blob: bdbca85d16757d9fc74f57a525d6e4f8436fe999 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/* cyberstorm.c: Driver for CyberStorm SCSI Controller.
2 *
3 * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk)
4 *
5 * The CyberStorm SCSI driver is based on David S. Miller's ESP driver
6 * for the Sparc computers.
7 *
8 * This work was made possible by Phase5 who willingly (and most generously)
9 * supported me with hardware and all the information I needed.
10 */
11
12/* TODO:
13 *
14 * 1) Figure out how to make a cleaner merge with the sparc driver with regard
15 * to the caches and the Sparc MMU mapping.
16 * 2) Make as few routines required outside the generic driver. A lot of the
17 * routines in this file used to be inline!
18 */
19
20#include <linux/module.h>
21
22#include <linux/init.h>
23#include <linux/kernel.h>
24#include <linux/delay.h>
25#include <linux/types.h>
26#include <linux/string.h>
27#include <linux/slab.h>
28#include <linux/blkdev.h>
29#include <linux/proc_fs.h>
30#include <linux/stat.h>
31#include <linux/interrupt.h>
32
33#include "scsi.h"
34#include <scsi/scsi_host.h>
35#include "NCR53C9x.h"
36
37#include <linux/zorro.h>
38#include <asm/irq.h>
39#include <asm/amigaints.h>
40#include <asm/amigahw.h>
41
42#include <asm/pgtable.h>
43
44/* The controller registers can be found in the Z2 config area at these
45 * offsets:
46 */
47#define CYBER_ESP_ADDR 0xf400
48#define CYBER_DMA_ADDR 0xf800
49
50
51/* The CyberStorm DMA interface */
52struct cyber_dma_registers {
53 volatile unsigned char dma_addr0; /* DMA address (MSB) [0x000] */
54 unsigned char dmapad1[1];
55 volatile unsigned char dma_addr1; /* DMA address [0x002] */
56 unsigned char dmapad2[1];
57 volatile unsigned char dma_addr2; /* DMA address [0x004] */
58 unsigned char dmapad3[1];
59 volatile unsigned char dma_addr3; /* DMA address (LSB) [0x006] */
60 unsigned char dmapad4[0x3fb];
61 volatile unsigned char cond_reg; /* DMA cond (ro) [0x402] */
62#define ctrl_reg cond_reg /* DMA control (wo) [0x402] */
63};
64
65/* DMA control bits */
66#define CYBER_DMA_LED 0x80 /* HD led control 1 = on */
67#define CYBER_DMA_WRITE 0x40 /* DMA direction. 1 = write */
68#define CYBER_DMA_Z3 0x20 /* 16 (Z2) or 32 (CHIP/Z3) bit DMA transfer */
69
70/* DMA status bits */
71#define CYBER_DMA_HNDL_INTR 0x80 /* DMA IRQ pending? */
72
73/* The bits below appears to be Phase5 Debug bits only; they were not
74 * described by Phase5 so using them may seem a bit stupid...
75 */
76#define CYBER_HOST_ID 0x02 /* If set, host ID should be 7, otherwise
77 * it should be 6.
78 */
79#define CYBER_SLOW_CABLE 0x08 /* If *not* set, assume SLOW_CABLE */
80
81static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count);
82static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp);
83static void dma_dump_state(struct NCR_ESP *esp);
84static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length);
85static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length);
86static void dma_ints_off(struct NCR_ESP *esp);
87static void dma_ints_on(struct NCR_ESP *esp);
88static int dma_irq_p(struct NCR_ESP *esp);
89static void dma_led_off(struct NCR_ESP *esp);
90static void dma_led_on(struct NCR_ESP *esp);
91static int dma_ports_p(struct NCR_ESP *esp);
92static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write);
93
94static unsigned char ctrl_data = 0; /* Keep backup of the stuff written
95 * to ctrl_reg. Always write a copy
96 * to this register when writing to
97 * the hardware register!
98 */
99
100static volatile unsigned char cmd_buffer[16];
101 /* This is where all commands are put
102 * before they are transferred to the ESP chip
103 * via PIO.
104 */
105
106/***************************************************************** Detection */
107int __init cyber_esp_detect(Scsi_Host_Template *tpnt)
108{
109 struct NCR_ESP *esp;
110 struct zorro_dev *z = NULL;
111 unsigned long address;
112
113 while ((z = zorro_find_device(ZORRO_WILDCARD, z))) {
114 unsigned long board = z->resource.start;
115 if ((z->id == ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM ||
116 z->id == ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060) &&
117 request_mem_region(board+CYBER_ESP_ADDR,
118 sizeof(struct ESP_regs), "NCR53C9x")) {
119 /* Figure out if this is a CyberStorm or really a
120 * Fastlane/Blizzard Mk II by looking at the board size.
121 * CyberStorm maps 64kB
122 * (ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM does anyway)
123 */
124 if(z->resource.end-board != 0xffff) {
125 release_mem_region(board+CYBER_ESP_ADDR,
126 sizeof(struct ESP_regs));
127 return 0;
128 }
129 esp = esp_allocate(tpnt, (void *)board+CYBER_ESP_ADDR);
130
131 /* Do command transfer with programmed I/O */
132 esp->do_pio_cmds = 1;
133
134 /* Required functions */
135 esp->dma_bytes_sent = &dma_bytes_sent;
136 esp->dma_can_transfer = &dma_can_transfer;
137 esp->dma_dump_state = &dma_dump_state;
138 esp->dma_init_read = &dma_init_read;
139 esp->dma_init_write = &dma_init_write;
140 esp->dma_ints_off = &dma_ints_off;
141 esp->dma_ints_on = &dma_ints_on;
142 esp->dma_irq_p = &dma_irq_p;
143 esp->dma_ports_p = &dma_ports_p;
144 esp->dma_setup = &dma_setup;
145
146 /* Optional functions */
147 esp->dma_barrier = 0;
148 esp->dma_drain = 0;
149 esp->dma_invalidate = 0;
150 esp->dma_irq_entry = 0;
151 esp->dma_irq_exit = 0;
152 esp->dma_led_on = &dma_led_on;
153 esp->dma_led_off = &dma_led_off;
154 esp->dma_poll = 0;
155 esp->dma_reset = 0;
156
157 /* SCSI chip speed */
158 esp->cfreq = 40000000;
159
160 /* The DMA registers on the CyberStorm are mapped
161 * relative to the device (i.e. in the same Zorro
162 * I/O block).
163 */
164 address = (unsigned long)ZTWO_VADDR(board);
165 esp->dregs = (void *)(address + CYBER_DMA_ADDR);
166
167 /* ESP register base */
168 esp->eregs = (struct ESP_regs *)(address + CYBER_ESP_ADDR);
169
170 /* Set the command buffer */
171 esp->esp_command = cmd_buffer;
172 esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer);
173
174 esp->irq = IRQ_AMIGA_PORTS;
175 request_irq(IRQ_AMIGA_PORTS, esp_intr, SA_SHIRQ,
176 "CyberStorm SCSI", esp->ehost);
177 /* Figure out our scsi ID on the bus */
178 /* The DMA cond flag contains a hardcoded jumper bit
179 * which can be used to select host number 6 or 7.
180 * However, even though it may change, we use a hardcoded
181 * value of 7.
182 */
183 esp->scsi_id = 7;
184
185 /* We don't have a differential SCSI-bus. */
186 esp->diff = 0;
187
188 esp_initialize(esp);
189
190 printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use);
191 esps_running = esps_in_use;
192 return esps_in_use;
193 }
194 }
195 return 0;
196}
197
198/************************************************************* DMA Functions */
199static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count)
200{
201 /* Since the CyberStorm DMA is fully dedicated to the ESP chip,
202 * the number of bytes sent (to the ESP chip) equals the number
203 * of bytes in the FIFO - there is no buffering in the DMA controller.
204 * XXXX Do I read this right? It is from host to ESP, right?
205 */
206 return fifo_count;
207}
208
209static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp)
210{
211 /* I don't think there's any limit on the CyberDMA. So we use what
212 * the ESP chip can handle (24 bit).
213 */
214 unsigned long sz = sp->SCp.this_residual;
215 if(sz > 0x1000000)
216 sz = 0x1000000;
217 return sz;
218}
219
220static void dma_dump_state(struct NCR_ESP *esp)
221{
222 ESPLOG(("esp%d: dma -- cond_reg<%02x>\n",
223 esp->esp_id, ((struct cyber_dma_registers *)
224 (esp->dregs))->cond_reg));
225 ESPLOG(("intreq:<%04x>, intena:<%04x>\n",
226 custom.intreqr, custom.intenar));
227}
228
229static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length)
230{
231 struct cyber_dma_registers *dregs =
232 (struct cyber_dma_registers *) esp->dregs;
233
234 cache_clear(addr, length);
235
236 addr &= ~(1);
237 dregs->dma_addr0 = (addr >> 24) & 0xff;
238 dregs->dma_addr1 = (addr >> 16) & 0xff;
239 dregs->dma_addr2 = (addr >> 8) & 0xff;
240 dregs->dma_addr3 = (addr ) & 0xff;
241 ctrl_data &= ~(CYBER_DMA_WRITE);
242
243 /* Check if physical address is outside Z2 space and of
244 * block length/block aligned in memory. If this is the
245 * case, enable 32 bit transfer. In all other cases, fall back
246 * to 16 bit transfer.
247 * Obviously 32 bit transfer should be enabled if the DMA address
248 * and length are 32 bit aligned. However, this leads to some
249 * strange behavior. Even 64 bit aligned addr/length fails.
250 * Until I've found a reason for this, 32 bit transfer is only
251 * used for full-block transfers (1kB).
252 * -jskov
253 */
254#if 0
255 if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) &&
256 (addr < 0xff0000)))
257 ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
258 else
259 ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */
260#else
261 ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
262#endif
263 dregs->ctrl_reg = ctrl_data;
264}
265
266static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length)
267{
268 struct cyber_dma_registers *dregs =
269 (struct cyber_dma_registers *) esp->dregs;
270
271 cache_push(addr, length);
272
273 addr |= 1;
274 dregs->dma_addr0 = (addr >> 24) & 0xff;
275 dregs->dma_addr1 = (addr >> 16) & 0xff;
276 dregs->dma_addr2 = (addr >> 8) & 0xff;
277 dregs->dma_addr3 = (addr ) & 0xff;
278 ctrl_data |= CYBER_DMA_WRITE;
279
280 /* See comment above */
281#if 0
282 if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) &&
283 (addr < 0xff0000)))
284 ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
285 else
286 ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */
287#else
288 ctrl_data &= ~(CYBER_DMA_Z3); /* Z2, do 16 bit DMA */
289#endif
290 dregs->ctrl_reg = ctrl_data;
291}
292
293static void dma_ints_off(struct NCR_ESP *esp)
294{
295 disable_irq(esp->irq);
296}
297
298static void dma_ints_on(struct NCR_ESP *esp)
299{
300 enable_irq(esp->irq);
301}
302
303static int dma_irq_p(struct NCR_ESP *esp)
304{
305 /* It's important to check the DMA IRQ bit in the correct way! */
306 return ((esp_read(esp->eregs->esp_status) & ESP_STAT_INTR) &&
307 ((((struct cyber_dma_registers *)(esp->dregs))->cond_reg) &
308 CYBER_DMA_HNDL_INTR));
309}
310
311static void dma_led_off(struct NCR_ESP *esp)
312{
313 ctrl_data &= ~CYBER_DMA_LED;
314 ((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data;
315}
316
317static void dma_led_on(struct NCR_ESP *esp)
318{
319 ctrl_data |= CYBER_DMA_LED;
320 ((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data;
321}
322
323static int dma_ports_p(struct NCR_ESP *esp)
324{
325 return ((custom.intenar) & IF_PORTS);
326}
327
328static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write)
329{
330 /* On the Sparc, DMA_ST_WRITE means "move data from device to memory"
331 * so when (write) is true, it actually means READ!
332 */
333 if(write){
334 dma_init_read(esp, addr, count);
335 } else {
336 dma_init_write(esp, addr, count);
337 }
338}
339
340#define HOSTS_C
341
342int cyber_esp_release(struct Scsi_Host *instance)
343{
344#ifdef MODULE
345 unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev;
346
347 esp_deallocate((struct NCR_ESP *)instance->hostdata);
348 esp_release();
349 release_mem_region(address, sizeof(struct ESP_regs));
350 free_irq(IRQ_AMIGA_PORTS, esp_intr);
351#endif
352 return 1;
353}
354
355
356static Scsi_Host_Template driver_template = {
357 .proc_name = "esp-cyberstorm",
358 .proc_info = esp_proc_info,
359 .name = "CyberStorm SCSI",
360 .detect = cyber_esp_detect,
361 .slave_alloc = esp_slave_alloc,
362 .slave_destroy = esp_slave_destroy,
363 .release = cyber_esp_release,
364 .queuecommand = esp_queue,
365 .eh_abort_handler = esp_abort,
366 .eh_bus_reset_handler = esp_reset,
367 .can_queue = 7,
368 .this_id = 7,
369 .sg_tablesize = SG_ALL,
370 .cmd_per_lun = 1,
371 .use_clustering = ENABLE_CLUSTERING
372};
373
374
375#include "scsi_module.c"
376
377MODULE_LICENSE("GPL");