(hw);
674
675 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
676 if(hw->mac_type == e1000_82542_rev2_0) {
677 E1000_WRITE_REG(hw, RCTL, 0);
678 E1000_WRITE_FLUSH(hw);
679 msec_delay(1);
680 if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
681 e1000_pci_set_mwi(hw);
682 }
683
684 /* Zero out the Multicast HASH table */
685 DEBUGOUT("Zeroing the MTA\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700686 mta_size = E1000_MC_TBL_SIZE;
687 for(i = 0; i < mta_size; i++)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700688 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
689
690 /* Set the PCI priority bit correctly in the CTRL register. This
691 * determines if the adapter gives priority to receives, or if it
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700692 * gives equal priority to transmits and receives. Valid only on
693 * 82542 and 82543 silicon.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700694 */
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700695 if(hw->dma_fairness && hw->mac_type <= e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700696 ctrl = E1000_READ_REG(hw, CTRL);
697 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
698 }
699
700 switch(hw->mac_type) {
701 case e1000_82545_rev_3:
702 case e1000_82546_rev_3:
703 break;
704 default:
705 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
706 if(hw->bus_type == e1000_bus_type_pcix) {
707 e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
708 e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
709 &pcix_stat_hi_word);
710 cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
711 PCIX_COMMAND_MMRBC_SHIFT;
712 stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
713 PCIX_STATUS_HI_MMRBC_SHIFT;
714 if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
715 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
716 if(cmd_mmrbc > stat_mmrbc) {
717 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
718 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
719 e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
720 &pcix_cmd_word);
721 }
722 }
723 break;
724 }
725
726 /* Call a subroutine to configure the link and setup flow control. */
727 ret_val = e1000_setup_link(hw);
728
729 /* Set the transmit descriptor write-back policy */
730 if(hw->mac_type > e1000_82544) {
731 ctrl = E1000_READ_REG(hw, TXDCTL);
732 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700733 switch (hw->mac_type) {
734 default:
735 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400736 case e1000_82571:
737 case e1000_82572:
738 ctrl |= (1 << 22);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700739 case e1000_82573:
740 ctrl |= E1000_TXDCTL_COUNT_DESC;
741 break;
742 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700743 E1000_WRITE_REG(hw, TXDCTL, ctrl);
744 }
745
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700746 if (hw->mac_type == e1000_82573) {
747 e1000_enable_tx_pkt_filtering(hw);
748 }
749
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400750 switch (hw->mac_type) {
751 default:
752 break;
753 case e1000_82571:
Mallikarjuna R Chilakalaa7990ba2005-10-04 07:08:19 -0400754 case e1000_82572:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400755 ctrl = E1000_READ_REG(hw, TXDCTL1);
756 ctrl &= ~E1000_TXDCTL_WTHRESH;
757 ctrl |= E1000_TXDCTL_COUNT_DESC | E1000_TXDCTL_FULL_TX_DESC_WB;
758 ctrl |= (1 << 22);
759 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
760 break;
761 }
762
763
764
765 if (hw->mac_type == e1000_82573) {
766 uint32_t gcr = E1000_READ_REG(hw, GCR);
767 gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
768 E1000_WRITE_REG(hw, GCR, gcr);
769 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700770
Linus Torvalds1da177e2005-04-16 15:20:36 -0700771 /* Clear all of the statistics registers (clear on read). It is
772 * important that we do this after we have tried to establish link
773 * because the symbol error count will increment wildly if there
774 * is no link.
775 */
776 e1000_clear_hw_cntrs(hw);
777
778 return ret_val;
779}
780
781/******************************************************************************
782 * Adjust SERDES output amplitude based on EEPROM setting.
783 *
784 * hw - Struct containing variables accessed by shared code.
785 *****************************************************************************/
786static int32_t
787e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
788{
789 uint16_t eeprom_data;
790 int32_t ret_val;
791
792 DEBUGFUNC("e1000_adjust_serdes_amplitude");
793
794 if(hw->media_type != e1000_media_type_internal_serdes)
795 return E1000_SUCCESS;
796
797 switch(hw->mac_type) {
798 case e1000_82545_rev_3:
799 case e1000_82546_rev_3:
800 break;
801 default:
802 return E1000_SUCCESS;
803 }
804
805 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
806 if (ret_val) {
807 return ret_val;
808 }
809
810 if(eeprom_data != EEPROM_RESERVED_WORD) {
811 /* Adjust SERDES output amplitude only. */
812 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
813 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
814 if(ret_val)
815 return ret_val;
816 }
817
818 return E1000_SUCCESS;
819}
820
821/******************************************************************************
822 * Configures flow control and link settings.
823 *
824 * hw - Struct containing variables accessed by shared code
825 *
826 * Determines which flow control settings to use. Calls the apropriate media-
827 * specific link configuration function. Configures the flow control settings.
828 * Assuming the adapter has a valid link partner, a valid link should be
829 * established. Assumes the hardware has previously been reset and the
830 * transmitter and receiver are not enabled.
831 *****************************************************************************/
832int32_t
833e1000_setup_link(struct e1000_hw *hw)
834{
835 uint32_t ctrl_ext;
836 int32_t ret_val;
837 uint16_t eeprom_data;
838
839 DEBUGFUNC("e1000_setup_link");
840
841 /* Read and store word 0x0F of the EEPROM. This word contains bits
842 * that determine the hardware's default PAUSE (flow control) mode,
843 * a bit that determines whether the HW defaults to enabling or
844 * disabling auto-negotiation, and the direction of the
845 * SW defined pins. If there is no SW over-ride of the flow
846 * control setting, then the variable hw->fc will
847 * be initialized based on a value in the EEPROM.
848 */
Jeff Kirsherfd803242005-12-13 00:06:22 -0500849 if (hw->fc == e1000_fc_default) {
850 switch (hw->mac_type) {
851 case e1000_82573:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700852 hw->fc = e1000_fc_full;
Jeff Kirsherfd803242005-12-13 00:06:22 -0500853 break;
854 default:
855 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
856 1, &eeprom_data);
857 if (ret_val) {
858 DEBUGOUT("EEPROM Read Error\n");
859 return -E1000_ERR_EEPROM;
860 }
861 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
862 hw->fc = e1000_fc_none;
863 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
864 EEPROM_WORD0F_ASM_DIR)
865 hw->fc = e1000_fc_tx_pause;
866 else
867 hw->fc = e1000_fc_full;
868 break;
869 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700870 }
871
872 /* We want to save off the original Flow Control configuration just
873 * in case we get disconnected and then reconnected into a different
874 * hub or switch with different Flow Control capabilities.
875 */
876 if(hw->mac_type == e1000_82542_rev2_0)
877 hw->fc &= (~e1000_fc_tx_pause);
878
879 if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
880 hw->fc &= (~e1000_fc_rx_pause);
881
882 hw->original_fc = hw->fc;
883
884 DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
885
886 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
887 * polarity value for the SW controlled pins, and setup the
888 * Extended Device Control reg with that info.
889 * This is needed because one of the SW controlled pins is used for
890 * signal detection. So this should be done before e1000_setup_pcs_link()
891 * or e1000_phy_setup() is called.
892 */
893 if(hw->mac_type == e1000_82543) {
894 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
895 SWDPIO__EXT_SHIFT);
896 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
897 }
898
899 /* Call the necessary subroutine to configure the link. */
900 ret_val = (hw->media_type == e1000_media_type_copper) ?
901 e1000_setup_copper_link(hw) :
902 e1000_setup_fiber_serdes_link(hw);
903
904 /* Initialize the flow control address, type, and PAUSE timer
905 * registers to their default values. This is done even if flow
906 * control is disabled, because it does not hurt anything to
907 * initialize these registers.
908 */
909 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
910
911 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
912 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
913 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700914
Linus Torvalds1da177e2005-04-16 15:20:36 -0700915 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
916
917 /* Set the flow control receive threshold registers. Normally,
918 * these registers will be set to a default threshold that may be
919 * adjusted later by the driver's runtime code. However, if the
920 * ability to transmit pause frames in not enabled, then these
921 * registers will be set to 0.
922 */
923 if(!(hw->fc & e1000_fc_tx_pause)) {
924 E1000_WRITE_REG(hw, FCRTL, 0);
925 E1000_WRITE_REG(hw, FCRTH, 0);
926 } else {
927 /* We need to set up the Receive Threshold high and low water marks
928 * as well as (optionally) enabling the transmission of XON frames.
929 */
930 if(hw->fc_send_xon) {
931 E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
932 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
933 } else {
934 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
935 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
936 }
937 }
938 return ret_val;
939}
940
941/******************************************************************************
942 * Sets up link for a fiber based or serdes based adapter
943 *
944 * hw - Struct containing variables accessed by shared code
945 *
946 * Manipulates Physical Coding Sublayer functions in order to configure
947 * link. Assumes the hardware has been previously reset and the transmitter
948 * and receiver are not enabled.
949 *****************************************************************************/
950static int32_t
951e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
952{
953 uint32_t ctrl;
954 uint32_t status;
955 uint32_t txcw = 0;
956 uint32_t i;
957 uint32_t signal = 0;
958 int32_t ret_val;
959
960 DEBUGFUNC("e1000_setup_fiber_serdes_link");
961
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400962 /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
963 * until explicitly turned off or a power cycle is performed. A read to
964 * the register does not indicate its status. Therefore, we ensure
965 * loopback mode is disabled during initialization.
966 */
967 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
968 E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
969
Linus Torvalds1da177e2005-04-16 15:20:36 -0700970 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
971 * set when the optics detect a signal. On older adapters, it will be
972 * cleared when there is a signal. This applies to fiber media only.
973 * If we're on serdes media, adjust the output amplitude to value set in
974 * the EEPROM.
975 */
976 ctrl = E1000_READ_REG(hw, CTRL);
977 if(hw->media_type == e1000_media_type_fiber)
978 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
979
980 ret_val = e1000_adjust_serdes_amplitude(hw);
981 if(ret_val)
982 return ret_val;
983
984 /* Take the link out of reset */
985 ctrl &= ~(E1000_CTRL_LRST);
986
987 /* Adjust VCO speed to improve BER performance */
988 ret_val = e1000_set_vco_speed(hw);
989 if(ret_val)
990 return ret_val;
991
992 e1000_config_collision_dist(hw);
993
994 /* Check for a software override of the flow control settings, and setup
995 * the device accordingly. If auto-negotiation is enabled, then software
996 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
997 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
998 * auto-negotiation is disabled, then software will have to manually
999 * configure the two flow control enable bits in the CTRL register.
1000 *
1001 * The possible values of the "fc" parameter are:
1002 * 0: Flow control is completely disabled
1003 * 1: Rx flow control is enabled (we can receive pause frames, but
1004 * not send pause frames).
1005 * 2: Tx flow control is enabled (we can send pause frames but we do
1006 * not support receiving pause frames).
1007 * 3: Both Rx and TX flow control (symmetric) are enabled.
1008 */
1009 switch (hw->fc) {
1010 case e1000_fc_none:
1011 /* Flow control is completely disabled by a software over-ride. */
1012 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1013 break;
1014 case e1000_fc_rx_pause:
1015 /* RX Flow control is enabled and TX Flow control is disabled by a
1016 * software over-ride. Since there really isn't a way to advertise
1017 * that we are capable of RX Pause ONLY, we will advertise that we
1018 * support both symmetric and asymmetric RX PAUSE. Later, we will
1019 * disable the adapter's ability to send PAUSE frames.
1020 */
1021 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1022 break;
1023 case e1000_fc_tx_pause:
1024 /* TX Flow control is enabled, and RX Flow control is disabled, by a
1025 * software over-ride.
1026 */
1027 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1028 break;
1029 case e1000_fc_full:
1030 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1031 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1032 break;
1033 default:
1034 DEBUGOUT("Flow control param set incorrectly\n");
1035 return -E1000_ERR_CONFIG;
1036 break;
1037 }
1038
1039 /* Since auto-negotiation is enabled, take the link out of reset (the link
1040 * will be in reset, because we previously reset the chip). This will
1041 * restart auto-negotiation. If auto-neogtiation is successful then the
1042 * link-up status bit will be set and the flow control enable bits (RFCE
1043 * and TFCE) will be set according to their negotiated value.
1044 */
1045 DEBUGOUT("Auto-negotiation enabled\n");
1046
1047 E1000_WRITE_REG(hw, TXCW, txcw);
1048 E1000_WRITE_REG(hw, CTRL, ctrl);
1049 E1000_WRITE_FLUSH(hw);
1050
1051 hw->txcw = txcw;
1052 msec_delay(1);
1053
1054 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1055 * indication in the Device Status Register. Time-out if a link isn't
1056 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1057 * less than 500 milliseconds even if the other end is doing it in SW).
1058 * For internal serdes, we just assume a signal is present, then poll.
1059 */
1060 if(hw->media_type == e1000_media_type_internal_serdes ||
1061 (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1062 DEBUGOUT("Looking for Link\n");
1063 for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
1064 msec_delay(10);
1065 status = E1000_READ_REG(hw, STATUS);
1066 if(status & E1000_STATUS_LU) break;
1067 }
1068 if(i == (LINK_UP_TIMEOUT / 10)) {
1069 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1070 hw->autoneg_failed = 1;
1071 /* AutoNeg failed to achieve a link, so we'll call
1072 * e1000_check_for_link. This routine will force the link up if
1073 * we detect a signal. This will allow us to communicate with
1074 * non-autonegotiating link partners.
1075 */
1076 ret_val = e1000_check_for_link(hw);
1077 if(ret_val) {
1078 DEBUGOUT("Error while checking for link\n");
1079 return ret_val;
1080 }
1081 hw->autoneg_failed = 0;
1082 } else {
1083 hw->autoneg_failed = 0;
1084 DEBUGOUT("Valid Link Found\n");
1085 }
1086 } else {
1087 DEBUGOUT("No Signal Detected\n");
1088 }
1089 return E1000_SUCCESS;
1090}
1091
1092/******************************************************************************
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001093* Make sure we have a valid PHY and change PHY mode before link setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001094*
1095* hw - Struct containing variables accessed by shared code
1096******************************************************************************/
1097static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001098e1000_copper_link_preconfig(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001099{
1100 uint32_t ctrl;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001101 int32_t ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001102 uint16_t phy_data;
1103
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001104 DEBUGFUNC("e1000_copper_link_preconfig");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001105
1106 ctrl = E1000_READ_REG(hw, CTRL);
1107 /* With 82543, we need to force speed and duplex on the MAC equal to what
1108 * the PHY speed and duplex configuration is. In addition, we need to
1109 * perform a hardware reset on the PHY to take it out of reset.
1110 */
1111 if(hw->mac_type > e1000_82543) {
1112 ctrl |= E1000_CTRL_SLU;
1113 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1114 E1000_WRITE_REG(hw, CTRL, ctrl);
1115 } else {
1116 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1117 E1000_WRITE_REG(hw, CTRL, ctrl);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001118 ret_val = e1000_phy_hw_reset(hw);
1119 if(ret_val)
1120 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001121 }
1122
1123 /* Make sure we have a valid PHY */
1124 ret_val = e1000_detect_gig_phy(hw);
1125 if(ret_val) {
1126 DEBUGOUT("Error, did not detect valid phy.\n");
1127 return ret_val;
1128 }
1129 DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
1130
1131 /* Set PHY to class A mode (if necessary) */
1132 ret_val = e1000_set_phy_mode(hw);
1133 if(ret_val)
1134 return ret_val;
1135
1136 if((hw->mac_type == e1000_82545_rev_3) ||
1137 (hw->mac_type == e1000_82546_rev_3)) {
1138 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1139 phy_data |= 0x00000008;
1140 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1141 }
1142
1143 if(hw->mac_type <= e1000_82543 ||
1144 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1145 hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
1146 hw->phy_reset_disable = FALSE;
1147
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001148 return E1000_SUCCESS;
1149}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001150
Linus Torvalds1da177e2005-04-16 15:20:36 -07001151
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001152/********************************************************************
1153* Copper link setup for e1000_phy_igp series.
1154*
1155* hw - Struct containing variables accessed by shared code
1156*********************************************************************/
1157static int32_t
1158e1000_copper_link_igp_setup(struct e1000_hw *hw)
1159{
1160 uint32_t led_ctrl;
1161 int32_t ret_val;
1162 uint16_t phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001163
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001164 DEBUGFUNC("e1000_copper_link_igp_setup");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001165
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001166 if (hw->phy_reset_disable)
1167 return E1000_SUCCESS;
1168
1169 ret_val = e1000_phy_reset(hw);
1170 if (ret_val) {
1171 DEBUGOUT("Error Resetting the PHY\n");
1172 return ret_val;
1173 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001174
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001175 /* Wait 10ms for MAC to configure PHY from eeprom settings */
1176 msec_delay(15);
1177
1178 /* Configure activity LED after PHY reset */
1179 led_ctrl = E1000_READ_REG(hw, LEDCTL);
1180 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1181 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1182 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
1183
1184 /* disable lplu d3 during driver init */
1185 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
1186 if (ret_val) {
1187 DEBUGOUT("Error Disabling LPLU D3\n");
1188 return ret_val;
1189 }
1190
1191 /* disable lplu d0 during driver init */
1192 ret_val = e1000_set_d0_lplu_state(hw, FALSE);
1193 if (ret_val) {
1194 DEBUGOUT("Error Disabling LPLU D0\n");
1195 return ret_val;
1196 }
1197 /* Configure mdi-mdix settings */
1198 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1199 if (ret_val)
1200 return ret_val;
1201
1202 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1203 hw->dsp_config_state = e1000_dsp_config_disabled;
1204 /* Force MDI for earlier revs of the IGP PHY */
1205 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
1206 hw->mdix = 1;
1207
1208 } else {
1209 hw->dsp_config_state = e1000_dsp_config_enabled;
1210 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1211
1212 switch (hw->mdix) {
1213 case 1:
1214 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1215 break;
1216 case 2:
1217 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1218 break;
1219 case 0:
1220 default:
1221 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1222 break;
1223 }
1224 }
1225 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1226 if(ret_val)
1227 return ret_val;
1228
1229 /* set auto-master slave resolution settings */
1230 if(hw->autoneg) {
1231 e1000_ms_type phy_ms_setting = hw->master_slave;
1232
1233 if(hw->ffe_config_state == e1000_ffe_config_active)
1234 hw->ffe_config_state = e1000_ffe_config_enabled;
1235
1236 if(hw->dsp_config_state == e1000_dsp_config_activated)
1237 hw->dsp_config_state = e1000_dsp_config_enabled;
1238
1239 /* when autonegotiation advertisment is only 1000Mbps then we
1240 * should disable SmartSpeed and enable Auto MasterSlave
1241 * resolution as hardware default. */
1242 if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1243 /* Disable SmartSpeed */
1244 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001245 if(ret_val)
1246 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001247 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1248 ret_val = e1000_write_phy_reg(hw,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001249 IGP01E1000_PHY_PORT_CONFIG,
1250 phy_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001251 if(ret_val)
1252 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001253 /* Set auto Master/Slave resolution process */
1254 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1255 if(ret_val)
1256 return ret_val;
1257 phy_data &= ~CR_1000T_MS_ENABLE;
1258 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1259 if(ret_val)
1260 return ret_val;
1261 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001262
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001263 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1264 if(ret_val)
1265 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001266
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001267 /* load defaults for future use */
1268 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1269 ((phy_data & CR_1000T_MS_VALUE) ?
1270 e1000_ms_force_master :
1271 e1000_ms_force_slave) :
1272 e1000_ms_auto;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001273
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001274 switch (phy_ms_setting) {
1275 case e1000_ms_force_master:
1276 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1277 break;
1278 case e1000_ms_force_slave:
1279 phy_data |= CR_1000T_MS_ENABLE;
1280 phy_data &= ~(CR_1000T_MS_VALUE);
1281 break;
1282 case e1000_ms_auto:
1283 phy_data &= ~CR_1000T_MS_ENABLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001284 default:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001285 break;
1286 }
1287 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1288 if(ret_val)
1289 return ret_val;
Malli Chilakala2b028932005-06-17 17:46:06 -07001290 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001291
Malli Chilakala2b028932005-06-17 17:46:06 -07001292 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001293}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001294
Linus Torvalds1da177e2005-04-16 15:20:36 -07001295
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001296/********************************************************************
1297* Copper link setup for e1000_phy_m88 series.
1298*
1299* hw - Struct containing variables accessed by shared code
1300*********************************************************************/
1301static int32_t
1302e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1303{
1304 int32_t ret_val;
1305 uint16_t phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001306
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001307 DEBUGFUNC("e1000_copper_link_mgp_setup");
1308
1309 if(hw->phy_reset_disable)
1310 return E1000_SUCCESS;
1311
1312 /* Enable CRS on TX. This must be set for half-duplex operation. */
1313 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1314 if(ret_val)
1315 return ret_val;
1316
1317 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1318
1319 /* Options:
1320 * MDI/MDI-X = 0 (default)
1321 * 0 - Auto for all speeds
1322 * 1 - MDI mode
1323 * 2 - MDI-X mode
1324 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1325 */
1326 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1327
1328 switch (hw->mdix) {
1329 case 1:
1330 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1331 break;
1332 case 2:
1333 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1334 break;
1335 case 3:
1336 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1337 break;
1338 case 0:
1339 default:
1340 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1341 break;
1342 }
1343
1344 /* Options:
1345 * disable_polarity_correction = 0 (default)
1346 * Automatic Correction for Reversed Cable Polarity
1347 * 0 - Disabled
1348 * 1 - Enabled
1349 */
1350 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1351 if(hw->disable_polarity_correction == 1)
1352 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1353 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1354 if(ret_val)
1355 return ret_val;
1356
1357 /* Force TX_CLK in the Extended PHY Specific Control Register
1358 * to 25MHz clock.
1359 */
1360 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1361 if(ret_val)
1362 return ret_val;
1363
1364 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1365
1366 if (hw->phy_revision < M88E1011_I_REV_4) {
1367 /* Configure Master and Slave downshift values */
1368 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
Linus Torvalds1da177e2005-04-16 15:20:36 -07001369 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001370 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
Linus Torvalds1da177e2005-04-16 15:20:36 -07001371 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001372 ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1373 if(ret_val)
1374 return ret_val;
1375 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001376
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001377 /* SW Reset the PHY so all changes take effect */
1378 ret_val = e1000_phy_reset(hw);
1379 if(ret_val) {
1380 DEBUGOUT("Error Resetting the PHY\n");
1381 return ret_val;
1382 }
1383
1384 return E1000_SUCCESS;
1385}
1386
1387/********************************************************************
1388* Setup auto-negotiation and flow control advertisements,
1389* and then perform auto-negotiation.
1390*
1391* hw - Struct containing variables accessed by shared code
1392*********************************************************************/
1393static int32_t
1394e1000_copper_link_autoneg(struct e1000_hw *hw)
1395{
1396 int32_t ret_val;
1397 uint16_t phy_data;
1398
1399 DEBUGFUNC("e1000_copper_link_autoneg");
1400
1401 /* Perform some bounds checking on the hw->autoneg_advertised
1402 * parameter. If this variable is zero, then set it to the default.
1403 */
1404 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1405
1406 /* If autoneg_advertised is zero, we assume it was not defaulted
1407 * by the calling code so we set to advertise full capability.
1408 */
1409 if(hw->autoneg_advertised == 0)
1410 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1411
1412 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1413 ret_val = e1000_phy_setup_autoneg(hw);
1414 if(ret_val) {
1415 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1416 return ret_val;
1417 }
1418 DEBUGOUT("Restarting Auto-Neg\n");
1419
1420 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1421 * the Auto Neg Restart bit in the PHY control register.
1422 */
1423 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1424 if(ret_val)
1425 return ret_val;
1426
1427 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1428 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1429 if(ret_val)
1430 return ret_val;
1431
1432 /* Does the user want to wait for Auto-Neg to complete here, or
1433 * check at a later time (for example, callback routine).
1434 */
1435 if(hw->wait_autoneg_complete) {
1436 ret_val = e1000_wait_autoneg(hw);
1437 if(ret_val) {
1438 DEBUGOUT("Error while waiting for autoneg to complete\n");
1439 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001440 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001441 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001442
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001443 hw->get_link_status = TRUE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001444
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001445 return E1000_SUCCESS;
1446}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001447
Linus Torvalds1da177e2005-04-16 15:20:36 -07001448
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001449/******************************************************************************
1450* Config the MAC and the PHY after link is up.
1451* 1) Set up the MAC to the current PHY speed/duplex
1452* if we are on 82543. If we
1453* are on newer silicon, we only need to configure
1454* collision distance in the Transmit Control Register.
1455* 2) Set up flow control on the MAC to that established with
1456* the link partner.
1457* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
1458*
1459* hw - Struct containing variables accessed by shared code
1460******************************************************************************/
1461static int32_t
1462e1000_copper_link_postconfig(struct e1000_hw *hw)
1463{
1464 int32_t ret_val;
1465 DEBUGFUNC("e1000_copper_link_postconfig");
1466
1467 if(hw->mac_type >= e1000_82544) {
1468 e1000_config_collision_dist(hw);
1469 } else {
1470 ret_val = e1000_config_mac_to_phy(hw);
1471 if(ret_val) {
1472 DEBUGOUT("Error configuring MAC to PHY settings\n");
1473 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001474 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001475 }
1476 ret_val = e1000_config_fc_after_link_up(hw);
1477 if(ret_val) {
1478 DEBUGOUT("Error Configuring Flow Control\n");
1479 return ret_val;
1480 }
1481
1482 /* Config DSP to improve Giga link quality */
1483 if(hw->phy_type == e1000_phy_igp) {
1484 ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
1485 if(ret_val) {
1486 DEBUGOUT("Error Configuring DSP after link up\n");
1487 return ret_val;
1488 }
1489 }
1490
1491 return E1000_SUCCESS;
1492}
1493
1494/******************************************************************************
1495* Detects which PHY is present and setup the speed and duplex
1496*
1497* hw - Struct containing variables accessed by shared code
1498******************************************************************************/
1499static int32_t
1500e1000_setup_copper_link(struct e1000_hw *hw)
1501{
1502 int32_t ret_val;
1503 uint16_t i;
1504 uint16_t phy_data;
1505
1506 DEBUGFUNC("e1000_setup_copper_link");
1507
1508 /* Check if it is a valid PHY and set PHY mode if necessary. */
1509 ret_val = e1000_copper_link_preconfig(hw);
1510 if(ret_val)
1511 return ret_val;
1512
1513 if (hw->phy_type == e1000_phy_igp ||
1514 hw->phy_type == e1000_phy_igp_2) {
1515 ret_val = e1000_copper_link_igp_setup(hw);
1516 if(ret_val)
1517 return ret_val;
1518 } else if (hw->phy_type == e1000_phy_m88) {
1519 ret_val = e1000_copper_link_mgp_setup(hw);
1520 if(ret_val)
1521 return ret_val;
1522 }
1523
1524 if(hw->autoneg) {
1525 /* Setup autoneg and flow control advertisement
1526 * and perform autonegotiation */
1527 ret_val = e1000_copper_link_autoneg(hw);
1528 if(ret_val)
1529 return ret_val;
1530 } else {
1531 /* PHY will be set to 10H, 10F, 100H,or 100F
1532 * depending on value from forced_speed_duplex. */
1533 DEBUGOUT("Forcing speed and duplex\n");
1534 ret_val = e1000_phy_force_speed_duplex(hw);
1535 if(ret_val) {
1536 DEBUGOUT("Error Forcing Speed and Duplex\n");
1537 return ret_val;
1538 }
1539 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001540
1541 /* Check link status. Wait up to 100 microseconds for link to become
1542 * valid.
1543 */
1544 for(i = 0; i < 10; i++) {
1545 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1546 if(ret_val)
1547 return ret_val;
1548 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1549 if(ret_val)
1550 return ret_val;
1551
1552 if(phy_data & MII_SR_LINK_STATUS) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001553 /* Config the MAC and PHY after link is up */
1554 ret_val = e1000_copper_link_postconfig(hw);
1555 if(ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001556 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001557
Linus Torvalds1da177e2005-04-16 15:20:36 -07001558 DEBUGOUT("Valid link established!!!\n");
1559 return E1000_SUCCESS;
1560 }
1561 udelay(10);
1562 }
1563
1564 DEBUGOUT("Unable to establish link!!!\n");
1565 return E1000_SUCCESS;
1566}
1567
1568/******************************************************************************
1569* Configures PHY autoneg and flow control advertisement settings
1570*
1571* hw - Struct containing variables accessed by shared code
1572******************************************************************************/
1573int32_t
1574e1000_phy_setup_autoneg(struct e1000_hw *hw)
1575{
1576 int32_t ret_val;
1577 uint16_t mii_autoneg_adv_reg;
1578 uint16_t mii_1000t_ctrl_reg;
1579
1580 DEBUGFUNC("e1000_phy_setup_autoneg");
1581
1582 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1583 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1584 if(ret_val)
1585 return ret_val;
1586
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001587 /* Read the MII 1000Base-T Control Register (Address 9). */
1588 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1589 if(ret_val)
1590 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001591
1592 /* Need to parse both autoneg_advertised and fc and set up
1593 * the appropriate PHY registers. First we will parse for
1594 * autoneg_advertised software override. Since we can advertise
1595 * a plethora of combinations, we need to check each bit
1596 * individually.
1597 */
1598
1599 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1600 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1601 * the 1000Base-T Control Register (Address 9).
1602 */
1603 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1604 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1605
1606 DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
1607
1608 /* Do we want to advertise 10 Mb Half Duplex? */
1609 if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
1610 DEBUGOUT("Advertise 10mb Half duplex\n");
1611 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1612 }
1613
1614 /* Do we want to advertise 10 Mb Full Duplex? */
1615 if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
1616 DEBUGOUT("Advertise 10mb Full duplex\n");
1617 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1618 }
1619
1620 /* Do we want to advertise 100 Mb Half Duplex? */
1621 if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
1622 DEBUGOUT("Advertise 100mb Half duplex\n");
1623 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1624 }
1625
1626 /* Do we want to advertise 100 Mb Full Duplex? */
1627 if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
1628 DEBUGOUT("Advertise 100mb Full duplex\n");
1629 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1630 }
1631
1632 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1633 if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1634 DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
1635 }
1636
1637 /* Do we want to advertise 1000 Mb Full Duplex? */
1638 if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1639 DEBUGOUT("Advertise 1000mb Full duplex\n");
1640 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1641 }
1642
1643 /* Check for a software override of the flow control settings, and
1644 * setup the PHY advertisement registers accordingly. If
1645 * auto-negotiation is enabled, then software will have to set the
1646 * "PAUSE" bits to the correct value in the Auto-Negotiation
1647 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
1648 *
1649 * The possible values of the "fc" parameter are:
1650 * 0: Flow control is completely disabled
1651 * 1: Rx flow control is enabled (we can receive pause frames
1652 * but not send pause frames).
1653 * 2: Tx flow control is enabled (we can send pause frames
1654 * but we do not support receiving pause frames).
1655 * 3: Both Rx and TX flow control (symmetric) are enabled.
1656 * other: No software override. The flow control configuration
1657 * in the EEPROM is used.
1658 */
1659 switch (hw->fc) {
1660 case e1000_fc_none: /* 0 */
1661 /* Flow control (RX & TX) is completely disabled by a
1662 * software over-ride.
1663 */
1664 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1665 break;
1666 case e1000_fc_rx_pause: /* 1 */
1667 /* RX Flow control is enabled, and TX Flow control is
1668 * disabled, by a software over-ride.
1669 */
1670 /* Since there really isn't a way to advertise that we are
1671 * capable of RX Pause ONLY, we will advertise that we
1672 * support both symmetric and asymmetric RX PAUSE. Later
1673 * (in e1000_config_fc_after_link_up) we will disable the
1674 *hw's ability to send PAUSE frames.
1675 */
1676 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1677 break;
1678 case e1000_fc_tx_pause: /* 2 */
1679 /* TX Flow control is enabled, and RX Flow control is
1680 * disabled, by a software over-ride.
1681 */
1682 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1683 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1684 break;
1685 case e1000_fc_full: /* 3 */
1686 /* Flow control (both RX and TX) is enabled by a software
1687 * over-ride.
1688 */
1689 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1690 break;
1691 default:
1692 DEBUGOUT("Flow control param set incorrectly\n");
1693 return -E1000_ERR_CONFIG;
1694 }
1695
1696 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1697 if(ret_val)
1698 return ret_val;
1699
1700 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1701
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001702 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001703 if(ret_val)
1704 return ret_val;
1705
1706 return E1000_SUCCESS;
1707}
1708
1709/******************************************************************************
1710* Force PHY speed and duplex settings to hw->forced_speed_duplex
1711*
1712* hw - Struct containing variables accessed by shared code
1713******************************************************************************/
1714static int32_t
1715e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1716{
1717 uint32_t ctrl;
1718 int32_t ret_val;
1719 uint16_t mii_ctrl_reg;
1720 uint16_t mii_status_reg;
1721 uint16_t phy_data;
1722 uint16_t i;
1723
1724 DEBUGFUNC("e1000_phy_force_speed_duplex");
1725
1726 /* Turn off Flow control if we are forcing speed and duplex. */
1727 hw->fc = e1000_fc_none;
1728
1729 DEBUGOUT1("hw->fc = %d\n", hw->fc);
1730
1731 /* Read the Device Control Register. */
1732 ctrl = E1000_READ_REG(hw, CTRL);
1733
1734 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1735 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1736 ctrl &= ~(DEVICE_SPEED_MASK);
1737
1738 /* Clear the Auto Speed Detect Enable bit. */
1739 ctrl &= ~E1000_CTRL_ASDE;
1740
1741 /* Read the MII Control Register. */
1742 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1743 if(ret_val)
1744 return ret_val;
1745
1746 /* We need to disable autoneg in order to force link and duplex. */
1747
1748 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1749
1750 /* Are we forcing Full or Half Duplex? */
1751 if(hw->forced_speed_duplex == e1000_100_full ||
1752 hw->forced_speed_duplex == e1000_10_full) {
1753 /* We want to force full duplex so we SET the full duplex bits in the
1754 * Device and MII Control Registers.
1755 */
1756 ctrl |= E1000_CTRL_FD;
1757 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1758 DEBUGOUT("Full Duplex\n");
1759 } else {
1760 /* We want to force half duplex so we CLEAR the full duplex bits in
1761 * the Device and MII Control Registers.
1762 */
1763 ctrl &= ~E1000_CTRL_FD;
1764 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1765 DEBUGOUT("Half Duplex\n");
1766 }
1767
1768 /* Are we forcing 100Mbps??? */
1769 if(hw->forced_speed_duplex == e1000_100_full ||
1770 hw->forced_speed_duplex == e1000_100_half) {
1771 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1772 ctrl |= E1000_CTRL_SPD_100;
1773 mii_ctrl_reg |= MII_CR_SPEED_100;
1774 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1775 DEBUGOUT("Forcing 100mb ");
1776 } else {
1777 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1778 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1779 mii_ctrl_reg |= MII_CR_SPEED_10;
1780 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1781 DEBUGOUT("Forcing 10mb ");
1782 }
1783
1784 e1000_config_collision_dist(hw);
1785
1786 /* Write the configured values back to the Device Control Reg. */
1787 E1000_WRITE_REG(hw, CTRL, ctrl);
1788
1789 if (hw->phy_type == e1000_phy_m88) {
1790 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1791 if(ret_val)
1792 return ret_val;
1793
1794 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1795 * forced whenever speed are duplex are forced.
1796 */
1797 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1798 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1799 if(ret_val)
1800 return ret_val;
1801
1802 DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
1803
1804 /* Need to reset the PHY or these changes will be ignored */
1805 mii_ctrl_reg |= MII_CR_RESET;
1806 } else {
1807 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1808 * forced whenever speed or duplex are forced.
1809 */
1810 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1811 if(ret_val)
1812 return ret_val;
1813
1814 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1815 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1816
1817 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1818 if(ret_val)
1819 return ret_val;
1820 }
1821
1822 /* Write back the modified PHY MII control register. */
1823 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1824 if(ret_val)
1825 return ret_val;
1826
1827 udelay(1);
1828
1829 /* The wait_autoneg_complete flag may be a little misleading here.
1830 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1831 * But we do want to delay for a period while forcing only so we
1832 * don't generate false No Link messages. So we will wait here
1833 * only if the user has set wait_autoneg_complete to 1, which is
1834 * the default.
1835 */
1836 if(hw->wait_autoneg_complete) {
1837 /* We will wait for autoneg to complete. */
1838 DEBUGOUT("Waiting for forced speed/duplex link.\n");
1839 mii_status_reg = 0;
1840
1841 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
1842 for(i = PHY_FORCE_TIME; i > 0; i--) {
1843 /* Read the MII Status Register and wait for Auto-Neg Complete bit
1844 * to be set.
1845 */
1846 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1847 if(ret_val)
1848 return ret_val;
1849
1850 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1851 if(ret_val)
1852 return ret_val;
1853
1854 if(mii_status_reg & MII_SR_LINK_STATUS) break;
1855 msec_delay(100);
1856 }
1857 if((i == 0) &&
1858 (hw->phy_type == e1000_phy_m88)) {
1859 /* We didn't get link. Reset the DSP and wait again for link. */
1860 ret_val = e1000_phy_reset_dsp(hw);
1861 if(ret_val) {
1862 DEBUGOUT("Error Resetting PHY DSP\n");
1863 return ret_val;
1864 }
1865 }
1866 /* This loop will early-out if the link condition has been met. */
1867 for(i = PHY_FORCE_TIME; i > 0; i--) {
1868 if(mii_status_reg & MII_SR_LINK_STATUS) break;
1869 msec_delay(100);
1870 /* Read the MII Status Register and wait for Auto-Neg Complete bit
1871 * to be set.
1872 */
1873 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1874 if(ret_val)
1875 return ret_val;
1876
1877 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1878 if(ret_val)
1879 return ret_val;
1880 }
1881 }
1882
1883 if (hw->phy_type == e1000_phy_m88) {
1884 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1885 * Extended PHY Specific Control Register to 25MHz clock. This value
1886 * defaults back to a 2.5MHz clock when the PHY is reset.
1887 */
1888 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1889 if(ret_val)
1890 return ret_val;
1891
1892 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1893 ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1894 if(ret_val)
1895 return ret_val;
1896
1897 /* In addition, because of the s/w reset above, we need to enable CRS on
1898 * TX. This must be set for both full and half duplex operation.
1899 */
1900 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1901 if(ret_val)
1902 return ret_val;
1903
1904 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1905 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1906 if(ret_val)
1907 return ret_val;
1908
1909 if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
1910 (!hw->autoneg) &&
1911 (hw->forced_speed_duplex == e1000_10_full ||
1912 hw->forced_speed_duplex == e1000_10_half)) {
1913 ret_val = e1000_polarity_reversal_workaround(hw);
1914 if(ret_val)
1915 return ret_val;
1916 }
1917 }
1918 return E1000_SUCCESS;
1919}
1920
1921/******************************************************************************
1922* Sets the collision distance in the Transmit Control register
1923*
1924* hw - Struct containing variables accessed by shared code
1925*
1926* Link should have been established previously. Reads the speed and duplex
1927* information from the Device Status register.
1928******************************************************************************/
1929void
1930e1000_config_collision_dist(struct e1000_hw *hw)
1931{
1932 uint32_t tctl;
1933
1934 DEBUGFUNC("e1000_config_collision_dist");
1935
1936 tctl = E1000_READ_REG(hw, TCTL);
1937
1938 tctl &= ~E1000_TCTL_COLD;
1939 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
1940
1941 E1000_WRITE_REG(hw, TCTL, tctl);
1942 E1000_WRITE_FLUSH(hw);
1943}
1944
1945/******************************************************************************
1946* Sets MAC speed and duplex settings to reflect the those in the PHY
1947*
1948* hw - Struct containing variables accessed by shared code
1949* mii_reg - data to write to the MII control register
1950*
1951* The contents of the PHY register containing the needed information need to
1952* be passed in.
1953******************************************************************************/
1954static int32_t
1955e1000_config_mac_to_phy(struct e1000_hw *hw)
1956{
1957 uint32_t ctrl;
1958 int32_t ret_val;
1959 uint16_t phy_data;
1960
1961 DEBUGFUNC("e1000_config_mac_to_phy");
1962
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001963 /* 82544 or newer MAC, Auto Speed Detection takes care of
1964 * MAC speed/duplex configuration.*/
1965 if (hw->mac_type >= e1000_82544)
1966 return E1000_SUCCESS;
1967
Linus Torvalds1da177e2005-04-16 15:20:36 -07001968 /* Read the Device Control Register and set the bits to Force Speed
1969 * and Duplex.
1970 */
1971 ctrl = E1000_READ_REG(hw, CTRL);
1972 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1973 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1974
1975 /* Set up duplex in the Device Control and Transmit Control
1976 * registers depending on negotiated values.
1977 */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001978 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1979 if(ret_val)
1980 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001981
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001982 if(phy_data & M88E1000_PSSR_DPLX)
1983 ctrl |= E1000_CTRL_FD;
1984 else
1985 ctrl &= ~E1000_CTRL_FD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001986
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001987 e1000_config_collision_dist(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001988
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001989 /* Set up speed in the Device Control register depending on
1990 * negotiated values.
1991 */
1992 if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1993 ctrl |= E1000_CTRL_SPD_1000;
1994 else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1995 ctrl |= E1000_CTRL_SPD_100;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001996
Linus Torvalds1da177e2005-04-16 15:20:36 -07001997 /* Write the configured values back to the Device Control Reg. */
1998 E1000_WRITE_REG(hw, CTRL, ctrl);
1999 return E1000_SUCCESS;
2000}
2001
2002/******************************************************************************
2003 * Forces the MAC's flow control settings.
2004 *
2005 * hw - Struct containing variables accessed by shared code
2006 *
2007 * Sets the TFCE and RFCE bits in the device control register to reflect
2008 * the adapter settings. TFCE and RFCE need to be explicitly set by
2009 * software when a Copper PHY is used because autonegotiation is managed
2010 * by the PHY rather than the MAC. Software must also configure these
2011 * bits when link is forced on a fiber connection.
2012 *****************************************************************************/
2013int32_t
2014e1000_force_mac_fc(struct e1000_hw *hw)
2015{
2016 uint32_t ctrl;
2017
2018 DEBUGFUNC("e1000_force_mac_fc");
2019
2020 /* Get the current configuration of the Device Control Register */
2021 ctrl = E1000_READ_REG(hw, CTRL);
2022
2023 /* Because we didn't get link via the internal auto-negotiation
2024 * mechanism (we either forced link or we got link via PHY
2025 * auto-neg), we have to manually enable/disable transmit an
2026 * receive flow control.
2027 *
2028 * The "Case" statement below enables/disable flow control
2029 * according to the "hw->fc" parameter.
2030 *
2031 * The possible values of the "fc" parameter are:
2032 * 0: Flow control is completely disabled
2033 * 1: Rx flow control is enabled (we can receive pause
2034 * frames but not send pause frames).
2035 * 2: Tx flow control is enabled (we can send pause frames
2036 * frames but we do not receive pause frames).
2037 * 3: Both Rx and TX flow control (symmetric) is enabled.
2038 * other: No other values should be possible at this point.
2039 */
2040
2041 switch (hw->fc) {
2042 case e1000_fc_none:
2043 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2044 break;
2045 case e1000_fc_rx_pause:
2046 ctrl &= (~E1000_CTRL_TFCE);
2047 ctrl |= E1000_CTRL_RFCE;
2048 break;
2049 case e1000_fc_tx_pause:
2050 ctrl &= (~E1000_CTRL_RFCE);
2051 ctrl |= E1000_CTRL_TFCE;
2052 break;
2053 case e1000_fc_full:
2054 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2055 break;
2056 default:
2057 DEBUGOUT("Flow control param set incorrectly\n");
2058 return -E1000_ERR_CONFIG;
2059 }
2060
2061 /* Disable TX Flow Control for 82542 (rev 2.0) */
2062 if(hw->mac_type == e1000_82542_rev2_0)
2063 ctrl &= (~E1000_CTRL_TFCE);
2064
2065 E1000_WRITE_REG(hw, CTRL, ctrl);
2066 return E1000_SUCCESS;
2067}
2068
2069/******************************************************************************
2070 * Configures flow control settings after link is established
2071 *
2072 * hw - Struct containing variables accessed by shared code
2073 *
2074 * Should be called immediately after a valid link has been established.
2075 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2076 * and autonegotiation is enabled, the MAC flow control settings will be set
2077 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2078 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
2079 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01002080static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07002081e1000_config_fc_after_link_up(struct e1000_hw *hw)
2082{
2083 int32_t ret_val;
2084 uint16_t mii_status_reg;
2085 uint16_t mii_nway_adv_reg;
2086 uint16_t mii_nway_lp_ability_reg;
2087 uint16_t speed;
2088 uint16_t duplex;
2089
2090 DEBUGFUNC("e1000_config_fc_after_link_up");
2091
2092 /* Check for the case where we have fiber media and auto-neg failed
2093 * so we had to force link. In this case, we need to force the
2094 * configuration of the MAC to match the "fc" parameter.
2095 */
2096 if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
2097 ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed)) ||
2098 ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
2099 ret_val = e1000_force_mac_fc(hw);
2100 if(ret_val) {
2101 DEBUGOUT("Error forcing flow control settings\n");
2102 return ret_val;
2103 }
2104 }
2105
2106 /* Check for the case where we have copper media and auto-neg is
2107 * enabled. In this case, we need to check and see if Auto-Neg
2108 * has completed, and if so, how the PHY and link partner has
2109 * flow control configured.
2110 */
2111 if((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2112 /* Read the MII Status Register and check to see if AutoNeg
2113 * has completed. We read this twice because this reg has
2114 * some "sticky" (latched) bits.
2115 */
2116 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2117 if(ret_val)
2118 return ret_val;
2119 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2120 if(ret_val)
2121 return ret_val;
2122
2123 if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2124 /* The AutoNeg process has completed, so we now need to
2125 * read both the Auto Negotiation Advertisement Register
2126 * (Address 4) and the Auto_Negotiation Base Page Ability
2127 * Register (Address 5) to determine how flow control was
2128 * negotiated.
2129 */
2130 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2131 &mii_nway_adv_reg);
2132 if(ret_val)
2133 return ret_val;
2134 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2135 &mii_nway_lp_ability_reg);
2136 if(ret_val)
2137 return ret_val;
2138
2139 /* Two bits in the Auto Negotiation Advertisement Register
2140 * (Address 4) and two bits in the Auto Negotiation Base
2141 * Page Ability Register (Address 5) determine flow control
2142 * for both the PHY and the link partner. The following
2143 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2144 * 1999, describes these PAUSE resolution bits and how flow
2145 * control is determined based upon these settings.
2146 * NOTE: DC = Don't Care
2147 *
2148 * LOCAL DEVICE | LINK PARTNER
2149 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2150 *-------|---------|-------|---------|--------------------
2151 * 0 | 0 | DC | DC | e1000_fc_none
2152 * 0 | 1 | 0 | DC | e1000_fc_none
2153 * 0 | 1 | 1 | 0 | e1000_fc_none
2154 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
2155 * 1 | 0 | 0 | DC | e1000_fc_none
2156 * 1 | DC | 1 | DC | e1000_fc_full
2157 * 1 | 1 | 0 | 0 | e1000_fc_none
2158 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
2159 *
2160 */
2161 /* Are both PAUSE bits set to 1? If so, this implies
2162 * Symmetric Flow Control is enabled at both ends. The
2163 * ASM_DIR bits are irrelevant per the spec.
2164 *
2165 * For Symmetric Flow Control:
2166 *
2167 * LOCAL DEVICE | LINK PARTNER
2168 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2169 *-------|---------|-------|---------|--------------------
2170 * 1 | DC | 1 | DC | e1000_fc_full
2171 *
2172 */
2173 if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2174 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2175 /* Now we need to check if the user selected RX ONLY
2176 * of pause frames. In this case, we had to advertise
2177 * FULL flow control because we could not advertise RX
2178 * ONLY. Hence, we must now check to see if we need to
2179 * turn OFF the TRANSMISSION of PAUSE frames.
2180 */
2181 if(hw->original_fc == e1000_fc_full) {
2182 hw->fc = e1000_fc_full;
2183 DEBUGOUT("Flow Control = FULL.\r\n");
2184 } else {
2185 hw->fc = e1000_fc_rx_pause;
2186 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
2187 }
2188 }
2189 /* For receiving PAUSE frames ONLY.
2190 *
2191 * LOCAL DEVICE | LINK PARTNER
2192 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2193 *-------|---------|-------|---------|--------------------
2194 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
2195 *
2196 */
2197 else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2198 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2199 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2200 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2201 hw->fc = e1000_fc_tx_pause;
2202 DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
2203 }
2204 /* For transmitting PAUSE frames ONLY.
2205 *
2206 * LOCAL DEVICE | LINK PARTNER
2207 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2208 *-------|---------|-------|---------|--------------------
2209 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
2210 *
2211 */
2212 else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2213 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2214 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2215 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2216 hw->fc = e1000_fc_rx_pause;
2217 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
2218 }
2219 /* Per the IEEE spec, at this point flow control should be
2220 * disabled. However, we want to consider that we could
2221 * be connected to a legacy switch that doesn't advertise
2222 * desired flow control, but can be forced on the link
2223 * partner. So if we advertised no flow control, that is
2224 * what we will resolve to. If we advertised some kind of
2225 * receive capability (Rx Pause Only or Full Flow Control)
2226 * and the link partner advertised none, we will configure
2227 * ourselves to enable Rx Flow Control only. We can do
2228 * this safely for two reasons: If the link partner really
2229 * didn't want flow control enabled, and we enable Rx, no
2230 * harm done since we won't be receiving any PAUSE frames
2231 * anyway. If the intent on the link partner was to have
2232 * flow control enabled, then by us enabling RX only, we
2233 * can at least receive pause frames and process them.
2234 * This is a good idea because in most cases, since we are
2235 * predominantly a server NIC, more times than not we will
2236 * be asked to delay transmission of packets than asking
2237 * our link partner to pause transmission of frames.
2238 */
2239 else if((hw->original_fc == e1000_fc_none ||
2240 hw->original_fc == e1000_fc_tx_pause) ||
2241 hw->fc_strict_ieee) {
2242 hw->fc = e1000_fc_none;
2243 DEBUGOUT("Flow Control = NONE.\r\n");
2244 } else {
2245 hw->fc = e1000_fc_rx_pause;
2246 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
2247 }
2248
2249 /* Now we need to do one last check... If we auto-
2250 * negotiated to HALF DUPLEX, flow control should not be
2251 * enabled per IEEE 802.3 spec.
2252 */
2253 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
2254 if(ret_val) {
2255 DEBUGOUT("Error getting link speed and duplex\n");
2256 return ret_val;
2257 }
2258
2259 if(duplex == HALF_DUPLEX)
2260 hw->fc = e1000_fc_none;
2261
2262 /* Now we call a subroutine to actually force the MAC
2263 * controller to use the correct flow control settings.
2264 */
2265 ret_val = e1000_force_mac_fc(hw);
2266 if(ret_val) {
2267 DEBUGOUT("Error forcing flow control settings\n");
2268 return ret_val;
2269 }
2270 } else {
2271 DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n");
2272 }
2273 }
2274 return E1000_SUCCESS;
2275}
2276
2277/******************************************************************************
2278 * Checks to see if the link status of the hardware has changed.
2279 *
2280 * hw - Struct containing variables accessed by shared code
2281 *
2282 * Called by any function that needs to check the link status of the adapter.
2283 *****************************************************************************/
2284int32_t
2285e1000_check_for_link(struct e1000_hw *hw)
2286{
2287 uint32_t rxcw = 0;
2288 uint32_t ctrl;
2289 uint32_t status;
2290 uint32_t rctl;
2291 uint32_t icr;
2292 uint32_t signal = 0;
2293 int32_t ret_val;
2294 uint16_t phy_data;
2295
2296 DEBUGFUNC("e1000_check_for_link");
2297
2298 ctrl = E1000_READ_REG(hw, CTRL);
2299 status = E1000_READ_REG(hw, STATUS);
2300
2301 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
2302 * set when the optics detect a signal. On older adapters, it will be
2303 * cleared when there is a signal. This applies to fiber media only.
2304 */
2305 if((hw->media_type == e1000_media_type_fiber) ||
2306 (hw->media_type == e1000_media_type_internal_serdes)) {
2307 rxcw = E1000_READ_REG(hw, RXCW);
2308
2309 if(hw->media_type == e1000_media_type_fiber) {
2310 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2311 if(status & E1000_STATUS_LU)
2312 hw->get_link_status = FALSE;
2313 }
2314 }
2315
2316 /* If we have a copper PHY then we only want to go out to the PHY
2317 * registers to see if Auto-Neg has completed and/or if our link
2318 * status has changed. The get_link_status flag will be set if we
2319 * receive a Link Status Change interrupt or we have Rx Sequence
2320 * Errors.
2321 */
2322 if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2323 /* First we want to see if the MII Status Register reports
2324 * link. If so, then we want to get the current speed/duplex
2325 * of the PHY.
2326 * Read the register twice since the link bit is sticky.
2327 */
2328 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2329 if(ret_val)
2330 return ret_val;
2331 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2332 if(ret_val)
2333 return ret_val;
2334
2335 if(phy_data & MII_SR_LINK_STATUS) {
2336 hw->get_link_status = FALSE;
2337 /* Check if there was DownShift, must be checked immediately after
2338 * link-up */
2339 e1000_check_downshift(hw);
2340
2341 /* If we are on 82544 or 82543 silicon and speed/duplex
2342 * are forced to 10H or 10F, then we will implement the polarity
2343 * reversal workaround. We disable interrupts first, and upon
2344 * returning, place the devices interrupt state to its previous
2345 * value except for the link status change interrupt which will
2346 * happen due to the execution of this workaround.
2347 */
2348
2349 if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2350 (!hw->autoneg) &&
2351 (hw->forced_speed_duplex == e1000_10_full ||
2352 hw->forced_speed_duplex == e1000_10_half)) {
2353 E1000_WRITE_REG(hw, IMC, 0xffffffff);
2354 ret_val = e1000_polarity_reversal_workaround(hw);
2355 icr = E1000_READ_REG(hw, ICR);
2356 E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
2357 E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
2358 }
2359
2360 } else {
2361 /* No link detected */
2362 e1000_config_dsp_after_link_change(hw, FALSE);
2363 return 0;
2364 }
2365
2366 /* If we are forcing speed/duplex, then we simply return since
2367 * we have already determined whether we have link or not.
2368 */
2369 if(!hw->autoneg) return -E1000_ERR_CONFIG;
2370
2371 /* optimize the dsp settings for the igp phy */
2372 e1000_config_dsp_after_link_change(hw, TRUE);
2373
2374 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2375 * have Si on board that is 82544 or newer, Auto
2376 * Speed Detection takes care of MAC speed/duplex
2377 * configuration. So we only need to configure Collision
2378 * Distance in the MAC. Otherwise, we need to force
2379 * speed/duplex on the MAC to the current PHY speed/duplex
2380 * settings.
2381 */
2382 if(hw->mac_type >= e1000_82544)
2383 e1000_config_collision_dist(hw);
2384 else {
2385 ret_val = e1000_config_mac_to_phy(hw);
2386 if(ret_val) {
2387 DEBUGOUT("Error configuring MAC to PHY settings\n");
2388 return ret_val;
2389 }
2390 }
2391
2392 /* Configure Flow Control now that Auto-Neg has completed. First, we
2393 * need to restore the desired flow control settings because we may
2394 * have had to re-autoneg with a different link partner.
2395 */
2396 ret_val = e1000_config_fc_after_link_up(hw);
2397 if(ret_val) {
2398 DEBUGOUT("Error configuring flow control\n");
2399 return ret_val;
2400 }
2401
2402 /* At this point we know that we are on copper and we have
2403 * auto-negotiated link. These are conditions for checking the link
2404 * partner capability register. We use the link speed to determine if
2405 * TBI compatibility needs to be turned on or off. If the link is not
2406 * at gigabit speed, then TBI compatibility is not needed. If we are
2407 * at gigabit speed, we turn on TBI compatibility.
2408 */
2409 if(hw->tbi_compatibility_en) {
2410 uint16_t speed, duplex;
2411 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2412 if(speed != SPEED_1000) {
2413 /* If link speed is not set to gigabit speed, we do not need
2414 * to enable TBI compatibility.
2415 */
2416 if(hw->tbi_compatibility_on) {
2417 /* If we previously were in the mode, turn it off. */
2418 rctl = E1000_READ_REG(hw, RCTL);
2419 rctl &= ~E1000_RCTL_SBP;
2420 E1000_WRITE_REG(hw, RCTL, rctl);
2421 hw->tbi_compatibility_on = FALSE;
2422 }
2423 } else {
2424 /* If TBI compatibility is was previously off, turn it on. For
2425 * compatibility with a TBI link partner, we will store bad
2426 * packets. Some frames have an additional byte on the end and
2427 * will look like CRC errors to to the hardware.
2428 */
2429 if(!hw->tbi_compatibility_on) {
2430 hw->tbi_compatibility_on = TRUE;
2431 rctl = E1000_READ_REG(hw, RCTL);
2432 rctl |= E1000_RCTL_SBP;
2433 E1000_WRITE_REG(hw, RCTL, rctl);
2434 }
2435 }
2436 }
2437 }
2438 /* If we don't have link (auto-negotiation failed or link partner cannot
2439 * auto-negotiate), the cable is plugged in (we have signal), and our
2440 * link partner is not trying to auto-negotiate with us (we are receiving
2441 * idles or data), we need to force link up. We also need to give
2442 * auto-negotiation time to complete, in case the cable was just plugged
2443 * in. The autoneg_failed flag does this.
2444 */
2445 else if((((hw->media_type == e1000_media_type_fiber) &&
2446 ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
2447 (hw->media_type == e1000_media_type_internal_serdes)) &&
2448 (!(status & E1000_STATUS_LU)) &&
2449 (!(rxcw & E1000_RXCW_C))) {
2450 if(hw->autoneg_failed == 0) {
2451 hw->autoneg_failed = 1;
2452 return 0;
2453 }
2454 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
2455
2456 /* Disable auto-negotiation in the TXCW register */
2457 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2458
2459 /* Force link-up and also force full-duplex. */
2460 ctrl = E1000_READ_REG(hw, CTRL);
2461 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2462 E1000_WRITE_REG(hw, CTRL, ctrl);
2463
2464 /* Configure Flow Control after forcing link up. */
2465 ret_val = e1000_config_fc_after_link_up(hw);
2466 if(ret_val) {
2467 DEBUGOUT("Error configuring flow control\n");
2468 return ret_val;
2469 }
2470 }
2471 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
2472 * auto-negotiation in the TXCW register and disable forced link in the
2473 * Device Control register in an attempt to auto-negotiate with our link
2474 * partner.
2475 */
2476 else if(((hw->media_type == e1000_media_type_fiber) ||
2477 (hw->media_type == e1000_media_type_internal_serdes)) &&
2478 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2479 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
2480 E1000_WRITE_REG(hw, TXCW, hw->txcw);
2481 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
2482
2483 hw->serdes_link_down = FALSE;
2484 }
2485 /* If we force link for non-auto-negotiation switch, check link status
2486 * based on MAC synchronization for internal serdes media type.
2487 */
2488 else if((hw->media_type == e1000_media_type_internal_serdes) &&
2489 !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
2490 /* SYNCH bit and IV bit are sticky. */
2491 udelay(10);
2492 if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
2493 if(!(rxcw & E1000_RXCW_IV)) {
2494 hw->serdes_link_down = FALSE;
2495 DEBUGOUT("SERDES: Link is up.\n");
2496 }
2497 } else {
2498 hw->serdes_link_down = TRUE;
2499 DEBUGOUT("SERDES: Link is down.\n");
2500 }
2501 }
2502 if((hw->media_type == e1000_media_type_internal_serdes) &&
2503 (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
2504 hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
2505 }
2506 return E1000_SUCCESS;
2507}
2508
2509/******************************************************************************
2510 * Detects the current speed and duplex settings of the hardware.
2511 *
2512 * hw - Struct containing variables accessed by shared code
2513 * speed - Speed of the connection
2514 * duplex - Duplex setting of the connection
2515 *****************************************************************************/
2516int32_t
2517e1000_get_speed_and_duplex(struct e1000_hw *hw,
2518 uint16_t *speed,
2519 uint16_t *duplex)
2520{
2521 uint32_t status;
2522 int32_t ret_val;
2523 uint16_t phy_data;
2524
2525 DEBUGFUNC("e1000_get_speed_and_duplex");
2526
2527 if(hw->mac_type >= e1000_82543) {
2528 status = E1000_READ_REG(hw, STATUS);
2529 if(status & E1000_STATUS_SPEED_1000) {
2530 *speed = SPEED_1000;
2531 DEBUGOUT("1000 Mbs, ");
2532 } else if(status & E1000_STATUS_SPEED_100) {
2533 *speed = SPEED_100;
2534 DEBUGOUT("100 Mbs, ");
2535 } else {
2536 *speed = SPEED_10;
2537 DEBUGOUT("10 Mbs, ");
2538 }
2539
2540 if(status & E1000_STATUS_FD) {
2541 *duplex = FULL_DUPLEX;
2542 DEBUGOUT("Full Duplex\r\n");
2543 } else {
2544 *duplex = HALF_DUPLEX;
2545 DEBUGOUT(" Half Duplex\r\n");
2546 }
2547 } else {
2548 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
2549 *speed = SPEED_1000;
2550 *duplex = FULL_DUPLEX;
2551 }
2552
2553 /* IGP01 PHY may advertise full duplex operation after speed downgrade even
2554 * if it is operating at half duplex. Here we set the duplex settings to
2555 * match the duplex in the link partner's capabilities.
2556 */
2557 if(hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2558 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2559 if(ret_val)
2560 return ret_val;
2561
2562 if(!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2563 *duplex = HALF_DUPLEX;
2564 else {
2565 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2566 if(ret_val)
2567 return ret_val;
2568 if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
2569 (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2570 *duplex = HALF_DUPLEX;
2571 }
2572 }
2573
2574 return E1000_SUCCESS;
2575}
2576
2577/******************************************************************************
2578* Blocks until autoneg completes or times out (~4.5 seconds)
2579*
2580* hw - Struct containing variables accessed by shared code
2581******************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01002582static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07002583e1000_wait_autoneg(struct e1000_hw *hw)
2584{
2585 int32_t ret_val;
2586 uint16_t i;
2587 uint16_t phy_data;
2588
2589 DEBUGFUNC("e1000_wait_autoneg");
2590 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
2591
2592 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2593 for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2594 /* Read the MII Status Register and wait for Auto-Neg
2595 * Complete bit to be set.
2596 */
2597 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2598 if(ret_val)
2599 return ret_val;
2600 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2601 if(ret_val)
2602 return ret_val;
2603 if(phy_data & MII_SR_AUTONEG_COMPLETE) {
2604 return E1000_SUCCESS;
2605 }
2606 msec_delay(100);
2607 }
2608 return E1000_SUCCESS;
2609}
2610
2611/******************************************************************************
2612* Raises the Management Data Clock
2613*
2614* hw - Struct containing variables accessed by shared code
2615* ctrl - Device control register's current value
2616******************************************************************************/
2617static void
2618e1000_raise_mdi_clk(struct e1000_hw *hw,
2619 uint32_t *ctrl)
2620{
2621 /* Raise the clock input to the Management Data Clock (by setting the MDC
2622 * bit), and then delay 10 microseconds.
2623 */
2624 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
2625 E1000_WRITE_FLUSH(hw);
2626 udelay(10);
2627}
2628
2629/******************************************************************************
2630* Lowers the Management Data Clock
2631*
2632* hw - Struct containing variables accessed by shared code
2633* ctrl - Device control register's current value
2634******************************************************************************/
2635static void
2636e1000_lower_mdi_clk(struct e1000_hw *hw,
2637 uint32_t *ctrl)
2638{
2639 /* Lower the clock input to the Management Data Clock (by clearing the MDC
2640 * bit), and then delay 10 microseconds.
2641 */
2642 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
2643 E1000_WRITE_FLUSH(hw);
2644 udelay(10);
2645}
2646
2647/******************************************************************************
2648* Shifts data bits out to the PHY
2649*
2650* hw - Struct containing variables accessed by shared code
2651* data - Data to send out to the PHY
2652* count - Number of bits to shift out
2653*
2654* Bits are shifted out in MSB to LSB order.
2655******************************************************************************/
2656static void
2657e1000_shift_out_mdi_bits(struct e1000_hw *hw,
2658 uint32_t data,
2659 uint16_t count)
2660{
2661 uint32_t ctrl;
2662 uint32_t mask;
2663
2664 /* We need to shift "count" number of bits out to the PHY. So, the value
2665 * in the "data" parameter will be shifted out to the PHY one bit at a
2666 * time. In order to do this, "data" must be broken down into bits.
2667 */
2668 mask = 0x01;
2669 mask <<= (count - 1);
2670
2671 ctrl = E1000_READ_REG(hw, CTRL);
2672
2673 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2674 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2675
2676 while(mask) {
2677 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
2678 * then raising and lowering the Management Data Clock. A "0" is
2679 * shifted out to the PHY by setting the MDIO bit to "0" and then
2680 * raising and lowering the clock.
2681 */
2682 if(data & mask) ctrl |= E1000_CTRL_MDIO;
2683 else ctrl &= ~E1000_CTRL_MDIO;
2684
2685 E1000_WRITE_REG(hw, CTRL, ctrl);
2686 E1000_WRITE_FLUSH(hw);
2687
2688 udelay(10);
2689
2690 e1000_raise_mdi_clk(hw, &ctrl);
2691 e1000_lower_mdi_clk(hw, &ctrl);
2692
2693 mask = mask >> 1;
2694 }
2695}
2696
2697/******************************************************************************
2698* Shifts data bits in from the PHY
2699*
2700* hw - Struct containing variables accessed by shared code
2701*
2702* Bits are shifted in in MSB to LSB order.
2703******************************************************************************/
2704static uint16_t
2705e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2706{
2707 uint32_t ctrl;
2708 uint16_t data = 0;
2709 uint8_t i;
2710
2711 /* In order to read a register from the PHY, we need to shift in a total
2712 * of 18 bits from the PHY. The first two bit (turnaround) times are used
2713 * to avoid contention on the MDIO pin when a read operation is performed.
2714 * These two bits are ignored by us and thrown away. Bits are "shifted in"
2715 * by raising the input to the Management Data Clock (setting the MDC bit),
2716 * and then reading the value of the MDIO bit.
2717 */
2718 ctrl = E1000_READ_REG(hw, CTRL);
2719
2720 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
2721 ctrl &= ~E1000_CTRL_MDIO_DIR;
2722 ctrl &= ~E1000_CTRL_MDIO;
2723
2724 E1000_WRITE_REG(hw, CTRL, ctrl);
2725 E1000_WRITE_FLUSH(hw);
2726
2727 /* Raise and Lower the clock before reading in the data. This accounts for
2728 * the turnaround bits. The first clock occurred when we clocked out the
2729 * last bit of the Register Address.
2730 */
2731 e1000_raise_mdi_clk(hw, &ctrl);
2732 e1000_lower_mdi_clk(hw, &ctrl);
2733
2734 for(data = 0, i = 0; i < 16; i++) {
2735 data = data << 1;
2736 e1000_raise_mdi_clk(hw, &ctrl);
2737 ctrl = E1000_READ_REG(hw, CTRL);
2738 /* Check to see if we shifted in a "1". */
2739 if(ctrl & E1000_CTRL_MDIO) data |= 1;
2740 e1000_lower_mdi_clk(hw, &ctrl);
2741 }
2742
2743 e1000_raise_mdi_clk(hw, &ctrl);
2744 e1000_lower_mdi_clk(hw, &ctrl);
2745
2746 return data;
2747}
2748
2749/*****************************************************************************
2750* Reads the value from a PHY register, if the value is on a specific non zero
2751* page, sets the page first.
2752* hw - Struct containing variables accessed by shared code
2753* reg_addr - address of the PHY register to read
2754******************************************************************************/
2755int32_t
2756e1000_read_phy_reg(struct e1000_hw *hw,
2757 uint32_t reg_addr,
2758 uint16_t *phy_data)
2759{
2760 uint32_t ret_val;
2761
2762 DEBUGFUNC("e1000_read_phy_reg");
2763
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002764 if((hw->phy_type == e1000_phy_igp ||
2765 hw->phy_type == e1000_phy_igp_2) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07002766 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2767 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2768 (uint16_t)reg_addr);
2769 if(ret_val) {
2770 return ret_val;
2771 }
2772 }
2773
2774 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2775 phy_data);
2776
2777 return ret_val;
2778}
2779
2780int32_t
2781e1000_read_phy_reg_ex(struct e1000_hw *hw,
2782 uint32_t reg_addr,
2783 uint16_t *phy_data)
2784{
2785 uint32_t i;
2786 uint32_t mdic = 0;
2787 const uint32_t phy_addr = 1;
2788
2789 DEBUGFUNC("e1000_read_phy_reg_ex");
2790
2791 if(reg_addr > MAX_PHY_REG_ADDRESS) {
2792 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
2793 return -E1000_ERR_PARAM;
2794 }
2795
2796 if(hw->mac_type > e1000_82543) {
2797 /* Set up Op-code, Phy Address, and register address in the MDI
2798 * Control register. The MAC will take care of interfacing with the
2799 * PHY to retrieve the desired data.
2800 */
2801 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2802 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2803 (E1000_MDIC_OP_READ));
2804
2805 E1000_WRITE_REG(hw, MDIC, mdic);
2806
2807 /* Poll the ready bit to see if the MDI read completed */
2808 for(i = 0; i < 64; i++) {
2809 udelay(50);
2810 mdic = E1000_READ_REG(hw, MDIC);
2811 if(mdic & E1000_MDIC_READY) break;
2812 }
2813 if(!(mdic & E1000_MDIC_READY)) {
2814 DEBUGOUT("MDI Read did not complete\n");
2815 return -E1000_ERR_PHY;
2816 }
2817 if(mdic & E1000_MDIC_ERROR) {
2818 DEBUGOUT("MDI Error\n");
2819 return -E1000_ERR_PHY;
2820 }
2821 *phy_data = (uint16_t) mdic;
2822 } else {
2823 /* We must first send a preamble through the MDIO pin to signal the
2824 * beginning of an MII instruction. This is done by sending 32
2825 * consecutive "1" bits.
2826 */
2827 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2828
2829 /* Now combine the next few fields that are required for a read
2830 * operation. We use this method instead of calling the
2831 * e1000_shift_out_mdi_bits routine five different times. The format of
2832 * a MII read instruction consists of a shift out of 14 bits and is
2833 * defined as follows:
2834 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2835 * followed by a shift in of 18 bits. This first two bits shifted in
2836 * are TurnAround bits used to avoid contention on the MDIO pin when a
2837 * READ operation is performed. These two bits are thrown away
2838 * followed by a shift in of 16 bits which contains the desired data.
2839 */
2840 mdic = ((reg_addr) | (phy_addr << 5) |
2841 (PHY_OP_READ << 10) | (PHY_SOF << 12));
2842
2843 e1000_shift_out_mdi_bits(hw, mdic, 14);
2844
2845 /* Now that we've shifted out the read command to the MII, we need to
2846 * "shift in" the 16-bit value (18 total bits) of the requested PHY
2847 * register address.
2848 */
2849 *phy_data = e1000_shift_in_mdi_bits(hw);
2850 }
2851 return E1000_SUCCESS;
2852}
2853
2854/******************************************************************************
2855* Writes a value to a PHY register
2856*
2857* hw - Struct containing variables accessed by shared code
2858* reg_addr - address of the PHY register to write
2859* data - data to write to the PHY
2860******************************************************************************/
2861int32_t
2862e1000_write_phy_reg(struct e1000_hw *hw,
2863 uint32_t reg_addr,
2864 uint16_t phy_data)
2865{
2866 uint32_t ret_val;
2867
2868 DEBUGFUNC("e1000_write_phy_reg");
2869
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002870 if((hw->phy_type == e1000_phy_igp ||
2871 hw->phy_type == e1000_phy_igp_2) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07002872 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2873 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2874 (uint16_t)reg_addr);
2875 if(ret_val) {
2876 return ret_val;
2877 }
2878 }
2879
2880 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2881 phy_data);
2882
2883 return ret_val;
2884}
2885
2886int32_t
2887e1000_write_phy_reg_ex(struct e1000_hw *hw,
2888 uint32_t reg_addr,
2889 uint16_t phy_data)
2890{
2891 uint32_t i;
2892 uint32_t mdic = 0;
2893 const uint32_t phy_addr = 1;
2894
2895 DEBUGFUNC("e1000_write_phy_reg_ex");
2896
2897 if(reg_addr > MAX_PHY_REG_ADDRESS) {
2898 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
2899 return -E1000_ERR_PARAM;
2900 }
2901
2902 if(hw->mac_type > e1000_82543) {
2903 /* Set up Op-code, Phy Address, register address, and data intended
2904 * for the PHY register in the MDI Control register. The MAC will take
2905 * care of interfacing with the PHY to send the desired data.
2906 */
2907 mdic = (((uint32_t) phy_data) |
2908 (reg_addr << E1000_MDIC_REG_SHIFT) |
2909 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2910 (E1000_MDIC_OP_WRITE));
2911
2912 E1000_WRITE_REG(hw, MDIC, mdic);
2913
2914 /* Poll the ready bit to see if the MDI read completed */
2915 for(i = 0; i < 640; i++) {
2916 udelay(5);
2917 mdic = E1000_READ_REG(hw, MDIC);
2918 if(mdic & E1000_MDIC_READY) break;
2919 }
2920 if(!(mdic & E1000_MDIC_READY)) {
2921 DEBUGOUT("MDI Write did not complete\n");
2922 return -E1000_ERR_PHY;
2923 }
2924 } else {
2925 /* We'll need to use the SW defined pins to shift the write command
2926 * out to the PHY. We first send a preamble to the PHY to signal the
2927 * beginning of the MII instruction. This is done by sending 32
2928 * consecutive "1" bits.
2929 */
2930 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2931
2932 /* Now combine the remaining required fields that will indicate a
2933 * write operation. We use this method instead of calling the
2934 * e1000_shift_out_mdi_bits routine for each field in the command. The
2935 * format of a MII write instruction is as follows:
2936 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
2937 */
2938 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
2939 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
2940 mdic <<= 16;
2941 mdic |= (uint32_t) phy_data;
2942
2943 e1000_shift_out_mdi_bits(hw, mdic, 32);
2944 }
2945
2946 return E1000_SUCCESS;
2947}
2948
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002949
Linus Torvalds1da177e2005-04-16 15:20:36 -07002950/******************************************************************************
2951* Returns the PHY to the power-on reset state
2952*
2953* hw - Struct containing variables accessed by shared code
2954******************************************************************************/
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002955int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07002956e1000_phy_hw_reset(struct e1000_hw *hw)
2957{
2958 uint32_t ctrl, ctrl_ext;
2959 uint32_t led_ctrl;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002960 int32_t ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002961
2962 DEBUGFUNC("e1000_phy_hw_reset");
2963
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002964 /* In the case of the phy reset being blocked, it's not an error, we
2965 * simply return success without performing the reset. */
2966 ret_val = e1000_check_phy_reset_block(hw);
2967 if (ret_val)
2968 return E1000_SUCCESS;
2969
Linus Torvalds1da177e2005-04-16 15:20:36 -07002970 DEBUGOUT("Resetting Phy...\n");
2971
2972 if(hw->mac_type > e1000_82543) {
2973 /* Read the device control register and assert the E1000_CTRL_PHY_RST
2974 * bit. Then, take it out of reset.
Jeff Kirsherfd803242005-12-13 00:06:22 -05002975 * For pre-e1000_82571 hardware, we delay for 10ms between the assert
2976 * and deassert. For e1000_82571 hardware and later, we instead delay
2977 * for 10ms after the deassertion.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002978 */
2979 ctrl = E1000_READ_REG(hw, CTRL);
2980 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
2981 E1000_WRITE_FLUSH(hw);
Jeff Kirsherfd803242005-12-13 00:06:22 -05002982
2983 if (hw->mac_type < e1000_82571)
2984 msec_delay(10);
2985
Linus Torvalds1da177e2005-04-16 15:20:36 -07002986 E1000_WRITE_REG(hw, CTRL, ctrl);
2987 E1000_WRITE_FLUSH(hw);
Jeff Kirsherfd803242005-12-13 00:06:22 -05002988
2989 if (hw->mac_type >= e1000_82571)
2990 msec_delay(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002991 } else {
2992 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
2993 * bit to put the PHY into reset. Then, take it out of reset.
2994 */
2995 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2996 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
2997 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
2998 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2999 E1000_WRITE_FLUSH(hw);
3000 msec_delay(10);
3001 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3002 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3003 E1000_WRITE_FLUSH(hw);
3004 }
3005 udelay(150);
3006
3007 if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3008 /* Configure activity LED after PHY reset */
3009 led_ctrl = E1000_READ_REG(hw, LEDCTL);
3010 led_ctrl &= IGP_ACTIVITY_LED_MASK;
3011 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3012 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
3013 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003014
3015 /* Wait for FW to finish PHY configuration. */
3016 ret_val = e1000_get_phy_cfg_done(hw);
3017
3018 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003019}
3020
3021/******************************************************************************
3022* Resets the PHY
3023*
3024* hw - Struct containing variables accessed by shared code
3025*
3026* Sets bit 15 of the MII Control regiser
3027******************************************************************************/
3028int32_t
3029e1000_phy_reset(struct e1000_hw *hw)
3030{
3031 int32_t ret_val;
3032 uint16_t phy_data;
3033
3034 DEBUGFUNC("e1000_phy_reset");
3035
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003036 /* In the case of the phy reset being blocked, it's not an error, we
3037 * simply return success without performing the reset. */
3038 ret_val = e1000_check_phy_reset_block(hw);
3039 if (ret_val)
3040 return E1000_SUCCESS;
3041
3042 switch (hw->mac_type) {
3043 case e1000_82541_rev_2:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04003044 case e1000_82571:
3045 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003046 ret_val = e1000_phy_hw_reset(hw);
3047 if(ret_val)
3048 return ret_val;
3049 break;
3050 default:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003051 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3052 if(ret_val)
3053 return ret_val;
3054
3055 phy_data |= MII_CR_RESET;
3056 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3057 if(ret_val)
3058 return ret_val;
3059
3060 udelay(1);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003061 break;
3062 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003063
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003064 if(hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003065 e1000_phy_init_script(hw);
3066
3067 return E1000_SUCCESS;
3068}
3069
3070/******************************************************************************
3071* Probes the expected PHY address for known PHY IDs
3072*
3073* hw - Struct containing variables accessed by shared code
3074******************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01003075static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07003076e1000_detect_gig_phy(struct e1000_hw *hw)
3077{
3078 int32_t phy_init_status, ret_val;
3079 uint16_t phy_id_high, phy_id_low;
3080 boolean_t match = FALSE;
3081
3082 DEBUGFUNC("e1000_detect_gig_phy");
3083
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04003084 /* The 82571 firmware may still be configuring the PHY. In this
3085 * case, we cannot access the PHY until the configuration is done. So
3086 * we explicitly set the PHY values. */
3087 if(hw->mac_type == e1000_82571 ||
3088 hw->mac_type == e1000_82572) {
3089 hw->phy_id = IGP01E1000_I_PHY_ID;
3090 hw->phy_type = e1000_phy_igp_2;
3091 return E1000_SUCCESS;
3092 }
3093
Linus Torvalds1da177e2005-04-16 15:20:36 -07003094 /* Read the PHY ID Registers to identify which PHY is onboard. */
3095 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3096 if(ret_val)
3097 return ret_val;
3098
3099 hw->phy_id = (uint32_t) (phy_id_high << 16);
3100 udelay(20);
3101 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3102 if(ret_val)
3103 return ret_val;
3104
3105 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
3106 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
3107
3108 switch(hw->mac_type) {
3109 case e1000_82543:
3110 if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
3111 break;
3112 case e1000_82544:
3113 if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
3114 break;
3115 case e1000_82540:
3116 case e1000_82545:
3117 case e1000_82545_rev_3:
3118 case e1000_82546:
3119 case e1000_82546_rev_3:
3120 if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
3121 break;
3122 case e1000_82541:
3123 case e1000_82541_rev_2:
3124 case e1000_82547:
3125 case e1000_82547_rev_2:
3126 if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
3127 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003128 case e1000_82573:
3129 if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
3130 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003131 default:
3132 DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
3133 return -E1000_ERR_CONFIG;
3134 }
3135 phy_init_status = e1000_set_phy_type(hw);
3136
3137 if ((match) && (phy_init_status == E1000_SUCCESS)) {
3138 DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
3139 return E1000_SUCCESS;
3140 }
3141 DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
3142 return -E1000_ERR_PHY;
3143}
3144
3145/******************************************************************************
3146* Resets the PHY's DSP
3147*
3148* hw - Struct containing variables accessed by shared code
3149******************************************************************************/
3150static int32_t
3151e1000_phy_reset_dsp(struct e1000_hw *hw)
3152{
3153 int32_t ret_val;
3154 DEBUGFUNC("e1000_phy_reset_dsp");
3155
3156 do {
3157 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3158 if(ret_val) break;
3159 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3160 if(ret_val) break;
3161 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3162 if(ret_val) break;
3163 ret_val = E1000_SUCCESS;
3164 } while(0);
3165
3166 return ret_val;
3167}
3168
3169/******************************************************************************
3170* Get PHY information from various PHY registers for igp PHY only.
3171*
3172* hw - Struct containing variables accessed by shared code
3173* phy_info - PHY information structure
3174******************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01003175static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07003176e1000_phy_igp_get_info(struct e1000_hw *hw,
3177 struct e1000_phy_info *phy_info)
3178{
3179 int32_t ret_val;
3180 uint16_t phy_data, polarity, min_length, max_length, average;
3181
3182 DEBUGFUNC("e1000_phy_igp_get_info");
3183
3184 /* The downshift status is checked only once, after link is established,
3185 * and it stored in the hw->speed_downgraded parameter. */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003186 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003187
3188 /* IGP01E1000 does not need to support it. */
3189 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3190
3191 /* IGP01E1000 always correct polarity reversal */
3192 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3193
3194 /* Check polarity status */
3195 ret_val = e1000_check_polarity(hw, &polarity);
3196 if(ret_val)
3197 return ret_val;
3198
3199 phy_info->cable_polarity = polarity;
3200
3201 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3202 if(ret_val)
3203 return ret_val;
3204
3205 phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
3206 IGP01E1000_PSSR_MDIX_SHIFT;
3207
3208 if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3209 IGP01E1000_PSSR_SPEED_1000MBPS) {
3210 /* Local/Remote Receiver Information are only valid at 1000 Mbps */
3211 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3212 if(ret_val)
3213 return ret_val;
3214
3215 phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3216 SR_1000T_LOCAL_RX_STATUS_SHIFT;
3217 phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3218 SR_1000T_REMOTE_RX_STATUS_SHIFT;
3219
3220 /* Get cable length */
3221 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3222 if(ret_val)
3223 return ret_val;
3224
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003225 /* Translate to old method */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003226 average = (max_length + min_length) / 2;
3227
3228 if(average <= e1000_igp_cable_length_50)
3229 phy_info->cable_length = e1000_cable_length_50;
3230 else if(average <= e1000_igp_cable_length_80)
3231 phy_info->cable_length = e1000_cable_length_50_80;
3232 else if(average <= e1000_igp_cable_length_110)
3233 phy_info->cable_length = e1000_cable_length_80_110;
3234 else if(average <= e1000_igp_cable_length_140)
3235 phy_info->cable_length = e1000_cable_length_110_140;
3236 else
3237 phy_info->cable_length = e1000_cable_length_140;
3238 }
3239
3240 return E1000_SUCCESS;
3241}
3242
3243/******************************************************************************
3244* Get PHY information from various PHY registers fot m88 PHY only.
3245*
3246* hw - Struct containing variables accessed by shared code
3247* phy_info - PHY information structure
3248******************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01003249static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07003250e1000_phy_m88_get_info(struct e1000_hw *hw,
3251 struct e1000_phy_info *phy_info)
3252{
3253 int32_t ret_val;
3254 uint16_t phy_data, polarity;
3255
3256 DEBUGFUNC("e1000_phy_m88_get_info");
3257
3258 /* The downshift status is checked only once, after link is established,
3259 * and it stored in the hw->speed_downgraded parameter. */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003260 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003261
3262 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3263 if(ret_val)
3264 return ret_val;
3265
3266 phy_info->extended_10bt_distance =
3267 (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3268 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
3269 phy_info->polarity_correction =
3270 (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3271 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;
3272
3273 /* Check polarity status */
3274 ret_val = e1000_check_polarity(hw, &polarity);
3275 if(ret_val)
3276 return ret_val;
3277 phy_info->cable_polarity = polarity;
3278
3279 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3280 if(ret_val)
3281 return ret_val;
3282
3283 phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
3284 M88E1000_PSSR_MDIX_SHIFT;
3285
3286 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3287 /* Cable Length Estimation and Local/Remote Receiver Information
3288 * are only valid at 1000 Mbps.
3289 */
3290 phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
3291 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3292
3293 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3294 if(ret_val)
3295 return ret_val;
3296
3297 phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3298 SR_1000T_LOCAL_RX_STATUS_SHIFT;
3299
3300 phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3301 SR_1000T_REMOTE_RX_STATUS_SHIFT;
3302 }
3303
3304 return E1000_SUCCESS;
3305}
3306
3307/******************************************************************************
3308* Get PHY information from various PHY registers
3309*
3310* hw - Struct containing variables accessed by shared code
3311* phy_info - PHY information structure
3312******************************************************************************/
3313int32_t
3314e1000_phy_get_info(struct e1000_hw *hw,
3315 struct e1000_phy_info *phy_info)
3316{
3317 int32_t ret_val;
3318 uint16_t phy_data;
3319
3320 DEBUGFUNC("e1000_phy_get_info");
3321
3322 phy_info->cable_length = e1000_cable_length_undefined;
3323 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3324 phy_info->cable_polarity = e1000_rev_polarity_undefined;
3325 phy_info->downshift = e1000_downshift_undefined;
3326 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3327 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3328 phy_info->local_rx = e1000_1000t_rx_status_undefined;
3329 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3330
3331 if(hw->media_type != e1000_media_type_copper) {
3332 DEBUGOUT("PHY info is only valid for copper media\n");
3333 return -E1000_ERR_CONFIG;
3334 }
3335
3336 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3337 if(ret_val)
3338 return ret_val;
3339
3340 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3341 if(ret_val)
3342 return ret_val;
3343
3344 if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3345 DEBUGOUT("PHY info is only valid if link is up\n");
3346 return -E1000_ERR_CONFIG;
3347 }
3348
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003349 if(hw->phy_type == e1000_phy_igp ||
3350 hw->phy_type == e1000_phy_igp_2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003351 return e1000_phy_igp_get_info(hw, phy_info);
3352 else
3353 return e1000_phy_m88_get_info(hw, phy_info);
3354}
3355
3356int32_t
3357e1000_validate_mdi_setting(struct e1000_hw *hw)
3358{
3359 DEBUGFUNC("e1000_validate_mdi_settings");
3360
3361 if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3362 DEBUGOUT("Invalid MDI setting detected\n");
3363 hw->mdix = 1;
3364 return -E1000_ERR_CONFIG;
3365 }
3366 return E1000_SUCCESS;
3367}
3368
3369
3370/******************************************************************************
3371 * Sets up eeprom variables in the hw struct. Must be called after mac_type
3372 * is configured.
3373 *
3374 * hw - Struct containing variables accessed by shared code
3375 *****************************************************************************/
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003376int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07003377e1000_init_eeprom_params(struct e1000_hw *hw)
3378{
3379 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3380 uint32_t eecd = E1000_READ_REG(hw, EECD);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003381 int32_t ret_val = E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003382 uint16_t eeprom_size;
3383
3384 DEBUGFUNC("e1000_init_eeprom_params");
3385
3386 switch (hw->mac_type) {
3387 case e1000_82542_rev2_0:
3388 case e1000_82542_rev2_1:
3389 case e1000_82543:
3390 case e1000_82544:
3391 eeprom->type = e1000_eeprom_microwire;
3392 eeprom->word_size = 64;
3393 eeprom->opcode_bits = 3;
3394 eeprom->address_bits = 6;
3395 eeprom->delay_usec = 50;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003396 eeprom->use_eerd = FALSE;
3397 eeprom->use_eewr = FALSE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003398 break;
3399 case e1000_82540:
3400 case e1000_82545:
3401 case e1000_82545_rev_3:
3402 case e1000_82546:
3403 case e1000_82546_rev_3:
3404 eeprom->type = e1000_eeprom_microwire;
3405 eeprom->opcode_bits = 3;
3406 eeprom->delay_usec = 50;
3407 if(eecd & E1000_EECD_SIZE) {
3408 eeprom->word_size = 256;
3409 eeprom->address_bits = 8;
3410 } else {
3411 eeprom->word_size = 64;
3412 eeprom->address_bits = 6;
3413 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003414 eeprom->use_eerd = FALSE;
3415 eeprom->use_eewr = FALSE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003416 break;
3417 case e1000_82541:
3418 case e1000_82541_rev_2:
3419 case e1000_82547:
3420 case e1000_82547_rev_2:
3421 if (eecd & E1000_EECD_TYPE) {
3422 eeprom->type = e1000_eeprom_spi;
3423 eeprom->opcode_bits = 8;
3424 eeprom->delay_usec = 1;
3425 if (eecd & E1000_EECD_ADDR_BITS) {
3426 eeprom->page_size = 32;
3427 eeprom->address_bits = 16;
3428 } else {
3429 eeprom->page_size = 8;
3430 eeprom->address_bits = 8;
3431 }
3432 } else {
3433 eeprom->type = e1000_eeprom_microwire;
3434 eeprom->opcode_bits = 3;
3435 eeprom->delay_usec = 50;
3436 if (eecd & E1000_EECD_ADDR_BITS) {
3437 eeprom->word_size = 256;
3438 eeprom->address_bits = 8;
3439 } else {
3440 eeprom->word_size = 64;
3441 eeprom->address_bits = 6;
3442 }
3443 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003444 eeprom->use_eerd = FALSE;
3445 eeprom->use_eewr = FALSE;
3446 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04003447 case e1000_82571:
3448 case e1000_82572:
3449 eeprom->type = e1000_eeprom_spi;
3450 eeprom->opcode_bits = 8;
3451 eeprom->delay_usec = 1;
3452 if (eecd & E1000_EECD_ADDR_BITS) {
3453 eeprom->page_size = 32;
3454 eeprom->address_bits = 16;
3455 } else {
3456 eeprom->page_size = 8;
3457 eeprom->address_bits = 8;
3458 }
3459 eeprom->use_eerd = FALSE;
3460 eeprom->use_eewr = FALSE;
3461 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003462 case e1000_82573:
3463 eeprom->type = e1000_eeprom_spi;
3464 eeprom->opcode_bits = 8;
3465 eeprom->delay_usec = 1;
3466 if (eecd & E1000_EECD_ADDR_BITS) {
3467 eeprom->page_size = 32;
3468 eeprom->address_bits = 16;
3469 } else {
3470 eeprom->page_size = 8;
3471 eeprom->address_bits = 8;
3472 }
3473 eeprom->use_eerd = TRUE;
3474 eeprom->use_eewr = TRUE;
3475 if(e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
3476 eeprom->type = e1000_eeprom_flash;
3477 eeprom->word_size = 2048;
3478
3479 /* Ensure that the Autonomous FLASH update bit is cleared due to
3480 * Flash update issue on parts which use a FLASH for NVM. */
3481 eecd &= ~E1000_EECD_AUPDEN;
3482 E1000_WRITE_REG(hw, EECD, eecd);
3483 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003484 break;
3485 default:
3486 break;
3487 }
3488
3489 if (eeprom->type == e1000_eeprom_spi) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003490 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
3491 * 32KB (incremented by powers of 2).
3492 */
3493 if(hw->mac_type <= e1000_82547_rev_2) {
3494 /* Set to default value for initial eeprom read. */
3495 eeprom->word_size = 64;
3496 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3497 if(ret_val)
3498 return ret_val;
3499 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3500 /* 256B eeprom size was not supported in earlier hardware, so we
3501 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
3502 * is never the result used in the shifting logic below. */
3503 if(eeprom_size)
3504 eeprom_size++;
3505 } else {
3506 eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
3507 E1000_EECD_SIZE_EX_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003508 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003509
3510 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003511 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003512 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003513}
3514
3515/******************************************************************************
3516 * Raises the EEPROM's clock input.
3517 *
3518 * hw - Struct containing variables accessed by shared code
3519 * eecd - EECD's current value
3520 *****************************************************************************/
3521static void
3522e1000_raise_ee_clk(struct e1000_hw *hw,
3523 uint32_t *eecd)
3524{
3525 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
3526 * wait <delay> microseconds.
3527 */
3528 *eecd = *eecd | E1000_EECD_SK;
3529 E1000_WRITE_REG(hw, EECD, *eecd);
3530 E1000_WRITE_FLUSH(hw);
3531 udelay(hw->eeprom.delay_usec);
3532}
3533
3534/******************************************************************************
3535 * Lowers the EEPROM's clock input.
3536 *
3537 * hw - Struct containing variables accessed by shared code
3538 * eecd - EECD's current value
3539 *****************************************************************************/
3540static void
3541e1000_lower_ee_clk(struct e1000_hw *hw,
3542 uint32_t *eecd)
3543{
3544 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
3545 * wait 50 microseconds.
3546 */
3547 *eecd = *eecd & ~E1000_EECD_SK;
3548 E1000_WRITE_REG(hw, EECD, *eecd);
3549 E1000_WRITE_FLUSH(hw);
3550 udelay(hw->eeprom.delay_usec);
3551}
3552
3553/******************************************************************************
3554 * Shift data bits out to the EEPROM.
3555 *
3556 * hw - Struct containing variables accessed by shared code
3557 * data - data to send to the EEPROM
3558 * count - number of bits to shift out
3559 *****************************************************************************/
3560static void
3561e1000_shift_out_ee_bits(struct e1000_hw *hw,
3562 uint16_t data,
3563 uint16_t count)
3564{
3565 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3566 uint32_t eecd;
3567 uint32_t mask;
3568
3569 /* We need to shift "count" bits out to the EEPROM. So, value in the
3570 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3571 * In order to do this, "data" must be broken down into bits.
3572 */
3573 mask = 0x01 << (count - 1);
3574 eecd = E1000_READ_REG(hw, EECD);
3575 if (eeprom->type == e1000_eeprom_microwire) {
3576 eecd &= ~E1000_EECD_DO;
3577 } else if (eeprom->type == e1000_eeprom_spi) {
3578 eecd |= E1000_EECD_DO;
3579 }
3580 do {
3581 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
3582 * and then raising and then lowering the clock (the SK bit controls
3583 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
3584 * by setting "DI" to "0" and then raising and then lowering the clock.
3585 */
3586 eecd &= ~E1000_EECD_DI;
3587
3588 if(data & mask)
3589 eecd |= E1000_EECD_DI;
3590
3591 E1000_WRITE_REG(hw, EECD, eecd);
3592 E1000_WRITE_FLUSH(hw);
3593
3594 udelay(eeprom->delay_usec);
3595
3596 e1000_raise_ee_clk(hw, &eecd);
3597 e1000_lower_ee_clk(hw, &eecd);
3598
3599 mask = mask >> 1;
3600
3601 } while(mask);
3602
3603 /* We leave the "DI" bit set to "0" when we leave this routine. */
3604 eecd &= ~E1000_EECD_DI;
3605 E1000_WRITE_REG(hw, EECD, eecd);
3606}
3607
3608/******************************************************************************
3609 * Shift data bits in from the EEPROM
3610 *
3611 * hw - Struct containing variables accessed by shared code
3612 *****************************************************************************/
3613static uint16_t
3614e1000_shift_in_ee_bits(struct e1000_hw *hw,
3615 uint16_t count)
3616{
3617 uint32_t eecd;
3618 uint32_t i;
3619 uint16_t data;
3620
3621 /* In order to read a register from the EEPROM, we need to shift 'count'
3622 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3623 * input to the EEPROM (setting the SK bit), and then reading the value of
3624 * the "DO" bit. During this "shifting in" process the "DI" bit should
3625 * always be clear.
3626 */
3627
3628 eecd = E1000_READ_REG(hw, EECD);
3629
3630 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3631 data = 0;
3632
3633 for(i = 0; i < count; i++) {
3634 data = data << 1;
3635 e1000_raise_ee_clk(hw, &eecd);
3636
3637 eecd = E1000_READ_REG(hw, EECD);
3638
3639 eecd &= ~(E1000_EECD_DI);
3640 if(eecd & E1000_EECD_DO)
3641 data |= 1;
3642
3643 e1000_lower_ee_clk(hw, &eecd);
3644 }
3645
3646 return data;
3647}
3648
3649/******************************************************************************
3650 * Prepares EEPROM for access
3651 *
3652 * hw - Struct containing variables accessed by shared code
3653 *
3654 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3655 * function should be called before issuing a command to the EEPROM.
3656 *****************************************************************************/
3657static int32_t
3658e1000_acquire_eeprom(struct e1000_hw *hw)
3659{
3660 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3661 uint32_t eecd, i=0;
3662
3663 DEBUGFUNC("e1000_acquire_eeprom");
3664
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003665 if(e1000_get_hw_eeprom_semaphore(hw))
3666 return -E1000_ERR_EEPROM;
3667
Linus Torvalds1da177e2005-04-16 15:20:36 -07003668 eecd = E1000_READ_REG(hw, EECD);
3669
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003670 if (hw->mac_type != e1000_82573) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04003671 /* Request EEPROM Access */
3672 if(hw->mac_type > e1000_82544) {
3673 eecd |= E1000_EECD_REQ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003674 E1000_WRITE_REG(hw, EECD, eecd);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04003675 eecd = E1000_READ_REG(hw, EECD);
3676 while((!(eecd & E1000_EECD_GNT)) &&
3677 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3678 i++;
3679 udelay(5);
3680 eecd = E1000_READ_REG(hw, EECD);
3681 }
3682 if(!(eecd & E1000_EECD_GNT)) {
3683 eecd &= ~E1000_EECD_REQ;
3684 E1000_WRITE_REG(hw, EECD, eecd);
3685 DEBUGOUT("Could not acquire EEPROM grant\n");
3686 e1000_put_hw_eeprom_semaphore(hw);
3687 return -E1000_ERR_EEPROM;
3688 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003689 }
3690 }
3691
3692 /* Setup EEPROM for Read/Write */
3693
3694 if (eeprom->type == e1000_eeprom_microwire) {
3695 /* Clear SK and DI */
3696 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3697 E1000_WRITE_REG(hw, EECD, eecd);
3698
3699 /* Set CS */
3700 eecd |= E1000_EECD_CS;
3701 E1000_WRITE_REG(hw, EECD, eecd);
3702 } else if (eeprom->type == e1000_eeprom_spi) {
3703 /* Clear SK and CS */
3704 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3705 E1000_WRITE_REG(hw, EECD, eecd);
3706 udelay(1);
3707 }
3708
3709 return E1000_SUCCESS;
3710}
3711
3712/******************************************************************************
3713 * Returns EEPROM to a "standby" state
3714 *
3715 * hw - Struct containing variables accessed by shared code
3716 *****************************************************************************/
3717static void
3718e1000_standby_eeprom(struct e1000_hw *hw)
3719{
3720 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3721 uint32_t eecd;
3722
3723 eecd = E1000_READ_REG(hw, EECD);
3724
3725 if(eeprom->type == e1000_eeprom_microwire) {
3726 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3727 E1000_WRITE_REG(hw, EECD, eecd);
3728 E1000_WRITE_FLUSH(hw);
3729 udelay(eeprom->delay_usec);
3730
3731 /* Clock high */
3732 eecd |= E1000_EECD_SK;
3733 E1000_WRITE_REG(hw, EECD, eecd);
3734 E1000_WRITE_FLUSH(hw);
3735 udelay(eeprom->delay_usec);
3736
3737 /* Select EEPROM */
3738 eecd |= E1000_EECD_CS;
3739 E1000_WRITE_REG(hw, EECD, eecd);
3740 E1000_WRITE_FLUSH(hw);
3741 udelay(eeprom->delay_usec);
3742
3743 /* Clock low */
3744 eecd &= ~E1000_EECD_SK;
3745 E1000_WRITE_REG(hw, EECD, eecd);
3746 E1000_WRITE_FLUSH(hw);
3747 udelay(eeprom->delay_usec);
3748 } else if(eeprom->type == e1000_eeprom_spi) {
3749 /* Toggle CS to flush commands */
3750 eecd |= E1000_EECD_CS;
3751 E1000_WRITE_REG(hw, EECD, eecd);
3752 E1000_WRITE_FLUSH(hw);
3753 udelay(eeprom->delay_usec);
3754 eecd &= ~E1000_EECD_CS;
3755 E1000_WRITE_REG(hw, EECD, eecd);
3756 E1000_WRITE_FLUSH(hw);
3757 udelay(eeprom->delay_usec);
3758 }
3759}
3760
3761/******************************************************************************
3762 * Terminates a command by inverting the EEPROM's chip select pin
3763 *
3764 * hw - Struct containing variables accessed by shared code
3765 *****************************************************************************/
3766static void
3767e1000_release_eeprom(struct e1000_hw *hw)
3768{
3769 uint32_t eecd;
3770
3771 DEBUGFUNC("e1000_release_eeprom");
3772
3773 eecd = E1000_READ_REG(hw, EECD);
3774
3775 if (hw->eeprom.type == e1000_eeprom_spi) {
3776 eecd |= E1000_EECD_CS; /* Pull CS high */
3777 eecd &= ~E1000_EECD_SK; /* Lower SCK */
3778
3779 E1000_WRITE_REG(hw, EECD, eecd);
3780
3781 udelay(hw->eeprom.delay_usec);
3782 } else if(hw->eeprom.type == e1000_eeprom_microwire) {
3783 /* cleanup eeprom */
3784
3785 /* CS on Microwire is active-high */
3786 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3787
3788 E1000_WRITE_REG(hw, EECD, eecd);
3789
3790 /* Rising edge of clock */
3791 eecd |= E1000_EECD_SK;
3792 E1000_WRITE_REG(hw, EECD, eecd);
3793 E1000_WRITE_FLUSH(hw);
3794 udelay(hw->eeprom.delay_usec);
3795
3796 /* Falling edge of clock */
3797 eecd &= ~E1000_EECD_SK;
3798 E1000_WRITE_REG(hw, EECD, eecd);
3799 E1000_WRITE_FLUSH(hw);
3800 udelay(hw->eeprom.delay_usec);
3801 }
3802
3803 /* Stop requesting EEPROM access */
3804 if(hw->mac_type > e1000_82544) {
3805 eecd &= ~E1000_EECD_REQ;
3806 E1000_WRITE_REG(hw, EECD, eecd);
3807 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003808
3809 e1000_put_hw_eeprom_semaphore(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003810}
3811
3812/******************************************************************************
3813 * Reads a 16 bit word from the EEPROM.
3814 *
3815 * hw - Struct containing variables accessed by shared code
3816 *****************************************************************************/
3817int32_t
3818e1000_spi_eeprom_ready(struct e1000_hw *hw)
3819{
3820 uint16_t retry_count = 0;
3821 uint8_t spi_stat_reg;
3822
3823 DEBUGFUNC("e1000_spi_eeprom_ready");
3824
3825 /* Read "Status Register" repeatedly until the LSB is cleared. The
3826 * EEPROM will signal that the command has been completed by clearing
3827 * bit 0 of the internal status register. If it's not cleared within
3828 * 5 milliseconds, then error out.
3829 */
3830 retry_count = 0;
3831 do {
3832 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3833 hw->eeprom.opcode_bits);
3834 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
3835 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3836 break;
3837
3838 udelay(5);
3839 retry_count += 5;
3840
3841 e1000_standby_eeprom(hw);
3842 } while(retry_count < EEPROM_MAX_RETRY_SPI);
3843
3844 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3845 * only 0-5mSec on 5V devices)
3846 */
3847 if(retry_count >= EEPROM_MAX_RETRY_SPI) {
3848 DEBUGOUT("SPI EEPROM Status error\n");
3849 return -E1000_ERR_EEPROM;
3850 }
3851
3852 return E1000_SUCCESS;
3853}
3854
3855/******************************************************************************
3856 * Reads a 16 bit word from the EEPROM.
3857 *
3858 * hw - Struct containing variables accessed by shared code
3859 * offset - offset of word in the EEPROM to read
3860 * data - word read from the EEPROM
3861 * words - number of words to read
3862 *****************************************************************************/
3863int32_t
3864e1000_read_eeprom(struct e1000_hw *hw,
3865 uint16_t offset,
3866 uint16_t words,
3867 uint16_t *data)
3868{
3869 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3870 uint32_t i = 0;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003871 int32_t ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003872
3873 DEBUGFUNC("e1000_read_eeprom");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003874
Linus Torvalds1da177e2005-04-16 15:20:36 -07003875 /* A check for invalid values: offset too large, too many words, and not
3876 * enough words.
3877 */
3878 if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
3879 (words == 0)) {
3880 DEBUGOUT("\"words\" parameter out of bounds\n");
3881 return -E1000_ERR_EEPROM;
3882 }
3883
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003884 /* FLASH reads without acquiring the semaphore are safe in 82573-based
3885 * controllers.
3886 */
3887 if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) ||
3888 (hw->mac_type != e1000_82573)) {
3889 /* Prepare the EEPROM for reading */
3890 if(e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3891 return -E1000_ERR_EEPROM;
3892 }
3893
3894 if(eeprom->use_eerd == TRUE) {
3895 ret_val = e1000_read_eeprom_eerd(hw, offset, words, data);
3896 if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) ||
3897 (hw->mac_type != e1000_82573))
3898 e1000_release_eeprom(hw);
3899 return ret_val;
3900 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003901
3902 if(eeprom->type == e1000_eeprom_spi) {
3903 uint16_t word_in;
3904 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
3905
3906 if(e1000_spi_eeprom_ready(hw)) {
3907 e1000_release_eeprom(hw);
3908 return -E1000_ERR_EEPROM;
3909 }
3910
3911 e1000_standby_eeprom(hw);
3912
3913 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
3914 if((eeprom->address_bits == 8) && (offset >= 128))
3915 read_opcode |= EEPROM_A8_OPCODE_SPI;
3916
3917 /* Send the READ command (opcode + addr) */
3918 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3919 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
3920
3921 /* Read the data. The address of the eeprom internally increments with
3922 * each byte (spi) being read, saving on the overhead of eeprom setup
3923 * and tear-down. The address counter will roll over if reading beyond
3924 * the size of the eeprom, thus allowing the entire memory to be read
3925 * starting from any offset. */
3926 for (i = 0; i < words; i++) {
3927 word_in = e1000_shift_in_ee_bits(hw, 16);
3928 data[i] = (word_in >> 8) | (word_in << 8);
3929 }
3930 } else if(eeprom->type == e1000_eeprom_microwire) {
3931 for (i = 0; i < words; i++) {
3932 /* Send the READ command (opcode + addr) */
3933 e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
3934 eeprom->opcode_bits);
3935 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
3936 eeprom->address_bits);
3937
3938 /* Read the data. For microwire, each word requires the overhead
3939 * of eeprom setup and tear-down. */
3940 data[i] = e1000_shift_in_ee_bits(hw, 16);
3941 e1000_standby_eeprom(hw);
3942 }
3943 }
3944
3945 /* End this read operation */
3946 e1000_release_eeprom(hw);
3947
3948 return E1000_SUCCESS;
3949}
3950
3951/******************************************************************************
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003952 * Reads a 16 bit word from the EEPROM using the EERD register.
3953 *
3954 * hw - Struct containing variables accessed by shared code
3955 * offset - offset of word in the EEPROM to read
3956 * data - word read from the EEPROM
3957 * words - number of words to read
3958 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01003959static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003960e1000_read_eeprom_eerd(struct e1000_hw *hw,
3961 uint16_t offset,
3962 uint16_t words,
3963 uint16_t *data)
3964{
3965 uint32_t i, eerd = 0;
3966 int32_t error = 0;
3967
3968 for (i = 0; i < words; i++) {
3969 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
3970 E1000_EEPROM_RW_REG_START;
3971
3972 E1000_WRITE_REG(hw, EERD, eerd);
3973 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
3974
3975 if(error) {
3976 break;
3977 }
3978 data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
3979
3980 }
3981
3982 return error;
3983}
3984
3985/******************************************************************************
3986 * Writes a 16 bit word from the EEPROM using the EEWR register.
3987 *
3988 * hw - Struct containing variables accessed by shared code
3989 * offset - offset of word in the EEPROM to read
3990 * data - word read from the EEPROM
3991 * words - number of words to read
3992 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01003993static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003994e1000_write_eeprom_eewr(struct e1000_hw *hw,
3995 uint16_t offset,
3996 uint16_t words,
3997 uint16_t *data)
3998{
3999 uint32_t register_value = 0;
4000 uint32_t i = 0;
4001 int32_t error = 0;
4002
4003 for (i = 0; i < words; i++) {
4004 register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
4005 ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
4006 E1000_EEPROM_RW_REG_START;
4007
4008 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
4009 if(error) {
4010 break;
4011 }
4012
4013 E1000_WRITE_REG(hw, EEWR, register_value);
4014
4015 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
4016
4017 if(error) {
4018 break;
4019 }
4020 }
4021
4022 return error;
4023}
4024
4025/******************************************************************************
4026 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
4027 *
4028 * hw - Struct containing variables accessed by shared code
4029 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01004030static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004031e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
4032{
4033 uint32_t attempts = 100000;
4034 uint32_t i, reg = 0;
4035 int32_t done = E1000_ERR_EEPROM;
4036
4037 for(i = 0; i < attempts; i++) {
4038 if(eerd == E1000_EEPROM_POLL_READ)
4039 reg = E1000_READ_REG(hw, EERD);
4040 else
4041 reg = E1000_READ_REG(hw, EEWR);
4042
4043 if(reg & E1000_EEPROM_RW_REG_DONE) {
4044 done = E1000_SUCCESS;
4045 break;
4046 }
4047 udelay(5);
4048 }
4049
4050 return done;
4051}
4052
4053/***************************************************************************
4054* Description: Determines if the onboard NVM is FLASH or EEPROM.
4055*
4056* hw - Struct containing variables accessed by shared code
4057****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01004058static boolean_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004059e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
4060{
4061 uint32_t eecd = 0;
4062
4063 if(hw->mac_type == e1000_82573) {
4064 eecd = E1000_READ_REG(hw, EECD);
4065
4066 /* Isolate bits 15 & 16 */
4067 eecd = ((eecd >> 15) & 0x03);
4068
4069 /* If both bits are set, device is Flash type */
4070 if(eecd == 0x03) {
4071 return FALSE;
4072 }
4073 }
4074 return TRUE;
4075}
4076
4077/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07004078 * Verifies that the EEPROM has a valid checksum
4079 *
4080 * hw - Struct containing variables accessed by shared code
4081 *
4082 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
4083 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
4084 * valid.
4085 *****************************************************************************/
4086int32_t
4087e1000_validate_eeprom_checksum(struct e1000_hw *hw)
4088{
4089 uint16_t checksum = 0;
4090 uint16_t i, eeprom_data;
4091
4092 DEBUGFUNC("e1000_validate_eeprom_checksum");
4093
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004094 if ((hw->mac_type == e1000_82573) &&
4095 (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) {
4096 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
4097 * 10h-12h. Checksum may need to be fixed. */
4098 e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
4099 if ((eeprom_data & 0x10) == 0) {
4100 /* Read 0x23 and check bit 15. This bit is a 1 when the checksum
4101 * has already been fixed. If the checksum is still wrong and this
4102 * bit is a 1, we need to return bad checksum. Otherwise, we need
4103 * to set this bit to a 1 and update the checksum. */
4104 e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
4105 if ((eeprom_data & 0x8000) == 0) {
4106 eeprom_data |= 0x8000;
4107 e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
4108 e1000_update_eeprom_checksum(hw);
4109 }
4110 }
4111 }
4112
Linus Torvalds1da177e2005-04-16 15:20:36 -07004113 for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
4114 if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4115 DEBUGOUT("EEPROM Read Error\n");
4116 return -E1000_ERR_EEPROM;
4117 }
4118 checksum += eeprom_data;
4119 }
4120
4121 if(checksum == (uint16_t) EEPROM_SUM)
4122 return E1000_SUCCESS;
4123 else {
4124 DEBUGOUT("EEPROM Checksum Invalid\n");
4125 return -E1000_ERR_EEPROM;
4126 }
4127}
4128
4129/******************************************************************************
4130 * Calculates the EEPROM checksum and writes it to the EEPROM
4131 *
4132 * hw - Struct containing variables accessed by shared code
4133 *
4134 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4135 * Writes the difference to word offset 63 of the EEPROM.
4136 *****************************************************************************/
4137int32_t
4138e1000_update_eeprom_checksum(struct e1000_hw *hw)
4139{
4140 uint16_t checksum = 0;
4141 uint16_t i, eeprom_data;
4142
4143 DEBUGFUNC("e1000_update_eeprom_checksum");
4144
4145 for(i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4146 if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4147 DEBUGOUT("EEPROM Read Error\n");
4148 return -E1000_ERR_EEPROM;
4149 }
4150 checksum += eeprom_data;
4151 }
4152 checksum = (uint16_t) EEPROM_SUM - checksum;
4153 if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4154 DEBUGOUT("EEPROM Write Error\n");
4155 return -E1000_ERR_EEPROM;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004156 } else if (hw->eeprom.type == e1000_eeprom_flash) {
4157 e1000_commit_shadow_ram(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004158 }
4159 return E1000_SUCCESS;
4160}
4161
4162/******************************************************************************
4163 * Parent function for writing words to the different EEPROM types.
4164 *
4165 * hw - Struct containing variables accessed by shared code
4166 * offset - offset within the EEPROM to be written to
4167 * words - number of words to write
4168 * data - 16 bit word to be written to the EEPROM
4169 *
4170 * If e1000_update_eeprom_checksum is not called after this function, the
4171 * EEPROM will most likely contain an invalid checksum.
4172 *****************************************************************************/
4173int32_t
4174e1000_write_eeprom(struct e1000_hw *hw,
4175 uint16_t offset,
4176 uint16_t words,
4177 uint16_t *data)
4178{
4179 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4180 int32_t status = 0;
4181
4182 DEBUGFUNC("e1000_write_eeprom");
4183
4184 /* A check for invalid values: offset too large, too many words, and not
4185 * enough words.
4186 */
4187 if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
4188 (words == 0)) {
4189 DEBUGOUT("\"words\" parameter out of bounds\n");
4190 return -E1000_ERR_EEPROM;
4191 }
4192
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004193 /* 82573 writes only through eewr */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004194 if(eeprom->use_eewr == TRUE)
4195 return e1000_write_eeprom_eewr(hw, offset, words, data);
4196
Linus Torvalds1da177e2005-04-16 15:20:36 -07004197 /* Prepare the EEPROM for writing */
4198 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4199 return -E1000_ERR_EEPROM;
4200
4201 if(eeprom->type == e1000_eeprom_microwire) {
4202 status = e1000_write_eeprom_microwire(hw, offset, words, data);
4203 } else {
4204 status = e1000_write_eeprom_spi(hw, offset, words, data);
4205 msec_delay(10);
4206 }
4207
4208 /* Done with writing */
4209 e1000_release_eeprom(hw);
4210
4211 return status;
4212}
4213
4214/******************************************************************************
4215 * Writes a 16 bit word to a given offset in an SPI EEPROM.
4216 *
4217 * hw - Struct containing variables accessed by shared code
4218 * offset - offset within the EEPROM to be written to
4219 * words - number of words to write
4220 * data - pointer to array of 8 bit words to be written to the EEPROM
4221 *
4222 *****************************************************************************/
4223int32_t
4224e1000_write_eeprom_spi(struct e1000_hw *hw,
4225 uint16_t offset,
4226 uint16_t words,
4227 uint16_t *data)
4228{
4229 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4230 uint16_t widx = 0;
4231
4232 DEBUGFUNC("e1000_write_eeprom_spi");
4233
4234 while (widx < words) {
4235 uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
4236
4237 if(e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
4238
4239 e1000_standby_eeprom(hw);
4240
4241 /* Send the WRITE ENABLE command (8 bit opcode ) */
4242 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4243 eeprom->opcode_bits);
4244
4245 e1000_standby_eeprom(hw);
4246
4247 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
4248 if((eeprom->address_bits == 8) && (offset >= 128))
4249 write_opcode |= EEPROM_A8_OPCODE_SPI;
4250
4251 /* Send the Write command (8-bit opcode + addr) */
4252 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4253
4254 e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
4255 eeprom->address_bits);
4256
4257 /* Send the data */
4258
4259 /* Loop to allow for up to whole page write (32 bytes) of eeprom */
4260 while (widx < words) {
4261 uint16_t word_out = data[widx];
4262 word_out = (word_out >> 8) | (word_out << 8);
4263 e1000_shift_out_ee_bits(hw, word_out, 16);
4264 widx++;
4265
4266 /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
4267 * operation, while the smaller eeproms are capable of an 8-byte
4268 * PAGE WRITE operation. Break the inner loop to pass new address
4269 */
4270 if((((offset + widx)*2) % eeprom->page_size) == 0) {
4271 e1000_standby_eeprom(hw);
4272 break;
4273 }
4274 }
4275 }
4276
4277 return E1000_SUCCESS;
4278}
4279
4280/******************************************************************************
4281 * Writes a 16 bit word to a given offset in a Microwire EEPROM.
4282 *
4283 * hw - Struct containing variables accessed by shared code
4284 * offset - offset within the EEPROM to be written to
4285 * words - number of words to write
4286 * data - pointer to array of 16 bit words to be written to the EEPROM
4287 *
4288 *****************************************************************************/
4289int32_t
4290e1000_write_eeprom_microwire(struct e1000_hw *hw,
4291 uint16_t offset,
4292 uint16_t words,
4293 uint16_t *data)
4294{
4295 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4296 uint32_t eecd;
4297 uint16_t words_written = 0;
4298 uint16_t i = 0;
4299
4300 DEBUGFUNC("e1000_write_eeprom_microwire");
4301
4302 /* Send the write enable command to the EEPROM (3-bit opcode plus
4303 * 6/8-bit dummy address beginning with 11). It's less work to include
4304 * the 11 of the dummy address as part of the opcode than it is to shift
4305 * it over the correct number of bits for the address. This puts the
4306 * EEPROM into write/erase mode.
4307 */
4308 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4309 (uint16_t)(eeprom->opcode_bits + 2));
4310
4311 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
4312
4313 /* Prepare the EEPROM */
4314 e1000_standby_eeprom(hw);
4315
4316 while (words_written < words) {
4317 /* Send the Write command (3-bit opcode + addr) */
4318 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4319 eeprom->opcode_bits);
4320
4321 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
4322 eeprom->address_bits);
4323
4324 /* Send the data */
4325 e1000_shift_out_ee_bits(hw, data[words_written], 16);
4326
4327 /* Toggle the CS line. This in effect tells the EEPROM to execute
4328 * the previous command.
4329 */
4330 e1000_standby_eeprom(hw);
4331
4332 /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
4333 * signal that the command has been completed by raising the DO signal.
4334 * If DO does not go high in 10 milliseconds, then error out.
4335 */
4336 for(i = 0; i < 200; i++) {
4337 eecd = E1000_READ_REG(hw, EECD);
4338 if(eecd & E1000_EECD_DO) break;
4339 udelay(50);
4340 }
4341 if(i == 200) {
4342 DEBUGOUT("EEPROM Write did not complete\n");
4343 return -E1000_ERR_EEPROM;
4344 }
4345
4346 /* Recover from write */
4347 e1000_standby_eeprom(hw);
4348
4349 words_written++;
4350 }
4351
4352 /* Send the write disable command to the EEPROM (3-bit opcode plus
4353 * 6/8-bit dummy address beginning with 10). It's less work to include
4354 * the 10 of the dummy address as part of the opcode than it is to shift
4355 * it over the correct number of bits for the address. This takes the
4356 * EEPROM out of write/erase mode.
4357 */
4358 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4359 (uint16_t)(eeprom->opcode_bits + 2));
4360
4361 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
4362
4363 return E1000_SUCCESS;
4364}
4365
4366/******************************************************************************
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004367 * Flushes the cached eeprom to NVM. This is done by saving the modified values
4368 * in the eeprom cache and the non modified values in the currently active bank
4369 * to the new bank.
4370 *
4371 * hw - Struct containing variables accessed by shared code
4372 * offset - offset of word in the EEPROM to read
4373 * data - word read from the EEPROM
4374 * words - number of words to read
4375 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01004376static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004377e1000_commit_shadow_ram(struct e1000_hw *hw)
4378{
4379 uint32_t attempts = 100000;
4380 uint32_t eecd = 0;
4381 uint32_t flop = 0;
4382 uint32_t i = 0;
4383 int32_t error = E1000_SUCCESS;
4384
4385 /* The flop register will be used to determine if flash type is STM */
4386 flop = E1000_READ_REG(hw, FLOP);
4387
4388 if (hw->mac_type == e1000_82573) {
4389 for (i=0; i < attempts; i++) {
4390 eecd = E1000_READ_REG(hw, EECD);
4391 if ((eecd & E1000_EECD_FLUPD) == 0) {
4392 break;
4393 }
4394 udelay(5);
4395 }
4396
4397 if (i == attempts) {
4398 return -E1000_ERR_EEPROM;
4399 }
4400
4401 /* If STM opcode located in bits 15:8 of flop, reset firmware */
4402 if ((flop & 0xFF00) == E1000_STM_OPCODE) {
4403 E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
4404 }
4405
4406 /* Perform the flash update */
4407 E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
4408
4409 for (i=0; i < attempts; i++) {
4410 eecd = E1000_READ_REG(hw, EECD);
4411 if ((eecd & E1000_EECD_FLUPD) == 0) {
4412 break;
4413 }
4414 udelay(5);
4415 }
4416
4417 if (i == attempts) {
4418 return -E1000_ERR_EEPROM;
4419 }
4420 }
4421
4422 return error;
4423}
4424
4425/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07004426 * Reads the adapter's part number from the EEPROM
4427 *
4428 * hw - Struct containing variables accessed by shared code
4429 * part_num - Adapter's part number
4430 *****************************************************************************/
4431int32_t
4432e1000_read_part_num(struct e1000_hw *hw,
4433 uint32_t *part_num)
4434{
4435 uint16_t offset = EEPROM_PBA_BYTE_1;
4436 uint16_t eeprom_data;
4437
4438 DEBUGFUNC("e1000_read_part_num");
4439
4440 /* Get word 0 from EEPROM */
4441 if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4442 DEBUGOUT("EEPROM Read Error\n");
4443 return -E1000_ERR_EEPROM;
4444 }
4445 /* Save word 0 in upper half of part_num */
4446 *part_num = (uint32_t) (eeprom_data << 16);
4447
4448 /* Get word 1 from EEPROM */
4449 if(e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
4450 DEBUGOUT("EEPROM Read Error\n");
4451 return -E1000_ERR_EEPROM;
4452 }
4453 /* Save word 1 in lower half of part_num */
4454 *part_num |= eeprom_data;
4455
4456 return E1000_SUCCESS;
4457}
4458
4459/******************************************************************************
4460 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4461 * second function of dual function devices
4462 *
4463 * hw - Struct containing variables accessed by shared code
4464 *****************************************************************************/
4465int32_t
4466e1000_read_mac_addr(struct e1000_hw * hw)
4467{
4468 uint16_t offset;
4469 uint16_t eeprom_data, i;
4470
4471 DEBUGFUNC("e1000_read_mac_addr");
4472
4473 for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4474 offset = i >> 1;
4475 if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4476 DEBUGOUT("EEPROM Read Error\n");
4477 return -E1000_ERR_EEPROM;
4478 }
4479 hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
4480 hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
4481 }
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004482 switch (hw->mac_type) {
4483 default:
4484 break;
4485 case e1000_82546:
4486 case e1000_82546_rev_3:
4487 case e1000_82571:
4488 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004489 hw->perm_mac_addr[5] ^= 0x01;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004490 break;
4491 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004492
4493 for(i = 0; i < NODE_ADDRESS_SIZE; i++)
4494 hw->mac_addr[i] = hw->perm_mac_addr[i];
4495 return E1000_SUCCESS;
4496}
4497
4498/******************************************************************************
4499 * Initializes receive address filters.
4500 *
4501 * hw - Struct containing variables accessed by shared code
4502 *
4503 * Places the MAC address in receive address register 0 and clears the rest
4504 * of the receive addresss registers. Clears the multicast table. Assumes
4505 * the receiver is in reset when the routine is called.
4506 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01004507static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07004508e1000_init_rx_addrs(struct e1000_hw *hw)
4509{
4510 uint32_t i;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004511 uint32_t rar_num;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004512
4513 DEBUGFUNC("e1000_init_rx_addrs");
4514
4515 /* Setup the receive address. */
4516 DEBUGOUT("Programming MAC Address into RAR[0]\n");
4517
4518 e1000_rar_set(hw, hw->mac_addr, 0);
4519
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004520 rar_num = E1000_RAR_ENTRIES;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004521
4522 /* Reserve a spot for the Locally Administered Address to work around
4523 * an 82571 issue in which a reset on one port will reload the MAC on
4524 * the other port. */
4525 if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
4526 rar_num -= 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004527 /* Zero out the other 15 receive addresses. */
4528 DEBUGOUT("Clearing RAR[1-15]\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004529 for(i = 1; i < rar_num; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004530 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4531 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4532 }
4533}
4534
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01004535#if 0
Linus Torvalds1da177e2005-04-16 15:20:36 -07004536/******************************************************************************
4537 * Updates the MAC's list of multicast addresses.
4538 *
4539 * hw - Struct containing variables accessed by shared code
4540 * mc_addr_list - the list of new multicast addresses
4541 * mc_addr_count - number of addresses
4542 * pad - number of bytes between addresses in the list
4543 * rar_used_count - offset where to start adding mc addresses into the RAR's
4544 *
4545 * The given list replaces any existing list. Clears the last 15 receive
4546 * address registers and the multicast table. Uses receive address registers
4547 * for the first 15 multicast addresses, and hashes the rest into the
4548 * multicast table.
4549 *****************************************************************************/
4550void
4551e1000_mc_addr_list_update(struct e1000_hw *hw,
4552 uint8_t *mc_addr_list,
4553 uint32_t mc_addr_count,
4554 uint32_t pad,
4555 uint32_t rar_used_count)
4556{
4557 uint32_t hash_value;
4558 uint32_t i;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004559 uint32_t num_rar_entry;
4560 uint32_t num_mta_entry;
4561
Linus Torvalds1da177e2005-04-16 15:20:36 -07004562 DEBUGFUNC("e1000_mc_addr_list_update");
4563
4564 /* Set the new number of MC addresses that we are being requested to use. */
4565 hw->num_mc_addrs = mc_addr_count;
4566
4567 /* Clear RAR[1-15] */
4568 DEBUGOUT(" Clearing RAR[1-15]\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004569 num_rar_entry = E1000_RAR_ENTRIES;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004570 /* Reserve a spot for the Locally Administered Address to work around
4571 * an 82571 issue in which a reset on one port will reload the MAC on
4572 * the other port. */
4573 if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
4574 num_rar_entry -= 1;
4575
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004576 for(i = rar_used_count; i < num_rar_entry; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004577 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4578 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4579 }
4580
4581 /* Clear the MTA */
4582 DEBUGOUT(" Clearing MTA\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004583 num_mta_entry = E1000_NUM_MTA_REGISTERS;
4584 for(i = 0; i < num_mta_entry; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004585 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
4586 }
4587
4588 /* Add the new addresses */
4589 for(i = 0; i < mc_addr_count; i++) {
4590 DEBUGOUT(" Adding the multicast addresses:\n");
4591 DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
4592 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
4593 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
4594 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
4595 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
4596 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
4597 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
4598
4599 hash_value = e1000_hash_mc_addr(hw,
4600 mc_addr_list +
4601 (i * (ETH_LENGTH_OF_ADDRESS + pad)));
4602
4603 DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
4604
4605 /* Place this multicast address in the RAR if there is room, *
4606 * else put it in the MTA
4607 */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004608 if (rar_used_count < num_rar_entry) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004609 e1000_rar_set(hw,
4610 mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
4611 rar_used_count);
4612 rar_used_count++;
4613 } else {
4614 e1000_mta_set(hw, hash_value);
4615 }
4616 }
4617 DEBUGOUT("MC Update Complete\n");
4618}
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01004619#endif /* 0 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004620
4621/******************************************************************************
4622 * Hashes an address to determine its location in the multicast table
4623 *
4624 * hw - Struct containing variables accessed by shared code
4625 * mc_addr - the multicast address to hash
4626 *****************************************************************************/
4627uint32_t
4628e1000_hash_mc_addr(struct e1000_hw *hw,
4629 uint8_t *mc_addr)
4630{
4631 uint32_t hash_value = 0;
4632
4633 /* The portion of the address that is used for the hash table is
4634 * determined by the mc_filter_type setting.
4635 */
4636 switch (hw->mc_filter_type) {
4637 /* [0] [1] [2] [3] [4] [5]
4638 * 01 AA 00 12 34 56
4639 * LSB MSB
4640 */
4641 case 0:
4642 /* [47:36] i.e. 0x563 for above example address */
4643 hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
4644 break;
4645 case 1:
4646 /* [46:35] i.e. 0xAC6 for above example address */
4647 hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
4648 break;
4649 case 2:
4650 /* [45:34] i.e. 0x5D8 for above example address */
4651 hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
4652 break;
4653 case 3:
4654 /* [43:32] i.e. 0x634 for above example address */
4655 hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
4656 break;
4657 }
4658
4659 hash_value &= 0xFFF;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004660
Linus Torvalds1da177e2005-04-16 15:20:36 -07004661 return hash_value;
4662}
4663
4664/******************************************************************************
4665 * Sets the bit in the multicast table corresponding to the hash value.
4666 *
4667 * hw - Struct containing variables accessed by shared code
4668 * hash_value - Multicast address hash value
4669 *****************************************************************************/
4670void
4671e1000_mta_set(struct e1000_hw *hw,
4672 uint32_t hash_value)
4673{
4674 uint32_t hash_bit, hash_reg;
4675 uint32_t mta;
4676 uint32_t temp;
4677
4678 /* The MTA is a register array of 128 32-bit registers.
4679 * It is treated like an array of 4096 bits. We want to set
4680 * bit BitArray[hash_value]. So we figure out what register
4681 * the bit is in, read it, OR in the new bit, then write
4682 * back the new value. The register is determined by the
4683 * upper 7 bits of the hash value and the bit within that
4684 * register are determined by the lower 5 bits of the value.
4685 */
4686 hash_reg = (hash_value >> 5) & 0x7F;
4687 hash_bit = hash_value & 0x1F;
4688
4689 mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
4690
4691 mta |= (1 << hash_bit);
4692
4693 /* If we are on an 82544 and we are trying to write an odd offset
4694 * in the MTA, save off the previous entry before writing and
4695 * restore the old value after writing.
4696 */
4697 if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
4698 temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
4699 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
4700 E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
4701 } else {
4702 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
4703 }
4704}
4705
4706/******************************************************************************
4707 * Puts an ethernet address into a receive address register.
4708 *
4709 * hw - Struct containing variables accessed by shared code
4710 * addr - Address to put into receive address register
4711 * index - Receive address register to write
4712 *****************************************************************************/
4713void
4714e1000_rar_set(struct e1000_hw *hw,
4715 uint8_t *addr,
4716 uint32_t index)
4717{
4718 uint32_t rar_low, rar_high;
4719
4720 /* HW expects these in little endian so we reverse the byte order
4721 * from network order (big endian) to little endian
4722 */
4723 rar_low = ((uint32_t) addr[0] |
4724 ((uint32_t) addr[1] << 8) |
4725 ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
4726
4727 rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV);
4728
4729 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4730 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4731}
4732
4733/******************************************************************************
4734 * Writes a value to the specified offset in the VLAN filter table.
4735 *
4736 * hw - Struct containing variables accessed by shared code
4737 * offset - Offset in VLAN filer table to write
4738 * value - Value to write into VLAN filter table
4739 *****************************************************************************/
4740void
4741e1000_write_vfta(struct e1000_hw *hw,
4742 uint32_t offset,
4743 uint32_t value)
4744{
4745 uint32_t temp;
4746
4747 if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4748 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4749 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4750 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4751 } else {
4752 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4753 }
4754}
4755
4756/******************************************************************************
4757 * Clears the VLAN filer table
4758 *
4759 * hw - Struct containing variables accessed by shared code
4760 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01004761static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07004762e1000_clear_vfta(struct e1000_hw *hw)
4763{
4764 uint32_t offset;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004765 uint32_t vfta_value = 0;
4766 uint32_t vfta_offset = 0;
4767 uint32_t vfta_bit_in_reg = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004768
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004769 if (hw->mac_type == e1000_82573) {
4770 if (hw->mng_cookie.vlan_id != 0) {
4771 /* The VFTA is a 4096b bit-field, each identifying a single VLAN
4772 * ID. The following operations determine which 32b entry
4773 * (i.e. offset) into the array we want to set the VLAN ID
4774 * (i.e. bit) of the manageability unit. */
4775 vfta_offset = (hw->mng_cookie.vlan_id >>
4776 E1000_VFTA_ENTRY_SHIFT) &
4777 E1000_VFTA_ENTRY_MASK;
4778 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
4779 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
4780 }
4781 }
4782 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4783 /* If the offset we want to clear is the same offset of the
4784 * manageability VLAN ID, then clear all bits except that of the
4785 * manageability unit */
4786 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4787 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4788 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004789}
4790
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01004791static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07004792e1000_id_led_init(struct e1000_hw * hw)
4793{
4794 uint32_t ledctl;
4795 const uint32_t ledctl_mask = 0x000000FF;
4796 const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4797 const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4798 uint16_t eeprom_data, i, temp;
4799 const uint16_t led_mask = 0x0F;
4800
4801 DEBUGFUNC("e1000_id_led_init");
4802
4803 if(hw->mac_type < e1000_82540) {
4804 /* Nothing to do */
4805 return E1000_SUCCESS;
4806 }
4807
4808 ledctl = E1000_READ_REG(hw, LEDCTL);
4809 hw->ledctl_default = ledctl;
4810 hw->ledctl_mode1 = hw->ledctl_default;
4811 hw->ledctl_mode2 = hw->ledctl_default;
4812
4813 if(e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4814 DEBUGOUT("EEPROM Read Error\n");
4815 return -E1000_ERR_EEPROM;
4816 }
4817 if((eeprom_data== ID_LED_RESERVED_0000) ||
4818 (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT;
4819 for(i = 0; i < 4; i++) {
4820 temp = (eeprom_data >> (i << 2)) & led_mask;
4821 switch(temp) {
4822 case ID_LED_ON1_DEF2:
4823 case ID_LED_ON1_ON2:
4824 case ID_LED_ON1_OFF2:
4825 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4826 hw->ledctl_mode1 |= ledctl_on << (i << 3);
4827 break;
4828 case ID_LED_OFF1_DEF2:
4829 case ID_LED_OFF1_ON2:
4830 case ID_LED_OFF1_OFF2:
4831 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4832 hw->ledctl_mode1 |= ledctl_off << (i << 3);
4833 break;
4834 default:
4835 /* Do nothing */
4836 break;
4837 }
4838 switch(temp) {
4839 case ID_LED_DEF1_ON2:
4840 case ID_LED_ON1_ON2:
4841 case ID_LED_OFF1_ON2:
4842 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4843 hw->ledctl_mode2 |= ledctl_on << (i << 3);
4844 break;
4845 case ID_LED_DEF1_OFF2:
4846 case ID_LED_ON1_OFF2:
4847 case ID_LED_OFF1_OFF2:
4848 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4849 hw->ledctl_mode2 |= ledctl_off << (i << 3);
4850 break;
4851 default:
4852 /* Do nothing */
4853 break;
4854 }
4855 }
4856 return E1000_SUCCESS;
4857}
4858
4859/******************************************************************************
4860 * Prepares SW controlable LED for use and saves the current state of the LED.
4861 *
4862 * hw - Struct containing variables accessed by shared code
4863 *****************************************************************************/
4864int32_t
4865e1000_setup_led(struct e1000_hw *hw)
4866{
4867 uint32_t ledctl;
4868 int32_t ret_val = E1000_SUCCESS;
4869
4870 DEBUGFUNC("e1000_setup_led");
4871
4872 switch(hw->mac_type) {
4873 case e1000_82542_rev2_0:
4874 case e1000_82542_rev2_1:
4875 case e1000_82543:
4876 case e1000_82544:
4877 /* No setup necessary */
4878 break;
4879 case e1000_82541:
4880 case e1000_82547:
4881 case e1000_82541_rev_2:
4882 case e1000_82547_rev_2:
4883 /* Turn off PHY Smart Power Down (if enabled) */
4884 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4885 &hw->phy_spd_default);
4886 if(ret_val)
4887 return ret_val;
4888 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4889 (uint16_t)(hw->phy_spd_default &
4890 ~IGP01E1000_GMII_SPD));
4891 if(ret_val)
4892 return ret_val;
4893 /* Fall Through */
4894 default:
4895 if(hw->media_type == e1000_media_type_fiber) {
4896 ledctl = E1000_READ_REG(hw, LEDCTL);
4897 /* Save current LEDCTL settings */
4898 hw->ledctl_default = ledctl;
4899 /* Turn off LED0 */
4900 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4901 E1000_LEDCTL_LED0_BLINK |
4902 E1000_LEDCTL_LED0_MODE_MASK);
4903 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4904 E1000_LEDCTL_LED0_MODE_SHIFT);
4905 E1000_WRITE_REG(hw, LEDCTL, ledctl);
4906 } else if(hw->media_type == e1000_media_type_copper)
4907 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
4908 break;
4909 }
4910
4911 return E1000_SUCCESS;
4912}
4913
4914/******************************************************************************
4915 * Restores the saved state of the SW controlable LED.
4916 *
4917 * hw - Struct containing variables accessed by shared code
4918 *****************************************************************************/
4919int32_t
4920e1000_cleanup_led(struct e1000_hw *hw)
4921{
4922 int32_t ret_val = E1000_SUCCESS;
4923
4924 DEBUGFUNC("e1000_cleanup_led");
4925
4926 switch(hw->mac_type) {
4927 case e1000_82542_rev2_0:
4928 case e1000_82542_rev2_1:
4929 case e1000_82543:
4930 case e1000_82544:
4931 /* No cleanup necessary */
4932 break;
4933 case e1000_82541:
4934 case e1000_82547:
4935 case e1000_82541_rev_2:
4936 case e1000_82547_rev_2:
4937 /* Turn on PHY Smart Power Down (if previously enabled) */
4938 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4939 hw->phy_spd_default);
4940 if(ret_val)
4941 return ret_val;
4942 /* Fall Through */
4943 default:
4944 /* Restore LEDCTL settings */
4945 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
4946 break;
4947 }
4948
4949 return E1000_SUCCESS;
4950}
4951
4952/******************************************************************************
4953 * Turns on the software controllable LED
4954 *
4955 * hw - Struct containing variables accessed by shared code
4956 *****************************************************************************/
4957int32_t
4958e1000_led_on(struct e1000_hw *hw)
4959{
4960 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
4961
4962 DEBUGFUNC("e1000_led_on");
4963
4964 switch(hw->mac_type) {
4965 case e1000_82542_rev2_0:
4966 case e1000_82542_rev2_1:
4967 case e1000_82543:
4968 /* Set SW Defineable Pin 0 to turn on the LED */
4969 ctrl |= E1000_CTRL_SWDPIN0;
4970 ctrl |= E1000_CTRL_SWDPIO0;
4971 break;
4972 case e1000_82544:
4973 if(hw->media_type == e1000_media_type_fiber) {
4974 /* Set SW Defineable Pin 0 to turn on the LED */
4975 ctrl |= E1000_CTRL_SWDPIN0;
4976 ctrl |= E1000_CTRL_SWDPIO0;
4977 } else {
4978 /* Clear SW Defineable Pin 0 to turn on the LED */
4979 ctrl &= ~E1000_CTRL_SWDPIN0;
4980 ctrl |= E1000_CTRL_SWDPIO0;
4981 }
4982 break;
4983 default:
4984 if(hw->media_type == e1000_media_type_fiber) {
4985 /* Clear SW Defineable Pin 0 to turn on the LED */
4986 ctrl &= ~E1000_CTRL_SWDPIN0;
4987 ctrl |= E1000_CTRL_SWDPIO0;
4988 } else if(hw->media_type == e1000_media_type_copper) {
4989 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
4990 return E1000_SUCCESS;
4991 }
4992 break;
4993 }
4994
4995 E1000_WRITE_REG(hw, CTRL, ctrl);
4996
4997 return E1000_SUCCESS;
4998}
4999
5000/******************************************************************************
5001 * Turns off the software controllable LED
5002 *
5003 * hw - Struct containing variables accessed by shared code
5004 *****************************************************************************/
5005int32_t
5006e1000_led_off(struct e1000_hw *hw)
5007{
5008 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
5009
5010 DEBUGFUNC("e1000_led_off");
5011
5012 switch(hw->mac_type) {
5013 case e1000_82542_rev2_0:
5014 case e1000_82542_rev2_1:
5015 case e1000_82543:
5016 /* Clear SW Defineable Pin 0 to turn off the LED */
5017 ctrl &= ~E1000_CTRL_SWDPIN0;
5018 ctrl |= E1000_CTRL_SWDPIO0;
5019 break;
5020 case e1000_82544:
5021 if(hw->media_type == e1000_media_type_fiber) {
5022 /* Clear SW Defineable Pin 0 to turn off the LED */
5023 ctrl &= ~E1000_CTRL_SWDPIN0;
5024 ctrl |= E1000_CTRL_SWDPIO0;
5025 } else {
5026 /* Set SW Defineable Pin 0 to turn off the LED */
5027 ctrl |= E1000_CTRL_SWDPIN0;
5028 ctrl |= E1000_CTRL_SWDPIO0;
5029 }
5030 break;
5031 default:
5032 if(hw->media_type == e1000_media_type_fiber) {
5033 /* Set SW Defineable Pin 0 to turn off the LED */
5034 ctrl |= E1000_CTRL_SWDPIN0;
5035 ctrl |= E1000_CTRL_SWDPIO0;
5036 } else if(hw->media_type == e1000_media_type_copper) {
5037 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
5038 return E1000_SUCCESS;
5039 }
5040 break;
5041 }
5042
5043 E1000_WRITE_REG(hw, CTRL, ctrl);
5044
5045 return E1000_SUCCESS;
5046}
5047
5048/******************************************************************************
5049 * Clears all hardware statistics counters.
5050 *
5051 * hw - Struct containing variables accessed by shared code
5052 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005053static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07005054e1000_clear_hw_cntrs(struct e1000_hw *hw)
5055{
5056 volatile uint32_t temp;
5057
5058 temp = E1000_READ_REG(hw, CRCERRS);
5059 temp = E1000_READ_REG(hw, SYMERRS);
5060 temp = E1000_READ_REG(hw, MPC);
5061 temp = E1000_READ_REG(hw, SCC);
5062 temp = E1000_READ_REG(hw, ECOL);
5063 temp = E1000_READ_REG(hw, MCC);
5064 temp = E1000_READ_REG(hw, LATECOL);
5065 temp = E1000_READ_REG(hw, COLC);
5066 temp = E1000_READ_REG(hw, DC);
5067 temp = E1000_READ_REG(hw, SEC);
5068 temp = E1000_READ_REG(hw, RLEC);
5069 temp = E1000_READ_REG(hw, XONRXC);
5070 temp = E1000_READ_REG(hw, XONTXC);
5071 temp = E1000_READ_REG(hw, XOFFRXC);
5072 temp = E1000_READ_REG(hw, XOFFTXC);
5073 temp = E1000_READ_REG(hw, FCRUC);
5074 temp = E1000_READ_REG(hw, PRC64);
5075 temp = E1000_READ_REG(hw, PRC127);
5076 temp = E1000_READ_REG(hw, PRC255);
5077 temp = E1000_READ_REG(hw, PRC511);
5078 temp = E1000_READ_REG(hw, PRC1023);
5079 temp = E1000_READ_REG(hw, PRC1522);
5080 temp = E1000_READ_REG(hw, GPRC);
5081 temp = E1000_READ_REG(hw, BPRC);
5082 temp = E1000_READ_REG(hw, MPRC);
5083 temp = E1000_READ_REG(hw, GPTC);
5084 temp = E1000_READ_REG(hw, GORCL);
5085 temp = E1000_READ_REG(hw, GORCH);
5086 temp = E1000_READ_REG(hw, GOTCL);
5087 temp = E1000_READ_REG(hw, GOTCH);
5088 temp = E1000_READ_REG(hw, RNBC);
5089 temp = E1000_READ_REG(hw, RUC);
5090 temp = E1000_READ_REG(hw, RFC);
5091 temp = E1000_READ_REG(hw, ROC);
5092 temp = E1000_READ_REG(hw, RJC);
5093 temp = E1000_READ_REG(hw, TORL);
5094 temp = E1000_READ_REG(hw, TORH);
5095 temp = E1000_READ_REG(hw, TOTL);
5096 temp = E1000_READ_REG(hw, TOTH);
5097 temp = E1000_READ_REG(hw, TPR);
5098 temp = E1000_READ_REG(hw, TPT);
5099 temp = E1000_READ_REG(hw, PTC64);
5100 temp = E1000_READ_REG(hw, PTC127);
5101 temp = E1000_READ_REG(hw, PTC255);
5102 temp = E1000_READ_REG(hw, PTC511);
5103 temp = E1000_READ_REG(hw, PTC1023);
5104 temp = E1000_READ_REG(hw, PTC1522);
5105 temp = E1000_READ_REG(hw, MPTC);
5106 temp = E1000_READ_REG(hw, BPTC);
5107
5108 if(hw->mac_type < e1000_82543) return;
5109
5110 temp = E1000_READ_REG(hw, ALGNERRC);
5111 temp = E1000_READ_REG(hw, RXERRC);
5112 temp = E1000_READ_REG(hw, TNCRS);
5113 temp = E1000_READ_REG(hw, CEXTERR);
5114 temp = E1000_READ_REG(hw, TSCTC);
5115 temp = E1000_READ_REG(hw, TSCTFC);
5116
5117 if(hw->mac_type <= e1000_82544) return;
5118
5119 temp = E1000_READ_REG(hw, MGTPRC);
5120 temp = E1000_READ_REG(hw, MGTPDC);
5121 temp = E1000_READ_REG(hw, MGTPTC);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005122
5123 if(hw->mac_type <= e1000_82547_rev_2) return;
5124
5125 temp = E1000_READ_REG(hw, IAC);
5126 temp = E1000_READ_REG(hw, ICRXOC);
5127 temp = E1000_READ_REG(hw, ICRXPTC);
5128 temp = E1000_READ_REG(hw, ICRXATC);
5129 temp = E1000_READ_REG(hw, ICTXPTC);
5130 temp = E1000_READ_REG(hw, ICTXATC);
5131 temp = E1000_READ_REG(hw, ICTXQEC);
5132 temp = E1000_READ_REG(hw, ICTXQMTC);
5133 temp = E1000_READ_REG(hw, ICRXDMTC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005134}
5135
5136/******************************************************************************
5137 * Resets Adaptive IFS to its default state.
5138 *
5139 * hw - Struct containing variables accessed by shared code
5140 *
5141 * Call this after e1000_init_hw. You may override the IFS defaults by setting
5142 * hw->ifs_params_forced to TRUE. However, you must initialize hw->
5143 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
5144 * before calling this function.
5145 *****************************************************************************/
5146void
5147e1000_reset_adaptive(struct e1000_hw *hw)
5148{
5149 DEBUGFUNC("e1000_reset_adaptive");
5150
5151 if(hw->adaptive_ifs) {
5152 if(!hw->ifs_params_forced) {
5153 hw->current_ifs_val = 0;
5154 hw->ifs_min_val = IFS_MIN;
5155 hw->ifs_max_val = IFS_MAX;
5156 hw->ifs_step_size = IFS_STEP;
5157 hw->ifs_ratio = IFS_RATIO;
5158 }
5159 hw->in_ifs_mode = FALSE;
5160 E1000_WRITE_REG(hw, AIT, 0);
5161 } else {
5162 DEBUGOUT("Not in Adaptive IFS mode!\n");
5163 }
5164}
5165
5166/******************************************************************************
5167 * Called during the callback/watchdog routine to update IFS value based on
5168 * the ratio of transmits to collisions.
5169 *
5170 * hw - Struct containing variables accessed by shared code
5171 * tx_packets - Number of transmits since last callback
5172 * total_collisions - Number of collisions since last callback
5173 *****************************************************************************/
5174void
5175e1000_update_adaptive(struct e1000_hw *hw)
5176{
5177 DEBUGFUNC("e1000_update_adaptive");
5178
5179 if(hw->adaptive_ifs) {
5180 if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
5181 if(hw->tx_packet_delta > MIN_NUM_XMITS) {
5182 hw->in_ifs_mode = TRUE;
5183 if(hw->current_ifs_val < hw->ifs_max_val) {
5184 if(hw->current_ifs_val == 0)
5185 hw->current_ifs_val = hw->ifs_min_val;
5186 else
5187 hw->current_ifs_val += hw->ifs_step_size;
5188 E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
5189 }
5190 }
5191 } else {
5192 if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
5193 hw->current_ifs_val = 0;
5194 hw->in_ifs_mode = FALSE;
5195 E1000_WRITE_REG(hw, AIT, 0);
5196 }
5197 }
5198 } else {
5199 DEBUGOUT("Not in Adaptive IFS mode!\n");
5200 }
5201}
5202
5203/******************************************************************************
5204 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
5205 *
5206 * hw - Struct containing variables accessed by shared code
5207 * frame_len - The length of the frame in question
5208 * mac_addr - The Ethernet destination address of the frame in question
5209 *****************************************************************************/
5210void
5211e1000_tbi_adjust_stats(struct e1000_hw *hw,
5212 struct e1000_hw_stats *stats,
5213 uint32_t frame_len,
5214 uint8_t *mac_addr)
5215{
5216 uint64_t carry_bit;
5217
5218 /* First adjust the frame length. */
5219 frame_len--;
5220 /* We need to adjust the statistics counters, since the hardware
5221 * counters overcount this packet as a CRC error and undercount
5222 * the packet as a good packet
5223 */
5224 /* This packet should not be counted as a CRC error. */
5225 stats->crcerrs--;
5226 /* This packet does count as a Good Packet Received. */
5227 stats->gprc++;
5228
5229 /* Adjust the Good Octets received counters */
5230 carry_bit = 0x80000000 & stats->gorcl;
5231 stats->gorcl += frame_len;
5232 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
5233 * Received Count) was one before the addition,
5234 * AND it is zero after, then we lost the carry out,
5235 * need to add one to Gorch (Good Octets Received Count High).
5236 * This could be simplified if all environments supported
5237 * 64-bit integers.
5238 */
5239 if(carry_bit && ((stats->gorcl & 0x80000000) == 0))
5240 stats->gorch++;
5241 /* Is this a broadcast or multicast? Check broadcast first,
5242 * since the test for a multicast frame will test positive on
5243 * a broadcast frame.
5244 */
5245 if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
5246 /* Broadcast packet */
5247 stats->bprc++;
5248 else if(*mac_addr & 0x01)
5249 /* Multicast packet */
5250 stats->mprc++;
5251
5252 if(frame_len == hw->max_frame_size) {
5253 /* In this case, the hardware has overcounted the number of
5254 * oversize frames.
5255 */
5256 if(stats->roc > 0)
5257 stats->roc--;
5258 }
5259
5260 /* Adjust the bin counters when the extra byte put the frame in the
5261 * wrong bin. Remember that the frame_len was adjusted above.
5262 */
5263 if(frame_len == 64) {
5264 stats->prc64++;
5265 stats->prc127--;
5266 } else if(frame_len == 127) {
5267 stats->prc127++;
5268 stats->prc255--;
5269 } else if(frame_len == 255) {
5270 stats->prc255++;
5271 stats->prc511--;
5272 } else if(frame_len == 511) {
5273 stats->prc511++;
5274 stats->prc1023--;
5275 } else if(frame_len == 1023) {
5276 stats->prc1023++;
5277 stats->prc1522--;
5278 } else if(frame_len == 1522) {
5279 stats->prc1522++;
5280 }
5281}
5282
5283/******************************************************************************
5284 * Gets the current PCI bus type, speed, and width of the hardware
5285 *
5286 * hw - Struct containing variables accessed by shared code
5287 *****************************************************************************/
5288void
5289e1000_get_bus_info(struct e1000_hw *hw)
5290{
5291 uint32_t status;
5292
5293 switch (hw->mac_type) {
5294 case e1000_82542_rev2_0:
5295 case e1000_82542_rev2_1:
5296 hw->bus_type = e1000_bus_type_unknown;
5297 hw->bus_speed = e1000_bus_speed_unknown;
5298 hw->bus_width = e1000_bus_width_unknown;
5299 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005300 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005301 case e1000_82573:
5302 hw->bus_type = e1000_bus_type_pci_express;
5303 hw->bus_speed = e1000_bus_speed_2500;
Jeff Kirsherfd803242005-12-13 00:06:22 -05005304 hw->bus_width = e1000_bus_width_pciex_1;
5305 break;
5306 case e1000_82571:
5307 hw->bus_type = e1000_bus_type_pci_express;
5308 hw->bus_speed = e1000_bus_speed_2500;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005309 hw->bus_width = e1000_bus_width_pciex_4;
5310 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005311 default:
5312 status = E1000_READ_REG(hw, STATUS);
5313 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5314 e1000_bus_type_pcix : e1000_bus_type_pci;
5315
5316 if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
5317 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
5318 e1000_bus_speed_66 : e1000_bus_speed_120;
5319 } else if(hw->bus_type == e1000_bus_type_pci) {
5320 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
5321 e1000_bus_speed_66 : e1000_bus_speed_33;
5322 } else {
5323 switch (status & E1000_STATUS_PCIX_SPEED) {
5324 case E1000_STATUS_PCIX_SPEED_66:
5325 hw->bus_speed = e1000_bus_speed_66;
5326 break;
5327 case E1000_STATUS_PCIX_SPEED_100:
5328 hw->bus_speed = e1000_bus_speed_100;
5329 break;
5330 case E1000_STATUS_PCIX_SPEED_133:
5331 hw->bus_speed = e1000_bus_speed_133;
5332 break;
5333 default:
5334 hw->bus_speed = e1000_bus_speed_reserved;
5335 break;
5336 }
5337 }
5338 hw->bus_width = (status & E1000_STATUS_BUS64) ?
5339 e1000_bus_width_64 : e1000_bus_width_32;
5340 break;
5341 }
5342}
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005343
5344#if 0
Linus Torvalds1da177e2005-04-16 15:20:36 -07005345/******************************************************************************
5346 * Reads a value from one of the devices registers using port I/O (as opposed
5347 * memory mapped I/O). Only 82544 and newer devices support port I/O.
5348 *
5349 * hw - Struct containing variables accessed by shared code
5350 * offset - offset to read from
5351 *****************************************************************************/
5352uint32_t
5353e1000_read_reg_io(struct e1000_hw *hw,
5354 uint32_t offset)
5355{
5356 unsigned long io_addr = hw->io_base;
5357 unsigned long io_data = hw->io_base + 4;
5358
5359 e1000_io_write(hw, io_addr, offset);
5360 return e1000_io_read(hw, io_data);
5361}
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005362#endif /* 0 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07005363
5364/******************************************************************************
5365 * Writes a value to one of the devices registers using port I/O (as opposed to
5366 * memory mapped I/O). Only 82544 and newer devices support port I/O.
5367 *
5368 * hw - Struct containing variables accessed by shared code
5369 * offset - offset to write to
5370 * value - value to write
5371 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005372static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07005373e1000_write_reg_io(struct e1000_hw *hw,
5374 uint32_t offset,
5375 uint32_t value)
5376{
5377 unsigned long io_addr = hw->io_base;
5378 unsigned long io_data = hw->io_base + 4;
5379
5380 e1000_io_write(hw, io_addr, offset);
5381 e1000_io_write(hw, io_data, value);
5382}
5383
5384
5385/******************************************************************************
5386 * Estimates the cable length.
5387 *
5388 * hw - Struct containing variables accessed by shared code
5389 * min_length - The estimated minimum length
5390 * max_length - The estimated maximum length
5391 *
5392 * returns: - E1000_ERR_XXX
5393 * E1000_SUCCESS
5394 *
5395 * This function always returns a ranged length (minimum & maximum).
5396 * So for M88 phy's, this function interprets the one value returned from the
5397 * register to the minimum and maximum range.
5398 * For IGP phy's, the function calculates the range by the AGC registers.
5399 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005400static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07005401e1000_get_cable_length(struct e1000_hw *hw,
5402 uint16_t *min_length,
5403 uint16_t *max_length)
5404{
5405 int32_t ret_val;
5406 uint16_t agc_value = 0;
5407 uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005408 uint16_t max_agc = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005409 uint16_t i, phy_data;
5410 uint16_t cable_length;
5411
5412 DEBUGFUNC("e1000_get_cable_length");
5413
5414 *min_length = *max_length = 0;
5415
5416 /* Use old method for Phy older than IGP */
5417 if(hw->phy_type == e1000_phy_m88) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005418
Linus Torvalds1da177e2005-04-16 15:20:36 -07005419 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5420 &phy_data);
5421 if(ret_val)
5422 return ret_val;
5423 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
5424 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
5425
5426 /* Convert the enum value to ranged values */
5427 switch (cable_length) {
5428 case e1000_cable_length_50:
5429 *min_length = 0;
5430 *max_length = e1000_igp_cable_length_50;
5431 break;
5432 case e1000_cable_length_50_80:
5433 *min_length = e1000_igp_cable_length_50;
5434 *max_length = e1000_igp_cable_length_80;
5435 break;
5436 case e1000_cable_length_80_110:
5437 *min_length = e1000_igp_cable_length_80;
5438 *max_length = e1000_igp_cable_length_110;
5439 break;
5440 case e1000_cable_length_110_140:
5441 *min_length = e1000_igp_cable_length_110;
5442 *max_length = e1000_igp_cable_length_140;
5443 break;
5444 case e1000_cable_length_140:
5445 *min_length = e1000_igp_cable_length_140;
5446 *max_length = e1000_igp_cable_length_170;
5447 break;
5448 default:
5449 return -E1000_ERR_PHY;
5450 break;
5451 }
5452 } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
5453 uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
5454 {IGP01E1000_PHY_AGC_A,
5455 IGP01E1000_PHY_AGC_B,
5456 IGP01E1000_PHY_AGC_C,
5457 IGP01E1000_PHY_AGC_D};
5458 /* Read the AGC registers for all channels */
5459 for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5460
5461 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
5462 if(ret_val)
5463 return ret_val;
5464
5465 cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
5466
5467 /* Array bound check. */
5468 if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
5469 (cur_agc == 0))
5470 return -E1000_ERR_PHY;
5471
5472 agc_value += cur_agc;
5473
5474 /* Update minimal AGC value. */
5475 if(min_agc > cur_agc)
5476 min_agc = cur_agc;
5477 }
5478
5479 /* Remove the minimal AGC result for length < 50m */
5480 if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
5481 agc_value -= min_agc;
5482
5483 /* Get the average length of the remaining 3 channels */
5484 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5485 } else {
5486 /* Get the average length of all the 4 channels. */
5487 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5488 }
5489
5490 /* Set the range of the calculated length. */
5491 *min_length = ((e1000_igp_cable_length_table[agc_value] -
5492 IGP01E1000_AGC_RANGE) > 0) ?
5493 (e1000_igp_cable_length_table[agc_value] -
5494 IGP01E1000_AGC_RANGE) : 0;
5495 *max_length = e1000_igp_cable_length_table[agc_value] +
5496 IGP01E1000_AGC_RANGE;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005497 } else if (hw->phy_type == e1000_phy_igp_2) {
5498 uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
5499 {IGP02E1000_PHY_AGC_A,
5500 IGP02E1000_PHY_AGC_B,
5501 IGP02E1000_PHY_AGC_C,
5502 IGP02E1000_PHY_AGC_D};
5503 /* Read the AGC registers for all channels */
5504 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
5505 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
5506 if (ret_val)
5507 return ret_val;
5508
5509 /* Getting bits 15:9, which represent the combination of course and
5510 * fine gain values. The result is a number that can be put into
5511 * the lookup table to obtain the approximate cable length. */
5512 cur_agc = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
5513 IGP02E1000_AGC_LENGTH_MASK;
5514
5515 /* Remove min & max AGC values from calculation. */
5516 if (e1000_igp_2_cable_length_table[min_agc] > e1000_igp_2_cable_length_table[cur_agc])
5517 min_agc = cur_agc;
5518 if (e1000_igp_2_cable_length_table[max_agc] < e1000_igp_2_cable_length_table[cur_agc])
5519 max_agc = cur_agc;
5520
5521 agc_value += e1000_igp_2_cable_length_table[cur_agc];
5522 }
5523
5524 agc_value -= (e1000_igp_2_cable_length_table[min_agc] + e1000_igp_2_cable_length_table[max_agc]);
5525 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
5526
5527 /* Calculate cable length with the error range of +/- 10 meters. */
5528 *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
5529 (agc_value - IGP02E1000_AGC_RANGE) : 0;
5530 *max_length = agc_value + IGP02E1000_AGC_RANGE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005531 }
5532
5533 return E1000_SUCCESS;
5534}
5535
5536/******************************************************************************
5537 * Check the cable polarity
5538 *
5539 * hw - Struct containing variables accessed by shared code
5540 * polarity - output parameter : 0 - Polarity is not reversed
5541 * 1 - Polarity is reversed.
5542 *
5543 * returns: - E1000_ERR_XXX
5544 * E1000_SUCCESS
5545 *
5546 * For phy's older then IGP, this function simply reads the polarity bit in the
5547 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
5548 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
5549 * return 0. If the link speed is 1000 Mbps the polarity status is in the
5550 * IGP01E1000_PHY_PCS_INIT_REG.
5551 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005552static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07005553e1000_check_polarity(struct e1000_hw *hw,
5554 uint16_t *polarity)
5555{
5556 int32_t ret_val;
5557 uint16_t phy_data;
5558
5559 DEBUGFUNC("e1000_check_polarity");
5560
5561 if(hw->phy_type == e1000_phy_m88) {
5562 /* return the Polarity bit in the Status register. */
5563 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5564 &phy_data);
5565 if(ret_val)
5566 return ret_val;
5567 *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
5568 M88E1000_PSSR_REV_POLARITY_SHIFT;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005569 } else if(hw->phy_type == e1000_phy_igp ||
5570 hw->phy_type == e1000_phy_igp_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005571 /* Read the Status register to check the speed */
5572 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5573 &phy_data);
5574 if(ret_val)
5575 return ret_val;
5576
5577 /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
5578 * find the polarity status */
5579 if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5580 IGP01E1000_PSSR_SPEED_1000MBPS) {
5581
5582 /* Read the GIG initialization PCS register (0x00B4) */
5583 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5584 &phy_data);
5585 if(ret_val)
5586 return ret_val;
5587
5588 /* Check the polarity bits */
5589 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0;
5590 } else {
5591 /* For 10 Mbps, read the polarity bit in the status register. (for
5592 * 100 Mbps this bit is always 0) */
5593 *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
5594 }
5595 }
5596 return E1000_SUCCESS;
5597}
5598
5599/******************************************************************************
5600 * Check if Downshift occured
5601 *
5602 * hw - Struct containing variables accessed by shared code
5603 * downshift - output parameter : 0 - No Downshift ocured.
5604 * 1 - Downshift ocured.
5605 *
5606 * returns: - E1000_ERR_XXX
5607 * E1000_SUCCESS
5608 *
5609 * For phy's older then IGP, this function reads the Downshift bit in the Phy
5610 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
5611 * Link Health register. In IGP this bit is latched high, so the driver must
5612 * read it immediately after link is established.
5613 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005614static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07005615e1000_check_downshift(struct e1000_hw *hw)
5616{
5617 int32_t ret_val;
5618 uint16_t phy_data;
5619
5620 DEBUGFUNC("e1000_check_downshift");
5621
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005622 if(hw->phy_type == e1000_phy_igp ||
5623 hw->phy_type == e1000_phy_igp_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005624 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5625 &phy_data);
5626 if(ret_val)
5627 return ret_val;
5628
5629 hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5630 } else if(hw->phy_type == e1000_phy_m88) {
5631 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5632 &phy_data);
5633 if(ret_val)
5634 return ret_val;
5635
5636 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5637 M88E1000_PSSR_DOWNSHIFT_SHIFT;
5638 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005639
Linus Torvalds1da177e2005-04-16 15:20:36 -07005640 return E1000_SUCCESS;
5641}
5642
5643/*****************************************************************************
5644 *
5645 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5646 * gigabit link is achieved to improve link quality.
5647 *
5648 * hw: Struct containing variables accessed by shared code
5649 *
5650 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5651 * E1000_SUCCESS at any other case.
5652 *
5653 ****************************************************************************/
5654
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005655static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07005656e1000_config_dsp_after_link_change(struct e1000_hw *hw,
5657 boolean_t link_up)
5658{
5659 int32_t ret_val;
5660 uint16_t phy_data, phy_saved_data, speed, duplex, i;
5661 uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
5662 {IGP01E1000_PHY_AGC_PARAM_A,
5663 IGP01E1000_PHY_AGC_PARAM_B,
5664 IGP01E1000_PHY_AGC_PARAM_C,
5665 IGP01E1000_PHY_AGC_PARAM_D};
5666 uint16_t min_length, max_length;
5667
5668 DEBUGFUNC("e1000_config_dsp_after_link_change");
5669
5670 if(hw->phy_type != e1000_phy_igp)
5671 return E1000_SUCCESS;
5672
5673 if(link_up) {
5674 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5675 if(ret_val) {
5676 DEBUGOUT("Error getting link speed and duplex\n");
5677 return ret_val;
5678 }
5679
5680 if(speed == SPEED_1000) {
5681
5682 e1000_get_cable_length(hw, &min_length, &max_length);
5683
5684 if((hw->dsp_config_state == e1000_dsp_config_enabled) &&
5685 min_length >= e1000_igp_cable_length_50) {
5686
5687 for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5688 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5689 &phy_data);
5690 if(ret_val)
5691 return ret_val;
5692
5693 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5694
5695 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5696 phy_data);
5697 if(ret_val)
5698 return ret_val;
5699 }
5700 hw->dsp_config_state = e1000_dsp_config_activated;
5701 }
5702
5703 if((hw->ffe_config_state == e1000_ffe_config_enabled) &&
5704 (min_length < e1000_igp_cable_length_50)) {
5705
5706 uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5707 uint32_t idle_errs = 0;
5708
5709 /* clear previous idle error counts */
5710 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5711 &phy_data);
5712 if(ret_val)
5713 return ret_val;
5714
5715 for(i = 0; i < ffe_idle_err_timeout; i++) {
5716 udelay(1000);
5717 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5718 &phy_data);
5719 if(ret_val)
5720 return ret_val;
5721
5722 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5723 if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5724 hw->ffe_config_state = e1000_ffe_config_active;
5725
5726 ret_val = e1000_write_phy_reg(hw,
5727 IGP01E1000_PHY_DSP_FFE,
5728 IGP01E1000_PHY_DSP_FFE_CM_CP);
5729 if(ret_val)
5730 return ret_val;
5731 break;
5732 }
5733
5734 if(idle_errs)
5735 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5736 }
5737 }
5738 }
5739 } else {
5740 if(hw->dsp_config_state == e1000_dsp_config_activated) {
5741 /* Save off the current value of register 0x2F5B to be restored at
5742 * the end of the routines. */
5743 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5744
5745 if(ret_val)
5746 return ret_val;
5747
5748 /* Disable the PHY transmitter */
5749 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5750
5751 if(ret_val)
5752 return ret_val;
5753
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005754 msec_delay_irq(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005755
5756 ret_val = e1000_write_phy_reg(hw, 0x0000,
5757 IGP01E1000_IEEE_FORCE_GIGA);
5758 if(ret_val)
5759 return ret_val;
5760 for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5761 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
5762 if(ret_val)
5763 return ret_val;
5764
5765 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5766 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5767
5768 ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
5769 if(ret_val)
5770 return ret_val;
5771 }
5772
5773 ret_val = e1000_write_phy_reg(hw, 0x0000,
5774 IGP01E1000_IEEE_RESTART_AUTONEG);
5775 if(ret_val)
5776 return ret_val;
5777
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005778 msec_delay_irq(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005779
5780 /* Now enable the transmitter */
5781 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5782
5783 if(ret_val)
5784 return ret_val;
5785
5786 hw->dsp_config_state = e1000_dsp_config_enabled;
5787 }
5788
5789 if(hw->ffe_config_state == e1000_ffe_config_active) {
5790 /* Save off the current value of register 0x2F5B to be restored at
5791 * the end of the routines. */
5792 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5793
5794 if(ret_val)
5795 return ret_val;
5796
5797 /* Disable the PHY transmitter */
5798 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5799
5800 if(ret_val)
5801 return ret_val;
5802
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005803 msec_delay_irq(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005804
5805 ret_val = e1000_write_phy_reg(hw, 0x0000,
5806 IGP01E1000_IEEE_FORCE_GIGA);
5807 if(ret_val)
5808 return ret_val;
5809 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5810 IGP01E1000_PHY_DSP_FFE_DEFAULT);
5811 if(ret_val)
5812 return ret_val;
5813
5814 ret_val = e1000_write_phy_reg(hw, 0x0000,
5815 IGP01E1000_IEEE_RESTART_AUTONEG);
5816 if(ret_val)
5817 return ret_val;
5818
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005819 msec_delay_irq(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005820
5821 /* Now enable the transmitter */
5822 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5823
5824 if(ret_val)
5825 return ret_val;
5826
5827 hw->ffe_config_state = e1000_ffe_config_enabled;
5828 }
5829 }
5830 return E1000_SUCCESS;
5831}
5832
5833/*****************************************************************************
5834 * Set PHY to class A mode
5835 * Assumes the following operations will follow to enable the new class mode.
5836 * 1. Do a PHY soft reset
5837 * 2. Restart auto-negotiation or force link.
5838 *
5839 * hw - Struct containing variables accessed by shared code
5840 ****************************************************************************/
5841static int32_t
5842e1000_set_phy_mode(struct e1000_hw *hw)
5843{
5844 int32_t ret_val;
5845 uint16_t eeprom_data;
5846
5847 DEBUGFUNC("e1000_set_phy_mode");
5848
5849 if((hw->mac_type == e1000_82545_rev_3) &&
5850 (hw->media_type == e1000_media_type_copper)) {
5851 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
5852 if(ret_val) {
5853 return ret_val;
5854 }
5855
5856 if((eeprom_data != EEPROM_RESERVED_WORD) &&
5857 (eeprom_data & EEPROM_PHY_CLASS_A)) {
5858 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
5859 if(ret_val)
5860 return ret_val;
5861 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
5862 if(ret_val)
5863 return ret_val;
5864
5865 hw->phy_reset_disable = FALSE;
5866 }
5867 }
5868
5869 return E1000_SUCCESS;
5870}
5871
5872/*****************************************************************************
5873 *
5874 * This function sets the lplu state according to the active flag. When
5875 * activating lplu this function also disables smart speed and vise versa.
5876 * lplu will not be activated unless the device autonegotiation advertisment
5877 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5878 * hw: Struct containing variables accessed by shared code
5879 * active - true to enable lplu false to disable lplu.
5880 *
5881 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5882 * E1000_SUCCESS at any other case.
5883 *
5884 ****************************************************************************/
5885
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005886static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07005887e1000_set_d3_lplu_state(struct e1000_hw *hw,
5888 boolean_t active)
5889{
5890 int32_t ret_val;
5891 uint16_t phy_data;
5892 DEBUGFUNC("e1000_set_d3_lplu_state");
5893
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005894 if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005895 return E1000_SUCCESS;
5896
5897 /* During driver activity LPLU should not be used or it will attain link
5898 * from the lowest speeds starting from 10Mbps. The capability is used for
5899 * Dx transitions and states */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005900 if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
5901 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005902 if(ret_val)
5903 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005904 } else {
5905 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
5906 if(ret_val)
5907 return ret_val;
5908 }
5909
5910 if(!active) {
5911 if(hw->mac_type == e1000_82541_rev_2 ||
5912 hw->mac_type == e1000_82547_rev_2) {
5913 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5914 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
5915 if(ret_val)
5916 return ret_val;
5917 } else {
5918 phy_data &= ~IGP02E1000_PM_D3_LPLU;
5919 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
5920 phy_data);
5921 if (ret_val)
5922 return ret_val;
5923 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005924
5925 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
5926 * Dx states where the power conservation is most important. During
5927 * driver activity we should enable SmartSpeed, so performance is
5928 * maintained. */
5929 if (hw->smart_speed == e1000_smart_speed_on) {
5930 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5931 &phy_data);
5932 if(ret_val)
5933 return ret_val;
5934
5935 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5936 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5937 phy_data);
5938 if(ret_val)
5939 return ret_val;
5940 } else if (hw->smart_speed == e1000_smart_speed_off) {
5941 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5942 &phy_data);
5943 if (ret_val)
5944 return ret_val;
5945
5946 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5947 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5948 phy_data);
5949 if(ret_val)
5950 return ret_val;
5951 }
5952
5953 } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
5954 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
5955 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
5956
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005957 if(hw->mac_type == e1000_82541_rev_2 ||
5958 hw->mac_type == e1000_82547_rev_2) {
5959 phy_data |= IGP01E1000_GMII_FLEX_SPD;
5960 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
5961 if(ret_val)
5962 return ret_val;
5963 } else {
5964 phy_data |= IGP02E1000_PM_D3_LPLU;
5965 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
5966 phy_data);
5967 if (ret_val)
5968 return ret_val;
5969 }
5970
5971 /* When LPLU is enabled we should disable SmartSpeed */
5972 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005973 if(ret_val)
5974 return ret_val;
5975
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005976 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5977 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
5978 if(ret_val)
5979 return ret_val;
5980
5981 }
5982 return E1000_SUCCESS;
5983}
5984
5985/*****************************************************************************
5986 *
5987 * This function sets the lplu d0 state according to the active flag. When
5988 * activating lplu this function also disables smart speed and vise versa.
5989 * lplu will not be activated unless the device autonegotiation advertisment
5990 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5991 * hw: Struct containing variables accessed by shared code
5992 * active - true to enable lplu false to disable lplu.
5993 *
5994 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5995 * E1000_SUCCESS at any other case.
5996 *
5997 ****************************************************************************/
5998
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005999static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006000e1000_set_d0_lplu_state(struct e1000_hw *hw,
6001 boolean_t active)
6002{
6003 int32_t ret_val;
6004 uint16_t phy_data;
6005 DEBUGFUNC("e1000_set_d0_lplu_state");
6006
6007 if(hw->mac_type <= e1000_82547_rev_2)
6008 return E1000_SUCCESS;
6009
6010 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
6011 if(ret_val)
6012 return ret_val;
6013
6014 if (!active) {
6015 phy_data &= ~IGP02E1000_PM_D0_LPLU;
6016 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
6017 if (ret_val)
6018 return ret_val;
6019
6020 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
6021 * Dx states where the power conservation is most important. During
6022 * driver activity we should enable SmartSpeed, so performance is
6023 * maintained. */
6024 if (hw->smart_speed == e1000_smart_speed_on) {
6025 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
6026 &phy_data);
6027 if(ret_val)
6028 return ret_val;
6029
6030 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
6031 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
6032 phy_data);
6033 if(ret_val)
6034 return ret_val;
6035 } else if (hw->smart_speed == e1000_smart_speed_off) {
6036 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
6037 &phy_data);
6038 if (ret_val)
6039 return ret_val;
6040
6041 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
6042 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
6043 phy_data);
6044 if(ret_val)
6045 return ret_val;
6046 }
6047
6048
6049 } else {
6050
6051 phy_data |= IGP02E1000_PM_D0_LPLU;
6052 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
6053 if (ret_val)
6054 return ret_val;
6055
Linus Torvalds1da177e2005-04-16 15:20:36 -07006056 /* When LPLU is enabled we should disable SmartSpeed */
6057 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
6058 if(ret_val)
6059 return ret_val;
6060
6061 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
6062 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
6063 if(ret_val)
6064 return ret_val;
6065
6066 }
6067 return E1000_SUCCESS;
6068}
6069
6070/******************************************************************************
6071 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
6072 *
6073 * hw - Struct containing variables accessed by shared code
6074 *****************************************************************************/
6075static int32_t
6076e1000_set_vco_speed(struct e1000_hw *hw)
6077{
6078 int32_t ret_val;
6079 uint16_t default_page = 0;
6080 uint16_t phy_data;
6081
6082 DEBUGFUNC("e1000_set_vco_speed");
6083
6084 switch(hw->mac_type) {
6085 case e1000_82545_rev_3:
6086 case e1000_82546_rev_3:
6087 break;
6088 default:
6089 return E1000_SUCCESS;
6090 }
6091
6092 /* Set PHY register 30, page 5, bit 8 to 0 */
6093
6094 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
6095 if(ret_val)
6096 return ret_val;
6097
6098 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
6099 if(ret_val)
6100 return ret_val;
6101
6102 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
6103 if(ret_val)
6104 return ret_val;
6105
6106 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
6107 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
6108 if(ret_val)
6109 return ret_val;
6110
6111 /* Set PHY register 30, page 4, bit 11 to 1 */
6112
6113 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
6114 if(ret_val)
6115 return ret_val;
6116
6117 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
6118 if(ret_val)
6119 return ret_val;
6120
6121 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
6122 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
6123 if(ret_val)
6124 return ret_val;
6125
6126 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
6127 if(ret_val)
6128 return ret_val;
6129
6130 return E1000_SUCCESS;
6131}
6132
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006133
6134/*****************************************************************************
6135 * This function reads the cookie from ARC ram.
6136 *
6137 * returns: - E1000_SUCCESS .
6138 ****************************************************************************/
6139int32_t
6140e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
6141{
6142 uint8_t i;
6143 uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
6144 uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
6145
6146 length = (length >> 2);
6147 offset = (offset >> 2);
6148
6149 for (i = 0; i < length; i++) {
6150 *((uint32_t *) buffer + i) =
6151 E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
6152 }
6153 return E1000_SUCCESS;
6154}
6155
6156
6157/*****************************************************************************
6158 * This function checks whether the HOST IF is enabled for command operaton
6159 * and also checks whether the previous command is completed.
6160 * It busy waits in case of previous command is not completed.
6161 *
6162 * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
6163 * timeout
6164 * - E1000_SUCCESS for success.
6165 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006166static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006167e1000_mng_enable_host_if(struct e1000_hw * hw)
6168{
6169 uint32_t hicr;
6170 uint8_t i;
6171
6172 /* Check that the host interface is enabled. */
6173 hicr = E1000_READ_REG(hw, HICR);
6174 if ((hicr & E1000_HICR_EN) == 0) {
6175 DEBUGOUT("E1000_HOST_EN bit disabled.\n");
6176 return -E1000_ERR_HOST_INTERFACE_COMMAND;
6177 }
6178 /* check the previous command is completed */
6179 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
6180 hicr = E1000_READ_REG(hw, HICR);
6181 if (!(hicr & E1000_HICR_C))
6182 break;
6183 msec_delay_irq(1);
6184 }
6185
6186 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
6187 DEBUGOUT("Previous command timeout failed .\n");
6188 return -E1000_ERR_HOST_INTERFACE_COMMAND;
6189 }
6190 return E1000_SUCCESS;
6191}
6192
6193/*****************************************************************************
6194 * This function writes the buffer content at the offset given on the host if.
6195 * It also does alignment considerations to do the writes in most efficient way.
6196 * Also fills up the sum of the buffer in *buffer parameter.
6197 *
6198 * returns - E1000_SUCCESS for success.
6199 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006200static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006201e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer,
6202 uint16_t length, uint16_t offset, uint8_t *sum)
6203{
6204 uint8_t *tmp;
6205 uint8_t *bufptr = buffer;
6206 uint32_t data;
6207 uint16_t remaining, i, j, prev_bytes;
6208
6209 /* sum = only sum of the data and it is not checksum */
6210
6211 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
6212 return -E1000_ERR_PARAM;
6213 }
6214
6215 tmp = (uint8_t *)&data;
6216 prev_bytes = offset & 0x3;
6217 offset &= 0xFFFC;
6218 offset >>= 2;
6219
6220 if (prev_bytes) {
6221 data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
6222 for (j = prev_bytes; j < sizeof(uint32_t); j++) {
6223 *(tmp + j) = *bufptr++;
6224 *sum += *(tmp + j);
6225 }
6226 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
6227 length -= j - prev_bytes;
6228 offset++;
6229 }
6230
6231 remaining = length & 0x3;
6232 length -= remaining;
6233
6234 /* Calculate length in DWORDs */
6235 length >>= 2;
6236
6237 /* The device driver writes the relevant command block into the
6238 * ram area. */
6239 for (i = 0; i < length; i++) {
6240 for (j = 0; j < sizeof(uint32_t); j++) {
6241 *(tmp + j) = *bufptr++;
6242 *sum += *(tmp + j);
6243 }
6244
6245 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
6246 }
6247 if (remaining) {
6248 for (j = 0; j < sizeof(uint32_t); j++) {
6249 if (j < remaining)
6250 *(tmp + j) = *bufptr++;
6251 else
6252 *(tmp + j) = 0;
6253
6254 *sum += *(tmp + j);
6255 }
6256 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
6257 }
6258
6259 return E1000_SUCCESS;
6260}
6261
6262
6263/*****************************************************************************
6264 * This function writes the command header after does the checksum calculation.
6265 *
6266 * returns - E1000_SUCCESS for success.
6267 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006268static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006269e1000_mng_write_cmd_header(struct e1000_hw * hw,
6270 struct e1000_host_mng_command_header * hdr)
6271{
6272 uint16_t i;
6273 uint8_t sum;
6274 uint8_t *buffer;
6275
6276 /* Write the whole command header structure which includes sum of
6277 * the buffer */
6278
6279 uint16_t length = sizeof(struct e1000_host_mng_command_header);
6280
6281 sum = hdr->checksum;
6282 hdr->checksum = 0;
6283
6284 buffer = (uint8_t *) hdr;
6285 i = length;
6286 while(i--)
6287 sum += buffer[i];
6288
6289 hdr->checksum = 0 - sum;
6290
6291 length >>= 2;
6292 /* The device driver writes the relevant command block into the ram area. */
6293 for (i = 0; i < length; i++)
6294 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
6295
6296 return E1000_SUCCESS;
6297}
6298
6299
6300/*****************************************************************************
6301 * This function indicates to ARC that a new command is pending which completes
6302 * one write operation by the driver.
6303 *
6304 * returns - E1000_SUCCESS for success.
6305 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006306static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006307e1000_mng_write_commit(
6308 struct e1000_hw * hw)
6309{
6310 uint32_t hicr;
6311
6312 hicr = E1000_READ_REG(hw, HICR);
6313 /* Setting this bit tells the ARC that a new command is pending. */
6314 E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
6315
6316 return E1000_SUCCESS;
6317}
6318
6319
6320/*****************************************************************************
6321 * This function checks the mode of the firmware.
6322 *
6323 * returns - TRUE when the mode is IAMT or FALSE.
6324 ****************************************************************************/
6325boolean_t
6326e1000_check_mng_mode(
6327 struct e1000_hw *hw)
6328{
6329 uint32_t fwsm;
6330
6331 fwsm = E1000_READ_REG(hw, FWSM);
6332
6333 if((fwsm & E1000_FWSM_MODE_MASK) ==
6334 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
6335 return TRUE;
6336
6337 return FALSE;
6338}
6339
6340
6341/*****************************************************************************
6342 * This function writes the dhcp info .
6343 ****************************************************************************/
6344int32_t
6345e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
6346 uint16_t length)
6347{
6348 int32_t ret_val;
6349 struct e1000_host_mng_command_header hdr;
6350
6351 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
6352 hdr.command_length = length;
6353 hdr.reserved1 = 0;
6354 hdr.reserved2 = 0;
6355 hdr.checksum = 0;
6356
6357 ret_val = e1000_mng_enable_host_if(hw);
6358 if (ret_val == E1000_SUCCESS) {
6359 ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
6360 &(hdr.checksum));
6361 if (ret_val == E1000_SUCCESS) {
6362 ret_val = e1000_mng_write_cmd_header(hw, &hdr);
6363 if (ret_val == E1000_SUCCESS)
6364 ret_val = e1000_mng_write_commit(hw);
6365 }
6366 }
6367 return ret_val;
6368}
6369
6370
6371/*****************************************************************************
6372 * This function calculates the checksum.
6373 *
6374 * returns - checksum of buffer contents.
6375 ****************************************************************************/
6376uint8_t
6377e1000_calculate_mng_checksum(char *buffer, uint32_t length)
6378{
6379 uint8_t sum = 0;
6380 uint32_t i;
6381
6382 if (!buffer)
6383 return 0;
6384
6385 for (i=0; i < length; i++)
6386 sum += buffer[i];
6387
6388 return (uint8_t) (0 - sum);
6389}
6390
6391/*****************************************************************************
6392 * This function checks whether tx pkt filtering needs to be enabled or not.
6393 *
6394 * returns - TRUE for packet filtering or FALSE.
6395 ****************************************************************************/
6396boolean_t
6397e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
6398{
6399 /* called in init as well as watchdog timer functions */
6400
6401 int32_t ret_val, checksum;
6402 boolean_t tx_filter = FALSE;
6403 struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
6404 uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
6405
6406 if (e1000_check_mng_mode(hw)) {
6407 ret_val = e1000_mng_enable_host_if(hw);
6408 if (ret_val == E1000_SUCCESS) {
6409 ret_val = e1000_host_if_read_cookie(hw, buffer);
6410 if (ret_val == E1000_SUCCESS) {
6411 checksum = hdr->checksum;
6412 hdr->checksum = 0;
6413 if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
6414 checksum == e1000_calculate_mng_checksum((char *)buffer,
6415 E1000_MNG_DHCP_COOKIE_LENGTH)) {
6416 if (hdr->status &
6417 E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
6418 tx_filter = TRUE;
6419 } else
6420 tx_filter = TRUE;
6421 } else
6422 tx_filter = TRUE;
6423 }
6424 }
6425
6426 hw->tx_pkt_filtering = tx_filter;
6427 return tx_filter;
6428}
6429
6430/******************************************************************************
6431 * Verifies the hardware needs to allow ARPs to be processed by the host
6432 *
6433 * hw - Struct containing variables accessed by shared code
6434 *
6435 * returns: - TRUE/FALSE
6436 *
6437 *****************************************************************************/
6438uint32_t
6439e1000_enable_mng_pass_thru(struct e1000_hw *hw)
6440{
6441 uint32_t manc;
6442 uint32_t fwsm, factps;
6443
6444 if (hw->asf_firmware_present) {
6445 manc = E1000_READ_REG(hw, MANC);
6446
6447 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
6448 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
6449 return FALSE;
6450 if (e1000_arc_subsystem_valid(hw) == TRUE) {
6451 fwsm = E1000_READ_REG(hw, FWSM);
6452 factps = E1000_READ_REG(hw, FACTPS);
6453
6454 if (((fwsm & E1000_FWSM_MODE_MASK) ==
6455 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
6456 (factps & E1000_FACTPS_MNGCG))
6457 return TRUE;
6458 } else
6459 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
6460 return TRUE;
6461 }
6462 return FALSE;
6463}
6464
Linus Torvalds1da177e2005-04-16 15:20:36 -07006465static int32_t
6466e1000_polarity_reversal_workaround(struct e1000_hw *hw)
6467{
6468 int32_t ret_val;
6469 uint16_t mii_status_reg;
6470 uint16_t i;
6471
6472 /* Polarity reversal workaround for forced 10F/10H links. */
6473
6474 /* Disable the transmitter on the PHY */
6475
6476 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
6477 if(ret_val)
6478 return ret_val;
6479 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
6480 if(ret_val)
6481 return ret_val;
6482
6483 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
6484 if(ret_val)
6485 return ret_val;
6486
6487 /* This loop will early-out if the NO link condition has been met. */
6488 for(i = PHY_FORCE_TIME; i > 0; i--) {
6489 /* Read the MII Status Register and wait for Link Status bit
6490 * to be clear.
6491 */
6492
6493 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
6494 if(ret_val)
6495 return ret_val;
6496
6497 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
6498 if(ret_val)
6499 return ret_val;
6500
6501 if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
6502 msec_delay_irq(100);
6503 }
6504
6505 /* Recommended delay time after link has been lost */
6506 msec_delay_irq(1000);
6507
6508 /* Now we will re-enable th transmitter on the PHY */
6509
6510 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
6511 if(ret_val)
6512 return ret_val;
6513 msec_delay_irq(50);
6514 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
6515 if(ret_val)
6516 return ret_val;
6517 msec_delay_irq(50);
6518 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
6519 if(ret_val)
6520 return ret_val;
6521 msec_delay_irq(50);
6522 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
6523 if(ret_val)
6524 return ret_val;
6525
6526 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
6527 if(ret_val)
6528 return ret_val;
6529
6530 /* This loop will early-out if the link condition has been met. */
6531 for(i = PHY_FORCE_TIME; i > 0; i--) {
6532 /* Read the MII Status Register and wait for Link Status bit
6533 * to be set.
6534 */
6535
6536 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
6537 if(ret_val)
6538 return ret_val;
6539
6540 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
6541 if(ret_val)
6542 return ret_val;
6543
6544 if(mii_status_reg & MII_SR_LINK_STATUS) break;
6545 msec_delay_irq(100);
6546 }
6547 return E1000_SUCCESS;
6548}
6549
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006550/***************************************************************************
6551 *
6552 * Disables PCI-Express master access.
6553 *
6554 * hw: Struct containing variables accessed by shared code
6555 *
6556 * returns: - none.
6557 *
6558 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006559static void
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006560e1000_set_pci_express_master_disable(struct e1000_hw *hw)
6561{
6562 uint32_t ctrl;
6563
6564 DEBUGFUNC("e1000_set_pci_express_master_disable");
6565
6566 if (hw->bus_type != e1000_bus_type_pci_express)
6567 return;
6568
6569 ctrl = E1000_READ_REG(hw, CTRL);
6570 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
6571 E1000_WRITE_REG(hw, CTRL, ctrl);
6572}
6573
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006574#if 0
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006575/***************************************************************************
6576 *
6577 * Enables PCI-Express master access.
6578 *
6579 * hw: Struct containing variables accessed by shared code
6580 *
6581 * returns: - none.
6582 *
6583 ***************************************************************************/
6584void
6585e1000_enable_pciex_master(struct e1000_hw *hw)
6586{
6587 uint32_t ctrl;
6588
6589 DEBUGFUNC("e1000_enable_pciex_master");
6590
6591 if (hw->bus_type != e1000_bus_type_pci_express)
6592 return;
6593
6594 ctrl = E1000_READ_REG(hw, CTRL);
6595 ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
6596 E1000_WRITE_REG(hw, CTRL, ctrl);
6597}
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006598#endif /* 0 */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006599
6600/*******************************************************************************
6601 *
6602 * Disables PCI-Express master access and verifies there are no pending requests
6603 *
6604 * hw: Struct containing variables accessed by shared code
6605 *
6606 * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
6607 * caused the master requests to be disabled.
6608 * E1000_SUCCESS master requests disabled.
6609 *
6610 ******************************************************************************/
6611int32_t
6612e1000_disable_pciex_master(struct e1000_hw *hw)
6613{
6614 int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
6615
6616 DEBUGFUNC("e1000_disable_pciex_master");
6617
6618 if (hw->bus_type != e1000_bus_type_pci_express)
6619 return E1000_SUCCESS;
6620
6621 e1000_set_pci_express_master_disable(hw);
6622
6623 while(timeout) {
6624 if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
6625 break;
6626 else
6627 udelay(100);
6628 timeout--;
6629 }
6630
6631 if(!timeout) {
6632 DEBUGOUT("Master requests are pending.\n");
6633 return -E1000_ERR_MASTER_REQUESTS_PENDING;
6634 }
6635
6636 return E1000_SUCCESS;
6637}
6638
6639/*******************************************************************************
6640 *
6641 * Check for EEPROM Auto Read bit done.
6642 *
6643 * hw: Struct containing variables accessed by shared code
6644 *
6645 * returns: - E1000_ERR_RESET if fail to reset MAC
6646 * E1000_SUCCESS at any other case.
6647 *
6648 ******************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006649static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006650e1000_get_auto_rd_done(struct e1000_hw *hw)
6651{
6652 int32_t timeout = AUTO_READ_DONE_TIMEOUT;
6653
6654 DEBUGFUNC("e1000_get_auto_rd_done");
6655
6656 switch (hw->mac_type) {
6657 default:
6658 msec_delay(5);
6659 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006660 case e1000_82571:
6661 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006662 case e1000_82573:
6663 while(timeout) {
6664 if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break;
6665 else msec_delay(1);
6666 timeout--;
6667 }
6668
6669 if(!timeout) {
6670 DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
6671 return -E1000_ERR_RESET;
6672 }
6673 break;
6674 }
6675
Jeff Kirsherfd803242005-12-13 00:06:22 -05006676 /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
6677 * Need to wait for PHY configuration completion before accessing NVM
6678 * and PHY. */
6679 if (hw->mac_type == e1000_82573)
6680 msec_delay(25);
6681
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006682 return E1000_SUCCESS;
6683}
6684
6685/***************************************************************************
6686 * Checks if the PHY configuration is done
6687 *
6688 * hw: Struct containing variables accessed by shared code
6689 *
6690 * returns: - E1000_ERR_RESET if fail to reset MAC
6691 * E1000_SUCCESS at any other case.
6692 *
6693 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006694static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006695e1000_get_phy_cfg_done(struct e1000_hw *hw)
6696{
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006697 int32_t timeout = PHY_CFG_TIMEOUT;
6698 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
6699
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006700 DEBUGFUNC("e1000_get_phy_cfg_done");
6701
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006702 switch (hw->mac_type) {
6703 default:
6704 msec_delay(10);
6705 break;
6706 case e1000_82571:
6707 case e1000_82572:
6708 while (timeout) {
6709 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
6710 break;
6711 else
6712 msec_delay(1);
6713 timeout--;
6714 }
6715
6716 if (!timeout) {
6717 DEBUGOUT("MNG configuration cycle has not completed.\n");
6718 return -E1000_ERR_RESET;
6719 }
6720 break;
6721 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006722
6723 return E1000_SUCCESS;
6724}
6725
6726/***************************************************************************
6727 *
6728 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
6729 * adapter or Eeprom access.
6730 *
6731 * hw: Struct containing variables accessed by shared code
6732 *
6733 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
6734 * E1000_SUCCESS at any other case.
6735 *
6736 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006737static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006738e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
6739{
6740 int32_t timeout;
6741 uint32_t swsm;
6742
6743 DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
6744
6745 if(!hw->eeprom_semaphore_present)
6746 return E1000_SUCCESS;
6747
6748
6749 /* Get the FW semaphore. */
6750 timeout = hw->eeprom.word_size + 1;
6751 while(timeout) {
6752 swsm = E1000_READ_REG(hw, SWSM);
6753 swsm |= E1000_SWSM_SWESMBI;
6754 E1000_WRITE_REG(hw, SWSM, swsm);
6755 /* if we managed to set the bit we got the semaphore. */
6756 swsm = E1000_READ_REG(hw, SWSM);
6757 if(swsm & E1000_SWSM_SWESMBI)
6758 break;
6759
6760 udelay(50);
6761 timeout--;
6762 }
6763
6764 if(!timeout) {
6765 /* Release semaphores */
6766 e1000_put_hw_eeprom_semaphore(hw);
6767 DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
6768 return -E1000_ERR_EEPROM;
6769 }
6770
6771 return E1000_SUCCESS;
6772}
6773
6774/***************************************************************************
6775 * This function clears HW semaphore bits.
6776 *
6777 * hw: Struct containing variables accessed by shared code
6778 *
6779 * returns: - None.
6780 *
6781 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006782static void
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006783e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
6784{
6785 uint32_t swsm;
6786
6787 DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
6788
6789 if(!hw->eeprom_semaphore_present)
6790 return;
6791
6792 swsm = E1000_READ_REG(hw, SWSM);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006793 swsm &= ~(E1000_SWSM_SWESMBI);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006794 E1000_WRITE_REG(hw, SWSM, swsm);
6795}
6796
6797/******************************************************************************
6798 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
6799 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
6800 * the caller to figure out how to deal with it.
6801 *
6802 * hw - Struct containing variables accessed by shared code
6803 *
6804 * returns: - E1000_BLK_PHY_RESET
6805 * E1000_SUCCESS
6806 *
6807 *****************************************************************************/
6808int32_t
6809e1000_check_phy_reset_block(struct e1000_hw *hw)
6810{
6811 uint32_t manc = 0;
6812 if(hw->mac_type > e1000_82547_rev_2)
6813 manc = E1000_READ_REG(hw, MANC);
6814 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
6815 E1000_BLK_PHY_RESET : E1000_SUCCESS;
6816}
6817
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006818static uint8_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006819e1000_arc_subsystem_valid(struct e1000_hw *hw)
6820{
6821 uint32_t fwsm;
6822
6823 /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
6824 * may not be provided a DMA clock when no manageability features are
6825 * enabled. We do not want to perform any reads/writes to these registers
6826 * if this is the case. We read FWSM to determine the manageability mode.
6827 */
6828 switch (hw->mac_type) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006829 case e1000_82571:
6830 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006831 case e1000_82573:
6832 fwsm = E1000_READ_REG(hw, FWSM);
6833 if((fwsm & E1000_FWSM_MODE_MASK) != 0)
6834 return TRUE;
6835 break;
6836 default:
6837 break;
6838 }
6839 return FALSE;
6840}
6841
6842
6843