David S. Miller | 6e5714e | 2011-08-03 20:50:44 -0700 | [diff] [blame] | 1 | #include <linux/kernel.h> |
| 2 | #include <linux/init.h> |
| 3 | #include <linux/cryptohash.h> |
| 4 | #include <linux/module.h> |
| 5 | #include <linux/cache.h> |
| 6 | #include <linux/random.h> |
| 7 | #include <linux/hrtimer.h> |
| 8 | #include <linux/ktime.h> |
| 9 | #include <linux/string.h> |
| 10 | |
| 11 | #include <net/secure_seq.h> |
| 12 | |
| 13 | static u32 net_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned; |
| 14 | |
| 15 | static int __init net_secret_init(void) |
| 16 | { |
| 17 | get_random_bytes(net_secret, sizeof(net_secret)); |
| 18 | return 0; |
| 19 | } |
| 20 | late_initcall(net_secret_init); |
| 21 | |
| 22 | static u32 seq_scale(u32 seq) |
| 23 | { |
| 24 | /* |
| 25 | * As close as possible to RFC 793, which |
| 26 | * suggests using a 250 kHz clock. |
| 27 | * Further reading shows this assumes 2 Mb/s networks. |
| 28 | * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate. |
| 29 | * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but |
| 30 | * we also need to limit the resolution so that the u32 seq |
| 31 | * overlaps less than one time per MSL (2 minutes). |
| 32 | * Choosing a clock of 64 ns period is OK. (period of 274 s) |
| 33 | */ |
| 34 | return seq + (ktime_to_ns(ktime_get_real()) >> 6); |
| 35 | } |
| 36 | |
| 37 | #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) |
| 38 | __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr, |
| 39 | __be16 sport, __be16 dport) |
| 40 | { |
| 41 | u32 secret[MD5_MESSAGE_BYTES / 4]; |
| 42 | u32 hash[MD5_DIGEST_WORDS]; |
| 43 | u32 i; |
| 44 | |
| 45 | memcpy(hash, saddr, 16); |
| 46 | for (i = 0; i < 4; i++) |
| 47 | secret[i] = net_secret[i] + daddr[i]; |
| 48 | secret[4] = net_secret[4] + |
| 49 | (((__force u16)sport << 16) + (__force u16)dport); |
| 50 | for (i = 5; i < MD5_MESSAGE_BYTES / 4; i++) |
| 51 | secret[i] = net_secret[i]; |
| 52 | |
| 53 | md5_transform(hash, secret); |
| 54 | |
| 55 | return seq_scale(hash[0]); |
| 56 | } |
| 57 | EXPORT_SYMBOL(secure_tcpv6_sequence_number); |
| 58 | |
| 59 | u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr, |
| 60 | __be16 dport) |
| 61 | { |
| 62 | u32 secret[MD5_MESSAGE_BYTES / 4]; |
| 63 | u32 hash[MD5_DIGEST_WORDS]; |
| 64 | u32 i; |
| 65 | |
| 66 | memcpy(hash, saddr, 16); |
| 67 | for (i = 0; i < 4; i++) |
| 68 | secret[i] = net_secret[i] + (__force u32) daddr[i]; |
| 69 | secret[4] = net_secret[4] + (__force u32)dport; |
| 70 | for (i = 5; i < MD5_MESSAGE_BYTES / 4; i++) |
| 71 | secret[i] = net_secret[i]; |
| 72 | |
| 73 | md5_transform(hash, secret); |
| 74 | |
| 75 | return hash[0]; |
| 76 | } |
| 77 | #endif |
| 78 | |
| 79 | #ifdef CONFIG_INET |
| 80 | __u32 secure_ip_id(__be32 daddr) |
| 81 | { |
| 82 | u32 hash[MD5_DIGEST_WORDS]; |
| 83 | |
| 84 | hash[0] = (__force __u32) daddr; |
| 85 | hash[1] = net_secret[13]; |
| 86 | hash[2] = net_secret[14]; |
| 87 | hash[3] = net_secret[15]; |
| 88 | |
| 89 | md5_transform(hash, net_secret); |
| 90 | |
| 91 | return hash[0]; |
| 92 | } |
| 93 | |
| 94 | __u32 secure_ipv6_id(const __be32 daddr[4]) |
| 95 | { |
| 96 | __u32 hash[4]; |
| 97 | |
| 98 | memcpy(hash, daddr, 16); |
| 99 | md5_transform(hash, net_secret); |
| 100 | |
| 101 | return hash[0]; |
| 102 | } |
| 103 | |
| 104 | __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr, |
| 105 | __be16 sport, __be16 dport) |
| 106 | { |
| 107 | u32 hash[MD5_DIGEST_WORDS]; |
| 108 | |
| 109 | hash[0] = (__force u32)saddr; |
| 110 | hash[1] = (__force u32)daddr; |
| 111 | hash[2] = ((__force u16)sport << 16) + (__force u16)dport; |
| 112 | hash[3] = net_secret[15]; |
| 113 | |
| 114 | md5_transform(hash, net_secret); |
| 115 | |
| 116 | return seq_scale(hash[0]); |
| 117 | } |
| 118 | |
| 119 | u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport) |
| 120 | { |
| 121 | u32 hash[MD5_DIGEST_WORDS]; |
| 122 | |
| 123 | hash[0] = (__force u32)saddr; |
| 124 | hash[1] = (__force u32)daddr; |
| 125 | hash[2] = (__force u32)dport ^ net_secret[14]; |
| 126 | hash[3] = net_secret[15]; |
| 127 | |
| 128 | md5_transform(hash, net_secret); |
| 129 | |
| 130 | return hash[0]; |
| 131 | } |
| 132 | EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral); |
| 133 | #endif |
| 134 | |
| 135 | #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE) |
| 136 | u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr, |
| 137 | __be16 sport, __be16 dport) |
| 138 | { |
| 139 | u32 hash[MD5_DIGEST_WORDS]; |
| 140 | u64 seq; |
| 141 | |
| 142 | hash[0] = (__force u32)saddr; |
| 143 | hash[1] = (__force u32)daddr; |
| 144 | hash[2] = ((__force u16)sport << 16) + (__force u16)dport; |
| 145 | hash[3] = net_secret[15]; |
| 146 | |
| 147 | md5_transform(hash, net_secret); |
| 148 | |
| 149 | seq = hash[0] | (((u64)hash[1]) << 32); |
| 150 | seq += ktime_to_ns(ktime_get_real()); |
| 151 | seq &= (1ull << 48) - 1; |
| 152 | |
| 153 | return seq; |
| 154 | } |
| 155 | EXPORT_SYMBOL(secure_dccp_sequence_number); |
| 156 | |
| 157 | #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) |
| 158 | u64 secure_dccpv6_sequence_number(__be32 *saddr, __be32 *daddr, |
| 159 | __be16 sport, __be16 dport) |
| 160 | { |
| 161 | u32 secret[MD5_MESSAGE_BYTES / 4]; |
| 162 | u32 hash[MD5_DIGEST_WORDS]; |
| 163 | u64 seq; |
| 164 | u32 i; |
| 165 | |
| 166 | memcpy(hash, saddr, 16); |
| 167 | for (i = 0; i < 4; i++) |
| 168 | secret[i] = net_secret[i] + daddr[i]; |
| 169 | secret[4] = net_secret[4] + |
| 170 | (((__force u16)sport << 16) + (__force u16)dport); |
| 171 | for (i = 5; i < MD5_MESSAGE_BYTES / 4; i++) |
| 172 | secret[i] = net_secret[i]; |
| 173 | |
| 174 | md5_transform(hash, secret); |
| 175 | |
| 176 | seq = hash[0] | (((u64)hash[1]) << 32); |
| 177 | seq += ktime_to_ns(ktime_get_real()); |
| 178 | seq &= (1ull << 48) - 1; |
| 179 | |
| 180 | return seq; |
| 181 | } |
| 182 | EXPORT_SYMBOL(secure_dccpv6_sequence_number); |
| 183 | #endif |
| 184 | #endif |