blob: 585bb4e0b97f00dd9d1e0bc61753ab3a2827dae7 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
Andy Whitcroftd41dee32005-06-23 00:07:54 -070061#ifndef CONFIG_NEED_MULTIPLE_NODES
Linus Torvalds1da177e2005-04-16 15:20:36 -070062/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85/*
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
89 */
90
91void pgd_clear_bad(pgd_t *pgd)
92{
93 pgd_ERROR(*pgd);
94 pgd_clear(pgd);
95}
96
97void pud_clear_bad(pud_t *pud)
98{
99 pud_ERROR(*pud);
100 pud_clear(pud);
101}
102
103void pmd_clear_bad(pmd_t *pmd)
104{
105 pmd_ERROR(*pmd);
106 pmd_clear(pmd);
107}
108
109/*
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
112 */
Hugh Dickinse0da3822005-04-19 13:29:15 -0700113static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114{
Hugh Dickinse0da3822005-04-19 13:29:15 -0700115 struct page *page = pmd_page(*pmd);
116 pmd_clear(pmd);
117 pte_free_tlb(tlb, page);
118 dec_page_state(nr_page_table_pages);
119 tlb->mm->nr_ptes--;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700120}
121
Hugh Dickinse0da3822005-04-19 13:29:15 -0700122static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123 unsigned long addr, unsigned long end,
124 unsigned long floor, unsigned long ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700125{
126 pmd_t *pmd;
127 unsigned long next;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700128 unsigned long start;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700129
Hugh Dickinse0da3822005-04-19 13:29:15 -0700130 start = addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700131 pmd = pmd_offset(pud, addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700132 do {
133 next = pmd_addr_end(addr, end);
134 if (pmd_none_or_clear_bad(pmd))
135 continue;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700136 free_pte_range(tlb, pmd);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700137 } while (pmd++, addr = next, addr != end);
138
Hugh Dickinse0da3822005-04-19 13:29:15 -0700139 start &= PUD_MASK;
140 if (start < floor)
141 return;
142 if (ceiling) {
143 ceiling &= PUD_MASK;
144 if (!ceiling)
145 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700146 }
Hugh Dickinse0da3822005-04-19 13:29:15 -0700147 if (end - 1 > ceiling - 1)
148 return;
149
150 pmd = pmd_offset(pud, start);
151 pud_clear(pud);
152 pmd_free_tlb(tlb, pmd);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700153}
154
Hugh Dickinse0da3822005-04-19 13:29:15 -0700155static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156 unsigned long addr, unsigned long end,
157 unsigned long floor, unsigned long ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700158{
159 pud_t *pud;
160 unsigned long next;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700161 unsigned long start;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700162
Hugh Dickinse0da3822005-04-19 13:29:15 -0700163 start = addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700164 pud = pud_offset(pgd, addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700165 do {
166 next = pud_addr_end(addr, end);
167 if (pud_none_or_clear_bad(pud))
168 continue;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700169 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700170 } while (pud++, addr = next, addr != end);
171
Hugh Dickinse0da3822005-04-19 13:29:15 -0700172 start &= PGDIR_MASK;
173 if (start < floor)
174 return;
175 if (ceiling) {
176 ceiling &= PGDIR_MASK;
177 if (!ceiling)
178 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700179 }
Hugh Dickinse0da3822005-04-19 13:29:15 -0700180 if (end - 1 > ceiling - 1)
181 return;
182
183 pud = pud_offset(pgd, start);
184 pgd_clear(pgd);
185 pud_free_tlb(tlb, pud);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186}
187
188/*
Hugh Dickinse0da3822005-04-19 13:29:15 -0700189 * This function frees user-level page tables of a process.
190 *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700191 * Must be called with pagetable lock held.
192 */
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700193void free_pgd_range(struct mmu_gather **tlb,
Hugh Dickinse0da3822005-04-19 13:29:15 -0700194 unsigned long addr, unsigned long end,
195 unsigned long floor, unsigned long ceiling)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700196{
197 pgd_t *pgd;
198 unsigned long next;
Hugh Dickinse0da3822005-04-19 13:29:15 -0700199 unsigned long start;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700200
Hugh Dickinse0da3822005-04-19 13:29:15 -0700201 /*
202 * The next few lines have given us lots of grief...
203 *
204 * Why are we testing PMD* at this top level? Because often
205 * there will be no work to do at all, and we'd prefer not to
206 * go all the way down to the bottom just to discover that.
207 *
208 * Why all these "- 1"s? Because 0 represents both the bottom
209 * of the address space and the top of it (using -1 for the
210 * top wouldn't help much: the masks would do the wrong thing).
211 * The rule is that addr 0 and floor 0 refer to the bottom of
212 * the address space, but end 0 and ceiling 0 refer to the top
213 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214 * that end 0 case should be mythical).
215 *
216 * Wherever addr is brought up or ceiling brought down, we must
217 * be careful to reject "the opposite 0" before it confuses the
218 * subsequent tests. But what about where end is brought down
219 * by PMD_SIZE below? no, end can't go down to 0 there.
220 *
221 * Whereas we round start (addr) and ceiling down, by different
222 * masks at different levels, in order to test whether a table
223 * now has no other vmas using it, so can be freed, we don't
224 * bother to round floor or end up - the tests don't need that.
225 */
226
227 addr &= PMD_MASK;
228 if (addr < floor) {
229 addr += PMD_SIZE;
230 if (!addr)
231 return;
232 }
233 if (ceiling) {
234 ceiling &= PMD_MASK;
235 if (!ceiling)
236 return;
237 }
238 if (end - 1 > ceiling - 1)
239 end -= PMD_SIZE;
240 if (addr > end - 1)
241 return;
242
243 start = addr;
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700244 pgd = pgd_offset((*tlb)->mm, addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700245 do {
246 next = pgd_addr_end(addr, end);
247 if (pgd_none_or_clear_bad(pgd))
248 continue;
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700249 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700250 } while (pgd++, addr = next, addr != end);
Hugh Dickinse0da3822005-04-19 13:29:15 -0700251
Hugh Dickins4d6ddfa2005-10-29 18:16:02 -0700252 if (!(*tlb)->fullmm)
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700253 flush_tlb_pgtables((*tlb)->mm, start, end);
Hugh Dickinse0da3822005-04-19 13:29:15 -0700254}
255
256void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700257 unsigned long floor, unsigned long ceiling)
Hugh Dickinse0da3822005-04-19 13:29:15 -0700258{
259 while (vma) {
260 struct vm_area_struct *next = vma->vm_next;
261 unsigned long addr = vma->vm_start;
262
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700263 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
Hugh Dickinse0da3822005-04-19 13:29:15 -0700265 floor, next? next->vm_start: ceiling);
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700266 } else {
267 /*
268 * Optimization: gather nearby vmas into one call down
269 */
270 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271 && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272 HPAGE_SIZE)) {
273 vma = next;
274 next = vma->vm_next;
275 }
276 free_pgd_range(tlb, addr, vma->vm_end,
277 floor, next? next->vm_start: ceiling);
278 }
Hugh Dickinse0da3822005-04-19 13:29:15 -0700279 vma = next;
280 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700281}
282
Hugh Dickins3bf5ee92005-04-19 13:29:16 -0700283pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
284 unsigned long address)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700285{
286 if (!pmd_present(*pmd)) {
287 struct page *new;
288
289 spin_unlock(&mm->page_table_lock);
290 new = pte_alloc_one(mm, address);
291 spin_lock(&mm->page_table_lock);
292 if (!new)
293 return NULL;
294 /*
295 * Because we dropped the lock, we should re-check the
296 * entry, as somebody else could have populated it..
297 */
298 if (pmd_present(*pmd)) {
299 pte_free(new);
300 goto out;
301 }
302 mm->nr_ptes++;
303 inc_page_state(nr_page_table_pages);
304 pmd_populate(mm, pmd, new);
305 }
306out:
307 return pte_offset_map(pmd, address);
308}
309
310pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
311{
312 if (!pmd_present(*pmd)) {
313 pte_t *new;
314
315 spin_unlock(&mm->page_table_lock);
316 new = pte_alloc_one_kernel(mm, address);
317 spin_lock(&mm->page_table_lock);
318 if (!new)
319 return NULL;
320
321 /*
322 * Because we dropped the lock, we should re-check the
323 * entry, as somebody else could have populated it..
324 */
325 if (pmd_present(*pmd)) {
326 pte_free_kernel(new);
327 goto out;
328 }
329 pmd_populate_kernel(mm, pmd, new);
330 }
331out:
332 return pte_offset_kernel(pmd, address);
333}
334
335/*
336 * copy one vm_area from one task to the other. Assumes the page tables
337 * already present in the new task to be cleared in the whole range
338 * covered by this vma.
339 *
340 * dst->page_table_lock is held on entry and exit,
341 * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
342 */
343
344static inline void
345copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
346 pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
347 unsigned long addr)
348{
349 pte_t pte = *src_pte;
350 struct page *page;
351 unsigned long pfn;
352
353 /* pte contains position in swap or file, so copy. */
354 if (unlikely(!pte_present(pte))) {
355 if (!pte_file(pte)) {
356 swap_duplicate(pte_to_swp_entry(pte));
357 /* make sure dst_mm is on swapoff's mmlist. */
358 if (unlikely(list_empty(&dst_mm->mmlist))) {
359 spin_lock(&mmlist_lock);
360 list_add(&dst_mm->mmlist, &src_mm->mmlist);
361 spin_unlock(&mmlist_lock);
362 }
363 }
364 set_pte_at(dst_mm, addr, dst_pte, pte);
365 return;
366 }
367
368 pfn = pte_pfn(pte);
369 /* the pte points outside of valid memory, the
370 * mapping is assumed to be good, meaningful
371 * and not mapped via rmap - duplicate the
372 * mapping as is.
373 */
374 page = NULL;
375 if (pfn_valid(pfn))
376 page = pfn_to_page(pfn);
377
378 if (!page || PageReserved(page)) {
379 set_pte_at(dst_mm, addr, dst_pte, pte);
380 return;
381 }
382
383 /*
384 * If it's a COW mapping, write protect it both
385 * in the parent and the child
386 */
387 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
388 ptep_set_wrprotect(src_mm, addr, src_pte);
389 pte = *src_pte;
390 }
391
392 /*
393 * If it's a shared mapping, mark it clean in
394 * the child
395 */
396 if (vm_flags & VM_SHARED)
397 pte = pte_mkclean(pte);
398 pte = pte_mkold(pte);
399 get_page(page);
400 inc_mm_counter(dst_mm, rss);
401 if (PageAnon(page))
402 inc_mm_counter(dst_mm, anon_rss);
403 set_pte_at(dst_mm, addr, dst_pte, pte);
404 page_dup_rmap(page);
405}
406
407static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
408 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
409 unsigned long addr, unsigned long end)
410{
411 pte_t *src_pte, *dst_pte;
412 unsigned long vm_flags = vma->vm_flags;
Hugh Dickinse040f212005-10-29 18:15:53 -0700413 int progress = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700414
415again:
416 dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
417 if (!dst_pte)
418 return -ENOMEM;
419 src_pte = pte_offset_map_nested(src_pmd, addr);
420
Linus Torvalds1da177e2005-04-16 15:20:36 -0700421 spin_lock(&src_mm->page_table_lock);
422 do {
423 /*
424 * We are holding two locks at this point - either of them
425 * could generate latencies in another task on another CPU.
426 */
Hugh Dickinse040f212005-10-29 18:15:53 -0700427 if (progress >= 32) {
428 progress = 0;
429 if (need_resched() ||
430 need_lockbreak(&src_mm->page_table_lock) ||
431 need_lockbreak(&dst_mm->page_table_lock))
432 break;
433 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700434 if (pte_none(*src_pte)) {
435 progress++;
436 continue;
437 }
438 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
439 progress += 8;
440 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
441 spin_unlock(&src_mm->page_table_lock);
442
443 pte_unmap_nested(src_pte - 1);
444 pte_unmap(dst_pte - 1);
445 cond_resched_lock(&dst_mm->page_table_lock);
446 if (addr != end)
447 goto again;
448 return 0;
449}
450
451static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
452 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
453 unsigned long addr, unsigned long end)
454{
455 pmd_t *src_pmd, *dst_pmd;
456 unsigned long next;
457
458 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
459 if (!dst_pmd)
460 return -ENOMEM;
461 src_pmd = pmd_offset(src_pud, addr);
462 do {
463 next = pmd_addr_end(addr, end);
464 if (pmd_none_or_clear_bad(src_pmd))
465 continue;
466 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
467 vma, addr, next))
468 return -ENOMEM;
469 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
470 return 0;
471}
472
473static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
474 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
475 unsigned long addr, unsigned long end)
476{
477 pud_t *src_pud, *dst_pud;
478 unsigned long next;
479
480 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
481 if (!dst_pud)
482 return -ENOMEM;
483 src_pud = pud_offset(src_pgd, addr);
484 do {
485 next = pud_addr_end(addr, end);
486 if (pud_none_or_clear_bad(src_pud))
487 continue;
488 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
489 vma, addr, next))
490 return -ENOMEM;
491 } while (dst_pud++, src_pud++, addr = next, addr != end);
492 return 0;
493}
494
495int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
496 struct vm_area_struct *vma)
497{
498 pgd_t *src_pgd, *dst_pgd;
499 unsigned long next;
500 unsigned long addr = vma->vm_start;
501 unsigned long end = vma->vm_end;
502
Nick Piggind9928952005-08-28 16:49:11 +1000503 /*
504 * Don't copy ptes where a page fault will fill them correctly.
505 * Fork becomes much lighter when there are big shared or private
506 * readonly mappings. The tradeoff is that copy_page_range is more
507 * efficient than faulting.
508 */
509 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
510 if (!vma->anon_vma)
511 return 0;
512 }
513
Linus Torvalds1da177e2005-04-16 15:20:36 -0700514 if (is_vm_hugetlb_page(vma))
515 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
516
517 dst_pgd = pgd_offset(dst_mm, addr);
518 src_pgd = pgd_offset(src_mm, addr);
519 do {
520 next = pgd_addr_end(addr, end);
521 if (pgd_none_or_clear_bad(src_pgd))
522 continue;
523 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
524 vma, addr, next))
525 return -ENOMEM;
526 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
527 return 0;
528}
529
530static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
531 unsigned long addr, unsigned long end,
532 struct zap_details *details)
533{
534 pte_t *pte;
535
536 pte = pte_offset_map(pmd, addr);
537 do {
538 pte_t ptent = *pte;
539 if (pte_none(ptent))
540 continue;
541 if (pte_present(ptent)) {
542 struct page *page = NULL;
543 unsigned long pfn = pte_pfn(ptent);
544 if (pfn_valid(pfn)) {
545 page = pfn_to_page(pfn);
546 if (PageReserved(page))
547 page = NULL;
548 }
549 if (unlikely(details) && page) {
550 /*
551 * unmap_shared_mapping_pages() wants to
552 * invalidate cache without truncating:
553 * unmap shared but keep private pages.
554 */
555 if (details->check_mapping &&
556 details->check_mapping != page->mapping)
557 continue;
558 /*
559 * Each page->index must be checked when
560 * invalidating or truncating nonlinear.
561 */
562 if (details->nonlinear_vma &&
563 (page->index < details->first_index ||
564 page->index > details->last_index))
565 continue;
566 }
Zachary Amsdena6003882005-09-03 15:55:04 -0700567 ptent = ptep_get_and_clear_full(tlb->mm, addr, pte,
568 tlb->fullmm);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700569 tlb_remove_tlb_entry(tlb, pte, addr);
570 if (unlikely(!page))
571 continue;
572 if (unlikely(details) && details->nonlinear_vma
573 && linear_page_index(details->nonlinear_vma,
574 addr) != page->index)
575 set_pte_at(tlb->mm, addr, pte,
576 pgoff_to_pte(page->index));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700577 if (PageAnon(page))
578 dec_mm_counter(tlb->mm, anon_rss);
Hugh Dickins6237bcd2005-10-29 18:15:54 -0700579 else {
580 if (pte_dirty(ptent))
581 set_page_dirty(page);
582 if (pte_young(ptent))
583 mark_page_accessed(page);
584 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700585 tlb->freed++;
586 page_remove_rmap(page);
587 tlb_remove_page(tlb, page);
588 continue;
589 }
590 /*
591 * If details->check_mapping, we leave swap entries;
592 * if details->nonlinear_vma, we leave file entries.
593 */
594 if (unlikely(details))
595 continue;
596 if (!pte_file(ptent))
597 free_swap_and_cache(pte_to_swp_entry(ptent));
Zachary Amsdena6003882005-09-03 15:55:04 -0700598 pte_clear_full(tlb->mm, addr, pte, tlb->fullmm);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700599 } while (pte++, addr += PAGE_SIZE, addr != end);
600 pte_unmap(pte - 1);
601}
602
603static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
604 unsigned long addr, unsigned long end,
605 struct zap_details *details)
606{
607 pmd_t *pmd;
608 unsigned long next;
609
610 pmd = pmd_offset(pud, addr);
611 do {
612 next = pmd_addr_end(addr, end);
613 if (pmd_none_or_clear_bad(pmd))
614 continue;
615 zap_pte_range(tlb, pmd, addr, next, details);
616 } while (pmd++, addr = next, addr != end);
617}
618
619static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
620 unsigned long addr, unsigned long end,
621 struct zap_details *details)
622{
623 pud_t *pud;
624 unsigned long next;
625
626 pud = pud_offset(pgd, addr);
627 do {
628 next = pud_addr_end(addr, end);
629 if (pud_none_or_clear_bad(pud))
630 continue;
631 zap_pmd_range(tlb, pud, addr, next, details);
632 } while (pud++, addr = next, addr != end);
633}
634
635static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
636 unsigned long addr, unsigned long end,
637 struct zap_details *details)
638{
639 pgd_t *pgd;
640 unsigned long next;
641
642 if (details && !details->check_mapping && !details->nonlinear_vma)
643 details = NULL;
644
645 BUG_ON(addr >= end);
646 tlb_start_vma(tlb, vma);
647 pgd = pgd_offset(vma->vm_mm, addr);
648 do {
649 next = pgd_addr_end(addr, end);
650 if (pgd_none_or_clear_bad(pgd))
651 continue;
652 zap_pud_range(tlb, pgd, addr, next, details);
653 } while (pgd++, addr = next, addr != end);
654 tlb_end_vma(tlb, vma);
655}
656
657#ifdef CONFIG_PREEMPT
658# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
659#else
660/* No preempt: go for improved straight-line efficiency */
661# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
662#endif
663
664/**
665 * unmap_vmas - unmap a range of memory covered by a list of vma's
666 * @tlbp: address of the caller's struct mmu_gather
667 * @mm: the controlling mm_struct
668 * @vma: the starting vma
669 * @start_addr: virtual address at which to start unmapping
670 * @end_addr: virtual address at which to end unmapping
671 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
672 * @details: details of nonlinear truncation or shared cache invalidation
673 *
Hugh Dickinsee39b372005-04-19 13:29:15 -0700674 * Returns the end address of the unmapping (restart addr if interrupted).
Linus Torvalds1da177e2005-04-16 15:20:36 -0700675 *
676 * Unmap all pages in the vma list. Called under page_table_lock.
677 *
678 * We aim to not hold page_table_lock for too long (for scheduling latency
679 * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
680 * return the ending mmu_gather to the caller.
681 *
682 * Only addresses between `start' and `end' will be unmapped.
683 *
684 * The VMA list must be sorted in ascending virtual address order.
685 *
686 * unmap_vmas() assumes that the caller will flush the whole unmapped address
687 * range after unmap_vmas() returns. So the only responsibility here is to
688 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
689 * drops the lock and schedules.
690 */
Hugh Dickinsee39b372005-04-19 13:29:15 -0700691unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700692 struct vm_area_struct *vma, unsigned long start_addr,
693 unsigned long end_addr, unsigned long *nr_accounted,
694 struct zap_details *details)
695{
696 unsigned long zap_bytes = ZAP_BLOCK_SIZE;
697 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
698 int tlb_start_valid = 0;
Hugh Dickinsee39b372005-04-19 13:29:15 -0700699 unsigned long start = start_addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700700 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
Hugh Dickins4d6ddfa2005-10-29 18:16:02 -0700701 int fullmm = (*tlbp)->fullmm;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700702
703 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700704 unsigned long end;
705
706 start = max(vma->vm_start, start_addr);
707 if (start >= vma->vm_end)
708 continue;
709 end = min(vma->vm_end, end_addr);
710 if (end <= vma->vm_start)
711 continue;
712
713 if (vma->vm_flags & VM_ACCOUNT)
714 *nr_accounted += (end - start) >> PAGE_SHIFT;
715
Linus Torvalds1da177e2005-04-16 15:20:36 -0700716 while (start != end) {
717 unsigned long block;
718
719 if (!tlb_start_valid) {
720 tlb_start = start;
721 tlb_start_valid = 1;
722 }
723
724 if (is_vm_hugetlb_page(vma)) {
725 block = end - start;
726 unmap_hugepage_range(vma, start, end);
727 } else {
728 block = min(zap_bytes, end - start);
729 unmap_page_range(*tlbp, vma, start,
730 start + block, details);
731 }
732
733 start += block;
734 zap_bytes -= block;
735 if ((long)zap_bytes > 0)
736 continue;
737
738 tlb_finish_mmu(*tlbp, tlb_start, start);
739
740 if (need_resched() ||
741 need_lockbreak(&mm->page_table_lock) ||
742 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
743 if (i_mmap_lock) {
744 /* must reset count of rss freed */
745 *tlbp = tlb_gather_mmu(mm, fullmm);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700746 goto out;
747 }
748 spin_unlock(&mm->page_table_lock);
749 cond_resched();
750 spin_lock(&mm->page_table_lock);
751 }
752
753 *tlbp = tlb_gather_mmu(mm, fullmm);
754 tlb_start_valid = 0;
755 zap_bytes = ZAP_BLOCK_SIZE;
756 }
757 }
758out:
Hugh Dickinsee39b372005-04-19 13:29:15 -0700759 return start; /* which is now the end (or restart) address */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700760}
761
762/**
763 * zap_page_range - remove user pages in a given range
764 * @vma: vm_area_struct holding the applicable pages
765 * @address: starting address of pages to zap
766 * @size: number of bytes to zap
767 * @details: details of nonlinear truncation or shared cache invalidation
768 */
Hugh Dickinsee39b372005-04-19 13:29:15 -0700769unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700770 unsigned long size, struct zap_details *details)
771{
772 struct mm_struct *mm = vma->vm_mm;
773 struct mmu_gather *tlb;
774 unsigned long end = address + size;
775 unsigned long nr_accounted = 0;
776
777 if (is_vm_hugetlb_page(vma)) {
778 zap_hugepage_range(vma, address, size);
Hugh Dickinsee39b372005-04-19 13:29:15 -0700779 return end;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700780 }
781
782 lru_add_drain();
783 spin_lock(&mm->page_table_lock);
784 tlb = tlb_gather_mmu(mm, 0);
Hugh Dickinsee39b372005-04-19 13:29:15 -0700785 end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700786 tlb_finish_mmu(tlb, address, end);
787 spin_unlock(&mm->page_table_lock);
Hugh Dickinsee39b372005-04-19 13:29:15 -0700788 return end;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700789}
790
791/*
792 * Do a quick page-table lookup for a single page.
793 * mm->page_table_lock must be held.
794 */
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700795static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
796 int read, int write, int accessed)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700797{
798 pgd_t *pgd;
799 pud_t *pud;
800 pmd_t *pmd;
801 pte_t *ptep, pte;
802 unsigned long pfn;
803 struct page *page;
804
805 page = follow_huge_addr(mm, address, write);
806 if (! IS_ERR(page))
807 return page;
808
809 pgd = pgd_offset(mm, address);
810 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
811 goto out;
812
813 pud = pud_offset(pgd, address);
814 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
815 goto out;
816
817 pmd = pmd_offset(pud, address);
818 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
819 goto out;
820 if (pmd_huge(*pmd))
821 return follow_huge_pmd(mm, address, pmd, write);
822
823 ptep = pte_offset_map(pmd, address);
824 if (!ptep)
825 goto out;
826
827 pte = *ptep;
828 pte_unmap(ptep);
829 if (pte_present(pte)) {
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000830 if (write && !pte_write(pte))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700831 goto out;
832 if (read && !pte_read(pte))
833 goto out;
834 pfn = pte_pfn(pte);
835 if (pfn_valid(pfn)) {
836 page = pfn_to_page(pfn);
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000837 if (accessed) {
838 if (write && !pte_dirty(pte) &&!PageDirty(page))
839 set_page_dirty(page);
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700840 mark_page_accessed(page);
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000841 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700842 return page;
843 }
844 }
845
846out:
847 return NULL;
848}
849
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700850inline struct page *
Linus Torvalds1da177e2005-04-16 15:20:36 -0700851follow_page(struct mm_struct *mm, unsigned long address, int write)
852{
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700853 return __follow_page(mm, address, 0, write, 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700854}
855
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700856/*
857 * check_user_page_readable() can be called frm niterrupt context by oprofile,
858 * so we need to avoid taking any non-irq-safe locks
859 */
860int check_user_page_readable(struct mm_struct *mm, unsigned long address)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700861{
Andrew Morton1aaf18f2005-07-27 11:43:54 -0700862 return __follow_page(mm, address, 1, 0, 0) != NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700863}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700864EXPORT_SYMBOL(check_user_page_readable);
865
Linus Torvalds1da177e2005-04-16 15:20:36 -0700866static inline int
867untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
868 unsigned long address)
869{
870 pgd_t *pgd;
871 pud_t *pud;
872 pmd_t *pmd;
873
874 /* Check if the vma is for an anonymous mapping. */
875 if (vma->vm_ops && vma->vm_ops->nopage)
876 return 0;
877
878 /* Check if page directory entry exists. */
879 pgd = pgd_offset(mm, address);
880 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
881 return 1;
882
883 pud = pud_offset(pgd, address);
884 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
885 return 1;
886
887 /* Check if page middle directory entry exists. */
888 pmd = pmd_offset(pud, address);
889 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
890 return 1;
891
892 /* There is a pte slot for 'address' in 'mm'. */
893 return 0;
894}
895
Linus Torvalds1da177e2005-04-16 15:20:36 -0700896int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
897 unsigned long start, int len, int write, int force,
898 struct page **pages, struct vm_area_struct **vmas)
899{
900 int i;
901 unsigned int flags;
902
903 /*
904 * Require read or write permissions.
905 * If 'force' is set, we only require the "MAY" flags.
906 */
907 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
908 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
909 i = 0;
910
911 do {
912 struct vm_area_struct * vma;
913
914 vma = find_extend_vma(mm, start);
915 if (!vma && in_gate_area(tsk, start)) {
916 unsigned long pg = start & PAGE_MASK;
917 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
918 pgd_t *pgd;
919 pud_t *pud;
920 pmd_t *pmd;
921 pte_t *pte;
922 if (write) /* user gate pages are read-only */
923 return i ? : -EFAULT;
924 if (pg > TASK_SIZE)
925 pgd = pgd_offset_k(pg);
926 else
927 pgd = pgd_offset_gate(mm, pg);
928 BUG_ON(pgd_none(*pgd));
929 pud = pud_offset(pgd, pg);
930 BUG_ON(pud_none(*pud));
931 pmd = pmd_offset(pud, pg);
Hugh Dickins690dbe12005-08-01 21:11:42 -0700932 if (pmd_none(*pmd))
933 return i ? : -EFAULT;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700934 pte = pte_offset_map(pmd, pg);
Hugh Dickins690dbe12005-08-01 21:11:42 -0700935 if (pte_none(*pte)) {
936 pte_unmap(pte);
937 return i ? : -EFAULT;
938 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700939 if (pages) {
940 pages[i] = pte_page(*pte);
941 get_page(pages[i]);
942 }
943 pte_unmap(pte);
944 if (vmas)
945 vmas[i] = gate_vma;
946 i++;
947 start += PAGE_SIZE;
948 len--;
949 continue;
950 }
951
952 if (!vma || (vma->vm_flags & VM_IO)
953 || !(flags & vma->vm_flags))
954 return i ? : -EFAULT;
955
956 if (is_vm_hugetlb_page(vma)) {
957 i = follow_hugetlb_page(mm, vma, pages, vmas,
958 &start, &len, i);
959 continue;
960 }
961 spin_lock(&mm->page_table_lock);
962 do {
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000963 int write_access = write;
Hugh Dickins08ef4722005-06-21 17:15:10 -0700964 struct page *page;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700965
966 cond_resched_lock(&mm->page_table_lock);
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000967 while (!(page = follow_page(mm, start, write_access))) {
Linus Torvaldsa68d2eb2005-08-03 10:07:09 -0700968 int ret;
969
Linus Torvalds1da177e2005-04-16 15:20:36 -0700970 /*
971 * Shortcut for anonymous pages. We don't want
972 * to force the creation of pages tables for
Hugh Dickins08ef4722005-06-21 17:15:10 -0700973 * insanely big anonymously mapped areas that
Linus Torvalds1da177e2005-04-16 15:20:36 -0700974 * nobody touched so far. This is important
975 * for doing a core dump for these mappings.
976 */
Linus Torvalds4ceb5db2005-08-01 11:14:49 -0700977 if (!write && untouched_anonymous_page(mm,vma,start)) {
Hugh Dickins08ef4722005-06-21 17:15:10 -0700978 page = ZERO_PAGE(start);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700979 break;
980 }
981 spin_unlock(&mm->page_table_lock);
Linus Torvaldsa68d2eb2005-08-03 10:07:09 -0700982 ret = __handle_mm_fault(mm, vma, start, write_access);
983
984 /*
985 * The VM_FAULT_WRITE bit tells us that do_wp_page has
986 * broken COW when necessary, even if maybe_mkwrite
987 * decided not to set pte_write. We can thus safely do
988 * subsequent page lookups as if they were reads.
989 */
990 if (ret & VM_FAULT_WRITE)
Nick Pigginf33ea7f2005-08-03 20:24:01 +1000991 write_access = 0;
Linus Torvaldsa68d2eb2005-08-03 10:07:09 -0700992
993 switch (ret & ~VM_FAULT_WRITE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700994 case VM_FAULT_MINOR:
995 tsk->min_flt++;
996 break;
997 case VM_FAULT_MAJOR:
998 tsk->maj_flt++;
999 break;
1000 case VM_FAULT_SIGBUS:
1001 return i ? i : -EFAULT;
1002 case VM_FAULT_OOM:
1003 return i ? i : -ENOMEM;
1004 default:
1005 BUG();
1006 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001007 spin_lock(&mm->page_table_lock);
1008 }
1009 if (pages) {
Hugh Dickins08ef4722005-06-21 17:15:10 -07001010 pages[i] = page;
1011 flush_dcache_page(page);
1012 if (!PageReserved(page))
1013 page_cache_get(page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001014 }
1015 if (vmas)
1016 vmas[i] = vma;
1017 i++;
1018 start += PAGE_SIZE;
1019 len--;
Hugh Dickins08ef4722005-06-21 17:15:10 -07001020 } while (len && start < vma->vm_end);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001021 spin_unlock(&mm->page_table_lock);
Hugh Dickins08ef4722005-06-21 17:15:10 -07001022 } while (len);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001023 return i;
1024}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001025EXPORT_SYMBOL(get_user_pages);
1026
1027static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1028 unsigned long addr, unsigned long end, pgprot_t prot)
1029{
1030 pte_t *pte;
1031
1032 pte = pte_alloc_map(mm, pmd, addr);
1033 if (!pte)
1034 return -ENOMEM;
1035 do {
1036 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
1037 BUG_ON(!pte_none(*pte));
1038 set_pte_at(mm, addr, pte, zero_pte);
1039 } while (pte++, addr += PAGE_SIZE, addr != end);
1040 pte_unmap(pte - 1);
1041 return 0;
1042}
1043
1044static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1045 unsigned long addr, unsigned long end, pgprot_t prot)
1046{
1047 pmd_t *pmd;
1048 unsigned long next;
1049
1050 pmd = pmd_alloc(mm, pud, addr);
1051 if (!pmd)
1052 return -ENOMEM;
1053 do {
1054 next = pmd_addr_end(addr, end);
1055 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1056 return -ENOMEM;
1057 } while (pmd++, addr = next, addr != end);
1058 return 0;
1059}
1060
1061static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1062 unsigned long addr, unsigned long end, pgprot_t prot)
1063{
1064 pud_t *pud;
1065 unsigned long next;
1066
1067 pud = pud_alloc(mm, pgd, addr);
1068 if (!pud)
1069 return -ENOMEM;
1070 do {
1071 next = pud_addr_end(addr, end);
1072 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1073 return -ENOMEM;
1074 } while (pud++, addr = next, addr != end);
1075 return 0;
1076}
1077
1078int zeromap_page_range(struct vm_area_struct *vma,
1079 unsigned long addr, unsigned long size, pgprot_t prot)
1080{
1081 pgd_t *pgd;
1082 unsigned long next;
1083 unsigned long end = addr + size;
1084 struct mm_struct *mm = vma->vm_mm;
1085 int err;
1086
1087 BUG_ON(addr >= end);
1088 pgd = pgd_offset(mm, addr);
1089 flush_cache_range(vma, addr, end);
1090 spin_lock(&mm->page_table_lock);
1091 do {
1092 next = pgd_addr_end(addr, end);
1093 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1094 if (err)
1095 break;
1096 } while (pgd++, addr = next, addr != end);
1097 spin_unlock(&mm->page_table_lock);
1098 return err;
1099}
1100
1101/*
1102 * maps a range of physical memory into the requested pages. the old
1103 * mappings are removed. any references to nonexistent pages results
1104 * in null mappings (currently treated as "copy-on-access")
1105 */
1106static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1107 unsigned long addr, unsigned long end,
1108 unsigned long pfn, pgprot_t prot)
1109{
1110 pte_t *pte;
1111
1112 pte = pte_alloc_map(mm, pmd, addr);
1113 if (!pte)
1114 return -ENOMEM;
1115 do {
1116 BUG_ON(!pte_none(*pte));
1117 if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
1118 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1119 pfn++;
1120 } while (pte++, addr += PAGE_SIZE, addr != end);
1121 pte_unmap(pte - 1);
1122 return 0;
1123}
1124
1125static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1126 unsigned long addr, unsigned long end,
1127 unsigned long pfn, pgprot_t prot)
1128{
1129 pmd_t *pmd;
1130 unsigned long next;
1131
1132 pfn -= addr >> PAGE_SHIFT;
1133 pmd = pmd_alloc(mm, pud, addr);
1134 if (!pmd)
1135 return -ENOMEM;
1136 do {
1137 next = pmd_addr_end(addr, end);
1138 if (remap_pte_range(mm, pmd, addr, next,
1139 pfn + (addr >> PAGE_SHIFT), prot))
1140 return -ENOMEM;
1141 } while (pmd++, addr = next, addr != end);
1142 return 0;
1143}
1144
1145static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1146 unsigned long addr, unsigned long end,
1147 unsigned long pfn, pgprot_t prot)
1148{
1149 pud_t *pud;
1150 unsigned long next;
1151
1152 pfn -= addr >> PAGE_SHIFT;
1153 pud = pud_alloc(mm, pgd, addr);
1154 if (!pud)
1155 return -ENOMEM;
1156 do {
1157 next = pud_addr_end(addr, end);
1158 if (remap_pmd_range(mm, pud, addr, next,
1159 pfn + (addr >> PAGE_SHIFT), prot))
1160 return -ENOMEM;
1161 } while (pud++, addr = next, addr != end);
1162 return 0;
1163}
1164
1165/* Note: this is only safe if the mm semaphore is held when called. */
1166int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1167 unsigned long pfn, unsigned long size, pgprot_t prot)
1168{
1169 pgd_t *pgd;
1170 unsigned long next;
Hugh Dickins2d15cab2005-06-25 14:54:33 -07001171 unsigned long end = addr + PAGE_ALIGN(size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001172 struct mm_struct *mm = vma->vm_mm;
1173 int err;
1174
1175 /*
1176 * Physically remapped pages are special. Tell the
1177 * rest of the world about it:
1178 * VM_IO tells people not to look at these pages
1179 * (accesses can have side effects).
1180 * VM_RESERVED tells swapout not to try to touch
1181 * this region.
1182 */
1183 vma->vm_flags |= VM_IO | VM_RESERVED;
1184
1185 BUG_ON(addr >= end);
1186 pfn -= addr >> PAGE_SHIFT;
1187 pgd = pgd_offset(mm, addr);
1188 flush_cache_range(vma, addr, end);
1189 spin_lock(&mm->page_table_lock);
1190 do {
1191 next = pgd_addr_end(addr, end);
1192 err = remap_pud_range(mm, pgd, addr, next,
1193 pfn + (addr >> PAGE_SHIFT), prot);
1194 if (err)
1195 break;
1196 } while (pgd++, addr = next, addr != end);
1197 spin_unlock(&mm->page_table_lock);
1198 return err;
1199}
1200EXPORT_SYMBOL(remap_pfn_range);
1201
1202/*
1203 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1204 * servicing faults for write access. In the normal case, do always want
1205 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1206 * that do not have writing enabled, when used by access_process_vm.
1207 */
1208static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1209{
1210 if (likely(vma->vm_flags & VM_WRITE))
1211 pte = pte_mkwrite(pte);
1212 return pte;
1213}
1214
1215/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001216 * This routine handles present pages, when users try to write
1217 * to a shared page. It is done by copying the page to a new address
1218 * and decrementing the shared-page counter for the old page.
1219 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001220 * Note that this routine assumes that the protection checks have been
1221 * done by the caller (the low-level page fault routine in most cases).
1222 * Thus we can safely just mark it writable once we've done any necessary
1223 * COW.
1224 *
1225 * We also mark the page dirty at this point even though the page will
1226 * change only once the write actually happens. This avoids a few races,
1227 * and potentially makes it more efficient.
1228 *
1229 * We hold the mm semaphore and the page_table_lock on entry and exit
1230 * with the page_table_lock released.
1231 */
Hugh Dickins65500d22005-10-29 18:15:59 -07001232static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1233 unsigned long address, pte_t *page_table, pmd_t *pmd,
1234 pte_t orig_pte)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001235{
1236 struct page *old_page, *new_page;
Hugh Dickins65500d22005-10-29 18:15:59 -07001237 unsigned long pfn = pte_pfn(orig_pte);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001238 pte_t entry;
Hugh Dickins65500d22005-10-29 18:15:59 -07001239 int ret = VM_FAULT_MINOR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001240
1241 if (unlikely(!pfn_valid(pfn))) {
1242 /*
Hugh Dickins65500d22005-10-29 18:15:59 -07001243 * Page table corrupted: show pte and kill process.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001244 */
Hugh Dickins65500d22005-10-29 18:15:59 -07001245 pte_ERROR(orig_pte);
1246 ret = VM_FAULT_OOM;
1247 goto unlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001248 }
1249 old_page = pfn_to_page(pfn);
1250
Hugh Dickinsd296e9c2005-06-21 17:15:11 -07001251 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001252 int reuse = can_share_swap_page(old_page);
1253 unlock_page(old_page);
1254 if (reuse) {
1255 flush_cache_page(vma, address, pfn);
Hugh Dickins65500d22005-10-29 18:15:59 -07001256 entry = pte_mkyoung(orig_pte);
1257 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001258 ptep_set_access_flags(vma, address, page_table, entry, 1);
1259 update_mmu_cache(vma, address, entry);
1260 lazy_mmu_prot_update(entry);
Hugh Dickins65500d22005-10-29 18:15:59 -07001261 ret |= VM_FAULT_WRITE;
1262 goto unlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001263 }
1264 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001265
1266 /*
1267 * Ok, we need to copy. Oh, well..
1268 */
1269 if (!PageReserved(old_page))
1270 page_cache_get(old_page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001271 pte_unmap(page_table);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001272 spin_unlock(&mm->page_table_lock);
1273
1274 if (unlikely(anon_vma_prepare(vma)))
Hugh Dickins65500d22005-10-29 18:15:59 -07001275 goto oom;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001276 if (old_page == ZERO_PAGE(address)) {
1277 new_page = alloc_zeroed_user_highpage(vma, address);
1278 if (!new_page)
Hugh Dickins65500d22005-10-29 18:15:59 -07001279 goto oom;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001280 } else {
1281 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1282 if (!new_page)
Hugh Dickins65500d22005-10-29 18:15:59 -07001283 goto oom;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001284 copy_user_highpage(new_page, old_page, address);
1285 }
Hugh Dickins65500d22005-10-29 18:15:59 -07001286
Linus Torvalds1da177e2005-04-16 15:20:36 -07001287 /*
1288 * Re-check the pte - we dropped the lock
1289 */
1290 spin_lock(&mm->page_table_lock);
1291 page_table = pte_offset_map(pmd, address);
Hugh Dickins65500d22005-10-29 18:15:59 -07001292 if (likely(pte_same(*page_table, orig_pte))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001293 if (PageAnon(old_page))
1294 dec_mm_counter(mm, anon_rss);
1295 if (PageReserved(old_page))
1296 inc_mm_counter(mm, rss);
1297 else
1298 page_remove_rmap(old_page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001299
Linus Torvalds1da177e2005-04-16 15:20:36 -07001300 flush_cache_page(vma, address, pfn);
Hugh Dickins65500d22005-10-29 18:15:59 -07001301 entry = mk_pte(new_page, vma->vm_page_prot);
1302 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1303 ptep_establish(vma, address, page_table, entry);
1304 update_mmu_cache(vma, address, entry);
1305 lazy_mmu_prot_update(entry);
1306
Linus Torvalds1da177e2005-04-16 15:20:36 -07001307 lru_cache_add_active(new_page);
1308 page_add_anon_rmap(new_page, vma, address);
1309
1310 /* Free the old page.. */
1311 new_page = old_page;
Nick Pigginf33ea7f2005-08-03 20:24:01 +10001312 ret |= VM_FAULT_WRITE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001313 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001314 page_cache_release(new_page);
1315 page_cache_release(old_page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001316unlock:
1317 pte_unmap(page_table);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001318 spin_unlock(&mm->page_table_lock);
Nick Pigginf33ea7f2005-08-03 20:24:01 +10001319 return ret;
Hugh Dickins65500d22005-10-29 18:15:59 -07001320oom:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001321 page_cache_release(old_page);
1322 return VM_FAULT_OOM;
1323}
1324
1325/*
1326 * Helper functions for unmap_mapping_range().
1327 *
1328 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1329 *
1330 * We have to restart searching the prio_tree whenever we drop the lock,
1331 * since the iterator is only valid while the lock is held, and anyway
1332 * a later vma might be split and reinserted earlier while lock dropped.
1333 *
1334 * The list of nonlinear vmas could be handled more efficiently, using
1335 * a placeholder, but handle it in the same way until a need is shown.
1336 * It is important to search the prio_tree before nonlinear list: a vma
1337 * may become nonlinear and be shifted from prio_tree to nonlinear list
1338 * while the lock is dropped; but never shifted from list to prio_tree.
1339 *
1340 * In order to make forward progress despite restarting the search,
1341 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1342 * quickly skip it next time around. Since the prio_tree search only
1343 * shows us those vmas affected by unmapping the range in question, we
1344 * can't efficiently keep all vmas in step with mapping->truncate_count:
1345 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1346 * mapping->truncate_count and vma->vm_truncate_count are protected by
1347 * i_mmap_lock.
1348 *
1349 * In order to make forward progress despite repeatedly restarting some
Hugh Dickinsee39b372005-04-19 13:29:15 -07001350 * large vma, note the restart_addr from unmap_vmas when it breaks out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001351 * and restart from that address when we reach that vma again. It might
1352 * have been split or merged, shrunk or extended, but never shifted: so
1353 * restart_addr remains valid so long as it remains in the vma's range.
1354 * unmap_mapping_range forces truncate_count to leap over page-aligned
1355 * values so we can save vma's restart_addr in its truncate_count field.
1356 */
1357#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1358
1359static void reset_vma_truncate_counts(struct address_space *mapping)
1360{
1361 struct vm_area_struct *vma;
1362 struct prio_tree_iter iter;
1363
1364 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1365 vma->vm_truncate_count = 0;
1366 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1367 vma->vm_truncate_count = 0;
1368}
1369
1370static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1371 unsigned long start_addr, unsigned long end_addr,
1372 struct zap_details *details)
1373{
1374 unsigned long restart_addr;
1375 int need_break;
1376
1377again:
1378 restart_addr = vma->vm_truncate_count;
1379 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1380 start_addr = restart_addr;
1381 if (start_addr >= end_addr) {
1382 /* Top of vma has been split off since last time */
1383 vma->vm_truncate_count = details->truncate_count;
1384 return 0;
1385 }
1386 }
1387
Hugh Dickinsee39b372005-04-19 13:29:15 -07001388 restart_addr = zap_page_range(vma, start_addr,
1389 end_addr - start_addr, details);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001390
1391 /*
1392 * We cannot rely on the break test in unmap_vmas:
1393 * on the one hand, we don't want to restart our loop
1394 * just because that broke out for the page_table_lock;
1395 * on the other hand, it does no test when vma is small.
1396 */
1397 need_break = need_resched() ||
1398 need_lockbreak(details->i_mmap_lock);
1399
Hugh Dickinsee39b372005-04-19 13:29:15 -07001400 if (restart_addr >= end_addr) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001401 /* We have now completed this vma: mark it so */
1402 vma->vm_truncate_count = details->truncate_count;
1403 if (!need_break)
1404 return 0;
1405 } else {
1406 /* Note restart_addr in vma's truncate_count field */
Hugh Dickinsee39b372005-04-19 13:29:15 -07001407 vma->vm_truncate_count = restart_addr;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001408 if (!need_break)
1409 goto again;
1410 }
1411
1412 spin_unlock(details->i_mmap_lock);
1413 cond_resched();
1414 spin_lock(details->i_mmap_lock);
1415 return -EINTR;
1416}
1417
1418static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1419 struct zap_details *details)
1420{
1421 struct vm_area_struct *vma;
1422 struct prio_tree_iter iter;
1423 pgoff_t vba, vea, zba, zea;
1424
1425restart:
1426 vma_prio_tree_foreach(vma, &iter, root,
1427 details->first_index, details->last_index) {
1428 /* Skip quickly over those we have already dealt with */
1429 if (vma->vm_truncate_count == details->truncate_count)
1430 continue;
1431
1432 vba = vma->vm_pgoff;
1433 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1434 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1435 zba = details->first_index;
1436 if (zba < vba)
1437 zba = vba;
1438 zea = details->last_index;
1439 if (zea > vea)
1440 zea = vea;
1441
1442 if (unmap_mapping_range_vma(vma,
1443 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1444 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1445 details) < 0)
1446 goto restart;
1447 }
1448}
1449
1450static inline void unmap_mapping_range_list(struct list_head *head,
1451 struct zap_details *details)
1452{
1453 struct vm_area_struct *vma;
1454
1455 /*
1456 * In nonlinear VMAs there is no correspondence between virtual address
1457 * offset and file offset. So we must perform an exhaustive search
1458 * across *all* the pages in each nonlinear VMA, not just the pages
1459 * whose virtual address lies outside the file truncation point.
1460 */
1461restart:
1462 list_for_each_entry(vma, head, shared.vm_set.list) {
1463 /* Skip quickly over those we have already dealt with */
1464 if (vma->vm_truncate_count == details->truncate_count)
1465 continue;
1466 details->nonlinear_vma = vma;
1467 if (unmap_mapping_range_vma(vma, vma->vm_start,
1468 vma->vm_end, details) < 0)
1469 goto restart;
1470 }
1471}
1472
1473/**
1474 * unmap_mapping_range - unmap the portion of all mmaps
1475 * in the specified address_space corresponding to the specified
1476 * page range in the underlying file.
Martin Waitz3d410882005-06-23 22:05:21 -07001477 * @mapping: the address space containing mmaps to be unmapped.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001478 * @holebegin: byte in first page to unmap, relative to the start of
1479 * the underlying file. This will be rounded down to a PAGE_SIZE
1480 * boundary. Note that this is different from vmtruncate(), which
1481 * must keep the partial page. In contrast, we must get rid of
1482 * partial pages.
1483 * @holelen: size of prospective hole in bytes. This will be rounded
1484 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1485 * end of the file.
1486 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1487 * but 0 when invalidating pagecache, don't throw away private data.
1488 */
1489void unmap_mapping_range(struct address_space *mapping,
1490 loff_t const holebegin, loff_t const holelen, int even_cows)
1491{
1492 struct zap_details details;
1493 pgoff_t hba = holebegin >> PAGE_SHIFT;
1494 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1495
1496 /* Check for overflow. */
1497 if (sizeof(holelen) > sizeof(hlen)) {
1498 long long holeend =
1499 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1500 if (holeend & ~(long long)ULONG_MAX)
1501 hlen = ULONG_MAX - hba + 1;
1502 }
1503
1504 details.check_mapping = even_cows? NULL: mapping;
1505 details.nonlinear_vma = NULL;
1506 details.first_index = hba;
1507 details.last_index = hba + hlen - 1;
1508 if (details.last_index < details.first_index)
1509 details.last_index = ULONG_MAX;
1510 details.i_mmap_lock = &mapping->i_mmap_lock;
1511
1512 spin_lock(&mapping->i_mmap_lock);
1513
1514 /* serialize i_size write against truncate_count write */
1515 smp_wmb();
1516 /* Protect against page faults, and endless unmapping loops */
1517 mapping->truncate_count++;
1518 /*
1519 * For archs where spin_lock has inclusive semantics like ia64
1520 * this smp_mb() will prevent to read pagetable contents
1521 * before the truncate_count increment is visible to
1522 * other cpus.
1523 */
1524 smp_mb();
1525 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1526 if (mapping->truncate_count == 0)
1527 reset_vma_truncate_counts(mapping);
1528 mapping->truncate_count++;
1529 }
1530 details.truncate_count = mapping->truncate_count;
1531
1532 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1533 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1534 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1535 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1536 spin_unlock(&mapping->i_mmap_lock);
1537}
1538EXPORT_SYMBOL(unmap_mapping_range);
1539
1540/*
1541 * Handle all mappings that got truncated by a "truncate()"
1542 * system call.
1543 *
1544 * NOTE! We have to be ready to update the memory sharing
1545 * between the file and the memory map for a potential last
1546 * incomplete page. Ugly, but necessary.
1547 */
1548int vmtruncate(struct inode * inode, loff_t offset)
1549{
1550 struct address_space *mapping = inode->i_mapping;
1551 unsigned long limit;
1552
1553 if (inode->i_size < offset)
1554 goto do_expand;
1555 /*
1556 * truncation of in-use swapfiles is disallowed - it would cause
1557 * subsequent swapout to scribble on the now-freed blocks.
1558 */
1559 if (IS_SWAPFILE(inode))
1560 goto out_busy;
1561 i_size_write(inode, offset);
1562 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1563 truncate_inode_pages(mapping, offset);
1564 goto out_truncate;
1565
1566do_expand:
1567 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1568 if (limit != RLIM_INFINITY && offset > limit)
1569 goto out_sig;
1570 if (offset > inode->i_sb->s_maxbytes)
1571 goto out_big;
1572 i_size_write(inode, offset);
1573
1574out_truncate:
1575 if (inode->i_op && inode->i_op->truncate)
1576 inode->i_op->truncate(inode);
1577 return 0;
1578out_sig:
1579 send_sig(SIGXFSZ, current, 0);
1580out_big:
1581 return -EFBIG;
1582out_busy:
1583 return -ETXTBSY;
1584}
1585
1586EXPORT_SYMBOL(vmtruncate);
1587
1588/*
1589 * Primitive swap readahead code. We simply read an aligned block of
1590 * (1 << page_cluster) entries in the swap area. This method is chosen
1591 * because it doesn't cost us any seek time. We also make sure to queue
1592 * the 'original' request together with the readahead ones...
1593 *
1594 * This has been extended to use the NUMA policies from the mm triggering
1595 * the readahead.
1596 *
1597 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1598 */
1599void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1600{
1601#ifdef CONFIG_NUMA
1602 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1603#endif
1604 int i, num;
1605 struct page *new_page;
1606 unsigned long offset;
1607
1608 /*
1609 * Get the number of handles we should do readahead io to.
1610 */
1611 num = valid_swaphandles(entry, &offset);
1612 for (i = 0; i < num; offset++, i++) {
1613 /* Ok, do the async read-ahead now */
1614 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1615 offset), vma, addr);
1616 if (!new_page)
1617 break;
1618 page_cache_release(new_page);
1619#ifdef CONFIG_NUMA
1620 /*
1621 * Find the next applicable VMA for the NUMA policy.
1622 */
1623 addr += PAGE_SIZE;
1624 if (addr == 0)
1625 vma = NULL;
1626 if (vma) {
1627 if (addr >= vma->vm_end) {
1628 vma = next_vma;
1629 next_vma = vma ? vma->vm_next : NULL;
1630 }
1631 if (vma && addr < vma->vm_start)
1632 vma = NULL;
1633 } else {
1634 if (next_vma && addr >= next_vma->vm_start) {
1635 vma = next_vma;
1636 next_vma = vma->vm_next;
1637 }
1638 }
1639#endif
1640 }
1641 lru_add_drain(); /* Push any new pages onto the LRU now */
1642}
1643
1644/*
1645 * We hold the mm semaphore and the page_table_lock on entry and
1646 * should release the pagetable lock on exit..
1647 */
Hugh Dickins65500d22005-10-29 18:15:59 -07001648static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1649 unsigned long address, pte_t *page_table, pmd_t *pmd,
1650 int write_access, pte_t orig_pte)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001651{
1652 struct page *page;
Hugh Dickins65500d22005-10-29 18:15:59 -07001653 swp_entry_t entry;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001654 pte_t pte;
1655 int ret = VM_FAULT_MINOR;
1656
1657 pte_unmap(page_table);
1658 spin_unlock(&mm->page_table_lock);
Hugh Dickins65500d22005-10-29 18:15:59 -07001659
1660 entry = pte_to_swp_entry(orig_pte);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001661 page = lookup_swap_cache(entry);
1662 if (!page) {
1663 swapin_readahead(entry, address, vma);
1664 page = read_swap_cache_async(entry, vma, address);
1665 if (!page) {
1666 /*
1667 * Back out if somebody else faulted in this pte while
1668 * we released the page table lock.
1669 */
1670 spin_lock(&mm->page_table_lock);
1671 page_table = pte_offset_map(pmd, address);
1672 if (likely(pte_same(*page_table, orig_pte)))
1673 ret = VM_FAULT_OOM;
Hugh Dickins65500d22005-10-29 18:15:59 -07001674 goto unlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001675 }
1676
1677 /* Had to read the page from swap area: Major fault */
1678 ret = VM_FAULT_MAJOR;
1679 inc_page_state(pgmajfault);
1680 grab_swap_token();
1681 }
1682
1683 mark_page_accessed(page);
1684 lock_page(page);
1685
1686 /*
1687 * Back out if somebody else faulted in this pte while we
1688 * released the page table lock.
1689 */
1690 spin_lock(&mm->page_table_lock);
1691 page_table = pte_offset_map(pmd, address);
1692 if (unlikely(!pte_same(*page_table, orig_pte))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001693 ret = VM_FAULT_MINOR;
Kirill Korotaevb8107482005-05-16 21:53:50 -07001694 goto out_nomap;
1695 }
1696
1697 if (unlikely(!PageUptodate(page))) {
1698 ret = VM_FAULT_SIGBUS;
1699 goto out_nomap;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001700 }
1701
1702 /* The page isn't present yet, go ahead with the fault. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001703
1704 inc_mm_counter(mm, rss);
1705 pte = mk_pte(page, vma->vm_page_prot);
1706 if (write_access && can_share_swap_page(page)) {
1707 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1708 write_access = 0;
1709 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001710
1711 flush_icache_page(vma, page);
1712 set_pte_at(mm, address, page_table, pte);
1713 page_add_anon_rmap(page, vma, address);
1714
Hugh Dickinsc475a8a2005-06-21 17:15:12 -07001715 swap_free(entry);
1716 if (vm_swap_full())
1717 remove_exclusive_swap_page(page);
1718 unlock_page(page);
1719
Linus Torvalds1da177e2005-04-16 15:20:36 -07001720 if (write_access) {
1721 if (do_wp_page(mm, vma, address,
1722 page_table, pmd, pte) == VM_FAULT_OOM)
1723 ret = VM_FAULT_OOM;
1724 goto out;
1725 }
1726
1727 /* No need to invalidate - it was non-present before */
1728 update_mmu_cache(vma, address, pte);
1729 lazy_mmu_prot_update(pte);
Hugh Dickins65500d22005-10-29 18:15:59 -07001730unlock:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001731 pte_unmap(page_table);
1732 spin_unlock(&mm->page_table_lock);
1733out:
1734 return ret;
Kirill Korotaevb8107482005-05-16 21:53:50 -07001735out_nomap:
1736 pte_unmap(page_table);
1737 spin_unlock(&mm->page_table_lock);
1738 unlock_page(page);
1739 page_cache_release(page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001740 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001741}
1742
1743/*
1744 * We are called with the MM semaphore and page_table_lock
1745 * spinlock held to protect against concurrent faults in
1746 * multithreaded programs.
1747 */
Hugh Dickins65500d22005-10-29 18:15:59 -07001748static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1749 unsigned long address, pte_t *page_table, pmd_t *pmd,
1750 int write_access)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001751{
1752 pte_t entry;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001753
Hugh Dickins72866f62005-10-29 18:15:55 -07001754 /* Mapping of ZERO_PAGE - vm_page_prot is readonly */
1755 entry = mk_pte(ZERO_PAGE(addr), vma->vm_page_prot);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001756
Linus Torvalds1da177e2005-04-16 15:20:36 -07001757 if (write_access) {
Hugh Dickins72866f62005-10-29 18:15:55 -07001758 struct page *page;
1759
Linus Torvalds1da177e2005-04-16 15:20:36 -07001760 /* Allocate our own private page. */
1761 pte_unmap(page_table);
1762 spin_unlock(&mm->page_table_lock);
1763
1764 if (unlikely(anon_vma_prepare(vma)))
Hugh Dickins65500d22005-10-29 18:15:59 -07001765 goto oom;
1766 page = alloc_zeroed_user_highpage(vma, address);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001767 if (!page)
Hugh Dickins65500d22005-10-29 18:15:59 -07001768 goto oom;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001769
1770 spin_lock(&mm->page_table_lock);
Hugh Dickins65500d22005-10-29 18:15:59 -07001771 page_table = pte_offset_map(pmd, address);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001772
1773 if (!pte_none(*page_table)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001774 page_cache_release(page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001775 goto unlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001776 }
1777 inc_mm_counter(mm, rss);
Hugh Dickins65500d22005-10-29 18:15:59 -07001778 entry = mk_pte(page, vma->vm_page_prot);
1779 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001780 lru_cache_add_active(page);
1781 SetPageReferenced(page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001782 page_add_anon_rmap(page, vma, address);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001783 }
1784
Hugh Dickins65500d22005-10-29 18:15:59 -07001785 set_pte_at(mm, address, page_table, entry);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001786
1787 /* No need to invalidate - it was non-present before */
Hugh Dickins65500d22005-10-29 18:15:59 -07001788 update_mmu_cache(vma, address, entry);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001789 lazy_mmu_prot_update(entry);
Hugh Dickins65500d22005-10-29 18:15:59 -07001790unlock:
1791 pte_unmap(page_table);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001792 spin_unlock(&mm->page_table_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001793 return VM_FAULT_MINOR;
Hugh Dickins65500d22005-10-29 18:15:59 -07001794oom:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001795 return VM_FAULT_OOM;
1796}
1797
1798/*
1799 * do_no_page() tries to create a new page mapping. It aggressively
1800 * tries to share with existing pages, but makes a separate copy if
1801 * the "write_access" parameter is true in order to avoid the next
1802 * page fault.
1803 *
1804 * As this is called only for pages that do not currently exist, we
1805 * do not need to flush old virtual caches or the TLB.
1806 *
1807 * This is called with the MM semaphore held and the page table
1808 * spinlock held. Exit with the spinlock released.
1809 */
Hugh Dickins65500d22005-10-29 18:15:59 -07001810static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1811 unsigned long address, pte_t *page_table, pmd_t *pmd,
1812 int write_access)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001813{
Hugh Dickins65500d22005-10-29 18:15:59 -07001814 struct page *new_page;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001815 struct address_space *mapping = NULL;
1816 pte_t entry;
1817 unsigned int sequence = 0;
1818 int ret = VM_FAULT_MINOR;
1819 int anon = 0;
1820
Linus Torvalds1da177e2005-04-16 15:20:36 -07001821 pte_unmap(page_table);
1822 spin_unlock(&mm->page_table_lock);
1823
1824 if (vma->vm_file) {
1825 mapping = vma->vm_file->f_mapping;
1826 sequence = mapping->truncate_count;
1827 smp_rmb(); /* serializes i_size against truncate_count */
1828 }
1829retry:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001830 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1831 /*
1832 * No smp_rmb is needed here as long as there's a full
1833 * spin_lock/unlock sequence inside the ->nopage callback
1834 * (for the pagecache lookup) that acts as an implicit
1835 * smp_mb() and prevents the i_size read to happen
1836 * after the next truncate_count read.
1837 */
1838
1839 /* no page was available -- either SIGBUS or OOM */
1840 if (new_page == NOPAGE_SIGBUS)
1841 return VM_FAULT_SIGBUS;
1842 if (new_page == NOPAGE_OOM)
1843 return VM_FAULT_OOM;
1844
1845 /*
1846 * Should we do an early C-O-W break?
1847 */
1848 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1849 struct page *page;
1850
1851 if (unlikely(anon_vma_prepare(vma)))
1852 goto oom;
1853 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1854 if (!page)
1855 goto oom;
1856 copy_user_highpage(page, new_page, address);
1857 page_cache_release(new_page);
1858 new_page = page;
1859 anon = 1;
1860 }
1861
1862 spin_lock(&mm->page_table_lock);
1863 /*
1864 * For a file-backed vma, someone could have truncated or otherwise
1865 * invalidated this page. If unmap_mapping_range got called,
1866 * retry getting the page.
1867 */
1868 if (mapping && unlikely(sequence != mapping->truncate_count)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001869 spin_unlock(&mm->page_table_lock);
1870 page_cache_release(new_page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001871 cond_resched();
1872 sequence = mapping->truncate_count;
1873 smp_rmb();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001874 goto retry;
1875 }
1876 page_table = pte_offset_map(pmd, address);
1877
1878 /*
1879 * This silly early PAGE_DIRTY setting removes a race
1880 * due to the bad i386 page protection. But it's valid
1881 * for other architectures too.
1882 *
1883 * Note that if write_access is true, we either now have
1884 * an exclusive copy of the page, or this is a shared mapping,
1885 * so we can make it writable and dirty to avoid having to
1886 * handle that later.
1887 */
1888 /* Only go through if we didn't race with anybody else... */
1889 if (pte_none(*page_table)) {
1890 if (!PageReserved(new_page))
1891 inc_mm_counter(mm, rss);
1892
1893 flush_icache_page(vma, new_page);
1894 entry = mk_pte(new_page, vma->vm_page_prot);
1895 if (write_access)
1896 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1897 set_pte_at(mm, address, page_table, entry);
1898 if (anon) {
1899 lru_cache_add_active(new_page);
1900 page_add_anon_rmap(new_page, vma, address);
1901 } else
1902 page_add_file_rmap(new_page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001903 } else {
1904 /* One of our sibling threads was faster, back out. */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001905 page_cache_release(new_page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001906 goto unlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001907 }
1908
1909 /* no need to invalidate: a not-present page shouldn't be cached */
1910 update_mmu_cache(vma, address, entry);
1911 lazy_mmu_prot_update(entry);
Hugh Dickins65500d22005-10-29 18:15:59 -07001912unlock:
1913 pte_unmap(page_table);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001914 spin_unlock(&mm->page_table_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001915 return ret;
1916oom:
1917 page_cache_release(new_page);
Hugh Dickins65500d22005-10-29 18:15:59 -07001918 return VM_FAULT_OOM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001919}
1920
1921/*
1922 * Fault of a previously existing named mapping. Repopulate the pte
1923 * from the encoded file_pte if possible. This enables swappable
1924 * nonlinear vmas.
1925 */
Hugh Dickins65500d22005-10-29 18:15:59 -07001926static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
1927 unsigned long address, pte_t *page_table, pmd_t *pmd,
1928 int write_access, pte_t orig_pte)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001929{
Hugh Dickins65500d22005-10-29 18:15:59 -07001930 pgoff_t pgoff;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001931 int err;
1932
Hugh Dickins65500d22005-10-29 18:15:59 -07001933 pte_unmap(page_table);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001934 spin_unlock(&mm->page_table_lock);
1935
Hugh Dickins65500d22005-10-29 18:15:59 -07001936 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
1937 /*
1938 * Page table corrupted: show pte and kill process.
1939 */
1940 pte_ERROR(orig_pte);
1941 return VM_FAULT_OOM;
1942 }
1943 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
1944
1945 pgoff = pte_to_pgoff(orig_pte);
1946 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
1947 vma->vm_page_prot, pgoff, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001948 if (err == -ENOMEM)
1949 return VM_FAULT_OOM;
1950 if (err)
1951 return VM_FAULT_SIGBUS;
1952 return VM_FAULT_MAJOR;
1953}
1954
1955/*
1956 * These routines also need to handle stuff like marking pages dirty
1957 * and/or accessed for architectures that don't do it in hardware (most
1958 * RISC architectures). The early dirtying is also good on the i386.
1959 *
1960 * There is also a hook called "update_mmu_cache()" that architectures
1961 * with external mmu caches can use to update those (ie the Sparc or
1962 * PowerPC hashed page tables that act as extended TLBs).
1963 *
1964 * Note the "page_table_lock". It is to protect against kswapd removing
1965 * pages from under us. Note that kswapd only ever _removes_ pages, never
1966 * adds them. As such, once we have noticed that the page is not present,
1967 * we can drop the lock early.
1968 *
1969 * The adding of pages is protected by the MM semaphore (which we hold),
1970 * so we don't need to worry about a page being suddenly been added into
1971 * our VM.
1972 *
1973 * We enter with the pagetable spinlock held, we are supposed to
1974 * release it when done.
1975 */
1976static inline int handle_pte_fault(struct mm_struct *mm,
Hugh Dickins65500d22005-10-29 18:15:59 -07001977 struct vm_area_struct *vma, unsigned long address,
1978 pte_t *pte, pmd_t *pmd, int write_access)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001979{
1980 pte_t entry;
1981
1982 entry = *pte;
1983 if (!pte_present(entry)) {
Hugh Dickins65500d22005-10-29 18:15:59 -07001984 if (pte_none(entry)) {
1985 if (!vma->vm_ops || !vma->vm_ops->nopage)
1986 return do_anonymous_page(mm, vma, address,
1987 pte, pmd, write_access);
1988 return do_no_page(mm, vma, address,
1989 pte, pmd, write_access);
1990 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001991 if (pte_file(entry))
Hugh Dickins65500d22005-10-29 18:15:59 -07001992 return do_file_page(mm, vma, address,
1993 pte, pmd, write_access, entry);
1994 return do_swap_page(mm, vma, address,
1995 pte, pmd, write_access, entry);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001996 }
1997
1998 if (write_access) {
1999 if (!pte_write(entry))
2000 return do_wp_page(mm, vma, address, pte, pmd, entry);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002001 entry = pte_mkdirty(entry);
2002 }
2003 entry = pte_mkyoung(entry);
2004 ptep_set_access_flags(vma, address, pte, entry, write_access);
2005 update_mmu_cache(vma, address, entry);
2006 lazy_mmu_prot_update(entry);
2007 pte_unmap(pte);
2008 spin_unlock(&mm->page_table_lock);
2009 return VM_FAULT_MINOR;
2010}
2011
2012/*
2013 * By the time we get here, we already hold the mm semaphore
2014 */
Hugh Dickins65500d22005-10-29 18:15:59 -07002015int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
Linus Torvalds1da177e2005-04-16 15:20:36 -07002016 unsigned long address, int write_access)
2017{
2018 pgd_t *pgd;
2019 pud_t *pud;
2020 pmd_t *pmd;
2021 pte_t *pte;
2022
2023 __set_current_state(TASK_RUNNING);
2024
2025 inc_page_state(pgfault);
2026
Hugh Dickinsac9b9c62005-10-20 16:24:28 +01002027 if (unlikely(is_vm_hugetlb_page(vma)))
2028 return hugetlb_fault(mm, vma, address, write_access);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002029
2030 /*
2031 * We need the page table lock to synchronize with kswapd
2032 * and the SMP-safe atomic PTE updates.
2033 */
2034 pgd = pgd_offset(mm, address);
2035 spin_lock(&mm->page_table_lock);
2036
2037 pud = pud_alloc(mm, pgd, address);
2038 if (!pud)
2039 goto oom;
2040
2041 pmd = pmd_alloc(mm, pud, address);
2042 if (!pmd)
2043 goto oom;
2044
2045 pte = pte_alloc_map(mm, pmd, address);
2046 if (!pte)
2047 goto oom;
2048
Hugh Dickins65500d22005-10-29 18:15:59 -07002049 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002050
2051 oom:
2052 spin_unlock(&mm->page_table_lock);
2053 return VM_FAULT_OOM;
2054}
2055
2056#ifndef __PAGETABLE_PUD_FOLDED
2057/*
2058 * Allocate page upper directory.
2059 *
2060 * We've already handled the fast-path in-line, and we own the
2061 * page table lock.
2062 */
2063pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2064{
2065 pud_t *new;
2066
2067 spin_unlock(&mm->page_table_lock);
2068 new = pud_alloc_one(mm, address);
2069 spin_lock(&mm->page_table_lock);
2070 if (!new)
2071 return NULL;
2072
2073 /*
2074 * Because we dropped the lock, we should re-check the
2075 * entry, as somebody else could have populated it..
2076 */
2077 if (pgd_present(*pgd)) {
2078 pud_free(new);
2079 goto out;
2080 }
2081 pgd_populate(mm, pgd, new);
2082 out:
2083 return pud_offset(pgd, address);
2084}
2085#endif /* __PAGETABLE_PUD_FOLDED */
2086
2087#ifndef __PAGETABLE_PMD_FOLDED
2088/*
2089 * Allocate page middle directory.
2090 *
2091 * We've already handled the fast-path in-line, and we own the
2092 * page table lock.
2093 */
2094pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2095{
2096 pmd_t *new;
2097
2098 spin_unlock(&mm->page_table_lock);
2099 new = pmd_alloc_one(mm, address);
2100 spin_lock(&mm->page_table_lock);
2101 if (!new)
2102 return NULL;
2103
2104 /*
2105 * Because we dropped the lock, we should re-check the
2106 * entry, as somebody else could have populated it..
2107 */
2108#ifndef __ARCH_HAS_4LEVEL_HACK
2109 if (pud_present(*pud)) {
2110 pmd_free(new);
2111 goto out;
2112 }
2113 pud_populate(mm, pud, new);
2114#else
2115 if (pgd_present(*pud)) {
2116 pmd_free(new);
2117 goto out;
2118 }
2119 pgd_populate(mm, pud, new);
2120#endif /* __ARCH_HAS_4LEVEL_HACK */
2121
2122 out:
2123 return pmd_offset(pud, address);
2124}
2125#endif /* __PAGETABLE_PMD_FOLDED */
2126
2127int make_pages_present(unsigned long addr, unsigned long end)
2128{
2129 int ret, len, write;
2130 struct vm_area_struct * vma;
2131
2132 vma = find_vma(current->mm, addr);
2133 if (!vma)
2134 return -1;
2135 write = (vma->vm_flags & VM_WRITE) != 0;
2136 if (addr >= end)
2137 BUG();
2138 if (end > vma->vm_end)
2139 BUG();
2140 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2141 ret = get_user_pages(current, current->mm, addr,
2142 len, write, 0, NULL, NULL);
2143 if (ret < 0)
2144 return ret;
2145 return ret == len ? 0 : -1;
2146}
2147
2148/*
2149 * Map a vmalloc()-space virtual address to the physical page.
2150 */
2151struct page * vmalloc_to_page(void * vmalloc_addr)
2152{
2153 unsigned long addr = (unsigned long) vmalloc_addr;
2154 struct page *page = NULL;
2155 pgd_t *pgd = pgd_offset_k(addr);
2156 pud_t *pud;
2157 pmd_t *pmd;
2158 pte_t *ptep, pte;
2159
2160 if (!pgd_none(*pgd)) {
2161 pud = pud_offset(pgd, addr);
2162 if (!pud_none(*pud)) {
2163 pmd = pmd_offset(pud, addr);
2164 if (!pmd_none(*pmd)) {
2165 ptep = pte_offset_map(pmd, addr);
2166 pte = *ptep;
2167 if (pte_present(pte))
2168 page = pte_page(pte);
2169 pte_unmap(ptep);
2170 }
2171 }
2172 }
2173 return page;
2174}
2175
2176EXPORT_SYMBOL(vmalloc_to_page);
2177
2178/*
2179 * Map a vmalloc()-space virtual address to the physical page frame number.
2180 */
2181unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2182{
2183 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2184}
2185
2186EXPORT_SYMBOL(vmalloc_to_pfn);
2187
2188/*
2189 * update_mem_hiwater
2190 * - update per process rss and vm high water data
2191 */
2192void update_mem_hiwater(struct task_struct *tsk)
2193{
2194 if (tsk->mm) {
2195 unsigned long rss = get_mm_counter(tsk->mm, rss);
2196
2197 if (tsk->mm->hiwater_rss < rss)
2198 tsk->mm->hiwater_rss = rss;
2199 if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2200 tsk->mm->hiwater_vm = tsk->mm->total_vm;
2201 }
2202}
2203
2204#if !defined(__HAVE_ARCH_GATE_AREA)
2205
2206#if defined(AT_SYSINFO_EHDR)
Adrian Bunk5ce78522005-09-10 00:26:28 -07002207static struct vm_area_struct gate_vma;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002208
2209static int __init gate_vma_init(void)
2210{
2211 gate_vma.vm_mm = NULL;
2212 gate_vma.vm_start = FIXADDR_USER_START;
2213 gate_vma.vm_end = FIXADDR_USER_END;
2214 gate_vma.vm_page_prot = PAGE_READONLY;
2215 gate_vma.vm_flags = 0;
2216 return 0;
2217}
2218__initcall(gate_vma_init);
2219#endif
2220
2221struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2222{
2223#ifdef AT_SYSINFO_EHDR
2224 return &gate_vma;
2225#else
2226 return NULL;
2227#endif
2228}
2229
2230int in_gate_area_no_task(unsigned long addr)
2231{
2232#ifdef AT_SYSINFO_EHDR
2233 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2234 return 1;
2235#endif
2236 return 0;
2237}
2238
2239#endif /* __HAVE_ARCH_GATE_AREA */