blob: 9997138a4fdcbab717339d0479df4de47e10efaa [file] [log] [blame]
Divy Le Ray4d22de32007-01-18 22:04:14 -05001/*
2 * Copyright (c) 2006 Chelsio, Inc. All rights reserved.
3 * Copyright (c) 2006 Open Grid Computing, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33#include <linux/skbuff.h>
34#include <linux/netdevice.h>
35#include <linux/if.h>
36#include <linux/if_vlan.h>
37#include <linux/jhash.h>
38#include <net/neighbour.h>
39#include "common.h"
40#include "t3cdev.h"
41#include "cxgb3_defs.h"
42#include "l2t.h"
43#include "t3_cpl.h"
44#include "firmware_exports.h"
45
46#define VLAN_NONE 0xfff
47
48/*
49 * Module locking notes: There is a RW lock protecting the L2 table as a
50 * whole plus a spinlock per L2T entry. Entry lookups and allocations happen
51 * under the protection of the table lock, individual entry changes happen
52 * while holding that entry's spinlock. The table lock nests outside the
53 * entry locks. Allocations of new entries take the table lock as writers so
54 * no other lookups can happen while allocating new entries. Entry updates
55 * take the table lock as readers so multiple entries can be updated in
56 * parallel. An L2T entry can be dropped by decrementing its reference count
57 * and therefore can happen in parallel with entry allocation but no entry
58 * can change state or increment its ref count during allocation as both of
59 * these perform lookups.
60 */
61
62static inline unsigned int vlan_prio(const struct l2t_entry *e)
63{
64 return e->vlan >> 13;
65}
66
67static inline unsigned int arp_hash(u32 key, int ifindex,
68 const struct l2t_data *d)
69{
70 return jhash_2words(key, ifindex, 0) & (d->nentries - 1);
71}
72
73static inline void neigh_replace(struct l2t_entry *e, struct neighbour *n)
74{
75 neigh_hold(n);
76 if (e->neigh)
77 neigh_release(e->neigh);
78 e->neigh = n;
79}
80
81/*
82 * Set up an L2T entry and send any packets waiting in the arp queue. The
83 * supplied skb is used for the CPL_L2T_WRITE_REQ. Must be called with the
84 * entry locked.
85 */
86static int setup_l2e_send_pending(struct t3cdev *dev, struct sk_buff *skb,
87 struct l2t_entry *e)
88{
89 struct cpl_l2t_write_req *req;
90
91 if (!skb) {
92 skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
93 if (!skb)
94 return -ENOMEM;
95 }
96
97 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
98 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
99 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, e->idx));
100 req->params = htonl(V_L2T_W_IDX(e->idx) | V_L2T_W_IFF(e->smt_idx) |
101 V_L2T_W_VLAN(e->vlan & VLAN_VID_MASK) |
102 V_L2T_W_PRIO(vlan_prio(e)));
103 memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
104 memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
105 skb->priority = CPL_PRIORITY_CONTROL;
106 cxgb3_ofld_send(dev, skb);
107 while (e->arpq_head) {
108 skb = e->arpq_head;
109 e->arpq_head = skb->next;
110 skb->next = NULL;
111 cxgb3_ofld_send(dev, skb);
112 }
113 e->arpq_tail = NULL;
114 e->state = L2T_STATE_VALID;
115
116 return 0;
117}
118
119/*
120 * Add a packet to the an L2T entry's queue of packets awaiting resolution.
121 * Must be called with the entry's lock held.
122 */
123static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
124{
125 skb->next = NULL;
126 if (e->arpq_head)
127 e->arpq_tail->next = skb;
128 else
129 e->arpq_head = skb;
130 e->arpq_tail = skb;
131}
132
133int t3_l2t_send_slow(struct t3cdev *dev, struct sk_buff *skb,
134 struct l2t_entry *e)
135{
136again:
137 switch (e->state) {
138 case L2T_STATE_STALE: /* entry is stale, kick off revalidation */
139 neigh_event_send(e->neigh, NULL);
140 spin_lock_bh(&e->lock);
141 if (e->state == L2T_STATE_STALE)
142 e->state = L2T_STATE_VALID;
143 spin_unlock_bh(&e->lock);
144 case L2T_STATE_VALID: /* fast-path, send the packet on */
145 return cxgb3_ofld_send(dev, skb);
146 case L2T_STATE_RESOLVING:
147 spin_lock_bh(&e->lock);
148 if (e->state != L2T_STATE_RESOLVING) {
149 /* ARP already completed */
150 spin_unlock_bh(&e->lock);
151 goto again;
152 }
153 arpq_enqueue(e, skb);
154 spin_unlock_bh(&e->lock);
155
156 /*
157 * Only the first packet added to the arpq should kick off
158 * resolution. However, because the alloc_skb below can fail,
159 * we allow each packet added to the arpq to retry resolution
160 * as a way of recovering from transient memory exhaustion.
161 * A better way would be to use a work request to retry L2T
162 * entries when there's no memory.
163 */
164 if (!neigh_event_send(e->neigh, NULL)) {
165 skb = alloc_skb(sizeof(struct cpl_l2t_write_req),
166 GFP_ATOMIC);
167 if (!skb)
168 break;
169
170 spin_lock_bh(&e->lock);
171 if (e->arpq_head)
172 setup_l2e_send_pending(dev, skb, e);
173 else /* we lost the race */
174 __kfree_skb(skb);
175 spin_unlock_bh(&e->lock);
176 }
177 }
178 return 0;
179}
180
181EXPORT_SYMBOL(t3_l2t_send_slow);
182
183void t3_l2t_send_event(struct t3cdev *dev, struct l2t_entry *e)
184{
185again:
186 switch (e->state) {
187 case L2T_STATE_STALE: /* entry is stale, kick off revalidation */
188 neigh_event_send(e->neigh, NULL);
189 spin_lock_bh(&e->lock);
190 if (e->state == L2T_STATE_STALE) {
191 e->state = L2T_STATE_VALID;
192 }
193 spin_unlock_bh(&e->lock);
194 return;
195 case L2T_STATE_VALID: /* fast-path, send the packet on */
196 return;
197 case L2T_STATE_RESOLVING:
198 spin_lock_bh(&e->lock);
199 if (e->state != L2T_STATE_RESOLVING) {
200 /* ARP already completed */
201 spin_unlock_bh(&e->lock);
202 goto again;
203 }
204 spin_unlock_bh(&e->lock);
205
206 /*
207 * Only the first packet added to the arpq should kick off
208 * resolution. However, because the alloc_skb below can fail,
209 * we allow each packet added to the arpq to retry resolution
210 * as a way of recovering from transient memory exhaustion.
211 * A better way would be to use a work request to retry L2T
212 * entries when there's no memory.
213 */
214 neigh_event_send(e->neigh, NULL);
215 }
216 return;
217}
218
219EXPORT_SYMBOL(t3_l2t_send_event);
220
221/*
222 * Allocate a free L2T entry. Must be called with l2t_data.lock held.
223 */
224static struct l2t_entry *alloc_l2e(struct l2t_data *d)
225{
226 struct l2t_entry *end, *e, **p;
227
228 if (!atomic_read(&d->nfree))
229 return NULL;
230
231 /* there's definitely a free entry */
232 for (e = d->rover, end = &d->l2tab[d->nentries]; e != end; ++e)
233 if (atomic_read(&e->refcnt) == 0)
234 goto found;
235
236 for (e = &d->l2tab[1]; atomic_read(&e->refcnt); ++e) ;
237found:
238 d->rover = e + 1;
239 atomic_dec(&d->nfree);
240
241 /*
242 * The entry we found may be an inactive entry that is
243 * presently in the hash table. We need to remove it.
244 */
245 if (e->state != L2T_STATE_UNUSED) {
246 int hash = arp_hash(e->addr, e->ifindex, d);
247
248 for (p = &d->l2tab[hash].first; *p; p = &(*p)->next)
249 if (*p == e) {
250 *p = e->next;
251 break;
252 }
253 e->state = L2T_STATE_UNUSED;
254 }
255 return e;
256}
257
258/*
259 * Called when an L2T entry has no more users. The entry is left in the hash
260 * table since it is likely to be reused but we also bump nfree to indicate
261 * that the entry can be reallocated for a different neighbor. We also drop
262 * the existing neighbor reference in case the neighbor is going away and is
263 * waiting on our reference.
264 *
265 * Because entries can be reallocated to other neighbors once their ref count
266 * drops to 0 we need to take the entry's lock to avoid races with a new
267 * incarnation.
268 */
269void t3_l2e_free(struct l2t_data *d, struct l2t_entry *e)
270{
271 spin_lock_bh(&e->lock);
272 if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */
273 if (e->neigh) {
274 neigh_release(e->neigh);
275 e->neigh = NULL;
276 }
277 }
278 spin_unlock_bh(&e->lock);
279 atomic_inc(&d->nfree);
280}
281
282EXPORT_SYMBOL(t3_l2e_free);
283
284/*
285 * Update an L2T entry that was previously used for the same next hop as neigh.
286 * Must be called with softirqs disabled.
287 */
288static inline void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
289{
290 unsigned int nud_state;
291
292 spin_lock(&e->lock); /* avoid race with t3_l2t_free */
293
294 if (neigh != e->neigh)
295 neigh_replace(e, neigh);
296 nud_state = neigh->nud_state;
297 if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
298 !(nud_state & NUD_VALID))
299 e->state = L2T_STATE_RESOLVING;
300 else if (nud_state & NUD_CONNECTED)
301 e->state = L2T_STATE_VALID;
302 else
303 e->state = L2T_STATE_STALE;
304 spin_unlock(&e->lock);
305}
306
307struct l2t_entry *t3_l2t_get(struct t3cdev *cdev, struct neighbour *neigh,
308 struct net_device *dev)
309{
310 struct l2t_entry *e;
311 struct l2t_data *d = L2DATA(cdev);
312 u32 addr = *(u32 *) neigh->primary_key;
313 int ifidx = neigh->dev->ifindex;
314 int hash = arp_hash(addr, ifidx, d);
315 struct port_info *p = netdev_priv(dev);
316 int smt_idx = p->port_id;
317
318 write_lock_bh(&d->lock);
319 for (e = d->l2tab[hash].first; e; e = e->next)
320 if (e->addr == addr && e->ifindex == ifidx &&
321 e->smt_idx == smt_idx) {
322 l2t_hold(d, e);
323 if (atomic_read(&e->refcnt) == 1)
324 reuse_entry(e, neigh);
325 goto done;
326 }
327
328 /* Need to allocate a new entry */
329 e = alloc_l2e(d);
330 if (e) {
331 spin_lock(&e->lock); /* avoid race with t3_l2t_free */
332 e->next = d->l2tab[hash].first;
333 d->l2tab[hash].first = e;
334 e->state = L2T_STATE_RESOLVING;
335 e->addr = addr;
336 e->ifindex = ifidx;
337 e->smt_idx = smt_idx;
338 atomic_set(&e->refcnt, 1);
339 neigh_replace(e, neigh);
340 if (neigh->dev->priv_flags & IFF_802_1Q_VLAN)
341 e->vlan = VLAN_DEV_INFO(neigh->dev)->vlan_id;
342 else
343 e->vlan = VLAN_NONE;
344 spin_unlock(&e->lock);
345 }
346done:
347 write_unlock_bh(&d->lock);
348 return e;
349}
350
351EXPORT_SYMBOL(t3_l2t_get);
352
353/*
354 * Called when address resolution fails for an L2T entry to handle packets
355 * on the arpq head. If a packet specifies a failure handler it is invoked,
356 * otherwise the packets is sent to the offload device.
357 *
358 * XXX: maybe we should abandon the latter behavior and just require a failure
359 * handler.
360 */
361static void handle_failed_resolution(struct t3cdev *dev, struct sk_buff *arpq)
362{
363 while (arpq) {
364 struct sk_buff *skb = arpq;
365 struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
366
367 arpq = skb->next;
368 skb->next = NULL;
369 if (cb->arp_failure_handler)
370 cb->arp_failure_handler(dev, skb);
371 else
372 cxgb3_ofld_send(dev, skb);
373 }
374}
375
376/*
377 * Called when the host's ARP layer makes a change to some entry that is
378 * loaded into the HW L2 table.
379 */
380void t3_l2t_update(struct t3cdev *dev, struct neighbour *neigh)
381{
382 struct l2t_entry *e;
383 struct sk_buff *arpq = NULL;
384 struct l2t_data *d = L2DATA(dev);
385 u32 addr = *(u32 *) neigh->primary_key;
386 int ifidx = neigh->dev->ifindex;
387 int hash = arp_hash(addr, ifidx, d);
388
389 read_lock_bh(&d->lock);
390 for (e = d->l2tab[hash].first; e; e = e->next)
391 if (e->addr == addr && e->ifindex == ifidx) {
392 spin_lock(&e->lock);
393 goto found;
394 }
395 read_unlock_bh(&d->lock);
396 return;
397
398found:
399 read_unlock(&d->lock);
400 if (atomic_read(&e->refcnt)) {
401 if (neigh != e->neigh)
402 neigh_replace(e, neigh);
403
404 if (e->state == L2T_STATE_RESOLVING) {
405 if (neigh->nud_state & NUD_FAILED) {
406 arpq = e->arpq_head;
407 e->arpq_head = e->arpq_tail = NULL;
408 } else if (neigh_is_connected(neigh))
409 setup_l2e_send_pending(dev, NULL, e);
410 } else {
411 e->state = neigh_is_connected(neigh) ?
412 L2T_STATE_VALID : L2T_STATE_STALE;
413 if (memcmp(e->dmac, neigh->ha, 6))
414 setup_l2e_send_pending(dev, NULL, e);
415 }
416 }
417 spin_unlock_bh(&e->lock);
418
419 if (arpq)
420 handle_failed_resolution(dev, arpq);
421}
422
423struct l2t_data *t3_init_l2t(unsigned int l2t_capacity)
424{
425 struct l2t_data *d;
426 int i, size = sizeof(*d) + l2t_capacity * sizeof(struct l2t_entry);
427
428 d = cxgb_alloc_mem(size);
429 if (!d)
430 return NULL;
431
432 d->nentries = l2t_capacity;
433 d->rover = &d->l2tab[1]; /* entry 0 is not used */
434 atomic_set(&d->nfree, l2t_capacity - 1);
435 rwlock_init(&d->lock);
436
437 for (i = 0; i < l2t_capacity; ++i) {
438 d->l2tab[i].idx = i;
439 d->l2tab[i].state = L2T_STATE_UNUSED;
440 spin_lock_init(&d->l2tab[i].lock);
441 atomic_set(&d->l2tab[i].refcnt, 0);
442 }
443 return d;
444}
445
446void t3_free_l2t(struct l2t_data *d)
447{
448 cxgb_free_mem(d);
449}
450