blob: 0732f206ca60aa5323a24a0a76b68ded3809bd90 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Copyright (C) International Business Machines Corp., 2000-2004
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19#include <linux/fs.h>
20#include "jfs_incore.h"
21#include "jfs_superblock.h"
22#include "jfs_dmap.h"
23#include "jfs_imap.h"
24#include "jfs_lock.h"
25#include "jfs_metapage.h"
26#include "jfs_debug.h"
27
28/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070029 * SERIALIZATION of the Block Allocation Map.
30 *
31 * the working state of the block allocation map is accessed in
32 * two directions:
33 *
34 * 1) allocation and free requests that start at the dmap
35 * level and move up through the dmap control pages (i.e.
36 * the vast majority of requests).
37 *
38 * 2) allocation requests that start at dmap control page
39 * level and work down towards the dmaps.
40 *
41 * the serialization scheme used here is as follows.
42 *
43 * requests which start at the bottom are serialized against each
44 * other through buffers and each requests holds onto its buffers
45 * as it works it way up from a single dmap to the required level
46 * of dmap control page.
47 * requests that start at the top are serialized against each other
48 * and request that start from the bottom by the multiple read/single
49 * write inode lock of the bmap inode. requests starting at the top
50 * take this lock in write mode while request starting at the bottom
51 * take the lock in read mode. a single top-down request may proceed
52 * exclusively while multiple bottoms-up requests may proceed
53 * simultaneously (under the protection of busy buffers).
54 *
55 * in addition to information found in dmaps and dmap control pages,
56 * the working state of the block allocation map also includes read/
57 * write information maintained in the bmap descriptor (i.e. total
58 * free block count, allocation group level free block counts).
59 * a single exclusive lock (BMAP_LOCK) is used to guard this information
60 * in the face of multiple-bottoms up requests.
61 * (lock ordering: IREAD_LOCK, BMAP_LOCK);
62 *
63 * accesses to the persistent state of the block allocation map (limited
64 * to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
65 */
66
67#define BMAP_LOCK_INIT(bmp) init_MUTEX(&bmp->db_bmaplock)
68#define BMAP_LOCK(bmp) down(&bmp->db_bmaplock)
69#define BMAP_UNLOCK(bmp) up(&bmp->db_bmaplock)
70
71/*
72 * forward references
73 */
74static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
75 int nblocks);
76static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval);
77static void dbBackSplit(dmtree_t * tp, int leafno);
78static void dbJoin(dmtree_t * tp, int leafno, int newval);
79static void dbAdjTree(dmtree_t * tp, int leafno, int newval);
80static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
81 int level);
82static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
83static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
84 int nblocks);
85static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
86 int nblocks,
87 int l2nb, s64 * results);
88static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
89 int nblocks);
90static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
91 int l2nb,
92 s64 * results);
93static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
94 s64 * results);
95static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
96 s64 * results);
97static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
98static int dbFindBits(u32 word, int l2nb);
99static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
100static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx);
101static void dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
102 int nblocks);
103static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
104 int nblocks);
105static int dbMaxBud(u8 * cp);
106s64 dbMapFileSizeToMapSize(struct inode *ipbmap);
107static int blkstol2(s64 nb);
108
109static int cntlz(u32 value);
110static int cnttz(u32 word);
111
112static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
113 int nblocks);
114static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
115static int dbInitDmapTree(struct dmap * dp);
116static int dbInitTree(struct dmaptree * dtp);
117static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
118static int dbGetL2AGSize(s64 nblocks);
119
120/*
121 * buddy table
122 *
123 * table used for determining buddy sizes within characters of
124 * dmap bitmap words. the characters themselves serve as indexes
125 * into the table, with the table elements yielding the maximum
126 * binary buddy of free bits within the character.
127 */
128static s8 budtab[256] = {
129 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
130 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
131 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
132 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
133 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
134 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
135 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
136 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
137 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
138 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
139 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
140 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
141 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
142 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
143 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
144 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
145};
146
147
148/*
149 * NAME: dbMount()
150 *
151 * FUNCTION: initializate the block allocation map.
152 *
153 * memory is allocated for the in-core bmap descriptor and
154 * the in-core descriptor is initialized from disk.
155 *
156 * PARAMETERS:
157 * ipbmap - pointer to in-core inode for the block map.
158 *
159 * RETURN VALUES:
160 * 0 - success
161 * -ENOMEM - insufficient memory
162 * -EIO - i/o error
163 */
164int dbMount(struct inode *ipbmap)
165{
166 struct bmap *bmp;
167 struct dbmap_disk *dbmp_le;
168 struct metapage *mp;
169 int i;
170
171 /*
172 * allocate/initialize the in-memory bmap descriptor
173 */
174 /* allocate memory for the in-memory bmap descriptor */
175 bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
176 if (bmp == NULL)
177 return -ENOMEM;
178
179 /* read the on-disk bmap descriptor. */
180 mp = read_metapage(ipbmap,
181 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
182 PSIZE, 0);
183 if (mp == NULL) {
184 kfree(bmp);
185 return -EIO;
186 }
187
188 /* copy the on-disk bmap descriptor to its in-memory version. */
189 dbmp_le = (struct dbmap_disk *) mp->data;
190 bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
191 bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
192 bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
193 bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
194 bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
195 bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
196 bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
197 bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
198 bmp->db_agheigth = le32_to_cpu(dbmp_le->dn_agheigth);
199 bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
200 bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
201 bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
202 for (i = 0; i < MAXAG; i++)
203 bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
204 bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
205 bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
206
207 /* release the buffer. */
208 release_metapage(mp);
209
210 /* bind the bmap inode and the bmap descriptor to each other. */
211 bmp->db_ipbmap = ipbmap;
212 JFS_SBI(ipbmap->i_sb)->bmap = bmp;
213
214 memset(bmp->db_active, 0, sizeof(bmp->db_active));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700215
216 /*
217 * allocate/initialize the bmap lock
218 */
219 BMAP_LOCK_INIT(bmp);
220
221 return (0);
222}
223
224
225/*
226 * NAME: dbUnmount()
227 *
228 * FUNCTION: terminate the block allocation map in preparation for
229 * file system unmount.
230 *
231 * the in-core bmap descriptor is written to disk and
232 * the memory for this descriptor is freed.
233 *
234 * PARAMETERS:
235 * ipbmap - pointer to in-core inode for the block map.
236 *
237 * RETURN VALUES:
238 * 0 - success
239 * -EIO - i/o error
240 */
241int dbUnmount(struct inode *ipbmap, int mounterror)
242{
243 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700244
245 if (!(mounterror || isReadOnly(ipbmap)))
246 dbSync(ipbmap);
247
248 /*
249 * Invalidate the page cache buffers
250 */
251 truncate_inode_pages(ipbmap->i_mapping, 0);
252
Linus Torvalds1da177e2005-04-16 15:20:36 -0700253 /* free the memory for the in-memory bmap. */
254 kfree(bmp);
255
256 return (0);
257}
258
259/*
260 * dbSync()
261 */
262int dbSync(struct inode *ipbmap)
263{
264 struct dbmap_disk *dbmp_le;
265 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
266 struct metapage *mp;
267 int i;
268
269 /*
270 * write bmap global control page
271 */
272 /* get the buffer for the on-disk bmap descriptor. */
273 mp = read_metapage(ipbmap,
274 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
275 PSIZE, 0);
276 if (mp == NULL) {
277 jfs_err("dbSync: read_metapage failed!");
278 return -EIO;
279 }
280 /* copy the in-memory version of the bmap to the on-disk version */
281 dbmp_le = (struct dbmap_disk *) mp->data;
282 dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
283 dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
284 dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
285 dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
286 dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
287 dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
288 dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
289 dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
290 dbmp_le->dn_agheigth = cpu_to_le32(bmp->db_agheigth);
291 dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
292 dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
293 dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
294 for (i = 0; i < MAXAG; i++)
295 dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
296 dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
297 dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
298
299 /* write the buffer */
300 write_metapage(mp);
301
302 /*
303 * write out dirty pages of bmap
304 */
305 filemap_fdatawrite(ipbmap->i_mapping);
306 filemap_fdatawait(ipbmap->i_mapping);
307
308 ipbmap->i_state |= I_DIRTY;
309 diWriteSpecial(ipbmap, 0);
310
311 return (0);
312}
313
314
315/*
316 * NAME: dbFree()
317 *
318 * FUNCTION: free the specified block range from the working block
319 * allocation map.
320 *
321 * the blocks will be free from the working map one dmap
322 * at a time.
323 *
324 * PARAMETERS:
325 * ip - pointer to in-core inode;
326 * blkno - starting block number to be freed.
327 * nblocks - number of blocks to be freed.
328 *
329 * RETURN VALUES:
330 * 0 - success
331 * -EIO - i/o error
332 */
333int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
334{
335 struct metapage *mp;
336 struct dmap *dp;
337 int nb, rc;
338 s64 lblkno, rem;
339 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
340 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
341
342 IREAD_LOCK(ipbmap);
343
344 /* block to be freed better be within the mapsize. */
345 if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
346 IREAD_UNLOCK(ipbmap);
347 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
348 (unsigned long long) blkno,
349 (unsigned long long) nblocks);
350 jfs_error(ip->i_sb,
351 "dbFree: block to be freed is outside the map");
352 return -EIO;
353 }
354
355 /*
356 * free the blocks a dmap at a time.
357 */
358 mp = NULL;
359 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
360 /* release previous dmap if any */
361 if (mp) {
362 write_metapage(mp);
363 }
364
365 /* get the buffer for the current dmap. */
366 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
367 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
368 if (mp == NULL) {
369 IREAD_UNLOCK(ipbmap);
370 return -EIO;
371 }
372 dp = (struct dmap *) mp->data;
373
374 /* determine the number of blocks to be freed from
375 * this dmap.
376 */
377 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
378
Linus Torvalds1da177e2005-04-16 15:20:36 -0700379 /* free the blocks. */
380 if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
381 release_metapage(mp);
382 IREAD_UNLOCK(ipbmap);
383 return (rc);
384 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700385 }
386
387 /* write the last buffer. */
388 write_metapage(mp);
389
390 IREAD_UNLOCK(ipbmap);
391
392 return (0);
393}
394
395
396/*
397 * NAME: dbUpdatePMap()
398 *
399 * FUNCTION: update the allocation state (free or allocate) of the
400 * specified block range in the persistent block allocation map.
401 *
402 * the blocks will be updated in the persistent map one
403 * dmap at a time.
404 *
405 * PARAMETERS:
406 * ipbmap - pointer to in-core inode for the block map.
407 * free - TRUE if block range is to be freed from the persistent
408 * map; FALSE if it is to be allocated.
409 * blkno - starting block number of the range.
410 * nblocks - number of contiguous blocks in the range.
411 * tblk - transaction block;
412 *
413 * RETURN VALUES:
414 * 0 - success
415 * -EIO - i/o error
416 */
417int
418dbUpdatePMap(struct inode *ipbmap,
419 int free, s64 blkno, s64 nblocks, struct tblock * tblk)
420{
421 int nblks, dbitno, wbitno, rbits;
422 int word, nbits, nwords;
423 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
424 s64 lblkno, rem, lastlblkno;
425 u32 mask;
426 struct dmap *dp;
427 struct metapage *mp;
428 struct jfs_log *log;
429 int lsn, difft, diffp;
Dave Kleikamp7fab4792005-05-02 12:25:02 -0600430 unsigned long flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700431
432 /* the blocks better be within the mapsize. */
433 if (blkno + nblocks > bmp->db_mapsize) {
434 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
435 (unsigned long long) blkno,
436 (unsigned long long) nblocks);
437 jfs_error(ipbmap->i_sb,
438 "dbUpdatePMap: blocks are outside the map");
439 return -EIO;
440 }
441
442 /* compute delta of transaction lsn from log syncpt */
443 lsn = tblk->lsn;
444 log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
445 logdiff(difft, lsn, log);
446
447 /*
448 * update the block state a dmap at a time.
449 */
450 mp = NULL;
451 lastlblkno = 0;
452 for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
453 /* get the buffer for the current dmap. */
454 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
455 if (lblkno != lastlblkno) {
456 if (mp) {
457 write_metapage(mp);
458 }
459
460 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
461 0);
462 if (mp == NULL)
463 return -EIO;
Dave Kleikamp7fab4792005-05-02 12:25:02 -0600464 metapage_wait_for_io(mp);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700465 }
466 dp = (struct dmap *) mp->data;
467
468 /* determine the bit number and word within the dmap of
469 * the starting block. also determine how many blocks
470 * are to be updated within this dmap.
471 */
472 dbitno = blkno & (BPERDMAP - 1);
473 word = dbitno >> L2DBWORD;
474 nblks = min(rem, (s64)BPERDMAP - dbitno);
475
476 /* update the bits of the dmap words. the first and last
477 * words may only have a subset of their bits updated. if
478 * this is the case, we'll work against that word (i.e.
479 * partial first and/or last) only in a single pass. a
480 * single pass will also be used to update all words that
481 * are to have all their bits updated.
482 */
483 for (rbits = nblks; rbits > 0;
484 rbits -= nbits, dbitno += nbits) {
485 /* determine the bit number within the word and
486 * the number of bits within the word.
487 */
488 wbitno = dbitno & (DBWORD - 1);
489 nbits = min(rbits, DBWORD - wbitno);
490
491 /* check if only part of the word is to be updated. */
492 if (nbits < DBWORD) {
493 /* update (free or allocate) the bits
494 * in this word.
495 */
496 mask =
497 (ONES << (DBWORD - nbits) >> wbitno);
498 if (free)
499 dp->pmap[word] &=
500 cpu_to_le32(~mask);
501 else
502 dp->pmap[word] |=
503 cpu_to_le32(mask);
504
505 word += 1;
506 } else {
507 /* one or more words are to have all
508 * their bits updated. determine how
509 * many words and how many bits.
510 */
511 nwords = rbits >> L2DBWORD;
512 nbits = nwords << L2DBWORD;
513
514 /* update (free or allocate) the bits
515 * in these words.
516 */
517 if (free)
518 memset(&dp->pmap[word], 0,
519 nwords * 4);
520 else
521 memset(&dp->pmap[word], (int) ONES,
522 nwords * 4);
523
524 word += nwords;
525 }
526 }
527
528 /*
529 * update dmap lsn
530 */
531 if (lblkno == lastlblkno)
532 continue;
533
534 lastlblkno = lblkno;
535
536 if (mp->lsn != 0) {
537 /* inherit older/smaller lsn */
538 logdiff(diffp, mp->lsn, log);
Dave Kleikamp7fab4792005-05-02 12:25:02 -0600539 LOGSYNC_LOCK(log, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700540 if (difft < diffp) {
541 mp->lsn = lsn;
542
543 /* move bp after tblock in logsync list */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700544 list_move(&mp->synclist, &tblk->synclist);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700545 }
546
547 /* inherit younger/larger clsn */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700548 logdiff(difft, tblk->clsn, log);
549 logdiff(diffp, mp->clsn, log);
550 if (difft > diffp)
551 mp->clsn = tblk->clsn;
Dave Kleikamp7fab4792005-05-02 12:25:02 -0600552 LOGSYNC_UNLOCK(log, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700553 } else {
554 mp->log = log;
555 mp->lsn = lsn;
556
557 /* insert bp after tblock in logsync list */
Dave Kleikamp7fab4792005-05-02 12:25:02 -0600558 LOGSYNC_LOCK(log, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700559
560 log->count++;
561 list_add(&mp->synclist, &tblk->synclist);
562
563 mp->clsn = tblk->clsn;
Dave Kleikamp7fab4792005-05-02 12:25:02 -0600564 LOGSYNC_UNLOCK(log, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700565 }
566 }
567
568 /* write the last buffer. */
569 if (mp) {
570 write_metapage(mp);
571 }
572
573 return (0);
574}
575
576
577/*
578 * NAME: dbNextAG()
579 *
580 * FUNCTION: find the preferred allocation group for new allocations.
581 *
582 * Within the allocation groups, we maintain a preferred
583 * allocation group which consists of a group with at least
584 * average free space. It is the preferred group that we target
585 * new inode allocation towards. The tie-in between inode
586 * allocation and block allocation occurs as we allocate the
587 * first (data) block of an inode and specify the inode (block)
588 * as the allocation hint for this block.
589 *
590 * We try to avoid having more than one open file growing in
591 * an allocation group, as this will lead to fragmentation.
592 * This differs from the old OS/2 method of trying to keep
593 * empty ags around for large allocations.
594 *
595 * PARAMETERS:
596 * ipbmap - pointer to in-core inode for the block map.
597 *
598 * RETURN VALUES:
599 * the preferred allocation group number.
600 */
601int dbNextAG(struct inode *ipbmap)
602{
603 s64 avgfree;
604 int agpref;
605 s64 hwm = 0;
606 int i;
607 int next_best = -1;
608 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
609
610 BMAP_LOCK(bmp);
611
612 /* determine the average number of free blocks within the ags. */
613 avgfree = (u32)bmp->db_nfree / bmp->db_numag;
614
615 /*
616 * if the current preferred ag does not have an active allocator
617 * and has at least average freespace, return it
618 */
619 agpref = bmp->db_agpref;
620 if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
621 (bmp->db_agfree[agpref] >= avgfree))
622 goto unlock;
623
624 /* From the last preferred ag, find the next one with at least
625 * average free space.
626 */
627 for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
628 if (agpref == bmp->db_numag)
629 agpref = 0;
630
631 if (atomic_read(&bmp->db_active[agpref]))
632 /* open file is currently growing in this ag */
633 continue;
634 if (bmp->db_agfree[agpref] >= avgfree) {
635 /* Return this one */
636 bmp->db_agpref = agpref;
637 goto unlock;
638 } else if (bmp->db_agfree[agpref] > hwm) {
639 /* Less than avg. freespace, but best so far */
640 hwm = bmp->db_agfree[agpref];
641 next_best = agpref;
642 }
643 }
644
645 /*
646 * If no inactive ag was found with average freespace, use the
647 * next best
648 */
649 if (next_best != -1)
650 bmp->db_agpref = next_best;
651 /* else leave db_agpref unchanged */
652unlock:
653 BMAP_UNLOCK(bmp);
654
655 /* return the preferred group.
656 */
657 return (bmp->db_agpref);
658}
659
660/*
661 * NAME: dbAlloc()
662 *
663 * FUNCTION: attempt to allocate a specified number of contiguous free
664 * blocks from the working allocation block map.
665 *
666 * the block allocation policy uses hints and a multi-step
667 * approach.
668 *
669 * for allocation requests smaller than the number of blocks
670 * per dmap, we first try to allocate the new blocks
671 * immediately following the hint. if these blocks are not
672 * available, we try to allocate blocks near the hint. if
673 * no blocks near the hint are available, we next try to
674 * allocate within the same dmap as contains the hint.
675 *
676 * if no blocks are available in the dmap or the allocation
677 * request is larger than the dmap size, we try to allocate
678 * within the same allocation group as contains the hint. if
679 * this does not succeed, we finally try to allocate anywhere
680 * within the aggregate.
681 *
682 * we also try to allocate anywhere within the aggregate for
683 * for allocation requests larger than the allocation group
684 * size or requests that specify no hint value.
685 *
686 * PARAMETERS:
687 * ip - pointer to in-core inode;
688 * hint - allocation hint.
689 * nblocks - number of contiguous blocks in the range.
690 * results - on successful return, set to the starting block number
691 * of the newly allocated contiguous range.
692 *
693 * RETURN VALUES:
694 * 0 - success
695 * -ENOSPC - insufficient disk resources
696 * -EIO - i/o error
697 */
698int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
699{
700 int rc, agno;
701 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
702 struct bmap *bmp;
703 struct metapage *mp;
704 s64 lblkno, blkno;
705 struct dmap *dp;
706 int l2nb;
707 s64 mapSize;
708 int writers;
709
710 /* assert that nblocks is valid */
711 assert(nblocks > 0);
712
713#ifdef _STILL_TO_PORT
714 /* DASD limit check F226941 */
715 if (OVER_LIMIT(ip, nblocks))
716 return -ENOSPC;
717#endif /* _STILL_TO_PORT */
718
719 /* get the log2 number of blocks to be allocated.
720 * if the number of blocks is not a log2 multiple,
721 * it will be rounded up to the next log2 multiple.
722 */
723 l2nb = BLKSTOL2(nblocks);
724
725 bmp = JFS_SBI(ip->i_sb)->bmap;
726
727//retry: /* serialize w.r.t.extendfs() */
728 mapSize = bmp->db_mapsize;
729
730 /* the hint should be within the map */
731 if (hint >= mapSize) {
732 jfs_error(ip->i_sb, "dbAlloc: the hint is outside the map");
733 return -EIO;
734 }
735
736 /* if the number of blocks to be allocated is greater than the
737 * allocation group size, try to allocate anywhere.
738 */
739 if (l2nb > bmp->db_agl2size) {
740 IWRITE_LOCK(ipbmap);
741
742 rc = dbAllocAny(bmp, nblocks, l2nb, results);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700743
744 goto write_unlock;
745 }
746
747 /*
748 * If no hint, let dbNextAG recommend an allocation group
749 */
750 if (hint == 0)
751 goto pref_ag;
752
753 /* we would like to allocate close to the hint. adjust the
754 * hint to the block following the hint since the allocators
755 * will start looking for free space starting at this point.
756 */
757 blkno = hint + 1;
758
759 if (blkno >= bmp->db_mapsize)
760 goto pref_ag;
761
762 agno = blkno >> bmp->db_agl2size;
763
764 /* check if blkno crosses over into a new allocation group.
765 * if so, check if we should allow allocations within this
766 * allocation group.
767 */
768 if ((blkno & (bmp->db_agsize - 1)) == 0)
769 /* check if the AG is currenly being written to.
770 * if so, call dbNextAG() to find a non-busy
771 * AG with sufficient free space.
772 */
773 if (atomic_read(&bmp->db_active[agno]))
774 goto pref_ag;
775
776 /* check if the allocation request size can be satisfied from a
777 * single dmap. if so, try to allocate from the dmap containing
778 * the hint using a tiered strategy.
779 */
780 if (nblocks <= BPERDMAP) {
781 IREAD_LOCK(ipbmap);
782
783 /* get the buffer for the dmap containing the hint.
784 */
785 rc = -EIO;
786 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
787 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
788 if (mp == NULL)
789 goto read_unlock;
790
791 dp = (struct dmap *) mp->data;
792
793 /* first, try to satisfy the allocation request with the
794 * blocks beginning at the hint.
795 */
796 if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
797 != -ENOSPC) {
798 if (rc == 0) {
799 *results = blkno;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700800 mark_metapage_dirty(mp);
801 }
802
803 release_metapage(mp);
804 goto read_unlock;
805 }
806
807 writers = atomic_read(&bmp->db_active[agno]);
808 if ((writers > 1) ||
809 ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
810 /*
811 * Someone else is writing in this allocation
812 * group. To avoid fragmenting, try another ag
813 */
814 release_metapage(mp);
815 IREAD_UNLOCK(ipbmap);
816 goto pref_ag;
817 }
818
819 /* next, try to satisfy the allocation request with blocks
820 * near the hint.
821 */
822 if ((rc =
823 dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
824 != -ENOSPC) {
Dave Kleikampb38a3ab2005-06-27 15:35:37 -0500825 if (rc == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700826 mark_metapage_dirty(mp);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700827
828 release_metapage(mp);
829 goto read_unlock;
830 }
831
832 /* try to satisfy the allocation request with blocks within
833 * the same dmap as the hint.
834 */
835 if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
836 != -ENOSPC) {
Dave Kleikampb38a3ab2005-06-27 15:35:37 -0500837 if (rc == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700838 mark_metapage_dirty(mp);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700839
840 release_metapage(mp);
841 goto read_unlock;
842 }
843
844 release_metapage(mp);
845 IREAD_UNLOCK(ipbmap);
846 }
847
848 /* try to satisfy the allocation request with blocks within
849 * the same allocation group as the hint.
850 */
851 IWRITE_LOCK(ipbmap);
Dave Kleikampb38a3ab2005-06-27 15:35:37 -0500852 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700853 goto write_unlock;
Dave Kleikampb38a3ab2005-06-27 15:35:37 -0500854
Linus Torvalds1da177e2005-04-16 15:20:36 -0700855 IWRITE_UNLOCK(ipbmap);
856
857
858 pref_ag:
859 /*
860 * Let dbNextAG recommend a preferred allocation group
861 */
862 agno = dbNextAG(ipbmap);
863 IWRITE_LOCK(ipbmap);
864
865 /* Try to allocate within this allocation group. if that fails, try to
866 * allocate anywhere in the map.
867 */
868 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
869 rc = dbAllocAny(bmp, nblocks, l2nb, results);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700870
871 write_unlock:
872 IWRITE_UNLOCK(ipbmap);
873
874 return (rc);
875
876 read_unlock:
877 IREAD_UNLOCK(ipbmap);
878
879 return (rc);
880}
881
882#ifdef _NOTYET
883/*
884 * NAME: dbAllocExact()
885 *
886 * FUNCTION: try to allocate the requested extent;
887 *
888 * PARAMETERS:
889 * ip - pointer to in-core inode;
890 * blkno - extent address;
891 * nblocks - extent length;
892 *
893 * RETURN VALUES:
894 * 0 - success
895 * -ENOSPC - insufficient disk resources
896 * -EIO - i/o error
897 */
898int dbAllocExact(struct inode *ip, s64 blkno, int nblocks)
899{
900 int rc;
901 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
902 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
903 struct dmap *dp;
904 s64 lblkno;
905 struct metapage *mp;
906
907 IREAD_LOCK(ipbmap);
908
909 /*
910 * validate extent request:
911 *
912 * note: defragfs policy:
913 * max 64 blocks will be moved.
914 * allocation request size must be satisfied from a single dmap.
915 */
916 if (nblocks <= 0 || nblocks > BPERDMAP || blkno >= bmp->db_mapsize) {
917 IREAD_UNLOCK(ipbmap);
918 return -EINVAL;
919 }
920
921 if (nblocks > ((s64) 1 << bmp->db_maxfreebud)) {
922 /* the free space is no longer available */
923 IREAD_UNLOCK(ipbmap);
924 return -ENOSPC;
925 }
926
927 /* read in the dmap covering the extent */
928 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
929 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
930 if (mp == NULL) {
931 IREAD_UNLOCK(ipbmap);
932 return -EIO;
933 }
934 dp = (struct dmap *) mp->data;
935
936 /* try to allocate the requested extent */
937 rc = dbAllocNext(bmp, dp, blkno, nblocks);
938
939 IREAD_UNLOCK(ipbmap);
940
Dave Kleikampb38a3ab2005-06-27 15:35:37 -0500941 if (rc == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700942 mark_metapage_dirty(mp);
Dave Kleikampb38a3ab2005-06-27 15:35:37 -0500943
Linus Torvalds1da177e2005-04-16 15:20:36 -0700944 release_metapage(mp);
945
946 return (rc);
947}
948#endif /* _NOTYET */
949
950/*
951 * NAME: dbReAlloc()
952 *
953 * FUNCTION: attempt to extend a current allocation by a specified
954 * number of blocks.
955 *
956 * this routine attempts to satisfy the allocation request
957 * by first trying to extend the existing allocation in
958 * place by allocating the additional blocks as the blocks
959 * immediately following the current allocation. if these
960 * blocks are not available, this routine will attempt to
961 * allocate a new set of contiguous blocks large enough
962 * to cover the existing allocation plus the additional
963 * number of blocks required.
964 *
965 * PARAMETERS:
966 * ip - pointer to in-core inode requiring allocation.
967 * blkno - starting block of the current allocation.
968 * nblocks - number of contiguous blocks within the current
969 * allocation.
970 * addnblocks - number of blocks to add to the allocation.
971 * results - on successful return, set to the starting block number
972 * of the existing allocation if the existing allocation
973 * was extended in place or to a newly allocated contiguous
974 * range if the existing allocation could not be extended
975 * in place.
976 *
977 * RETURN VALUES:
978 * 0 - success
979 * -ENOSPC - insufficient disk resources
980 * -EIO - i/o error
981 */
982int
983dbReAlloc(struct inode *ip,
984 s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
985{
986 int rc;
987
988 /* try to extend the allocation in place.
989 */
990 if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
991 *results = blkno;
992 return (0);
993 } else {
994 if (rc != -ENOSPC)
995 return (rc);
996 }
997
998 /* could not extend the allocation in place, so allocate a
999 * new set of blocks for the entire request (i.e. try to get
1000 * a range of contiguous blocks large enough to cover the
1001 * existing allocation plus the additional blocks.)
1002 */
1003 return (dbAlloc
1004 (ip, blkno + nblocks - 1, addnblocks + nblocks, results));
1005}
1006
1007
1008/*
1009 * NAME: dbExtend()
1010 *
1011 * FUNCTION: attempt to extend a current allocation by a specified
1012 * number of blocks.
1013 *
1014 * this routine attempts to satisfy the allocation request
1015 * by first trying to extend the existing allocation in
1016 * place by allocating the additional blocks as the blocks
1017 * immediately following the current allocation.
1018 *
1019 * PARAMETERS:
1020 * ip - pointer to in-core inode requiring allocation.
1021 * blkno - starting block of the current allocation.
1022 * nblocks - number of contiguous blocks within the current
1023 * allocation.
1024 * addnblocks - number of blocks to add to the allocation.
1025 *
1026 * RETURN VALUES:
1027 * 0 - success
1028 * -ENOSPC - insufficient disk resources
1029 * -EIO - i/o error
1030 */
1031static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
1032{
1033 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
1034 s64 lblkno, lastblkno, extblkno;
1035 uint rel_block;
1036 struct metapage *mp;
1037 struct dmap *dp;
1038 int rc;
1039 struct inode *ipbmap = sbi->ipbmap;
1040 struct bmap *bmp;
1041
1042 /*
1043 * We don't want a non-aligned extent to cross a page boundary
1044 */
1045 if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
1046 (rel_block + nblocks + addnblocks > sbi->nbperpage))
1047 return -ENOSPC;
1048
1049 /* get the last block of the current allocation */
1050 lastblkno = blkno + nblocks - 1;
1051
1052 /* determine the block number of the block following
1053 * the existing allocation.
1054 */
1055 extblkno = lastblkno + 1;
1056
1057 IREAD_LOCK(ipbmap);
1058
1059 /* better be within the file system */
1060 bmp = sbi->bmap;
1061 if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1062 IREAD_UNLOCK(ipbmap);
1063 jfs_error(ip->i_sb,
1064 "dbExtend: the block is outside the filesystem");
1065 return -EIO;
1066 }
1067
1068 /* we'll attempt to extend the current allocation in place by
1069 * allocating the additional blocks as the blocks immediately
1070 * following the current allocation. we only try to extend the
1071 * current allocation in place if the number of additional blocks
1072 * can fit into a dmap, the last block of the current allocation
1073 * is not the last block of the file system, and the start of the
1074 * inplace extension is not on an allocation group boundary.
1075 */
1076 if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1077 (extblkno & (bmp->db_agsize - 1)) == 0) {
1078 IREAD_UNLOCK(ipbmap);
1079 return -ENOSPC;
1080 }
1081
1082 /* get the buffer for the dmap containing the first block
1083 * of the extension.
1084 */
1085 lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1086 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1087 if (mp == NULL) {
1088 IREAD_UNLOCK(ipbmap);
1089 return -EIO;
1090 }
1091
Linus Torvalds1da177e2005-04-16 15:20:36 -07001092 dp = (struct dmap *) mp->data;
1093
1094 /* try to allocate the blocks immediately following the
1095 * current allocation.
1096 */
1097 rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1098
1099 IREAD_UNLOCK(ipbmap);
1100
1101 /* were we successful ? */
Dave Kleikampb38a3ab2005-06-27 15:35:37 -05001102 if (rc == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001103 write_metapage(mp);
Dave Kleikampb38a3ab2005-06-27 15:35:37 -05001104 else
Linus Torvalds1da177e2005-04-16 15:20:36 -07001105 /* we were not successful */
1106 release_metapage(mp);
1107
1108
1109 return (rc);
1110}
1111
1112
1113/*
1114 * NAME: dbAllocNext()
1115 *
1116 * FUNCTION: attempt to allocate the blocks of the specified block
1117 * range within a dmap.
1118 *
1119 * PARAMETERS:
1120 * bmp - pointer to bmap descriptor
1121 * dp - pointer to dmap.
1122 * blkno - starting block number of the range.
1123 * nblocks - number of contiguous free blocks of the range.
1124 *
1125 * RETURN VALUES:
1126 * 0 - success
1127 * -ENOSPC - insufficient disk resources
1128 * -EIO - i/o error
1129 *
1130 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1131 */
1132static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1133 int nblocks)
1134{
1135 int dbitno, word, rembits, nb, nwords, wbitno, nw;
1136 int l2size;
1137 s8 *leaf;
1138 u32 mask;
1139
1140 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1141 jfs_error(bmp->db_ipbmap->i_sb,
1142 "dbAllocNext: Corrupt dmap page");
1143 return -EIO;
1144 }
1145
1146 /* pick up a pointer to the leaves of the dmap tree.
1147 */
1148 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1149
1150 /* determine the bit number and word within the dmap of the
1151 * starting block.
1152 */
1153 dbitno = blkno & (BPERDMAP - 1);
1154 word = dbitno >> L2DBWORD;
1155
1156 /* check if the specified block range is contained within
1157 * this dmap.
1158 */
1159 if (dbitno + nblocks > BPERDMAP)
1160 return -ENOSPC;
1161
1162 /* check if the starting leaf indicates that anything
1163 * is free.
1164 */
1165 if (leaf[word] == NOFREE)
1166 return -ENOSPC;
1167
1168 /* check the dmaps words corresponding to block range to see
1169 * if the block range is free. not all bits of the first and
1170 * last words may be contained within the block range. if this
1171 * is the case, we'll work against those words (i.e. partial first
1172 * and/or last) on an individual basis (a single pass) and examine
1173 * the actual bits to determine if they are free. a single pass
1174 * will be used for all dmap words fully contained within the
1175 * specified range. within this pass, the leaves of the dmap
1176 * tree will be examined to determine if the blocks are free. a
1177 * single leaf may describe the free space of multiple dmap
1178 * words, so we may visit only a subset of the actual leaves
1179 * corresponding to the dmap words of the block range.
1180 */
1181 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1182 /* determine the bit number within the word and
1183 * the number of bits within the word.
1184 */
1185 wbitno = dbitno & (DBWORD - 1);
1186 nb = min(rembits, DBWORD - wbitno);
1187
1188 /* check if only part of the word is to be examined.
1189 */
1190 if (nb < DBWORD) {
1191 /* check if the bits are free.
1192 */
1193 mask = (ONES << (DBWORD - nb) >> wbitno);
1194 if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1195 return -ENOSPC;
1196
1197 word += 1;
1198 } else {
1199 /* one or more dmap words are fully contained
1200 * within the block range. determine how many
1201 * words and how many bits.
1202 */
1203 nwords = rembits >> L2DBWORD;
1204 nb = nwords << L2DBWORD;
1205
1206 /* now examine the appropriate leaves to determine
1207 * if the blocks are free.
1208 */
1209 while (nwords > 0) {
1210 /* does the leaf describe any free space ?
1211 */
1212 if (leaf[word] < BUDMIN)
1213 return -ENOSPC;
1214
1215 /* determine the l2 number of bits provided
1216 * by this leaf.
1217 */
1218 l2size =
1219 min((int)leaf[word], NLSTOL2BSZ(nwords));
1220
1221 /* determine how many words were handled.
1222 */
1223 nw = BUDSIZE(l2size, BUDMIN);
1224
1225 nwords -= nw;
1226 word += nw;
1227 }
1228 }
1229 }
1230
1231 /* allocate the blocks.
1232 */
1233 return (dbAllocDmap(bmp, dp, blkno, nblocks));
1234}
1235
1236
1237/*
1238 * NAME: dbAllocNear()
1239 *
1240 * FUNCTION: attempt to allocate a number of contiguous free blocks near
1241 * a specified block (hint) within a dmap.
1242 *
1243 * starting with the dmap leaf that covers the hint, we'll
1244 * check the next four contiguous leaves for sufficient free
1245 * space. if sufficient free space is found, we'll allocate
1246 * the desired free space.
1247 *
1248 * PARAMETERS:
1249 * bmp - pointer to bmap descriptor
1250 * dp - pointer to dmap.
1251 * blkno - block number to allocate near.
1252 * nblocks - actual number of contiguous free blocks desired.
1253 * l2nb - log2 number of contiguous free blocks desired.
1254 * results - on successful return, set to the starting block number
1255 * of the newly allocated range.
1256 *
1257 * RETURN VALUES:
1258 * 0 - success
1259 * -ENOSPC - insufficient disk resources
1260 * -EIO - i/o error
1261 *
1262 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1263 */
1264static int
1265dbAllocNear(struct bmap * bmp,
1266 struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1267{
1268 int word, lword, rc;
1269 s8 *leaf;
1270
1271 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1272 jfs_error(bmp->db_ipbmap->i_sb,
1273 "dbAllocNear: Corrupt dmap page");
1274 return -EIO;
1275 }
1276
1277 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1278
1279 /* determine the word within the dmap that holds the hint
1280 * (i.e. blkno). also, determine the last word in the dmap
1281 * that we'll include in our examination.
1282 */
1283 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1284 lword = min(word + 4, LPERDMAP);
1285
1286 /* examine the leaves for sufficient free space.
1287 */
1288 for (; word < lword; word++) {
1289 /* does the leaf describe sufficient free space ?
1290 */
1291 if (leaf[word] < l2nb)
1292 continue;
1293
1294 /* determine the block number within the file system
1295 * of the first block described by this dmap word.
1296 */
1297 blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1298
1299 /* if not all bits of the dmap word are free, get the
1300 * starting bit number within the dmap word of the required
1301 * string of free bits and adjust the block number with the
1302 * value.
1303 */
1304 if (leaf[word] < BUDMIN)
1305 blkno +=
1306 dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1307
1308 /* allocate the blocks.
1309 */
1310 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1311 *results = blkno;
1312
1313 return (rc);
1314 }
1315
1316 return -ENOSPC;
1317}
1318
1319
1320/*
1321 * NAME: dbAllocAG()
1322 *
1323 * FUNCTION: attempt to allocate the specified number of contiguous
1324 * free blocks within the specified allocation group.
1325 *
1326 * unless the allocation group size is equal to the number
1327 * of blocks per dmap, the dmap control pages will be used to
1328 * find the required free space, if available. we start the
1329 * search at the highest dmap control page level which
1330 * distinctly describes the allocation group's free space
1331 * (i.e. the highest level at which the allocation group's
1332 * free space is not mixed in with that of any other group).
1333 * in addition, we start the search within this level at a
1334 * height of the dmapctl dmtree at which the nodes distinctly
1335 * describe the allocation group's free space. at this height,
1336 * the allocation group's free space may be represented by 1
1337 * or two sub-trees, depending on the allocation group size.
1338 * we search the top nodes of these subtrees left to right for
1339 * sufficient free space. if sufficient free space is found,
1340 * the subtree is searched to find the leftmost leaf that
1341 * has free space. once we have made it to the leaf, we
1342 * move the search to the next lower level dmap control page
1343 * corresponding to this leaf. we continue down the dmap control
1344 * pages until we find the dmap that contains or starts the
1345 * sufficient free space and we allocate at this dmap.
1346 *
1347 * if the allocation group size is equal to the dmap size,
1348 * we'll start at the dmap corresponding to the allocation
1349 * group and attempt the allocation at this level.
1350 *
1351 * the dmap control page search is also not performed if the
1352 * allocation group is completely free and we go to the first
1353 * dmap of the allocation group to do the allocation. this is
1354 * done because the allocation group may be part (not the first
1355 * part) of a larger binary buddy system, causing the dmap
1356 * control pages to indicate no free space (NOFREE) within
1357 * the allocation group.
1358 *
1359 * PARAMETERS:
1360 * bmp - pointer to bmap descriptor
1361 * agno - allocation group number.
1362 * nblocks - actual number of contiguous free blocks desired.
1363 * l2nb - log2 number of contiguous free blocks desired.
1364 * results - on successful return, set to the starting block number
1365 * of the newly allocated range.
1366 *
1367 * RETURN VALUES:
1368 * 0 - success
1369 * -ENOSPC - insufficient disk resources
1370 * -EIO - i/o error
1371 *
1372 * note: IWRITE_LOCK(ipmap) held on entry/exit;
1373 */
1374static int
1375dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1376{
1377 struct metapage *mp;
1378 struct dmapctl *dcp;
1379 int rc, ti, i, k, m, n, agperlev;
1380 s64 blkno, lblkno;
1381 int budmin;
1382
1383 /* allocation request should not be for more than the
1384 * allocation group size.
1385 */
1386 if (l2nb > bmp->db_agl2size) {
1387 jfs_error(bmp->db_ipbmap->i_sb,
1388 "dbAllocAG: allocation request is larger than the "
1389 "allocation group size");
1390 return -EIO;
1391 }
1392
1393 /* determine the starting block number of the allocation
1394 * group.
1395 */
1396 blkno = (s64) agno << bmp->db_agl2size;
1397
1398 /* check if the allocation group size is the minimum allocation
1399 * group size or if the allocation group is completely free. if
1400 * the allocation group size is the minimum size of BPERDMAP (i.e.
1401 * 1 dmap), there is no need to search the dmap control page (below)
1402 * that fully describes the allocation group since the allocation
1403 * group is already fully described by a dmap. in this case, we
1404 * just call dbAllocCtl() to search the dmap tree and allocate the
1405 * required space if available.
1406 *
1407 * if the allocation group is completely free, dbAllocCtl() is
1408 * also called to allocate the required space. this is done for
1409 * two reasons. first, it makes no sense searching the dmap control
1410 * pages for free space when we know that free space exists. second,
1411 * the dmap control pages may indicate that the allocation group
1412 * has no free space if the allocation group is part (not the first
1413 * part) of a larger binary buddy system.
1414 */
1415 if (bmp->db_agsize == BPERDMAP
1416 || bmp->db_agfree[agno] == bmp->db_agsize) {
1417 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1418 if ((rc == -ENOSPC) &&
1419 (bmp->db_agfree[agno] == bmp->db_agsize)) {
1420 printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1421 (unsigned long long) blkno,
1422 (unsigned long long) nblocks);
1423 jfs_error(bmp->db_ipbmap->i_sb,
1424 "dbAllocAG: dbAllocCtl failed in free AG");
1425 }
1426 return (rc);
1427 }
1428
1429 /* the buffer for the dmap control page that fully describes the
1430 * allocation group.
1431 */
1432 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1433 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1434 if (mp == NULL)
1435 return -EIO;
1436 dcp = (struct dmapctl *) mp->data;
1437 budmin = dcp->budmin;
1438
1439 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1440 jfs_error(bmp->db_ipbmap->i_sb,
1441 "dbAllocAG: Corrupt dmapctl page");
1442 release_metapage(mp);
1443 return -EIO;
1444 }
1445
1446 /* search the subtree(s) of the dmap control page that describes
1447 * the allocation group, looking for sufficient free space. to begin,
1448 * determine how many allocation groups are represented in a dmap
1449 * control page at the control page level (i.e. L0, L1, L2) that
1450 * fully describes an allocation group. next, determine the starting
1451 * tree index of this allocation group within the control page.
1452 */
1453 agperlev =
1454 (1 << (L2LPERCTL - (bmp->db_agheigth << 1))) / bmp->db_agwidth;
1455 ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1456
1457 /* dmap control page trees fan-out by 4 and a single allocation
1458 * group may be described by 1 or 2 subtrees within the ag level
1459 * dmap control page, depending upon the ag size. examine the ag's
1460 * subtrees for sufficient free space, starting with the leftmost
1461 * subtree.
1462 */
1463 for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1464 /* is there sufficient free space ?
1465 */
1466 if (l2nb > dcp->stree[ti])
1467 continue;
1468
1469 /* sufficient free space found in a subtree. now search down
1470 * the subtree to find the leftmost leaf that describes this
1471 * free space.
1472 */
1473 for (k = bmp->db_agheigth; k > 0; k--) {
1474 for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1475 if (l2nb <= dcp->stree[m + n]) {
1476 ti = m + n;
1477 break;
1478 }
1479 }
1480 if (n == 4) {
1481 jfs_error(bmp->db_ipbmap->i_sb,
1482 "dbAllocAG: failed descending stree");
1483 release_metapage(mp);
1484 return -EIO;
1485 }
1486 }
1487
1488 /* determine the block number within the file system
1489 * that corresponds to this leaf.
1490 */
1491 if (bmp->db_aglevel == 2)
1492 blkno = 0;
1493 else if (bmp->db_aglevel == 1)
1494 blkno &= ~(MAXL1SIZE - 1);
1495 else /* bmp->db_aglevel == 0 */
1496 blkno &= ~(MAXL0SIZE - 1);
1497
1498 blkno +=
1499 ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1500
1501 /* release the buffer in preparation for going down
1502 * the next level of dmap control pages.
1503 */
1504 release_metapage(mp);
1505
1506 /* check if we need to continue to search down the lower
1507 * level dmap control pages. we need to if the number of
1508 * blocks required is less than maximum number of blocks
1509 * described at the next lower level.
1510 */
1511 if (l2nb < budmin) {
1512
1513 /* search the lower level dmap control pages to get
1514 * the starting block number of the the dmap that
1515 * contains or starts off the free space.
1516 */
1517 if ((rc =
1518 dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1519 &blkno))) {
1520 if (rc == -ENOSPC) {
1521 jfs_error(bmp->db_ipbmap->i_sb,
1522 "dbAllocAG: control page "
1523 "inconsistent");
1524 return -EIO;
1525 }
1526 return (rc);
1527 }
1528 }
1529
1530 /* allocate the blocks.
1531 */
1532 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1533 if (rc == -ENOSPC) {
1534 jfs_error(bmp->db_ipbmap->i_sb,
1535 "dbAllocAG: unable to allocate blocks");
1536 rc = -EIO;
1537 }
1538 return (rc);
1539 }
1540
1541 /* no space in the allocation group. release the buffer and
1542 * return -ENOSPC.
1543 */
1544 release_metapage(mp);
1545
1546 return -ENOSPC;
1547}
1548
1549
1550/*
1551 * NAME: dbAllocAny()
1552 *
1553 * FUNCTION: attempt to allocate the specified number of contiguous
1554 * free blocks anywhere in the file system.
1555 *
1556 * dbAllocAny() attempts to find the sufficient free space by
1557 * searching down the dmap control pages, starting with the
1558 * highest level (i.e. L0, L1, L2) control page. if free space
1559 * large enough to satisfy the desired free space is found, the
1560 * desired free space is allocated.
1561 *
1562 * PARAMETERS:
1563 * bmp - pointer to bmap descriptor
1564 * nblocks - actual number of contiguous free blocks desired.
1565 * l2nb - log2 number of contiguous free blocks desired.
1566 * results - on successful return, set to the starting block number
1567 * of the newly allocated range.
1568 *
1569 * RETURN VALUES:
1570 * 0 - success
1571 * -ENOSPC - insufficient disk resources
1572 * -EIO - i/o error
1573 *
1574 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1575 */
1576static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1577{
1578 int rc;
1579 s64 blkno = 0;
1580
1581 /* starting with the top level dmap control page, search
1582 * down the dmap control levels for sufficient free space.
1583 * if free space is found, dbFindCtl() returns the starting
1584 * block number of the dmap that contains or starts off the
1585 * range of free space.
1586 */
1587 if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1588 return (rc);
1589
1590 /* allocate the blocks.
1591 */
1592 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1593 if (rc == -ENOSPC) {
1594 jfs_error(bmp->db_ipbmap->i_sb,
1595 "dbAllocAny: unable to allocate blocks");
1596 return -EIO;
1597 }
1598 return (rc);
1599}
1600
1601
1602/*
1603 * NAME: dbFindCtl()
1604 *
1605 * FUNCTION: starting at a specified dmap control page level and block
1606 * number, search down the dmap control levels for a range of
1607 * contiguous free blocks large enough to satisfy an allocation
1608 * request for the specified number of free blocks.
1609 *
1610 * if sufficient contiguous free blocks are found, this routine
1611 * returns the starting block number within a dmap page that
1612 * contains or starts a range of contiqious free blocks that
1613 * is sufficient in size.
1614 *
1615 * PARAMETERS:
1616 * bmp - pointer to bmap descriptor
1617 * level - starting dmap control page level.
1618 * l2nb - log2 number of contiguous free blocks desired.
1619 * *blkno - on entry, starting block number for conducting the search.
1620 * on successful return, the first block within a dmap page
1621 * that contains or starts a range of contiguous free blocks.
1622 *
1623 * RETURN VALUES:
1624 * 0 - success
1625 * -ENOSPC - insufficient disk resources
1626 * -EIO - i/o error
1627 *
1628 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1629 */
1630static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1631{
1632 int rc, leafidx, lev;
1633 s64 b, lblkno;
1634 struct dmapctl *dcp;
1635 int budmin;
1636 struct metapage *mp;
1637
1638 /* starting at the specified dmap control page level and block
1639 * number, search down the dmap control levels for the starting
1640 * block number of a dmap page that contains or starts off
1641 * sufficient free blocks.
1642 */
1643 for (lev = level, b = *blkno; lev >= 0; lev--) {
1644 /* get the buffer of the dmap control page for the block
1645 * number and level (i.e. L0, L1, L2).
1646 */
1647 lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1648 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1649 if (mp == NULL)
1650 return -EIO;
1651 dcp = (struct dmapctl *) mp->data;
1652 budmin = dcp->budmin;
1653
1654 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1655 jfs_error(bmp->db_ipbmap->i_sb,
1656 "dbFindCtl: Corrupt dmapctl page");
1657 release_metapage(mp);
1658 return -EIO;
1659 }
1660
1661 /* search the tree within the dmap control page for
1662 * sufficent free space. if sufficient free space is found,
1663 * dbFindLeaf() returns the index of the leaf at which
1664 * free space was found.
1665 */
1666 rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx);
1667
1668 /* release the buffer.
1669 */
1670 release_metapage(mp);
1671
1672 /* space found ?
1673 */
1674 if (rc) {
1675 if (lev != level) {
1676 jfs_error(bmp->db_ipbmap->i_sb,
1677 "dbFindCtl: dmap inconsistent");
1678 return -EIO;
1679 }
1680 return -ENOSPC;
1681 }
1682
1683 /* adjust the block number to reflect the location within
1684 * the dmap control page (i.e. the leaf) at which free
1685 * space was found.
1686 */
1687 b += (((s64) leafidx) << budmin);
1688
1689 /* we stop the search at this dmap control page level if
1690 * the number of blocks required is greater than or equal
1691 * to the maximum number of blocks described at the next
1692 * (lower) level.
1693 */
1694 if (l2nb >= budmin)
1695 break;
1696 }
1697
1698 *blkno = b;
1699 return (0);
1700}
1701
1702
1703/*
1704 * NAME: dbAllocCtl()
1705 *
1706 * FUNCTION: attempt to allocate a specified number of contiguous
1707 * blocks starting within a specific dmap.
1708 *
1709 * this routine is called by higher level routines that search
1710 * the dmap control pages above the actual dmaps for contiguous
1711 * free space. the result of successful searches by these
1712 * routines are the starting block numbers within dmaps, with
1713 * the dmaps themselves containing the desired contiguous free
1714 * space or starting a contiguous free space of desired size
1715 * that is made up of the blocks of one or more dmaps. these
1716 * calls should not fail due to insufficent resources.
1717 *
1718 * this routine is called in some cases where it is not known
1719 * whether it will fail due to insufficient resources. more
1720 * specifically, this occurs when allocating from an allocation
1721 * group whose size is equal to the number of blocks per dmap.
1722 * in this case, the dmap control pages are not examined prior
1723 * to calling this routine (to save pathlength) and the call
1724 * might fail.
1725 *
1726 * for a request size that fits within a dmap, this routine relies
1727 * upon the dmap's dmtree to find the requested contiguous free
1728 * space. for request sizes that are larger than a dmap, the
1729 * requested free space will start at the first block of the
1730 * first dmap (i.e. blkno).
1731 *
1732 * PARAMETERS:
1733 * bmp - pointer to bmap descriptor
1734 * nblocks - actual number of contiguous free blocks to allocate.
1735 * l2nb - log2 number of contiguous free blocks to allocate.
1736 * blkno - starting block number of the dmap to start the allocation
1737 * from.
1738 * results - on successful return, set to the starting block number
1739 * of the newly allocated range.
1740 *
1741 * RETURN VALUES:
1742 * 0 - success
1743 * -ENOSPC - insufficient disk resources
1744 * -EIO - i/o error
1745 *
1746 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1747 */
1748static int
1749dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1750{
1751 int rc, nb;
1752 s64 b, lblkno, n;
1753 struct metapage *mp;
1754 struct dmap *dp;
1755
1756 /* check if the allocation request is confined to a single dmap.
1757 */
1758 if (l2nb <= L2BPERDMAP) {
1759 /* get the buffer for the dmap.
1760 */
1761 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1762 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1763 if (mp == NULL)
1764 return -EIO;
1765 dp = (struct dmap *) mp->data;
1766
1767 /* try to allocate the blocks.
1768 */
1769 rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1770 if (rc == 0)
1771 mark_metapage_dirty(mp);
1772
1773 release_metapage(mp);
1774
1775 return (rc);
1776 }
1777
1778 /* allocation request involving multiple dmaps. it must start on
1779 * a dmap boundary.
1780 */
1781 assert((blkno & (BPERDMAP - 1)) == 0);
1782
1783 /* allocate the blocks dmap by dmap.
1784 */
1785 for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1786 /* get the buffer for the dmap.
1787 */
1788 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1789 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1790 if (mp == NULL) {
1791 rc = -EIO;
1792 goto backout;
1793 }
1794 dp = (struct dmap *) mp->data;
1795
1796 /* the dmap better be all free.
1797 */
1798 if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1799 release_metapage(mp);
1800 jfs_error(bmp->db_ipbmap->i_sb,
1801 "dbAllocCtl: the dmap is not all free");
1802 rc = -EIO;
1803 goto backout;
1804 }
1805
1806 /* determine how many blocks to allocate from this dmap.
1807 */
1808 nb = min(n, (s64)BPERDMAP);
1809
1810 /* allocate the blocks from the dmap.
1811 */
1812 if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1813 release_metapage(mp);
1814 goto backout;
1815 }
1816
1817 /* write the buffer.
1818 */
1819 write_metapage(mp);
1820 }
1821
1822 /* set the results (starting block number) and return.
1823 */
1824 *results = blkno;
1825 return (0);
1826
1827 /* something failed in handling an allocation request involving
1828 * multiple dmaps. we'll try to clean up by backing out any
1829 * allocation that has already happened for this request. if
1830 * we fail in backing out the allocation, we'll mark the file
1831 * system to indicate that blocks have been leaked.
1832 */
1833 backout:
1834
1835 /* try to backout the allocations dmap by dmap.
1836 */
1837 for (n = nblocks - n, b = blkno; n > 0;
1838 n -= BPERDMAP, b += BPERDMAP) {
1839 /* get the buffer for this dmap.
1840 */
1841 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1842 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1843 if (mp == NULL) {
1844 /* could not back out. mark the file system
1845 * to indicate that we have leaked blocks.
1846 */
1847 jfs_error(bmp->db_ipbmap->i_sb,
1848 "dbAllocCtl: I/O Error: Block Leakage.");
1849 continue;
1850 }
1851 dp = (struct dmap *) mp->data;
1852
1853 /* free the blocks is this dmap.
1854 */
1855 if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1856 /* could not back out. mark the file system
1857 * to indicate that we have leaked blocks.
1858 */
1859 release_metapage(mp);
1860 jfs_error(bmp->db_ipbmap->i_sb,
1861 "dbAllocCtl: Block Leakage.");
1862 continue;
1863 }
1864
1865 /* write the buffer.
1866 */
1867 write_metapage(mp);
1868 }
1869
1870 return (rc);
1871}
1872
1873
1874/*
1875 * NAME: dbAllocDmapLev()
1876 *
1877 * FUNCTION: attempt to allocate a specified number of contiguous blocks
1878 * from a specified dmap.
1879 *
1880 * this routine checks if the contiguous blocks are available.
1881 * if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1882 * returned.
1883 *
1884 * PARAMETERS:
1885 * mp - pointer to bmap descriptor
1886 * dp - pointer to dmap to attempt to allocate blocks from.
1887 * l2nb - log2 number of contiguous block desired.
1888 * nblocks - actual number of contiguous block desired.
1889 * results - on successful return, set to the starting block number
1890 * of the newly allocated range.
1891 *
1892 * RETURN VALUES:
1893 * 0 - success
1894 * -ENOSPC - insufficient disk resources
1895 * -EIO - i/o error
1896 *
1897 * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1898 * IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1899 */
1900static int
1901dbAllocDmapLev(struct bmap * bmp,
1902 struct dmap * dp, int nblocks, int l2nb, s64 * results)
1903{
1904 s64 blkno;
1905 int leafidx, rc;
1906
1907 /* can't be more than a dmaps worth of blocks */
1908 assert(l2nb <= L2BPERDMAP);
1909
1910 /* search the tree within the dmap page for sufficient
1911 * free space. if sufficient free space is found, dbFindLeaf()
1912 * returns the index of the leaf at which free space was found.
1913 */
1914 if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx))
1915 return -ENOSPC;
1916
1917 /* determine the block number within the file system corresponding
1918 * to the leaf at which free space was found.
1919 */
1920 blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
1921
1922 /* if not all bits of the dmap word are free, get the starting
1923 * bit number within the dmap word of the required string of free
1924 * bits and adjust the block number with this value.
1925 */
1926 if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
1927 blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
1928
1929 /* allocate the blocks */
1930 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1931 *results = blkno;
1932
1933 return (rc);
1934}
1935
1936
1937/*
1938 * NAME: dbAllocDmap()
1939 *
1940 * FUNCTION: adjust the disk allocation map to reflect the allocation
1941 * of a specified block range within a dmap.
1942 *
1943 * this routine allocates the specified blocks from the dmap
1944 * through a call to dbAllocBits(). if the allocation of the
1945 * block range causes the maximum string of free blocks within
1946 * the dmap to change (i.e. the value of the root of the dmap's
1947 * dmtree), this routine will cause this change to be reflected
1948 * up through the appropriate levels of the dmap control pages
1949 * by a call to dbAdjCtl() for the L0 dmap control page that
1950 * covers this dmap.
1951 *
1952 * PARAMETERS:
1953 * bmp - pointer to bmap descriptor
1954 * dp - pointer to dmap to allocate the block range from.
1955 * blkno - starting block number of the block to be allocated.
1956 * nblocks - number of blocks to be allocated.
1957 *
1958 * RETURN VALUES:
1959 * 0 - success
1960 * -EIO - i/o error
1961 *
1962 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
1963 */
1964static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
1965 int nblocks)
1966{
1967 s8 oldroot;
1968 int rc;
1969
1970 /* save the current value of the root (i.e. maximum free string)
1971 * of the dmap tree.
1972 */
1973 oldroot = dp->tree.stree[ROOT];
1974
1975 /* allocate the specified (blocks) bits */
1976 dbAllocBits(bmp, dp, blkno, nblocks);
1977
1978 /* if the root has not changed, done. */
1979 if (dp->tree.stree[ROOT] == oldroot)
1980 return (0);
1981
1982 /* root changed. bubble the change up to the dmap control pages.
1983 * if the adjustment of the upper level control pages fails,
1984 * backout the bit allocation (thus making everything consistent).
1985 */
1986 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
1987 dbFreeBits(bmp, dp, blkno, nblocks);
1988
1989 return (rc);
1990}
1991
1992
1993/*
1994 * NAME: dbFreeDmap()
1995 *
1996 * FUNCTION: adjust the disk allocation map to reflect the allocation
1997 * of a specified block range within a dmap.
1998 *
1999 * this routine frees the specified blocks from the dmap through
2000 * a call to dbFreeBits(). if the deallocation of the block range
2001 * causes the maximum string of free blocks within the dmap to
2002 * change (i.e. the value of the root of the dmap's dmtree), this
2003 * routine will cause this change to be reflected up through the
2004 * appropriate levels of the dmap control pages by a call to
2005 * dbAdjCtl() for the L0 dmap control page that covers this dmap.
2006 *
2007 * PARAMETERS:
2008 * bmp - pointer to bmap descriptor
2009 * dp - pointer to dmap to free the block range from.
2010 * blkno - starting block number of the block to be freed.
2011 * nblocks - number of blocks to be freed.
2012 *
2013 * RETURN VALUES:
2014 * 0 - success
2015 * -EIO - i/o error
2016 *
2017 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2018 */
2019static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2020 int nblocks)
2021{
2022 s8 oldroot;
2023 int rc, word;
2024
2025 /* save the current value of the root (i.e. maximum free string)
2026 * of the dmap tree.
2027 */
2028 oldroot = dp->tree.stree[ROOT];
2029
2030 /* free the specified (blocks) bits */
2031 dbFreeBits(bmp, dp, blkno, nblocks);
2032
2033 /* if the root has not changed, done. */
2034 if (dp->tree.stree[ROOT] == oldroot)
2035 return (0);
2036
2037 /* root changed. bubble the change up to the dmap control pages.
2038 * if the adjustment of the upper level control pages fails,
2039 * backout the deallocation.
2040 */
2041 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2042 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2043
2044 /* as part of backing out the deallocation, we will have
2045 * to back split the dmap tree if the deallocation caused
2046 * the freed blocks to become part of a larger binary buddy
2047 * system.
2048 */
2049 if (dp->tree.stree[word] == NOFREE)
2050 dbBackSplit((dmtree_t *) & dp->tree, word);
2051
2052 dbAllocBits(bmp, dp, blkno, nblocks);
2053 }
2054
2055 return (rc);
2056}
2057
2058
2059/*
2060 * NAME: dbAllocBits()
2061 *
2062 * FUNCTION: allocate a specified block range from a dmap.
2063 *
2064 * this routine updates the dmap to reflect the working
2065 * state allocation of the specified block range. it directly
2066 * updates the bits of the working map and causes the adjustment
2067 * of the binary buddy system described by the dmap's dmtree
2068 * leaves to reflect the bits allocated. it also causes the
2069 * dmap's dmtree, as a whole, to reflect the allocated range.
2070 *
2071 * PARAMETERS:
2072 * bmp - pointer to bmap descriptor
2073 * dp - pointer to dmap to allocate bits from.
2074 * blkno - starting block number of the bits to be allocated.
2075 * nblocks - number of bits to be allocated.
2076 *
2077 * RETURN VALUES: none
2078 *
2079 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2080 */
2081static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2082 int nblocks)
2083{
2084 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2085 dmtree_t *tp = (dmtree_t *) & dp->tree;
2086 int size;
2087 s8 *leaf;
2088
2089 /* pick up a pointer to the leaves of the dmap tree */
2090 leaf = dp->tree.stree + LEAFIND;
2091
2092 /* determine the bit number and word within the dmap of the
2093 * starting block.
2094 */
2095 dbitno = blkno & (BPERDMAP - 1);
2096 word = dbitno >> L2DBWORD;
2097
2098 /* block range better be within the dmap */
2099 assert(dbitno + nblocks <= BPERDMAP);
2100
2101 /* allocate the bits of the dmap's words corresponding to the block
2102 * range. not all bits of the first and last words may be contained
2103 * within the block range. if this is the case, we'll work against
2104 * those words (i.e. partial first and/or last) on an individual basis
2105 * (a single pass), allocating the bits of interest by hand and
2106 * updating the leaf corresponding to the dmap word. a single pass
2107 * will be used for all dmap words fully contained within the
2108 * specified range. within this pass, the bits of all fully contained
2109 * dmap words will be marked as free in a single shot and the leaves
2110 * will be updated. a single leaf may describe the free space of
2111 * multiple dmap words, so we may update only a subset of the actual
2112 * leaves corresponding to the dmap words of the block range.
2113 */
2114 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2115 /* determine the bit number within the word and
2116 * the number of bits within the word.
2117 */
2118 wbitno = dbitno & (DBWORD - 1);
2119 nb = min(rembits, DBWORD - wbitno);
2120
2121 /* check if only part of a word is to be allocated.
2122 */
2123 if (nb < DBWORD) {
2124 /* allocate (set to 1) the appropriate bits within
2125 * this dmap word.
2126 */
2127 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2128 >> wbitno);
2129
2130 /* update the leaf for this dmap word. in addition
2131 * to setting the leaf value to the binary buddy max
2132 * of the updated dmap word, dbSplit() will split
2133 * the binary system of the leaves if need be.
2134 */
2135 dbSplit(tp, word, BUDMIN,
2136 dbMaxBud((u8 *) & dp->wmap[word]));
2137
2138 word += 1;
2139 } else {
2140 /* one or more dmap words are fully contained
2141 * within the block range. determine how many
2142 * words and allocate (set to 1) the bits of these
2143 * words.
2144 */
2145 nwords = rembits >> L2DBWORD;
2146 memset(&dp->wmap[word], (int) ONES, nwords * 4);
2147
2148 /* determine how many bits.
2149 */
2150 nb = nwords << L2DBWORD;
2151
2152 /* now update the appropriate leaves to reflect
2153 * the allocated words.
2154 */
2155 for (; nwords > 0; nwords -= nw) {
2156 if (leaf[word] < BUDMIN) {
2157 jfs_error(bmp->db_ipbmap->i_sb,
2158 "dbAllocBits: leaf page "
2159 "corrupt");
2160 break;
2161 }
2162
2163 /* determine what the leaf value should be
2164 * updated to as the minimum of the l2 number
2165 * of bits being allocated and the l2 number
2166 * of bits currently described by this leaf.
2167 */
2168 size = min((int)leaf[word], NLSTOL2BSZ(nwords));
2169
2170 /* update the leaf to reflect the allocation.
2171 * in addition to setting the leaf value to
2172 * NOFREE, dbSplit() will split the binary
2173 * system of the leaves to reflect the current
2174 * allocation (size).
2175 */
2176 dbSplit(tp, word, size, NOFREE);
2177
2178 /* get the number of dmap words handled */
2179 nw = BUDSIZE(size, BUDMIN);
2180 word += nw;
2181 }
2182 }
2183 }
2184
2185 /* update the free count for this dmap */
2186 dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) - nblocks);
2187
2188 BMAP_LOCK(bmp);
2189
2190 /* if this allocation group is completely free,
2191 * update the maximum allocation group number if this allocation
2192 * group is the new max.
2193 */
2194 agno = blkno >> bmp->db_agl2size;
2195 if (agno > bmp->db_maxag)
2196 bmp->db_maxag = agno;
2197
2198 /* update the free count for the allocation group and map */
2199 bmp->db_agfree[agno] -= nblocks;
2200 bmp->db_nfree -= nblocks;
2201
2202 BMAP_UNLOCK(bmp);
2203}
2204
2205
2206/*
2207 * NAME: dbFreeBits()
2208 *
2209 * FUNCTION: free a specified block range from a dmap.
2210 *
2211 * this routine updates the dmap to reflect the working
2212 * state allocation of the specified block range. it directly
2213 * updates the bits of the working map and causes the adjustment
2214 * of the binary buddy system described by the dmap's dmtree
2215 * leaves to reflect the bits freed. it also causes the dmap's
2216 * dmtree, as a whole, to reflect the deallocated range.
2217 *
2218 * PARAMETERS:
2219 * bmp - pointer to bmap descriptor
2220 * dp - pointer to dmap to free bits from.
2221 * blkno - starting block number of the bits to be freed.
2222 * nblocks - number of bits to be freed.
2223 *
2224 * RETURN VALUES: none
2225 *
2226 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2227 */
2228static void dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2229 int nblocks)
2230{
2231 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2232 dmtree_t *tp = (dmtree_t *) & dp->tree;
2233 int size;
2234
2235 /* determine the bit number and word within the dmap of the
2236 * starting block.
2237 */
2238 dbitno = blkno & (BPERDMAP - 1);
2239 word = dbitno >> L2DBWORD;
2240
2241 /* block range better be within the dmap.
2242 */
2243 assert(dbitno + nblocks <= BPERDMAP);
2244
2245 /* free the bits of the dmaps words corresponding to the block range.
2246 * not all bits of the first and last words may be contained within
2247 * the block range. if this is the case, we'll work against those
2248 * words (i.e. partial first and/or last) on an individual basis
2249 * (a single pass), freeing the bits of interest by hand and updating
2250 * the leaf corresponding to the dmap word. a single pass will be used
2251 * for all dmap words fully contained within the specified range.
2252 * within this pass, the bits of all fully contained dmap words will
2253 * be marked as free in a single shot and the leaves will be updated. a
2254 * single leaf may describe the free space of multiple dmap words,
2255 * so we may update only a subset of the actual leaves corresponding
2256 * to the dmap words of the block range.
2257 *
2258 * dbJoin() is used to update leaf values and will join the binary
2259 * buddy system of the leaves if the new leaf values indicate this
2260 * should be done.
2261 */
2262 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2263 /* determine the bit number within the word and
2264 * the number of bits within the word.
2265 */
2266 wbitno = dbitno & (DBWORD - 1);
2267 nb = min(rembits, DBWORD - wbitno);
2268
2269 /* check if only part of a word is to be freed.
2270 */
2271 if (nb < DBWORD) {
2272 /* free (zero) the appropriate bits within this
2273 * dmap word.
2274 */
2275 dp->wmap[word] &=
2276 cpu_to_le32(~(ONES << (DBWORD - nb)
2277 >> wbitno));
2278
2279 /* update the leaf for this dmap word.
2280 */
2281 dbJoin(tp, word,
2282 dbMaxBud((u8 *) & dp->wmap[word]));
2283
2284 word += 1;
2285 } else {
2286 /* one or more dmap words are fully contained
2287 * within the block range. determine how many
2288 * words and free (zero) the bits of these words.
2289 */
2290 nwords = rembits >> L2DBWORD;
2291 memset(&dp->wmap[word], 0, nwords * 4);
2292
2293 /* determine how many bits.
2294 */
2295 nb = nwords << L2DBWORD;
2296
2297 /* now update the appropriate leaves to reflect
2298 * the freed words.
2299 */
2300 for (; nwords > 0; nwords -= nw) {
2301 /* determine what the leaf value should be
2302 * updated to as the minimum of the l2 number
2303 * of bits being freed and the l2 (max) number
2304 * of bits that can be described by this leaf.
2305 */
2306 size =
2307 min(LITOL2BSZ
2308 (word, L2LPERDMAP, BUDMIN),
2309 NLSTOL2BSZ(nwords));
2310
2311 /* update the leaf.
2312 */
2313 dbJoin(tp, word, size);
2314
2315 /* get the number of dmap words handled.
2316 */
2317 nw = BUDSIZE(size, BUDMIN);
2318 word += nw;
2319 }
2320 }
2321 }
2322
2323 /* update the free count for this dmap.
2324 */
2325 dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) + nblocks);
2326
2327 BMAP_LOCK(bmp);
2328
2329 /* update the free count for the allocation group and
2330 * map.
2331 */
2332 agno = blkno >> bmp->db_agl2size;
2333 bmp->db_nfree += nblocks;
2334 bmp->db_agfree[agno] += nblocks;
2335
2336 /* check if this allocation group is not completely free and
2337 * if it is currently the maximum (rightmost) allocation group.
2338 * if so, establish the new maximum allocation group number by
2339 * searching left for the first allocation group with allocation.
2340 */
2341 if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2342 (agno == bmp->db_numag - 1 &&
2343 bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2344 while (bmp->db_maxag > 0) {
2345 bmp->db_maxag -= 1;
2346 if (bmp->db_agfree[bmp->db_maxag] !=
2347 bmp->db_agsize)
2348 break;
2349 }
2350
2351 /* re-establish the allocation group preference if the
2352 * current preference is right of the maximum allocation
2353 * group.
2354 */
2355 if (bmp->db_agpref > bmp->db_maxag)
2356 bmp->db_agpref = bmp->db_maxag;
2357 }
2358
2359 BMAP_UNLOCK(bmp);
2360}
2361
2362
2363/*
2364 * NAME: dbAdjCtl()
2365 *
2366 * FUNCTION: adjust a dmap control page at a specified level to reflect
2367 * the change in a lower level dmap or dmap control page's
2368 * maximum string of free blocks (i.e. a change in the root
2369 * of the lower level object's dmtree) due to the allocation
2370 * or deallocation of a range of blocks with a single dmap.
2371 *
2372 * on entry, this routine is provided with the new value of
2373 * the lower level dmap or dmap control page root and the
2374 * starting block number of the block range whose allocation
2375 * or deallocation resulted in the root change. this range
2376 * is respresented by a single leaf of the current dmapctl
2377 * and the leaf will be updated with this value, possibly
2378 * causing a binary buddy system within the leaves to be
2379 * split or joined. the update may also cause the dmapctl's
2380 * dmtree to be updated.
2381 *
2382 * if the adjustment of the dmap control page, itself, causes its
2383 * root to change, this change will be bubbled up to the next dmap
2384 * control level by a recursive call to this routine, specifying
2385 * the new root value and the next dmap control page level to
2386 * be adjusted.
2387 * PARAMETERS:
2388 * bmp - pointer to bmap descriptor
2389 * blkno - the first block of a block range within a dmap. it is
2390 * the allocation or deallocation of this block range that
2391 * requires the dmap control page to be adjusted.
2392 * newval - the new value of the lower level dmap or dmap control
2393 * page root.
2394 * alloc - TRUE if adjustment is due to an allocation.
2395 * level - current level of dmap control page (i.e. L0, L1, L2) to
2396 * be adjusted.
2397 *
2398 * RETURN VALUES:
2399 * 0 - success
2400 * -EIO - i/o error
2401 *
2402 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2403 */
2404static int
2405dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2406{
2407 struct metapage *mp;
2408 s8 oldroot;
2409 int oldval;
2410 s64 lblkno;
2411 struct dmapctl *dcp;
2412 int rc, leafno, ti;
2413
2414 /* get the buffer for the dmap control page for the specified
2415 * block number and control page level.
2416 */
2417 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2418 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2419 if (mp == NULL)
2420 return -EIO;
2421 dcp = (struct dmapctl *) mp->data;
2422
2423 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2424 jfs_error(bmp->db_ipbmap->i_sb,
2425 "dbAdjCtl: Corrupt dmapctl page");
2426 release_metapage(mp);
2427 return -EIO;
2428 }
2429
2430 /* determine the leaf number corresponding to the block and
2431 * the index within the dmap control tree.
2432 */
2433 leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2434 ti = leafno + le32_to_cpu(dcp->leafidx);
2435
2436 /* save the current leaf value and the current root level (i.e.
2437 * maximum l2 free string described by this dmapctl).
2438 */
2439 oldval = dcp->stree[ti];
2440 oldroot = dcp->stree[ROOT];
2441
2442 /* check if this is a control page update for an allocation.
2443 * if so, update the leaf to reflect the new leaf value using
2444 * dbSplit(); otherwise (deallocation), use dbJoin() to udpate
2445 * the leaf with the new value. in addition to updating the
2446 * leaf, dbSplit() will also split the binary buddy system of
2447 * the leaves, if required, and bubble new values within the
2448 * dmapctl tree, if required. similarly, dbJoin() will join
2449 * the binary buddy system of leaves and bubble new values up
2450 * the dmapctl tree as required by the new leaf value.
2451 */
2452 if (alloc) {
2453 /* check if we are in the middle of a binary buddy
2454 * system. this happens when we are performing the
2455 * first allocation out of an allocation group that
2456 * is part (not the first part) of a larger binary
2457 * buddy system. if we are in the middle, back split
2458 * the system prior to calling dbSplit() which assumes
2459 * that it is at the front of a binary buddy system.
2460 */
2461 if (oldval == NOFREE) {
2462 dbBackSplit((dmtree_t *) dcp, leafno);
2463 oldval = dcp->stree[ti];
2464 }
2465 dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval);
2466 } else {
2467 dbJoin((dmtree_t *) dcp, leafno, newval);
2468 }
2469
2470 /* check if the root of the current dmap control page changed due
2471 * to the update and if the current dmap control page is not at
2472 * the current top level (i.e. L0, L1, L2) of the map. if so (i.e.
2473 * root changed and this is not the top level), call this routine
2474 * again (recursion) for the next higher level of the mapping to
2475 * reflect the change in root for the current dmap control page.
2476 */
2477 if (dcp->stree[ROOT] != oldroot) {
2478 /* are we below the top level of the map. if so,
2479 * bubble the root up to the next higher level.
2480 */
2481 if (level < bmp->db_maxlevel) {
2482 /* bubble up the new root of this dmap control page to
2483 * the next level.
2484 */
2485 if ((rc =
2486 dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2487 level + 1))) {
2488 /* something went wrong in bubbling up the new
2489 * root value, so backout the changes to the
2490 * current dmap control page.
2491 */
2492 if (alloc) {
2493 dbJoin((dmtree_t *) dcp, leafno,
2494 oldval);
2495 } else {
2496 /* the dbJoin() above might have
2497 * caused a larger binary buddy system
2498 * to form and we may now be in the
2499 * middle of it. if this is the case,
2500 * back split the buddies.
2501 */
2502 if (dcp->stree[ti] == NOFREE)
2503 dbBackSplit((dmtree_t *)
2504 dcp, leafno);
2505 dbSplit((dmtree_t *) dcp, leafno,
2506 dcp->budmin, oldval);
2507 }
2508
2509 /* release the buffer and return the error.
2510 */
2511 release_metapage(mp);
2512 return (rc);
2513 }
2514 } else {
2515 /* we're at the top level of the map. update
2516 * the bmap control page to reflect the size
2517 * of the maximum free buddy system.
2518 */
2519 assert(level == bmp->db_maxlevel);
2520 if (bmp->db_maxfreebud != oldroot) {
2521 jfs_error(bmp->db_ipbmap->i_sb,
2522 "dbAdjCtl: the maximum free buddy is "
2523 "not the old root");
2524 }
2525 bmp->db_maxfreebud = dcp->stree[ROOT];
2526 }
2527 }
2528
2529 /* write the buffer.
2530 */
2531 write_metapage(mp);
2532
2533 return (0);
2534}
2535
2536
2537/*
2538 * NAME: dbSplit()
2539 *
2540 * FUNCTION: update the leaf of a dmtree with a new value, splitting
2541 * the leaf from the binary buddy system of the dmtree's
2542 * leaves, as required.
2543 *
2544 * PARAMETERS:
2545 * tp - pointer to the tree containing the leaf.
2546 * leafno - the number of the leaf to be updated.
2547 * splitsz - the size the binary buddy system starting at the leaf
2548 * must be split to, specified as the log2 number of blocks.
2549 * newval - the new value for the leaf.
2550 *
2551 * RETURN VALUES: none
2552 *
2553 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2554 */
2555static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval)
2556{
2557 int budsz;
2558 int cursz;
2559 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2560
2561 /* check if the leaf needs to be split.
2562 */
2563 if (leaf[leafno] > tp->dmt_budmin) {
2564 /* the split occurs by cutting the buddy system in half
2565 * at the specified leaf until we reach the specified
2566 * size. pick up the starting split size (current size
2567 * - 1 in l2) and the corresponding buddy size.
2568 */
2569 cursz = leaf[leafno] - 1;
2570 budsz = BUDSIZE(cursz, tp->dmt_budmin);
2571
2572 /* split until we reach the specified size.
2573 */
2574 while (cursz >= splitsz) {
2575 /* update the buddy's leaf with its new value.
2576 */
2577 dbAdjTree(tp, leafno ^ budsz, cursz);
2578
2579 /* on to the next size and buddy.
2580 */
2581 cursz -= 1;
2582 budsz >>= 1;
2583 }
2584 }
2585
2586 /* adjust the dmap tree to reflect the specified leaf's new
2587 * value.
2588 */
2589 dbAdjTree(tp, leafno, newval);
2590}
2591
2592
2593/*
2594 * NAME: dbBackSplit()
2595 *
2596 * FUNCTION: back split the binary buddy system of dmtree leaves
2597 * that hold a specified leaf until the specified leaf
2598 * starts its own binary buddy system.
2599 *
2600 * the allocators typically perform allocations at the start
2601 * of binary buddy systems and dbSplit() is used to accomplish
2602 * any required splits. in some cases, however, allocation
2603 * may occur in the middle of a binary system and requires a
2604 * back split, with the split proceeding out from the middle of
2605 * the system (less efficient) rather than the start of the
2606 * system (more efficient). the cases in which a back split
2607 * is required are rare and are limited to the first allocation
2608 * within an allocation group which is a part (not first part)
2609 * of a larger binary buddy system and a few exception cases
2610 * in which a previous join operation must be backed out.
2611 *
2612 * PARAMETERS:
2613 * tp - pointer to the tree containing the leaf.
2614 * leafno - the number of the leaf to be updated.
2615 *
2616 * RETURN VALUES: none
2617 *
2618 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2619 */
2620static void dbBackSplit(dmtree_t * tp, int leafno)
2621{
2622 int budsz, bud, w, bsz, size;
2623 int cursz;
2624 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2625
2626 /* leaf should be part (not first part) of a binary
2627 * buddy system.
2628 */
2629 assert(leaf[leafno] == NOFREE);
2630
2631 /* the back split is accomplished by iteratively finding the leaf
2632 * that starts the buddy system that contains the specified leaf and
2633 * splitting that system in two. this iteration continues until
2634 * the specified leaf becomes the start of a buddy system.
2635 *
2636 * determine maximum possible l2 size for the specified leaf.
2637 */
2638 size =
2639 LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2640 tp->dmt_budmin);
2641
2642 /* determine the number of leaves covered by this size. this
2643 * is the buddy size that we will start with as we search for
2644 * the buddy system that contains the specified leaf.
2645 */
2646 budsz = BUDSIZE(size, tp->dmt_budmin);
2647
2648 /* back split.
2649 */
2650 while (leaf[leafno] == NOFREE) {
2651 /* find the leftmost buddy leaf.
2652 */
2653 for (w = leafno, bsz = budsz;; bsz <<= 1,
2654 w = (w < bud) ? w : bud) {
2655 assert(bsz < le32_to_cpu(tp->dmt_nleafs));
2656
2657 /* determine the buddy.
2658 */
2659 bud = w ^ bsz;
2660
2661 /* check if this buddy is the start of the system.
2662 */
2663 if (leaf[bud] != NOFREE) {
2664 /* split the leaf at the start of the
2665 * system in two.
2666 */
2667 cursz = leaf[bud] - 1;
2668 dbSplit(tp, bud, cursz, cursz);
2669 break;
2670 }
2671 }
2672 }
2673
2674 assert(leaf[leafno] == size);
2675}
2676
2677
2678/*
2679 * NAME: dbJoin()
2680 *
2681 * FUNCTION: update the leaf of a dmtree with a new value, joining
2682 * the leaf with other leaves of the dmtree into a multi-leaf
2683 * binary buddy system, as required.
2684 *
2685 * PARAMETERS:
2686 * tp - pointer to the tree containing the leaf.
2687 * leafno - the number of the leaf to be updated.
2688 * newval - the new value for the leaf.
2689 *
2690 * RETURN VALUES: none
2691 */
2692static void dbJoin(dmtree_t * tp, int leafno, int newval)
2693{
2694 int budsz, buddy;
2695 s8 *leaf;
2696
2697 /* can the new leaf value require a join with other leaves ?
2698 */
2699 if (newval >= tp->dmt_budmin) {
2700 /* pickup a pointer to the leaves of the tree.
2701 */
2702 leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2703
2704 /* try to join the specified leaf into a large binary
2705 * buddy system. the join proceeds by attempting to join
2706 * the specified leafno with its buddy (leaf) at new value.
2707 * if the join occurs, we attempt to join the left leaf
2708 * of the joined buddies with its buddy at new value + 1.
2709 * we continue to join until we find a buddy that cannot be
2710 * joined (does not have a value equal to the size of the
2711 * last join) or until all leaves have been joined into a
2712 * single system.
2713 *
2714 * get the buddy size (number of words covered) of
2715 * the new value.
2716 */
2717 budsz = BUDSIZE(newval, tp->dmt_budmin);
2718
2719 /* try to join.
2720 */
2721 while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2722 /* get the buddy leaf.
2723 */
2724 buddy = leafno ^ budsz;
2725
2726 /* if the leaf's new value is greater than its
2727 * buddy's value, we join no more.
2728 */
2729 if (newval > leaf[buddy])
2730 break;
2731
2732 assert(newval == leaf[buddy]);
2733
2734 /* check which (leafno or buddy) is the left buddy.
2735 * the left buddy gets to claim the blocks resulting
2736 * from the join while the right gets to claim none.
2737 * the left buddy is also eligable to participate in
2738 * a join at the next higher level while the right
2739 * is not.
2740 *
2741 */
2742 if (leafno < buddy) {
2743 /* leafno is the left buddy.
2744 */
2745 dbAdjTree(tp, buddy, NOFREE);
2746 } else {
2747 /* buddy is the left buddy and becomes
2748 * leafno.
2749 */
2750 dbAdjTree(tp, leafno, NOFREE);
2751 leafno = buddy;
2752 }
2753
2754 /* on to try the next join.
2755 */
2756 newval += 1;
2757 budsz <<= 1;
2758 }
2759 }
2760
2761 /* update the leaf value.
2762 */
2763 dbAdjTree(tp, leafno, newval);
2764}
2765
2766
2767/*
2768 * NAME: dbAdjTree()
2769 *
2770 * FUNCTION: update a leaf of a dmtree with a new value, adjusting
2771 * the dmtree, as required, to reflect the new leaf value.
2772 * the combination of any buddies must already be done before
2773 * this is called.
2774 *
2775 * PARAMETERS:
2776 * tp - pointer to the tree to be adjusted.
2777 * leafno - the number of the leaf to be updated.
2778 * newval - the new value for the leaf.
2779 *
2780 * RETURN VALUES: none
2781 */
2782static void dbAdjTree(dmtree_t * tp, int leafno, int newval)
2783{
2784 int lp, pp, k;
2785 int max;
2786
2787 /* pick up the index of the leaf for this leafno.
2788 */
2789 lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2790
2791 /* is the current value the same as the old value ? if so,
2792 * there is nothing to do.
2793 */
2794 if (tp->dmt_stree[lp] == newval)
2795 return;
2796
2797 /* set the new value.
2798 */
2799 tp->dmt_stree[lp] = newval;
2800
2801 /* bubble the new value up the tree as required.
2802 */
2803 for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2804 /* get the index of the first leaf of the 4 leaf
2805 * group containing the specified leaf (leafno).
2806 */
2807 lp = ((lp - 1) & ~0x03) + 1;
2808
2809 /* get the index of the parent of this 4 leaf group.
2810 */
2811 pp = (lp - 1) >> 2;
2812
2813 /* determine the maximum of the 4 leaves.
2814 */
2815 max = TREEMAX(&tp->dmt_stree[lp]);
2816
2817 /* if the maximum of the 4 is the same as the
2818 * parent's value, we're done.
2819 */
2820 if (tp->dmt_stree[pp] == max)
2821 break;
2822
2823 /* parent gets new value.
2824 */
2825 tp->dmt_stree[pp] = max;
2826
2827 /* parent becomes leaf for next go-round.
2828 */
2829 lp = pp;
2830 }
2831}
2832
2833
2834/*
2835 * NAME: dbFindLeaf()
2836 *
2837 * FUNCTION: search a dmtree_t for sufficient free blocks, returning
2838 * the index of a leaf describing the free blocks if
2839 * sufficient free blocks are found.
2840 *
2841 * the search starts at the top of the dmtree_t tree and
2842 * proceeds down the tree to the leftmost leaf with sufficient
2843 * free space.
2844 *
2845 * PARAMETERS:
2846 * tp - pointer to the tree to be searched.
2847 * l2nb - log2 number of free blocks to search for.
2848 * leafidx - return pointer to be set to the index of the leaf
2849 * describing at least l2nb free blocks if sufficient
2850 * free blocks are found.
2851 *
2852 * RETURN VALUES:
2853 * 0 - success
2854 * -ENOSPC - insufficient free blocks.
2855 */
2856static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx)
2857{
2858 int ti, n = 0, k, x = 0;
2859
2860 /* first check the root of the tree to see if there is
2861 * sufficient free space.
2862 */
2863 if (l2nb > tp->dmt_stree[ROOT])
2864 return -ENOSPC;
2865
2866 /* sufficient free space available. now search down the tree
2867 * starting at the next level for the leftmost leaf that
2868 * describes sufficient free space.
2869 */
2870 for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2871 k > 0; k--, ti = ((ti + n) << 2) + 1) {
2872 /* search the four nodes at this level, starting from
2873 * the left.
2874 */
2875 for (x = ti, n = 0; n < 4; n++) {
2876 /* sufficient free space found. move to the next
2877 * level (or quit if this is the last level).
2878 */
2879 if (l2nb <= tp->dmt_stree[x + n])
2880 break;
2881 }
2882
2883 /* better have found something since the higher
2884 * levels of the tree said it was here.
2885 */
2886 assert(n < 4);
2887 }
2888
2889 /* set the return to the leftmost leaf describing sufficient
2890 * free space.
2891 */
2892 *leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
2893
2894 return (0);
2895}
2896
2897
2898/*
2899 * NAME: dbFindBits()
2900 *
2901 * FUNCTION: find a specified number of binary buddy free bits within a
2902 * dmap bitmap word value.
2903 *
2904 * this routine searches the bitmap value for (1 << l2nb) free
2905 * bits at (1 << l2nb) alignments within the value.
2906 *
2907 * PARAMETERS:
2908 * word - dmap bitmap word value.
2909 * l2nb - number of free bits specified as a log2 number.
2910 *
2911 * RETURN VALUES:
2912 * starting bit number of free bits.
2913 */
2914static int dbFindBits(u32 word, int l2nb)
2915{
2916 int bitno, nb;
2917 u32 mask;
2918
2919 /* get the number of bits.
2920 */
2921 nb = 1 << l2nb;
2922 assert(nb <= DBWORD);
2923
2924 /* complement the word so we can use a mask (i.e. 0s represent
2925 * free bits) and compute the mask.
2926 */
2927 word = ~word;
2928 mask = ONES << (DBWORD - nb);
2929
2930 /* scan the word for nb free bits at nb alignments.
2931 */
2932 for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
2933 if ((mask & word) == mask)
2934 break;
2935 }
2936
2937 ASSERT(bitno < 32);
2938
2939 /* return the bit number.
2940 */
2941 return (bitno);
2942}
2943
2944
2945/*
2946 * NAME: dbMaxBud(u8 *cp)
2947 *
2948 * FUNCTION: determine the largest binary buddy string of free
2949 * bits within 32-bits of the map.
2950 *
2951 * PARAMETERS:
2952 * cp - pointer to the 32-bit value.
2953 *
2954 * RETURN VALUES:
2955 * largest binary buddy of free bits within a dmap word.
2956 */
2957static int dbMaxBud(u8 * cp)
2958{
2959 signed char tmp1, tmp2;
2960
2961 /* check if the wmap word is all free. if so, the
2962 * free buddy size is BUDMIN.
2963 */
2964 if (*((uint *) cp) == 0)
2965 return (BUDMIN);
2966
2967 /* check if the wmap word is half free. if so, the
2968 * free buddy size is BUDMIN-1.
2969 */
2970 if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
2971 return (BUDMIN - 1);
2972
2973 /* not all free or half free. determine the free buddy
2974 * size thru table lookup using quarters of the wmap word.
2975 */
2976 tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
2977 tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
2978 return (max(tmp1, tmp2));
2979}
2980
2981
2982/*
2983 * NAME: cnttz(uint word)
2984 *
2985 * FUNCTION: determine the number of trailing zeros within a 32-bit
2986 * value.
2987 *
2988 * PARAMETERS:
2989 * value - 32-bit value to be examined.
2990 *
2991 * RETURN VALUES:
2992 * count of trailing zeros
2993 */
2994static int cnttz(u32 word)
2995{
2996 int n;
2997
2998 for (n = 0; n < 32; n++, word >>= 1) {
2999 if (word & 0x01)
3000 break;
3001 }
3002
3003 return (n);
3004}
3005
3006
3007/*
3008 * NAME: cntlz(u32 value)
3009 *
3010 * FUNCTION: determine the number of leading zeros within a 32-bit
3011 * value.
3012 *
3013 * PARAMETERS:
3014 * value - 32-bit value to be examined.
3015 *
3016 * RETURN VALUES:
3017 * count of leading zeros
3018 */
3019static int cntlz(u32 value)
3020{
3021 int n;
3022
3023 for (n = 0; n < 32; n++, value <<= 1) {
3024 if (value & HIGHORDER)
3025 break;
3026 }
3027 return (n);
3028}
3029
3030
3031/*
3032 * NAME: blkstol2(s64 nb)
3033 *
3034 * FUNCTION: convert a block count to its log2 value. if the block
3035 * count is not a l2 multiple, it is rounded up to the next
3036 * larger l2 multiple.
3037 *
3038 * PARAMETERS:
3039 * nb - number of blocks
3040 *
3041 * RETURN VALUES:
3042 * log2 number of blocks
3043 */
3044int blkstol2(s64 nb)
3045{
3046 int l2nb;
3047 s64 mask; /* meant to be signed */
3048
3049 mask = (s64) 1 << (64 - 1);
3050
3051 /* count the leading bits.
3052 */
3053 for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3054 /* leading bit found.
3055 */
3056 if (nb & mask) {
3057 /* determine the l2 value.
3058 */
3059 l2nb = (64 - 1) - l2nb;
3060
3061 /* check if we need to round up.
3062 */
3063 if (~mask & nb)
3064 l2nb++;
3065
3066 return (l2nb);
3067 }
3068 }
3069 assert(0);
3070 return 0; /* fix compiler warning */
3071}
3072
3073
3074/*
3075 * NAME: dbAllocBottomUp()
3076 *
3077 * FUNCTION: alloc the specified block range from the working block
3078 * allocation map.
3079 *
3080 * the blocks will be alloc from the working map one dmap
3081 * at a time.
3082 *
3083 * PARAMETERS:
3084 * ip - pointer to in-core inode;
3085 * blkno - starting block number to be freed.
3086 * nblocks - number of blocks to be freed.
3087 *
3088 * RETURN VALUES:
3089 * 0 - success
3090 * -EIO - i/o error
3091 */
3092int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3093{
3094 struct metapage *mp;
3095 struct dmap *dp;
3096 int nb, rc;
3097 s64 lblkno, rem;
3098 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3099 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3100
3101 IREAD_LOCK(ipbmap);
3102
3103 /* block to be allocated better be within the mapsize. */
3104 ASSERT(nblocks <= bmp->db_mapsize - blkno);
3105
3106 /*
3107 * allocate the blocks a dmap at a time.
3108 */
3109 mp = NULL;
3110 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3111 /* release previous dmap if any */
3112 if (mp) {
3113 write_metapage(mp);
3114 }
3115
3116 /* get the buffer for the current dmap. */
3117 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3118 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3119 if (mp == NULL) {
3120 IREAD_UNLOCK(ipbmap);
3121 return -EIO;
3122 }
3123 dp = (struct dmap *) mp->data;
3124
3125 /* determine the number of blocks to be allocated from
3126 * this dmap.
3127 */
3128 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3129
Linus Torvalds1da177e2005-04-16 15:20:36 -07003130 /* allocate the blocks. */
3131 if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3132 release_metapage(mp);
3133 IREAD_UNLOCK(ipbmap);
3134 return (rc);
3135 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003136 }
3137
3138 /* write the last buffer. */
3139 write_metapage(mp);
3140
3141 IREAD_UNLOCK(ipbmap);
3142
3143 return (0);
3144}
3145
3146
3147static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3148 int nblocks)
3149{
3150 int rc;
3151 int dbitno, word, rembits, nb, nwords, wbitno, agno;
3152 s8 oldroot, *leaf;
3153 struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3154
3155 /* save the current value of the root (i.e. maximum free string)
3156 * of the dmap tree.
3157 */
3158 oldroot = tp->stree[ROOT];
3159
3160 /* pick up a pointer to the leaves of the dmap tree */
3161 leaf = tp->stree + LEAFIND;
3162
3163 /* determine the bit number and word within the dmap of the
3164 * starting block.
3165 */
3166 dbitno = blkno & (BPERDMAP - 1);
3167 word = dbitno >> L2DBWORD;
3168
3169 /* block range better be within the dmap */
3170 assert(dbitno + nblocks <= BPERDMAP);
3171
3172 /* allocate the bits of the dmap's words corresponding to the block
3173 * range. not all bits of the first and last words may be contained
3174 * within the block range. if this is the case, we'll work against
3175 * those words (i.e. partial first and/or last) on an individual basis
3176 * (a single pass), allocating the bits of interest by hand and
3177 * updating the leaf corresponding to the dmap word. a single pass
3178 * will be used for all dmap words fully contained within the
3179 * specified range. within this pass, the bits of all fully contained
3180 * dmap words will be marked as free in a single shot and the leaves
3181 * will be updated. a single leaf may describe the free space of
3182 * multiple dmap words, so we may update only a subset of the actual
3183 * leaves corresponding to the dmap words of the block range.
3184 */
3185 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3186 /* determine the bit number within the word and
3187 * the number of bits within the word.
3188 */
3189 wbitno = dbitno & (DBWORD - 1);
3190 nb = min(rembits, DBWORD - wbitno);
3191
3192 /* check if only part of a word is to be allocated.
3193 */
3194 if (nb < DBWORD) {
3195 /* allocate (set to 1) the appropriate bits within
3196 * this dmap word.
3197 */
3198 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3199 >> wbitno);
3200
3201 word++;
3202 } else {
3203 /* one or more dmap words are fully contained
3204 * within the block range. determine how many
3205 * words and allocate (set to 1) the bits of these
3206 * words.
3207 */
3208 nwords = rembits >> L2DBWORD;
3209 memset(&dp->wmap[word], (int) ONES, nwords * 4);
3210
3211 /* determine how many bits */
3212 nb = nwords << L2DBWORD;
3213 word += nwords;
3214 }
3215 }
3216
3217 /* update the free count for this dmap */
3218 dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) - nblocks);
3219
3220 /* reconstruct summary tree */
3221 dbInitDmapTree(dp);
3222
3223 BMAP_LOCK(bmp);
3224
3225 /* if this allocation group is completely free,
3226 * update the highest active allocation group number
3227 * if this allocation group is the new max.
3228 */
3229 agno = blkno >> bmp->db_agl2size;
3230 if (agno > bmp->db_maxag)
3231 bmp->db_maxag = agno;
3232
3233 /* update the free count for the allocation group and map */
3234 bmp->db_agfree[agno] -= nblocks;
3235 bmp->db_nfree -= nblocks;
3236
3237 BMAP_UNLOCK(bmp);
3238
3239 /* if the root has not changed, done. */
3240 if (tp->stree[ROOT] == oldroot)
3241 return (0);
3242
3243 /* root changed. bubble the change up to the dmap control pages.
3244 * if the adjustment of the upper level control pages fails,
3245 * backout the bit allocation (thus making everything consistent).
3246 */
3247 if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3248 dbFreeBits(bmp, dp, blkno, nblocks);
3249
3250 return (rc);
3251}
3252
3253
3254/*
3255 * NAME: dbExtendFS()
3256 *
3257 * FUNCTION: extend bmap from blkno for nblocks;
3258 * dbExtendFS() updates bmap ready for dbAllocBottomUp();
3259 *
3260 * L2
3261 * |
3262 * L1---------------------------------L1
3263 * | |
3264 * L0---------L0---------L0 L0---------L0---------L0
3265 * | | | | | |
3266 * d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,.,dm;
3267 * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3268 *
3269 * <---old---><----------------------------extend----------------------->
3270 */
3271int dbExtendFS(struct inode *ipbmap, s64 blkno, s64 nblocks)
3272{
3273 struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3274 int nbperpage = sbi->nbperpage;
3275 int i, i0 = TRUE, j, j0 = TRUE, k, n;
3276 s64 newsize;
3277 s64 p;
3278 struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3279 struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3280 struct dmap *dp;
3281 s8 *l0leaf, *l1leaf, *l2leaf;
3282 struct bmap *bmp = sbi->bmap;
3283 int agno, l2agsize, oldl2agsize;
3284 s64 ag_rem;
3285
3286 newsize = blkno + nblocks;
3287
3288 jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3289 (long long) blkno, (long long) nblocks, (long long) newsize);
3290
3291 /*
3292 * initialize bmap control page.
3293 *
3294 * all the data in bmap control page should exclude
3295 * the mkfs hidden dmap page.
3296 */
3297
3298 /* update mapsize */
3299 bmp->db_mapsize = newsize;
3300 bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3301
3302 /* compute new AG size */
3303 l2agsize = dbGetL2AGSize(newsize);
3304 oldl2agsize = bmp->db_agl2size;
3305
3306 bmp->db_agl2size = l2agsize;
3307 bmp->db_agsize = 1 << l2agsize;
3308
3309 /* compute new number of AG */
3310 agno = bmp->db_numag;
3311 bmp->db_numag = newsize >> l2agsize;
3312 bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3313
3314 /*
3315 * reconfigure db_agfree[]
3316 * from old AG configuration to new AG configuration;
3317 *
3318 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3319 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3320 * note: new AG size = old AG size * (2**x).
3321 */
3322 if (l2agsize == oldl2agsize)
3323 goto extend;
3324 k = 1 << (l2agsize - oldl2agsize);
3325 ag_rem = bmp->db_agfree[0]; /* save agfree[0] */
3326 for (i = 0, n = 0; i < agno; n++) {
3327 bmp->db_agfree[n] = 0; /* init collection point */
3328
3329 /* coalesce cotiguous k AGs; */
3330 for (j = 0; j < k && i < agno; j++, i++) {
3331 /* merge AGi to AGn */
3332 bmp->db_agfree[n] += bmp->db_agfree[i];
3333 }
3334 }
3335 bmp->db_agfree[0] += ag_rem; /* restore agfree[0] */
3336
3337 for (; n < MAXAG; n++)
3338 bmp->db_agfree[n] = 0;
3339
3340 /*
3341 * update highest active ag number
3342 */
3343
3344 bmp->db_maxag = bmp->db_maxag / k;
3345
3346 /*
3347 * extend bmap
3348 *
3349 * update bit maps and corresponding level control pages;
3350 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3351 */
3352 extend:
3353 /* get L2 page */
3354 p = BMAPBLKNO + nbperpage; /* L2 page */
3355 l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3356 if (!l2mp) {
3357 jfs_error(ipbmap->i_sb, "dbExtendFS: L2 page could not be read");
3358 return -EIO;
3359 }
3360 l2dcp = (struct dmapctl *) l2mp->data;
3361
3362 /* compute start L1 */
3363 k = blkno >> L2MAXL1SIZE;
3364 l2leaf = l2dcp->stree + CTLLEAFIND + k;
3365 p = BLKTOL1(blkno, sbi->l2nbperpage); /* L1 page */
3366
3367 /*
3368 * extend each L1 in L2
3369 */
3370 for (; k < LPERCTL; k++, p += nbperpage) {
3371 /* get L1 page */
3372 if (j0) {
3373 /* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3374 l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3375 if (l1mp == NULL)
3376 goto errout;
3377 l1dcp = (struct dmapctl *) l1mp->data;
3378
3379 /* compute start L0 */
3380 j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3381 l1leaf = l1dcp->stree + CTLLEAFIND + j;
3382 p = BLKTOL0(blkno, sbi->l2nbperpage);
3383 j0 = FALSE;
3384 } else {
3385 /* assign/init L1 page */
3386 l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3387 if (l1mp == NULL)
3388 goto errout;
3389
3390 l1dcp = (struct dmapctl *) l1mp->data;
3391
3392 /* compute start L0 */
3393 j = 0;
3394 l1leaf = l1dcp->stree + CTLLEAFIND;
3395 p += nbperpage; /* 1st L0 of L1.k */
3396 }
3397
3398 /*
3399 * extend each L0 in L1
3400 */
3401 for (; j < LPERCTL; j++) {
3402 /* get L0 page */
3403 if (i0) {
3404 /* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3405
3406 l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3407 if (l0mp == NULL)
3408 goto errout;
3409 l0dcp = (struct dmapctl *) l0mp->data;
3410
3411 /* compute start dmap */
3412 i = (blkno & (MAXL0SIZE - 1)) >>
3413 L2BPERDMAP;
3414 l0leaf = l0dcp->stree + CTLLEAFIND + i;
3415 p = BLKTODMAP(blkno,
3416 sbi->l2nbperpage);
3417 i0 = FALSE;
3418 } else {
3419 /* assign/init L0 page */
3420 l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3421 if (l0mp == NULL)
3422 goto errout;
3423
3424 l0dcp = (struct dmapctl *) l0mp->data;
3425
3426 /* compute start dmap */
3427 i = 0;
3428 l0leaf = l0dcp->stree + CTLLEAFIND;
3429 p += nbperpage; /* 1st dmap of L0.j */
3430 }
3431
3432 /*
3433 * extend each dmap in L0
3434 */
3435 for (; i < LPERCTL; i++) {
3436 /*
3437 * reconstruct the dmap page, and
3438 * initialize corresponding parent L0 leaf
3439 */
3440 if ((n = blkno & (BPERDMAP - 1))) {
3441 /* read in dmap page: */
3442 mp = read_metapage(ipbmap, p,
3443 PSIZE, 0);
3444 if (mp == NULL)
3445 goto errout;
3446 n = min(nblocks, (s64)BPERDMAP - n);
3447 } else {
3448 /* assign/init dmap page */
3449 mp = read_metapage(ipbmap, p,
3450 PSIZE, 0);
3451 if (mp == NULL)
3452 goto errout;
3453
3454 n = min(nblocks, (s64)BPERDMAP);
3455 }
3456
3457 dp = (struct dmap *) mp->data;
3458 *l0leaf = dbInitDmap(dp, blkno, n);
3459
3460 bmp->db_nfree += n;
3461 agno = le64_to_cpu(dp->start) >> l2agsize;
3462 bmp->db_agfree[agno] += n;
3463
3464 write_metapage(mp);
3465
3466 l0leaf++;
3467 p += nbperpage;
3468
3469 blkno += n;
3470 nblocks -= n;
3471 if (nblocks == 0)
3472 break;
3473 } /* for each dmap in a L0 */
3474
3475 /*
3476 * build current L0 page from its leaves, and
3477 * initialize corresponding parent L1 leaf
3478 */
3479 *l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3480 write_metapage(l0mp);
3481 l0mp = NULL;
3482
3483 if (nblocks)
3484 l1leaf++; /* continue for next L0 */
3485 else {
3486 /* more than 1 L0 ? */
3487 if (j > 0)
3488 break; /* build L1 page */
3489 else {
3490 /* summarize in global bmap page */
3491 bmp->db_maxfreebud = *l1leaf;
3492 release_metapage(l1mp);
3493 release_metapage(l2mp);
3494 goto finalize;
3495 }
3496 }
3497 } /* for each L0 in a L1 */
3498
3499 /*
3500 * build current L1 page from its leaves, and
3501 * initialize corresponding parent L2 leaf
3502 */
3503 *l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3504 write_metapage(l1mp);
3505 l1mp = NULL;
3506
3507 if (nblocks)
3508 l2leaf++; /* continue for next L1 */
3509 else {
3510 /* more than 1 L1 ? */
3511 if (k > 0)
3512 break; /* build L2 page */
3513 else {
3514 /* summarize in global bmap page */
3515 bmp->db_maxfreebud = *l2leaf;
3516 release_metapage(l2mp);
3517 goto finalize;
3518 }
3519 }
3520 } /* for each L1 in a L2 */
3521
3522 jfs_error(ipbmap->i_sb,
3523 "dbExtendFS: function has not returned as expected");
3524errout:
3525 if (l0mp)
3526 release_metapage(l0mp);
3527 if (l1mp)
3528 release_metapage(l1mp);
3529 release_metapage(l2mp);
3530 return -EIO;
3531
3532 /*
3533 * finalize bmap control page
3534 */
3535finalize:
3536
3537 return 0;
3538}
3539
3540
3541/*
3542 * dbFinalizeBmap()
3543 */
3544void dbFinalizeBmap(struct inode *ipbmap)
3545{
3546 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3547 int actags, inactags, l2nl;
3548 s64 ag_rem, actfree, inactfree, avgfree;
3549 int i, n;
3550
3551 /*
3552 * finalize bmap control page
3553 */
3554//finalize:
3555 /*
3556 * compute db_agpref: preferred ag to allocate from
3557 * (the leftmost ag with average free space in it);
3558 */
3559//agpref:
3560 /* get the number of active ags and inacitve ags */
3561 actags = bmp->db_maxag + 1;
3562 inactags = bmp->db_numag - actags;
3563 ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1); /* ??? */
3564
3565 /* determine how many blocks are in the inactive allocation
3566 * groups. in doing this, we must account for the fact that
3567 * the rightmost group might be a partial group (i.e. file
3568 * system size is not a multiple of the group size).
3569 */
3570 inactfree = (inactags && ag_rem) ?
3571 ((inactags - 1) << bmp->db_agl2size) + ag_rem
3572 : inactags << bmp->db_agl2size;
3573
3574 /* determine how many free blocks are in the active
3575 * allocation groups plus the average number of free blocks
3576 * within the active ags.
3577 */
3578 actfree = bmp->db_nfree - inactfree;
3579 avgfree = (u32) actfree / (u32) actags;
3580
3581 /* if the preferred allocation group has not average free space.
3582 * re-establish the preferred group as the leftmost
3583 * group with average free space.
3584 */
3585 if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3586 for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3587 bmp->db_agpref++) {
3588 if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3589 break;
3590 }
3591 if (bmp->db_agpref >= bmp->db_numag) {
3592 jfs_error(ipbmap->i_sb,
3593 "cannot find ag with average freespace");
3594 }
3595 }
3596
3597 /*
3598 * compute db_aglevel, db_agheigth, db_width, db_agstart:
3599 * an ag is covered in aglevel dmapctl summary tree,
3600 * at agheight level height (from leaf) with agwidth number of nodes
3601 * each, which starts at agstart index node of the smmary tree node
3602 * array;
3603 */
3604 bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3605 l2nl =
3606 bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3607 bmp->db_agheigth = l2nl >> 1;
3608 bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheigth << 1));
3609 for (i = 5 - bmp->db_agheigth, bmp->db_agstart = 0, n = 1; i > 0;
3610 i--) {
3611 bmp->db_agstart += n;
3612 n <<= 2;
3613 }
3614
3615}
3616
3617
3618/*
3619 * NAME: dbInitDmap()/ujfs_idmap_page()
3620 *
3621 * FUNCTION: initialize working/persistent bitmap of the dmap page
3622 * for the specified number of blocks:
3623 *
3624 * at entry, the bitmaps had been initialized as free (ZEROS);
3625 * The number of blocks will only account for the actually
3626 * existing blocks. Blocks which don't actually exist in
3627 * the aggregate will be marked as allocated (ONES);
3628 *
3629 * PARAMETERS:
3630 * dp - pointer to page of map
3631 * nblocks - number of blocks this page
3632 *
3633 * RETURNS: NONE
3634 */
3635static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3636{
3637 int blkno, w, b, r, nw, nb, i;
3638
3639 /* starting block number within the dmap */
3640 blkno = Blkno & (BPERDMAP - 1);
3641
3642 if (blkno == 0) {
3643 dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3644 dp->start = cpu_to_le64(Blkno);
3645
3646 if (nblocks == BPERDMAP) {
3647 memset(&dp->wmap[0], 0, LPERDMAP * 4);
3648 memset(&dp->pmap[0], 0, LPERDMAP * 4);
3649 goto initTree;
3650 }
3651 } else {
3652 dp->nblocks =
3653 cpu_to_le32(le32_to_cpu(dp->nblocks) + nblocks);
3654 dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) + nblocks);
3655 }
3656
3657 /* word number containing start block number */
3658 w = blkno >> L2DBWORD;
3659
3660 /*
3661 * free the bits corresponding to the block range (ZEROS):
3662 * note: not all bits of the first and last words may be contained
3663 * within the block range.
3664 */
3665 for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3666 /* number of bits preceding range to be freed in the word */
3667 b = blkno & (DBWORD - 1);
3668 /* number of bits to free in the word */
3669 nb = min(r, DBWORD - b);
3670
3671 /* is partial word to be freed ? */
3672 if (nb < DBWORD) {
3673 /* free (set to 0) from the bitmap word */
3674 dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3675 >> b));
3676 dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3677 >> b));
3678
3679 /* skip the word freed */
3680 w++;
3681 } else {
3682 /* free (set to 0) contiguous bitmap words */
3683 nw = r >> L2DBWORD;
3684 memset(&dp->wmap[w], 0, nw * 4);
3685 memset(&dp->pmap[w], 0, nw * 4);
3686
3687 /* skip the words freed */
3688 nb = nw << L2DBWORD;
3689 w += nw;
3690 }
3691 }
3692
3693 /*
3694 * mark bits following the range to be freed (non-existing
3695 * blocks) as allocated (ONES)
3696 */
3697
3698 if (blkno == BPERDMAP)
3699 goto initTree;
3700
3701 /* the first word beyond the end of existing blocks */
3702 w = blkno >> L2DBWORD;
3703
3704 /* does nblocks fall on a 32-bit boundary ? */
3705 b = blkno & (DBWORD - 1);
3706 if (b) {
3707 /* mark a partial word allocated */
3708 dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3709 w++;
3710 }
3711
3712 /* set the rest of the words in the page to allocated (ONES) */
3713 for (i = w; i < LPERDMAP; i++)
3714 dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3715
3716 /*
3717 * init tree
3718 */
3719 initTree:
3720 return (dbInitDmapTree(dp));
3721}
3722
3723
3724/*
3725 * NAME: dbInitDmapTree()/ujfs_complete_dmap()
3726 *
3727 * FUNCTION: initialize summary tree of the specified dmap:
3728 *
3729 * at entry, bitmap of the dmap has been initialized;
3730 *
3731 * PARAMETERS:
3732 * dp - dmap to complete
3733 * blkno - starting block number for this dmap
3734 * treemax - will be filled in with max free for this dmap
3735 *
3736 * RETURNS: max free string at the root of the tree
3737 */
3738static int dbInitDmapTree(struct dmap * dp)
3739{
3740 struct dmaptree *tp;
3741 s8 *cp;
3742 int i;
3743
3744 /* init fixed info of tree */
3745 tp = &dp->tree;
3746 tp->nleafs = cpu_to_le32(LPERDMAP);
3747 tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3748 tp->leafidx = cpu_to_le32(LEAFIND);
3749 tp->height = cpu_to_le32(4);
3750 tp->budmin = BUDMIN;
3751
3752 /* init each leaf from corresponding wmap word:
3753 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3754 * bitmap word are allocated.
3755 */
3756 cp = tp->stree + le32_to_cpu(tp->leafidx);
3757 for (i = 0; i < LPERDMAP; i++)
3758 *cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3759
3760 /* build the dmap's binary buddy summary tree */
3761 return (dbInitTree(tp));
3762}
3763
3764
3765/*
3766 * NAME: dbInitTree()/ujfs_adjtree()
3767 *
3768 * FUNCTION: initialize binary buddy summary tree of a dmap or dmapctl.
3769 *
3770 * at entry, the leaves of the tree has been initialized
3771 * from corresponding bitmap word or root of summary tree
3772 * of the child control page;
3773 * configure binary buddy system at the leaf level, then
3774 * bubble up the values of the leaf nodes up the tree.
3775 *
3776 * PARAMETERS:
3777 * cp - Pointer to the root of the tree
3778 * l2leaves- Number of leaf nodes as a power of 2
3779 * l2min - Number of blocks that can be covered by a leaf
3780 * as a power of 2
3781 *
3782 * RETURNS: max free string at the root of the tree
3783 */
3784static int dbInitTree(struct dmaptree * dtp)
3785{
3786 int l2max, l2free, bsize, nextb, i;
3787 int child, parent, nparent;
3788 s8 *tp, *cp, *cp1;
3789
3790 tp = dtp->stree;
3791
3792 /* Determine the maximum free string possible for the leaves */
3793 l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3794
3795 /*
3796 * configure the leaf levevl into binary buddy system
3797 *
3798 * Try to combine buddies starting with a buddy size of 1
3799 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3800 * can be combined if both buddies have a maximum free of l2min;
3801 * the combination will result in the left-most buddy leaf having
3802 * a maximum free of l2min+1.
3803 * After processing all buddies for a given size, process buddies
3804 * at the next higher buddy size (i.e. current size * 2) and
3805 * the next maximum free (current free + 1).
3806 * This continues until the maximum possible buddy combination
3807 * yields maximum free.
3808 */
3809 for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3810 l2free++, bsize = nextb) {
3811 /* get next buddy size == current buddy pair size */
3812 nextb = bsize << 1;
3813
3814 /* scan each adjacent buddy pair at current buddy size */
3815 for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3816 i < le32_to_cpu(dtp->nleafs);
3817 i += nextb, cp += nextb) {
3818 /* coalesce if both adjacent buddies are max free */
3819 if (*cp == l2free && *(cp + bsize) == l2free) {
3820 *cp = l2free + 1; /* left take right */
3821 *(cp + bsize) = -1; /* right give left */
3822 }
3823 }
3824 }
3825
3826 /*
3827 * bubble summary information of leaves up the tree.
3828 *
3829 * Starting at the leaf node level, the four nodes described by
3830 * the higher level parent node are compared for a maximum free and
3831 * this maximum becomes the value of the parent node.
3832 * when all lower level nodes are processed in this fashion then
3833 * move up to the next level (parent becomes a lower level node) and
3834 * continue the process for that level.
3835 */
3836 for (child = le32_to_cpu(dtp->leafidx),
3837 nparent = le32_to_cpu(dtp->nleafs) >> 2;
3838 nparent > 0; nparent >>= 2, child = parent) {
3839 /* get index of 1st node of parent level */
3840 parent = (child - 1) >> 2;
3841
3842 /* set the value of the parent node as the maximum
3843 * of the four nodes of the current level.
3844 */
3845 for (i = 0, cp = tp + child, cp1 = tp + parent;
3846 i < nparent; i++, cp += 4, cp1++)
3847 *cp1 = TREEMAX(cp);
3848 }
3849
3850 return (*tp);
3851}
3852
3853
3854/*
3855 * dbInitDmapCtl()
3856 *
3857 * function: initialize dmapctl page
3858 */
3859static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3860{ /* start leaf index not covered by range */
3861 s8 *cp;
3862
3863 dcp->nleafs = cpu_to_le32(LPERCTL);
3864 dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3865 dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3866 dcp->height = cpu_to_le32(5);
3867 dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3868
3869 /*
3870 * initialize the leaves of current level that were not covered
3871 * by the specified input block range (i.e. the leaves have no
3872 * low level dmapctl or dmap).
3873 */
3874 cp = &dcp->stree[CTLLEAFIND + i];
3875 for (; i < LPERCTL; i++)
3876 *cp++ = NOFREE;
3877
3878 /* build the dmap's binary buddy summary tree */
3879 return (dbInitTree((struct dmaptree *) dcp));
3880}
3881
3882
3883/*
3884 * NAME: dbGetL2AGSize()/ujfs_getagl2size()
3885 *
3886 * FUNCTION: Determine log2(allocation group size) from aggregate size
3887 *
3888 * PARAMETERS:
3889 * nblocks - Number of blocks in aggregate
3890 *
3891 * RETURNS: log2(allocation group size) in aggregate blocks
3892 */
3893static int dbGetL2AGSize(s64 nblocks)
3894{
3895 s64 sz;
3896 s64 m;
3897 int l2sz;
3898
3899 if (nblocks < BPERDMAP * MAXAG)
3900 return (L2BPERDMAP);
3901
3902 /* round up aggregate size to power of 2 */
3903 m = ((u64) 1 << (64 - 1));
3904 for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
3905 if (m & nblocks)
3906 break;
3907 }
3908
3909 sz = (s64) 1 << l2sz;
3910 if (sz < nblocks)
3911 l2sz += 1;
3912
3913 /* agsize = roundupSize/max_number_of_ag */
3914 return (l2sz - L2MAXAG);
3915}
3916
3917
3918/*
3919 * NAME: dbMapFileSizeToMapSize()
3920 *
3921 * FUNCTION: compute number of blocks the block allocation map file
3922 * can cover from the map file size;
3923 *
3924 * RETURNS: Number of blocks which can be covered by this block map file;
3925 */
3926
3927/*
3928 * maximum number of map pages at each level including control pages
3929 */
3930#define MAXL0PAGES (1 + LPERCTL)
3931#define MAXL1PAGES (1 + LPERCTL * MAXL0PAGES)
3932#define MAXL2PAGES (1 + LPERCTL * MAXL1PAGES)
3933
3934/*
3935 * convert number of map pages to the zero origin top dmapctl level
3936 */
3937#define BMAPPGTOLEV(npages) \
3938 (((npages) <= 3 + MAXL0PAGES) ? 0 \
3939 : ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
3940
3941s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
3942{
3943 struct super_block *sb = ipbmap->i_sb;
3944 s64 nblocks;
3945 s64 npages, ndmaps;
3946 int level, i;
3947 int complete, factor;
3948
3949 nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
3950 npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
3951 level = BMAPPGTOLEV(npages);
3952
3953 /* At each level, accumulate the number of dmap pages covered by
3954 * the number of full child levels below it;
3955 * repeat for the last incomplete child level.
3956 */
3957 ndmaps = 0;
3958 npages--; /* skip the first global control page */
3959 /* skip higher level control pages above top level covered by map */
3960 npages -= (2 - level);
3961 npages--; /* skip top level's control page */
3962 for (i = level; i >= 0; i--) {
3963 factor =
3964 (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
3965 complete = (u32) npages / factor;
3966 ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL
3967 : ((i == 1) ? LPERCTL : 1));
3968
3969 /* pages in last/incomplete child */
3970 npages = (u32) npages % factor;
3971 /* skip incomplete child's level control page */
3972 npages--;
3973 }
3974
3975 /* convert the number of dmaps into the number of blocks
3976 * which can be covered by the dmaps;
3977 */
3978 nblocks = ndmaps << L2BPERDMAP;
3979
3980 return (nblocks);
3981}