blob: 0aeed0e74cb67296ddccf38dd06679f8cb20cb15 [file] [log] [blame]
Ralph Campbellf9315512010-05-23 21:44:54 -07001/*
2 * Copyright (c) 2006, 2007, 2008, 2009 QLogic Corporation. All rights reserved.
3 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33/*
34 * This file contains all of the code that is specific to the SerDes
35 * on the QLogic_IB 7220 chip.
36 */
37
38#include <linux/pci.h>
39#include <linux/delay.h>
40
41#include "qib.h"
42#include "qib_7220.h"
43
44/*
45 * Same as in qib_iba7220.c, but just the registers needed here.
46 * Could move whole set to qib_7220.h, but decided better to keep
47 * local.
48 */
49#define KREG_IDX(regname) (QIB_7220_##regname##_OFFS / sizeof(u64))
50#define kr_hwerrclear KREG_IDX(HwErrClear)
51#define kr_hwerrmask KREG_IDX(HwErrMask)
52#define kr_hwerrstatus KREG_IDX(HwErrStatus)
53#define kr_ibcstatus KREG_IDX(IBCStatus)
54#define kr_ibserdesctrl KREG_IDX(IBSerDesCtrl)
55#define kr_scratch KREG_IDX(Scratch)
56#define kr_xgxs_cfg KREG_IDX(XGXSCfg)
57/* these are used only here, not in qib_iba7220.c */
58#define kr_ibsd_epb_access_ctrl KREG_IDX(ibsd_epb_access_ctrl)
59#define kr_ibsd_epb_transaction_reg KREG_IDX(ibsd_epb_transaction_reg)
60#define kr_pciesd_epb_transaction_reg KREG_IDX(pciesd_epb_transaction_reg)
61#define kr_pciesd_epb_access_ctrl KREG_IDX(pciesd_epb_access_ctrl)
62#define kr_serdes_ddsrxeq0 KREG_IDX(SerDes_DDSRXEQ0)
63
64/*
65 * The IBSerDesMappTable is a memory that holds values to be stored in
66 * various SerDes registers by IBC.
67 */
68#define kr_serdes_maptable KREG_IDX(IBSerDesMappTable)
69
70/*
71 * Below used for sdnum parameter, selecting one of the two sections
72 * used for PCIe, or the single SerDes used for IB.
73 */
74#define PCIE_SERDES0 0
75#define PCIE_SERDES1 1
76
77/*
78 * The EPB requires addressing in a particular form. EPB_LOC() is intended
79 * to make #definitions a little more readable.
80 */
81#define EPB_ADDR_SHF 8
82#define EPB_LOC(chn, elt, reg) \
83 (((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \
84 EPB_ADDR_SHF)
85#define EPB_IB_QUAD0_CS_SHF (25)
86#define EPB_IB_QUAD0_CS (1U << EPB_IB_QUAD0_CS_SHF)
87#define EPB_IB_UC_CS_SHF (26)
88#define EPB_PCIE_UC_CS_SHF (27)
89#define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8))
90
91/* Forward declarations. */
92static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
93 u32 data, u32 mask);
94static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
95 int mask);
96static int qib_sd_trimdone_poll(struct qib_devdata *dd);
97static void qib_sd_trimdone_monitor(struct qib_devdata *dd, const char *where);
98static int qib_sd_setvals(struct qib_devdata *dd);
99static int qib_sd_early(struct qib_devdata *dd);
100static int qib_sd_dactrim(struct qib_devdata *dd);
101static int qib_internal_presets(struct qib_devdata *dd);
102/* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */
103static int qib_sd_trimself(struct qib_devdata *dd, int val);
104static int epb_access(struct qib_devdata *dd, int sdnum, int claim);
105
106/*
107 * Below keeps track of whether the "once per power-on" initialization has
108 * been done, because uC code Version 1.32.17 or higher allows the uC to
109 * be reset at will, and Automatic Equalization may require it. So the
110 * state of the reset "pin", is no longer valid. Instead, we check for the
111 * actual uC code having been loaded.
112 */
113static int qib_ibsd_ucode_loaded(struct qib_pportdata *ppd)
114{
115 struct qib_devdata *dd = ppd->dd;
116 if (!dd->cspec->serdes_first_init_done && (qib_sd7220_ib_vfy(dd) > 0))
117 dd->cspec->serdes_first_init_done = 1;
118 return dd->cspec->serdes_first_init_done;
119}
120
121/* repeat #define for local use. "Real" #define is in qib_iba7220.c */
122#define QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR 0x0000004000000000ULL
123#define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF))
124#define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF))
125#define UC_PAR_CLR_D 8
126#define UC_PAR_CLR_M 0xC
127#define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS)
128#define START_EQ1(chan) EPB_LOC(chan, 7, 0x27)
129
130void qib_sd7220_clr_ibpar(struct qib_devdata *dd)
131{
132 int ret;
133
134 /* clear, then re-enable parity errs */
135 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6,
136 UC_PAR_CLR_D, UC_PAR_CLR_M);
137 if (ret < 0) {
138 qib_dev_err(dd, "Failed clearing IBSerDes Parity err\n");
139 goto bail;
140 }
141 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0,
142 UC_PAR_CLR_M);
143
144 qib_read_kreg32(dd, kr_scratch);
145 udelay(4);
146 qib_write_kreg(dd, kr_hwerrclear,
147 QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
148 qib_read_kreg32(dd, kr_scratch);
149bail:
150 return;
151}
152
153/*
154 * After a reset or other unusual event, the epb interface may need
155 * to be re-synchronized, between the host and the uC.
156 * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected)
157 */
158#define IBSD_RESYNC_TRIES 3
159#define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS)
160#define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS)
161
162static int qib_resync_ibepb(struct qib_devdata *dd)
163{
164 int ret, pat, tries, chn;
165 u32 loc;
166
167 ret = -1;
168 chn = 0;
169 for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) {
170 loc = IB_PGUDP(chn);
171 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
172 if (ret < 0) {
173 qib_dev_err(dd, "Failed read in resync\n");
174 continue;
175 }
176 if (ret != 0xF0 && ret != 0x55 && tries == 0)
177 qib_dev_err(dd, "unexpected pattern in resync\n");
178 pat = ret ^ 0xA5; /* alternate F0 and 55 */
179 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF);
180 if (ret < 0) {
181 qib_dev_err(dd, "Failed write in resync\n");
182 continue;
183 }
184 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
185 if (ret < 0) {
186 qib_dev_err(dd, "Failed re-read in resync\n");
187 continue;
188 }
189 if (ret != pat) {
190 qib_dev_err(dd, "Failed compare1 in resync\n");
191 continue;
192 }
193 loc = IB_CMUDONE(chn);
194 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
195 if (ret < 0) {
196 qib_dev_err(dd, "Failed CMUDONE rd in resync\n");
197 continue;
198 }
199 if ((ret & 0x70) != ((chn << 4) | 0x40)) {
200 qib_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n",
201 ret, chn);
202 continue;
203 }
204 if (++chn == 4)
205 break; /* Success */
206 }
207 return (ret > 0) ? 0 : ret;
208}
209
210/*
211 * Localize the stuff that should be done to change IB uC reset
212 * returns <0 for errors.
213 */
214static int qib_ibsd_reset(struct qib_devdata *dd, int assert_rst)
215{
216 u64 rst_val;
217 int ret = 0;
218 unsigned long flags;
219
220 rst_val = qib_read_kreg64(dd, kr_ibserdesctrl);
221 if (assert_rst) {
222 /*
223 * Vendor recommends "interrupting" uC before reset, to
224 * minimize possible glitches.
225 */
226 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
227 epb_access(dd, IB_7220_SERDES, 1);
228 rst_val |= 1ULL;
229 /* Squelch possible parity error from _asserting_ reset */
230 qib_write_kreg(dd, kr_hwerrmask,
231 dd->cspec->hwerrmask &
232 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
233 qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
234 /* flush write, delay to ensure it took effect */
235 qib_read_kreg32(dd, kr_scratch);
236 udelay(2);
237 /* once it's reset, can remove interrupt */
238 epb_access(dd, IB_7220_SERDES, -1);
239 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
240 } else {
241 /*
242 * Before we de-assert reset, we need to deal with
243 * possible glitch on the Parity-error line.
244 * Suppress it around the reset, both in chip-level
245 * hwerrmask and in IB uC control reg. uC will allow
246 * it again during startup.
247 */
248 u64 val;
249 rst_val &= ~(1ULL);
250 qib_write_kreg(dd, kr_hwerrmask,
251 dd->cspec->hwerrmask &
252 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
253
254 ret = qib_resync_ibepb(dd);
255 if (ret < 0)
256 qib_dev_err(dd, "unable to re-sync IB EPB\n");
257
258 /* set uC control regs to suppress parity errs */
259 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1);
260 if (ret < 0)
261 goto bail;
262 /* IB uC code past Version 1.32.17 allow suppression of wdog */
263 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80,
264 0x80);
265 if (ret < 0) {
266 qib_dev_err(dd, "Failed to set WDOG disable\n");
267 goto bail;
268 }
269 qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
270 /* flush write, delay for startup */
271 qib_read_kreg32(dd, kr_scratch);
272 udelay(1);
273 /* clear, then re-enable parity errs */
274 qib_sd7220_clr_ibpar(dd);
275 val = qib_read_kreg64(dd, kr_hwerrstatus);
276 if (val & QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR) {
277 qib_dev_err(dd, "IBUC Parity still set after RST\n");
278 dd->cspec->hwerrmask &=
279 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR;
280 }
281 qib_write_kreg(dd, kr_hwerrmask,
282 dd->cspec->hwerrmask);
283 }
284
285bail:
286 return ret;
287}
288
289static void qib_sd_trimdone_monitor(struct qib_devdata *dd,
290 const char *where)
291{
292 int ret, chn, baduns;
293 u64 val;
294
295 if (!where)
296 where = "?";
297
298 /* give time for reset to settle out in EPB */
299 udelay(2);
300
301 ret = qib_resync_ibepb(dd);
302 if (ret < 0)
303 qib_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where);
304
305 /* Do "sacrificial read" to get EPB in sane state after reset */
306 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0);
307 if (ret < 0)
308 qib_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where);
309
310 /* Check/show "summary" Trim-done bit in IBCStatus */
311 val = qib_read_kreg64(dd, kr_ibcstatus);
312 if (!(val & (1ULL << 11)))
313 qib_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where);
314 /*
315 * Do "dummy read/mod/wr" to get EPB in sane state after reset
316 * The default value for MPREG6 is 0.
317 */
318 udelay(2);
319
320 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80);
321 if (ret < 0)
322 qib_dev_err(dd, "Failed Dummy RMW, (%s)\n", where);
323 udelay(10);
324
325 baduns = 0;
326
327 for (chn = 3; chn >= 0; --chn) {
328 /* Read CTRL reg for each channel to check TRIMDONE */
329 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
330 IB_CTRL2(chn), 0, 0);
331 if (ret < 0)
332 qib_dev_err(dd, "Failed checking TRIMDONE, chn %d"
333 " (%s)\n", chn, where);
334
335 if (!(ret & 0x10)) {
336 int probe;
337
338 baduns |= (1 << chn);
339 qib_dev_err(dd, "TRIMDONE cleared on chn %d (%02X)."
340 " (%s)\n", chn, ret, where);
341 probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
342 IB_PGUDP(0), 0, 0);
343 qib_dev_err(dd, "probe is %d (%02X)\n",
344 probe, probe);
345 probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
346 IB_CTRL2(chn), 0, 0);
347 qib_dev_err(dd, "re-read: %d (%02X)\n",
348 probe, probe);
349 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
350 IB_CTRL2(chn), 0x10, 0x10);
351 if (ret < 0)
352 qib_dev_err(dd,
353 "Err on TRIMDONE rewrite1\n");
354 }
355 }
356 for (chn = 3; chn >= 0; --chn) {
357 /* Read CTRL reg for each channel to check TRIMDONE */
358 if (baduns & (1 << chn)) {
359 qib_dev_err(dd,
360 "Reseting TRIMDONE on chn %d (%s)\n",
361 chn, where);
362 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
363 IB_CTRL2(chn), 0x10, 0x10);
364 if (ret < 0)
365 qib_dev_err(dd, "Failed re-setting "
366 "TRIMDONE, chn %d (%s)\n",
367 chn, where);
368 }
369 }
370}
371
372/*
373 * Below is portion of IBA7220-specific bringup_serdes() that actually
374 * deals with registers and memory within the SerDes itself.
375 * Post IB uC code version 1.32.17, was_reset being 1 is not really
376 * informative, so we double-check.
377 */
378int qib_sd7220_init(struct qib_devdata *dd)
379{
380 int ret = 1; /* default to failure */
381 int first_reset, was_reset;
382
383 /* SERDES MPU reset recorded in D0 */
384 was_reset = (qib_read_kreg64(dd, kr_ibserdesctrl) & 1);
385 if (!was_reset) {
386 /* entered with reset not asserted, we need to do it */
387 qib_ibsd_reset(dd, 1);
388 qib_sd_trimdone_monitor(dd, "Driver-reload");
389 }
390 /* Substitute our deduced value for was_reset */
391 ret = qib_ibsd_ucode_loaded(dd->pport);
392 if (ret < 0)
393 goto bail;
394
395 first_reset = !ret; /* First reset if IBSD uCode not yet loaded */
396 /*
397 * Alter some regs per vendor latest doc, reset-defaults
398 * are not right for IB.
399 */
400 ret = qib_sd_early(dd);
401 if (ret < 0) {
402 qib_dev_err(dd, "Failed to set IB SERDES early defaults\n");
403 goto bail;
404 }
405 /*
406 * Set DAC manual trim IB.
407 * We only do this once after chip has been reset (usually
408 * same as once per system boot).
409 */
410 if (first_reset) {
411 ret = qib_sd_dactrim(dd);
412 if (ret < 0) {
413 qib_dev_err(dd, "Failed IB SERDES DAC trim\n");
414 goto bail;
415 }
416 }
417 /*
418 * Set various registers (DDS and RXEQ) that will be
419 * controlled by IBC (in 1.2 mode) to reasonable preset values
420 * Calling the "internal" version avoids the "check for needed"
421 * and "trimdone monitor" that might be counter-productive.
422 */
423 ret = qib_internal_presets(dd);
424 if (ret < 0) {
425 qib_dev_err(dd, "Failed to set IB SERDES presets\n");
426 goto bail;
427 }
428 ret = qib_sd_trimself(dd, 0x80);
429 if (ret < 0) {
430 qib_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n");
431 goto bail;
432 }
433
434 /* Load image, then try to verify */
435 ret = 0; /* Assume success */
436 if (first_reset) {
437 int vfy;
438 int trim_done;
439
440 ret = qib_sd7220_ib_load(dd);
441 if (ret < 0) {
442 qib_dev_err(dd, "Failed to load IB SERDES image\n");
443 goto bail;
444 } else {
445 /* Loaded image, try to verify */
446 vfy = qib_sd7220_ib_vfy(dd);
447 if (vfy != ret) {
448 qib_dev_err(dd, "SERDES PRAM VFY failed\n");
449 goto bail;
450 } /* end if verified */
451 } /* end if loaded */
452
453 /*
454 * Loaded and verified. Almost good...
455 * hold "success" in ret
456 */
457 ret = 0;
458 /*
459 * Prev steps all worked, continue bringup
460 * De-assert RESET to uC, only in first reset, to allow
461 * trimming.
462 *
463 * Since our default setup sets START_EQ1 to
464 * PRESET, we need to clear that for this very first run.
465 */
466 ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38);
467 if (ret < 0) {
468 qib_dev_err(dd, "Failed clearing START_EQ1\n");
469 goto bail;
470 }
471
472 qib_ibsd_reset(dd, 0);
473 /*
474 * If this is not the first reset, trimdone should be set
475 * already. We may need to check about this.
476 */
477 trim_done = qib_sd_trimdone_poll(dd);
478 /*
479 * Whether or not trimdone succeeded, we need to put the
480 * uC back into reset to avoid a possible fight with the
481 * IBC state-machine.
482 */
483 qib_ibsd_reset(dd, 1);
484
485 if (!trim_done) {
486 qib_dev_err(dd, "No TRIMDONE seen\n");
487 goto bail;
488 }
489 /*
490 * DEBUG: check each time we reset if trimdone bits have
491 * gotten cleared, and re-set them.
492 */
493 qib_sd_trimdone_monitor(dd, "First-reset");
494 /* Remember so we do not re-do the load, dactrim, etc. */
495 dd->cspec->serdes_first_init_done = 1;
496 }
497 /*
498 * setup for channel training and load values for
499 * RxEq and DDS in tables used by IBC in IB1.2 mode
500 */
501 ret = 0;
502 if (qib_sd_setvals(dd) >= 0)
503 goto done;
504bail:
505 ret = 1;
506done:
507 /* start relock timer regardless, but start at 1 second */
508 set_7220_relock_poll(dd, -1);
509 return ret;
510}
511
512#define EPB_ACC_REQ 1
513#define EPB_ACC_GNT 0x100
514#define EPB_DATA_MASK 0xFF
515#define EPB_RD (1ULL << 24)
516#define EPB_TRANS_RDY (1ULL << 31)
517#define EPB_TRANS_ERR (1ULL << 30)
518#define EPB_TRANS_TRIES 5
519
520/*
521 * query, claim, release ownership of the EPB (External Parallel Bus)
522 * for a specified SERDES.
523 * the "claim" parameter is >0 to claim, <0 to release, 0 to query.
524 * Returns <0 for errors, >0 if we had ownership, else 0.
525 */
526static int epb_access(struct qib_devdata *dd, int sdnum, int claim)
527{
528 u16 acc;
529 u64 accval;
530 int owned = 0;
531 u64 oct_sel = 0;
532
533 switch (sdnum) {
534 case IB_7220_SERDES:
535 /*
536 * The IB SERDES "ownership" is fairly simple. A single each
537 * request/grant.
538 */
539 acc = kr_ibsd_epb_access_ctrl;
540 break;
541
542 case PCIE_SERDES0:
543 case PCIE_SERDES1:
544 /* PCIe SERDES has two "octants", need to select which */
545 acc = kr_pciesd_epb_access_ctrl;
546 oct_sel = (2 << (sdnum - PCIE_SERDES0));
547 break;
548
549 default:
550 return 0;
551 }
552
553 /* Make sure any outstanding transaction was seen */
554 qib_read_kreg32(dd, kr_scratch);
555 udelay(15);
556
557 accval = qib_read_kreg32(dd, acc);
558
559 owned = !!(accval & EPB_ACC_GNT);
560 if (claim < 0) {
561 /* Need to release */
562 u64 pollval;
563 /*
564 * The only writeable bits are the request and CS.
565 * Both should be clear
566 */
567 u64 newval = 0;
568 qib_write_kreg(dd, acc, newval);
569 /* First read after write is not trustworthy */
570 pollval = qib_read_kreg32(dd, acc);
571 udelay(5);
572 pollval = qib_read_kreg32(dd, acc);
573 if (pollval & EPB_ACC_GNT)
574 owned = -1;
575 } else if (claim > 0) {
576 /* Need to claim */
577 u64 pollval;
578 u64 newval = EPB_ACC_REQ | oct_sel;
579 qib_write_kreg(dd, acc, newval);
580 /* First read after write is not trustworthy */
581 pollval = qib_read_kreg32(dd, acc);
582 udelay(5);
583 pollval = qib_read_kreg32(dd, acc);
584 if (!(pollval & EPB_ACC_GNT))
585 owned = -1;
586 }
587 return owned;
588}
589
590/*
591 * Lemma to deal with race condition of write..read to epb regs
592 */
593static int epb_trans(struct qib_devdata *dd, u16 reg, u64 i_val, u64 *o_vp)
594{
595 int tries;
596 u64 transval;
597
598 qib_write_kreg(dd, reg, i_val);
599 /* Throw away first read, as RDY bit may be stale */
600 transval = qib_read_kreg64(dd, reg);
601
602 for (tries = EPB_TRANS_TRIES; tries; --tries) {
603 transval = qib_read_kreg32(dd, reg);
604 if (transval & EPB_TRANS_RDY)
605 break;
606 udelay(5);
607 }
608 if (transval & EPB_TRANS_ERR)
609 return -1;
610 if (tries > 0 && o_vp)
611 *o_vp = transval;
612 return tries;
613}
614
615/**
616 * qib_sd7220_reg_mod - modify SERDES register
617 * @dd: the qlogic_ib device
618 * @sdnum: which SERDES to access
619 * @loc: location - channel, element, register, as packed by EPB_LOC() macro.
620 * @wd: Write Data - value to set in register
621 * @mask: ones where data should be spliced into reg.
622 *
623 * Basic register read/modify/write, with un-needed acesses elided. That is,
624 * a mask of zero will prevent write, while a mask of 0xFF will prevent read.
625 * returns current (presumed, if a write was done) contents of selected
626 * register, or <0 if errors.
627 */
628static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
629 u32 wd, u32 mask)
630{
631 u16 trans;
632 u64 transval;
633 int owned;
634 int tries, ret;
635 unsigned long flags;
636
637 switch (sdnum) {
638 case IB_7220_SERDES:
639 trans = kr_ibsd_epb_transaction_reg;
640 break;
641
642 case PCIE_SERDES0:
643 case PCIE_SERDES1:
644 trans = kr_pciesd_epb_transaction_reg;
645 break;
646
647 default:
648 return -1;
649 }
650
651 /*
652 * All access is locked in software (vs other host threads) and
653 * hardware (vs uC access).
654 */
655 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
656
657 owned = epb_access(dd, sdnum, 1);
658 if (owned < 0) {
659 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
660 return -1;
661 }
662 ret = 0;
663 for (tries = EPB_TRANS_TRIES; tries; --tries) {
664 transval = qib_read_kreg32(dd, trans);
665 if (transval & EPB_TRANS_RDY)
666 break;
667 udelay(5);
668 }
669
670 if (tries > 0) {
671 tries = 1; /* to make read-skip work */
672 if (mask != 0xFF) {
673 /*
674 * Not a pure write, so need to read.
675 * loc encodes chip-select as well as address
676 */
677 transval = loc | EPB_RD;
678 tries = epb_trans(dd, trans, transval, &transval);
679 }
680 if (tries > 0 && mask != 0) {
681 /*
682 * Not a pure read, so need to write.
683 */
684 wd = (wd & mask) | (transval & ~mask);
685 transval = loc | (wd & EPB_DATA_MASK);
686 tries = epb_trans(dd, trans, transval, &transval);
687 }
688 }
689 /* else, failed to see ready, what error-handling? */
690
691 /*
692 * Release bus. Failure is an error.
693 */
694 if (epb_access(dd, sdnum, -1) < 0)
695 ret = -1;
696 else
697 ret = transval & EPB_DATA_MASK;
698
699 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
700 if (tries <= 0)
701 ret = -1;
702 return ret;
703}
704
705#define EPB_ROM_R (2)
706#define EPB_ROM_W (1)
707/*
708 * Below, all uC-related, use appropriate UC_CS, depending
709 * on which SerDes is used.
710 */
711#define EPB_UC_CTL EPB_LOC(6, 0, 0)
712#define EPB_MADDRL EPB_LOC(6, 0, 2)
713#define EPB_MADDRH EPB_LOC(6, 0, 3)
714#define EPB_ROMDATA EPB_LOC(6, 0, 4)
715#define EPB_RAMDATA EPB_LOC(6, 0, 5)
716
717/* Transfer date to/from uC Program RAM of IB or PCIe SerDes */
718static int qib_sd7220_ram_xfer(struct qib_devdata *dd, int sdnum, u32 loc,
719 u8 *buf, int cnt, int rd_notwr)
720{
721 u16 trans;
722 u64 transval;
723 u64 csbit;
724 int owned;
725 int tries;
726 int sofar;
727 int addr;
728 int ret;
729 unsigned long flags;
730 const char *op;
731
732 /* Pick appropriate transaction reg and "Chip select" for this serdes */
733 switch (sdnum) {
734 case IB_7220_SERDES:
735 csbit = 1ULL << EPB_IB_UC_CS_SHF;
736 trans = kr_ibsd_epb_transaction_reg;
737 break;
738
739 case PCIE_SERDES0:
740 case PCIE_SERDES1:
741 /* PCIe SERDES has uC "chip select" in different bit, too */
742 csbit = 1ULL << EPB_PCIE_UC_CS_SHF;
743 trans = kr_pciesd_epb_transaction_reg;
744 break;
745
746 default:
747 return -1;
748 }
749
750 op = rd_notwr ? "Rd" : "Wr";
751 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
752
753 owned = epb_access(dd, sdnum, 1);
754 if (owned < 0) {
755 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
756 return -1;
757 }
758
759 /*
760 * In future code, we may need to distinguish several address ranges,
761 * and select various memories based on this. For now, just trim
762 * "loc" (location including address and memory select) to
763 * "addr" (address within memory). we will only support PRAM
764 * The memory is 8KB.
765 */
766 addr = loc & 0x1FFF;
767 for (tries = EPB_TRANS_TRIES; tries; --tries) {
768 transval = qib_read_kreg32(dd, trans);
769 if (transval & EPB_TRANS_RDY)
770 break;
771 udelay(5);
772 }
773
774 sofar = 0;
775 if (tries > 0) {
776 /*
777 * Every "memory" access is doubly-indirect.
778 * We set two bytes of address, then read/write
779 * one or mores bytes of data.
780 */
781
782 /* First, we set control to "Read" or "Write" */
783 transval = csbit | EPB_UC_CTL |
784 (rd_notwr ? EPB_ROM_R : EPB_ROM_W);
785 tries = epb_trans(dd, trans, transval, &transval);
786 while (tries > 0 && sofar < cnt) {
787 if (!sofar) {
788 /* Only set address at start of chunk */
789 int addrbyte = (addr + sofar) >> 8;
790 transval = csbit | EPB_MADDRH | addrbyte;
791 tries = epb_trans(dd, trans, transval,
792 &transval);
793 if (tries <= 0)
794 break;
795 addrbyte = (addr + sofar) & 0xFF;
796 transval = csbit | EPB_MADDRL | addrbyte;
797 tries = epb_trans(dd, trans, transval,
798 &transval);
799 if (tries <= 0)
800 break;
801 }
802
803 if (rd_notwr)
804 transval = csbit | EPB_ROMDATA | EPB_RD;
805 else
806 transval = csbit | EPB_ROMDATA | buf[sofar];
807 tries = epb_trans(dd, trans, transval, &transval);
808 if (tries <= 0)
809 break;
810 if (rd_notwr)
811 buf[sofar] = transval & EPB_DATA_MASK;
812 ++sofar;
813 }
814 /* Finally, clear control-bit for Read or Write */
815 transval = csbit | EPB_UC_CTL;
816 tries = epb_trans(dd, trans, transval, &transval);
817 }
818
819 ret = sofar;
820 /* Release bus. Failure is an error */
821 if (epb_access(dd, sdnum, -1) < 0)
822 ret = -1;
823
824 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
825 if (tries <= 0)
826 ret = -1;
827 return ret;
828}
829
830#define PROG_CHUNK 64
831
832int qib_sd7220_prog_ld(struct qib_devdata *dd, int sdnum,
833 u8 *img, int len, int offset)
834{
835 int cnt, sofar, req;
836
837 sofar = 0;
838 while (sofar < len) {
839 req = len - sofar;
840 if (req > PROG_CHUNK)
841 req = PROG_CHUNK;
842 cnt = qib_sd7220_ram_xfer(dd, sdnum, offset + sofar,
843 img + sofar, req, 0);
844 if (cnt < req) {
845 sofar = -1;
846 break;
847 }
848 sofar += req;
849 }
850 return sofar;
851}
852
853#define VFY_CHUNK 64
854#define SD_PRAM_ERROR_LIMIT 42
855
856int qib_sd7220_prog_vfy(struct qib_devdata *dd, int sdnum,
857 const u8 *img, int len, int offset)
858{
859 int cnt, sofar, req, idx, errors;
860 unsigned char readback[VFY_CHUNK];
861
862 errors = 0;
863 sofar = 0;
864 while (sofar < len) {
865 req = len - sofar;
866 if (req > VFY_CHUNK)
867 req = VFY_CHUNK;
868 cnt = qib_sd7220_ram_xfer(dd, sdnum, sofar + offset,
869 readback, req, 1);
870 if (cnt < req) {
871 /* failed in read itself */
872 sofar = -1;
873 break;
874 }
875 for (idx = 0; idx < cnt; ++idx) {
876 if (readback[idx] != img[idx+sofar])
877 ++errors;
878 }
879 sofar += cnt;
880 }
881 return errors ? -errors : sofar;
882}
883
884/*
885 * IRQ not set up at this point in init, so we poll.
886 */
887#define IB_SERDES_TRIM_DONE (1ULL << 11)
888#define TRIM_TMO (30)
889
890static int qib_sd_trimdone_poll(struct qib_devdata *dd)
891{
892 int trim_tmo, ret;
893 uint64_t val;
894
895 /*
896 * Default to failure, so IBC will not start
897 * without IB_SERDES_TRIM_DONE.
898 */
899 ret = 0;
900 for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) {
901 val = qib_read_kreg64(dd, kr_ibcstatus);
902 if (val & IB_SERDES_TRIM_DONE) {
903 ret = 1;
904 break;
905 }
906 msleep(10);
907 }
908 if (trim_tmo >= TRIM_TMO) {
909 qib_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo);
910 ret = 0;
911 }
912 return ret;
913}
914
915#define TX_FAST_ELT (9)
916
917/*
918 * Set the "negotiation" values for SERDES. These are used by the IB1.2
919 * link negotiation. Macros below are attempt to keep the values a
920 * little more human-editable.
921 * First, values related to Drive De-emphasis Settings.
922 */
923
924#define NUM_DDS_REGS 6
925#define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */
926
927#define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \
928 { { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \
929 (main_d << 3) | 4 | (ipre_d >> 2), \
930 (main_s << 3) | 4 | (ipre_s >> 2), \
931 ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \
932 ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } }
933
934static struct dds_init {
935 uint8_t reg_vals[NUM_DDS_REGS];
936} dds_init_vals[] = {
937 /* DDR(FDR) SDR(HDR) */
938 /* Vendor recommends below for 3m cable */
939#define DDS_3M 0
940 DDS_VAL(31, 19, 12, 0, 29, 22, 9, 0),
941 DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1),
942 DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0),
943 DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0),
944 DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0),
945 DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0),
946 DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0),
947 DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0),
948 DDS_VAL(31, 20, 11, 0, 28, 23, 8, 0),
949 DDS_VAL(31, 21, 10, 0, 27, 24, 7, 0),
950 DDS_VAL(31, 22, 9, 0, 26, 25, 6, 0),
951 DDS_VAL(30, 23, 8, 0, 25, 26, 5, 0),
952 DDS_VAL(29, 24, 7, 0, 23, 27, 4, 0),
953 /* Vendor recommends below for 1m cable */
954#define DDS_1M 13
955 DDS_VAL(28, 25, 6, 0, 21, 28, 3, 0),
956 DDS_VAL(27, 26, 5, 0, 19, 29, 2, 0),
957 DDS_VAL(25, 27, 4, 0, 17, 30, 1, 0)
958};
959
960/*
961 * Now the RXEQ section of the table.
962 */
963/* Hardware packs an element number and register address thus: */
964#define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4))
965#define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \
966 {RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} }
967
968#define RXEQ_VAL_ALL(elt, adr, val) \
969 {RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} }
970
971#define RXEQ_SDR_DFELTH 0
972#define RXEQ_SDR_TLTH 0
973#define RXEQ_SDR_G1CNT_Z1CNT 0x11
974#define RXEQ_SDR_ZCNT 23
975
976static struct rxeq_init {
977 u16 rdesc; /* in form used in SerDesDDSRXEQ */
978 u8 rdata[4];
979} rxeq_init_vals[] = {
980 /* Set Rcv Eq. to Preset node */
981 RXEQ_VAL_ALL(7, 0x27, 0x10),
982 /* Set DFELTHFDR/HDR thresholds */
983 RXEQ_VAL(7, 8, 0, 0, 0, 0), /* FDR, was 0, 1, 2, 3 */
984 RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */
985 /* Set TLTHFDR/HDR theshold */
986 RXEQ_VAL(7, 9, 2, 2, 2, 2), /* FDR, was 0, 2, 4, 6 */
987 RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR, was 0, 1, 2, 3 */
988 /* Set Preamp setting 2 (ZFR/ZCNT) */
989 RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR, was 12, 16, 20, 24 */
990 RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR, was 12, 16, 20, 24 */
991 /* Set Preamp DC gain and Setting 1 (GFR/GHR) */
992 RXEQ_VAL(7, 0x1E, 16, 16, 16, 16), /* FDR, was 16, 17, 18, 20 */
993 RXEQ_VAL(7, 0x1F, 16, 16, 16, 16), /* HDR, was 16, 17, 18, 20 */
994 /* Toggle RELOCK (in VCDL_CTRL0) to lock to data */
995 RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */
996 RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */
997};
998
999/* There are 17 values from vendor, but IBC only accesses the first 16 */
1000#define DDS_ROWS (16)
1001#define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals)
1002
1003static int qib_sd_setvals(struct qib_devdata *dd)
1004{
1005 int idx, midx;
1006 int min_idx; /* Minimum index for this portion of table */
1007 uint32_t dds_reg_map;
1008 u64 __iomem *taddr, *iaddr;
1009 uint64_t data;
1010 uint64_t sdctl;
1011
1012 taddr = dd->kregbase + kr_serdes_maptable;
1013 iaddr = dd->kregbase + kr_serdes_ddsrxeq0;
1014
1015 /*
1016 * Init the DDS section of the table.
1017 * Each "row" of the table provokes NUM_DDS_REG writes, to the
1018 * registers indicated in DDS_REG_MAP.
1019 */
1020 sdctl = qib_read_kreg64(dd, kr_ibserdesctrl);
1021 sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8);
1022 sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13);
1023 qib_write_kreg(dd, kr_ibserdesctrl, sdctl);
1024
1025 /*
1026 * Iterate down table within loop for each register to store.
1027 */
1028 dds_reg_map = DDS_REG_MAP;
1029 for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1030 data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT;
1031 writeq(data, iaddr + idx);
1032 mmiowb();
1033 qib_read_kreg32(dd, kr_scratch);
1034 dds_reg_map >>= 4;
1035 for (midx = 0; midx < DDS_ROWS; ++midx) {
1036 u64 __iomem *daddr = taddr + ((midx << 4) + idx);
1037 data = dds_init_vals[midx].reg_vals[idx];
1038 writeq(data, daddr);
1039 mmiowb();
1040 qib_read_kreg32(dd, kr_scratch);
1041 } /* End inner for (vals for this reg, each row) */
1042 } /* end outer for (regs to be stored) */
1043
1044 /*
1045 * Init the RXEQ section of the table.
1046 * This runs in a different order, as the pattern of
1047 * register references is more complex, but there are only
1048 * four "data" values per register.
1049 */
1050 min_idx = idx; /* RXEQ indices pick up where DDS left off */
1051 taddr += 0x100; /* RXEQ data is in second half of table */
1052 /* Iterate through RXEQ register addresses */
1053 for (idx = 0; idx < RXEQ_ROWS; ++idx) {
1054 int didx; /* "destination" */
1055 int vidx;
1056
1057 /* didx is offset by min_idx to address RXEQ range of regs */
1058 didx = idx + min_idx;
1059 /* Store the next RXEQ register address */
1060 writeq(rxeq_init_vals[idx].rdesc, iaddr + didx);
1061 mmiowb();
1062 qib_read_kreg32(dd, kr_scratch);
1063 /* Iterate through RXEQ values */
1064 for (vidx = 0; vidx < 4; vidx++) {
1065 data = rxeq_init_vals[idx].rdata[vidx];
1066 writeq(data, taddr + (vidx << 6) + idx);
1067 mmiowb();
1068 qib_read_kreg32(dd, kr_scratch);
1069 }
1070 } /* end outer for (Reg-writes for RXEQ) */
1071 return 0;
1072}
1073
1074#define CMUCTRL5 EPB_LOC(7, 0, 0x15)
1075#define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0)
1076#define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5)
1077#define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6)
1078#define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8)
1079#define START_EQ2(chan) EPB_LOC(chan, 7, 0x28)
1080
1081/*
1082 * Repeat a "store" across all channels of the IB SerDes.
1083 * Although nominally it inherits the "read value" of the last
1084 * channel it modified, the only really useful return is <0 for
1085 * failure, >= 0 for success. The parameter 'loc' is assumed to
1086 * be the location in some channel of the register to be modified
1087 * The caller can specify use of the "gang write" option of EPB,
1088 * in which case we use the specified channel data for any fields
1089 * not explicitely written.
1090 */
1091static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
1092 int mask)
1093{
1094 int ret = -1;
1095 int chnl;
1096
1097 if (loc & EPB_GLOBAL_WR) {
1098 /*
1099 * Our caller has assured us that we can set all four
1100 * channels at once. Trust that. If mask is not 0xFF,
1101 * we will read the _specified_ channel for our starting
1102 * value.
1103 */
1104 loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1105 chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7;
1106 if (mask != 0xFF) {
1107 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
1108 loc & ~EPB_GLOBAL_WR, 0, 0);
1109 if (ret < 0) {
1110 int sloc = loc >> EPB_ADDR_SHF;
1111
1112 qib_dev_err(dd, "pre-read failed: elt %d,"
1113 " addr 0x%X, chnl %d\n",
1114 (sloc & 0xF),
1115 (sloc >> 9) & 0x3f, chnl);
1116 return ret;
1117 }
1118 val = (ret & ~mask) | (val & mask);
1119 }
1120 loc &= ~(7 << (4+EPB_ADDR_SHF));
1121 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1122 if (ret < 0) {
1123 int sloc = loc >> EPB_ADDR_SHF;
1124
1125 qib_dev_err(dd, "Global WR failed: elt %d,"
1126 " addr 0x%X, val %02X\n",
1127 (sloc & 0xF), (sloc >> 9) & 0x3f, val);
1128 }
1129 return ret;
1130 }
1131 /* Clear "channel" and set CS so we can simply iterate */
1132 loc &= ~(7 << (4+EPB_ADDR_SHF));
1133 loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1134 for (chnl = 0; chnl < 4; ++chnl) {
1135 int cloc = loc | (chnl << (4+EPB_ADDR_SHF));
1136
1137 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask);
1138 if (ret < 0) {
1139 int sloc = loc >> EPB_ADDR_SHF;
1140
1141 qib_dev_err(dd, "Write failed: elt %d,"
1142 " addr 0x%X, chnl %d, val 0x%02X,"
1143 " mask 0x%02X\n",
1144 (sloc & 0xF), (sloc >> 9) & 0x3f, chnl,
1145 val & 0xFF, mask & 0xFF);
1146 break;
1147 }
1148 }
1149 return ret;
1150}
1151
1152/*
1153 * Set the Tx values normally modified by IBC in IB1.2 mode to default
1154 * values, as gotten from first row of init table.
1155 */
1156static int set_dds_vals(struct qib_devdata *dd, struct dds_init *ddi)
1157{
1158 int ret;
1159 int idx, reg, data;
1160 uint32_t regmap;
1161
1162 regmap = DDS_REG_MAP;
1163 for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1164 reg = (regmap & 0xF);
1165 regmap >>= 4;
1166 data = ddi->reg_vals[idx];
1167 /* Vendor says RMW not needed for these regs, use 0xFF mask */
1168 ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF);
1169 if (ret < 0)
1170 break;
1171 }
1172 return ret;
1173}
1174
1175/*
1176 * Set the Rx values normally modified by IBC in IB1.2 mode to default
1177 * values, as gotten from selected column of init table.
1178 */
1179static int set_rxeq_vals(struct qib_devdata *dd, int vsel)
1180{
1181 int ret;
1182 int ridx;
1183 int cnt = ARRAY_SIZE(rxeq_init_vals);
1184
1185 for (ridx = 0; ridx < cnt; ++ridx) {
1186 int elt, reg, val, loc;
1187
1188 elt = rxeq_init_vals[ridx].rdesc & 0xF;
1189 reg = rxeq_init_vals[ridx].rdesc >> 4;
1190 loc = EPB_LOC(0, elt, reg);
1191 val = rxeq_init_vals[ridx].rdata[vsel];
1192 /* mask of 0xFF, because hardware does full-byte store. */
1193 ret = ibsd_mod_allchnls(dd, loc, val, 0xFF);
1194 if (ret < 0)
1195 break;
1196 }
1197 return ret;
1198}
1199
1200/*
1201 * Set the default values (row 0) for DDR Driver Demphasis.
1202 * we do this initially and whenever we turn off IB-1.2
1203 *
1204 * The "default" values for Rx equalization are also stored to
1205 * SerDes registers. Formerly (and still default), we used set 2.
1206 * For experimenting with cables and link-partners, we allow changing
1207 * that via a module parameter.
1208 */
1209static unsigned qib_rxeq_set = 2;
1210module_param_named(rxeq_default_set, qib_rxeq_set, uint,
1211 S_IWUSR | S_IRUGO);
1212MODULE_PARM_DESC(rxeq_default_set,
1213 "Which set [0..3] of Rx Equalization values is default");
1214
1215static int qib_internal_presets(struct qib_devdata *dd)
1216{
1217 int ret = 0;
1218
1219 ret = set_dds_vals(dd, dds_init_vals + DDS_3M);
1220
1221 if (ret < 0)
1222 qib_dev_err(dd, "Failed to set default DDS values\n");
1223 ret = set_rxeq_vals(dd, qib_rxeq_set & 3);
1224 if (ret < 0)
1225 qib_dev_err(dd, "Failed to set default RXEQ values\n");
1226 return ret;
1227}
1228
1229int qib_sd7220_presets(struct qib_devdata *dd)
1230{
1231 int ret = 0;
1232
1233 if (!dd->cspec->presets_needed)
1234 return ret;
1235 dd->cspec->presets_needed = 0;
1236 /* Assert uC reset, so we don't clash with it. */
1237 qib_ibsd_reset(dd, 1);
1238 udelay(2);
1239 qib_sd_trimdone_monitor(dd, "link-down");
1240
1241 ret = qib_internal_presets(dd);
1242 return ret;
1243}
1244
1245static int qib_sd_trimself(struct qib_devdata *dd, int val)
1246{
1247 int loc = CMUCTRL5 | (1U << EPB_IB_QUAD0_CS_SHF);
1248
1249 return qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1250}
1251
1252static int qib_sd_early(struct qib_devdata *dd)
1253{
1254 int ret;
1255
1256 ret = ibsd_mod_allchnls(dd, RXHSCTRL0(0) | EPB_GLOBAL_WR, 0xD4, 0xFF);
1257 if (ret < 0)
1258 goto bail;
1259 ret = ibsd_mod_allchnls(dd, START_EQ1(0) | EPB_GLOBAL_WR, 0x10, 0xFF);
1260 if (ret < 0)
1261 goto bail;
1262 ret = ibsd_mod_allchnls(dd, START_EQ2(0) | EPB_GLOBAL_WR, 0x30, 0xFF);
1263bail:
1264 return ret;
1265}
1266
1267#define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E)
1268#define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6)
1269#define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF)
1270
1271static int qib_sd_dactrim(struct qib_devdata *dd)
1272{
1273 int ret;
1274
1275 ret = ibsd_mod_allchnls(dd, VCDL_DAC2(0) | EPB_GLOBAL_WR, 0x2D, 0xFF);
1276 if (ret < 0)
1277 goto bail;
1278
1279 /* more fine-tuning of what will be default */
1280 ret = ibsd_mod_allchnls(dd, VCDL_CTRL2(0), 3, 0xF);
1281 if (ret < 0)
1282 goto bail;
1283
1284 ret = ibsd_mod_allchnls(dd, BACTRL(0) | EPB_GLOBAL_WR, 0x40, 0xFF);
1285 if (ret < 0)
1286 goto bail;
1287
1288 ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1289 if (ret < 0)
1290 goto bail;
1291
1292 ret = ibsd_mod_allchnls(dd, RXHSSTATUS(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1293 if (ret < 0)
1294 goto bail;
1295
1296 /*
1297 * Delay for max possible number of steps, with slop.
1298 * Each step is about 4usec.
1299 */
1300 udelay(415);
1301
1302 ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x00, 0xFF);
1303
1304bail:
1305 return ret;
1306}
1307
1308#define RELOCK_FIRST_MS 3
1309#define RXLSPPM(chan) EPB_LOC(chan, 0, 2)
1310void toggle_7220_rclkrls(struct qib_devdata *dd)
1311{
1312 int loc = RXLSPPM(0) | EPB_GLOBAL_WR;
1313 int ret;
1314
1315 ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1316 if (ret < 0)
1317 qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1318 else {
1319 udelay(1);
1320 ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1321 }
1322 /* And again for good measure */
1323 udelay(1);
1324 ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1325 if (ret < 0)
1326 qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1327 else {
1328 udelay(1);
1329 ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1330 }
1331 /* Now reset xgxs and IBC to complete the recovery */
1332 dd->f_xgxs_reset(dd->pport);
1333}
1334
1335/*
1336 * Shut down the timer that polls for relock occasions, if needed
1337 * this is "hooked" from qib_7220_quiet_serdes(), which is called
1338 * just before qib_shutdown_device() in qib_driver.c shuts down all
1339 * the other timers
1340 */
1341void shutdown_7220_relock_poll(struct qib_devdata *dd)
1342{
1343 if (dd->cspec->relock_timer_active)
1344 del_timer_sync(&dd->cspec->relock_timer);
1345}
1346
1347static unsigned qib_relock_by_timer = 1;
1348module_param_named(relock_by_timer, qib_relock_by_timer, uint,
1349 S_IWUSR | S_IRUGO);
1350MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up");
1351
1352static void qib_run_relock(unsigned long opaque)
1353{
1354 struct qib_devdata *dd = (struct qib_devdata *)opaque;
1355 struct qib_pportdata *ppd = dd->pport;
1356 struct qib_chip_specific *cs = dd->cspec;
1357 int timeoff;
1358
1359 /*
1360 * Check link-training state for "stuck" state, when down.
1361 * if found, try relock and schedule another try at
1362 * exponentially growing delay, maxed at one second.
1363 * if not stuck, our work is done.
1364 */
1365 if ((dd->flags & QIB_INITTED) && !(ppd->lflags &
1366 (QIBL_IB_AUTONEG_INPROG | QIBL_LINKINIT | QIBL_LINKARMED |
1367 QIBL_LINKACTIVE))) {
1368 if (qib_relock_by_timer) {
1369 if (!(ppd->lflags & QIBL_IB_LINK_DISABLED))
1370 toggle_7220_rclkrls(dd);
1371 }
1372 /* re-set timer for next check */
1373 timeoff = cs->relock_interval << 1;
1374 if (timeoff > HZ)
1375 timeoff = HZ;
1376 cs->relock_interval = timeoff;
1377 } else
1378 timeoff = HZ;
1379 mod_timer(&cs->relock_timer, jiffies + timeoff);
1380}
1381
1382void set_7220_relock_poll(struct qib_devdata *dd, int ibup)
1383{
1384 struct qib_chip_specific *cs = dd->cspec;
1385
1386 if (ibup) {
1387 /* We are now up, relax timer to 1 second interval */
1388 if (cs->relock_timer_active) {
1389 cs->relock_interval = HZ;
1390 mod_timer(&cs->relock_timer, jiffies + HZ);
1391 }
1392 } else {
1393 /* Transition to down, (re-)set timer to short interval. */
1394 unsigned int timeout;
1395
1396 timeout = msecs_to_jiffies(RELOCK_FIRST_MS);
1397 if (timeout == 0)
1398 timeout = 1;
1399 /* If timer has not yet been started, do so. */
1400 if (!cs->relock_timer_active) {
1401 cs->relock_timer_active = 1;
1402 init_timer(&cs->relock_timer);
1403 cs->relock_timer.function = qib_run_relock;
1404 cs->relock_timer.data = (unsigned long) dd;
1405 cs->relock_interval = timeout;
1406 cs->relock_timer.expires = jiffies + timeout;
1407 add_timer(&cs->relock_timer);
1408 } else {
1409 cs->relock_interval = timeout;
1410 mod_timer(&cs->relock_timer, jiffies + timeout);
1411 }
1412 }
1413}