Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | |
| 2 | /* |
| 3 | =============================================================================== |
| 4 | |
| 5 | This C source fragment is part of the SoftFloat IEC/IEEE Floating-point |
| 6 | Arithmetic Package, Release 2. |
| 7 | |
| 8 | Written by John R. Hauser. This work was made possible in part by the |
| 9 | International Computer Science Institute, located at Suite 600, 1947 Center |
| 10 | Street, Berkeley, California 94704. Funding was partially provided by the |
| 11 | National Science Foundation under grant MIP-9311980. The original version |
| 12 | of this code was written as part of a project to build a fixed-point vector |
| 13 | processor in collaboration with the University of California at Berkeley, |
| 14 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information |
| 15 | is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ |
| 16 | arithmetic/softfloat.html'. |
| 17 | |
| 18 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort |
| 19 | has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT |
| 20 | TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO |
| 21 | PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY |
| 22 | AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. |
| 23 | |
| 24 | Derivative works are acceptable, even for commercial purposes, so long as |
| 25 | (1) they include prominent notice that the work is derivative, and (2) they |
| 26 | include prominent notice akin to these three paragraphs for those parts of |
| 27 | this code that are retained. |
| 28 | |
| 29 | =============================================================================== |
| 30 | */ |
| 31 | |
| 32 | /* |
| 33 | ------------------------------------------------------------------------------- |
| 34 | Underflow tininess-detection mode, statically initialized to default value. |
| 35 | (The declaration in `softfloat.h' must match the `int8' type here.) |
| 36 | ------------------------------------------------------------------------------- |
| 37 | */ |
| 38 | int8 float_detect_tininess = float_tininess_after_rounding; |
| 39 | |
| 40 | /* |
| 41 | ------------------------------------------------------------------------------- |
| 42 | Raises the exceptions specified by `flags'. Floating-point traps can be |
| 43 | defined here if desired. It is currently not possible for such a trap to |
| 44 | substitute a result value. If traps are not implemented, this routine |
| 45 | should be simply `float_exception_flags |= flags;'. |
| 46 | |
| 47 | ScottB: November 4, 1998 |
| 48 | Moved this function out of softfloat-specialize into fpmodule.c. |
| 49 | This effectively isolates all the changes required for integrating with the |
| 50 | Linux kernel into fpmodule.c. Porting to NetBSD should only require modifying |
| 51 | fpmodule.c to integrate with the NetBSD kernel (I hope!). |
| 52 | ------------------------------------------------------------------------------- |
| 53 | void float_raise( int8 flags ) |
| 54 | { |
| 55 | float_exception_flags |= flags; |
| 56 | } |
| 57 | */ |
| 58 | |
| 59 | /* |
| 60 | ------------------------------------------------------------------------------- |
| 61 | Internal canonical NaN format. |
| 62 | ------------------------------------------------------------------------------- |
| 63 | */ |
| 64 | typedef struct { |
| 65 | flag sign; |
| 66 | bits64 high, low; |
| 67 | } commonNaNT; |
| 68 | |
| 69 | /* |
| 70 | ------------------------------------------------------------------------------- |
| 71 | The pattern for a default generated single-precision NaN. |
| 72 | ------------------------------------------------------------------------------- |
| 73 | */ |
| 74 | #define float32_default_nan 0xFFFFFFFF |
| 75 | |
| 76 | /* |
| 77 | ------------------------------------------------------------------------------- |
| 78 | Returns 1 if the single-precision floating-point value `a' is a NaN; |
| 79 | otherwise returns 0. |
| 80 | ------------------------------------------------------------------------------- |
| 81 | */ |
| 82 | flag float32_is_nan( float32 a ) |
| 83 | { |
| 84 | |
| 85 | return ( 0xFF000000 < (bits32) ( a<<1 ) ); |
| 86 | |
| 87 | } |
| 88 | |
| 89 | /* |
| 90 | ------------------------------------------------------------------------------- |
| 91 | Returns 1 if the single-precision floating-point value `a' is a signaling |
| 92 | NaN; otherwise returns 0. |
| 93 | ------------------------------------------------------------------------------- |
| 94 | */ |
| 95 | flag float32_is_signaling_nan( float32 a ) |
| 96 | { |
| 97 | |
| 98 | return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); |
| 99 | |
| 100 | } |
| 101 | |
| 102 | /* |
| 103 | ------------------------------------------------------------------------------- |
| 104 | Returns the result of converting the single-precision floating-point NaN |
| 105 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid |
| 106 | exception is raised. |
| 107 | ------------------------------------------------------------------------------- |
| 108 | */ |
| 109 | static commonNaNT float32ToCommonNaN( float32 a ) |
| 110 | { |
| 111 | commonNaNT z; |
| 112 | |
| 113 | if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); |
| 114 | z.sign = a>>31; |
| 115 | z.low = 0; |
| 116 | z.high = ( (bits64) a )<<41; |
| 117 | return z; |
| 118 | |
| 119 | } |
| 120 | |
| 121 | /* |
| 122 | ------------------------------------------------------------------------------- |
| 123 | Returns the result of converting the canonical NaN `a' to the single- |
| 124 | precision floating-point format. |
| 125 | ------------------------------------------------------------------------------- |
| 126 | */ |
| 127 | static float32 commonNaNToFloat32( commonNaNT a ) |
| 128 | { |
| 129 | |
| 130 | return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 ); |
| 131 | |
| 132 | } |
| 133 | |
| 134 | /* |
| 135 | ------------------------------------------------------------------------------- |
| 136 | Takes two single-precision floating-point values `a' and `b', one of which |
| 137 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a |
| 138 | signaling NaN, the invalid exception is raised. |
| 139 | ------------------------------------------------------------------------------- |
| 140 | */ |
| 141 | static float32 propagateFloat32NaN( float32 a, float32 b ) |
| 142 | { |
| 143 | flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; |
| 144 | |
| 145 | aIsNaN = float32_is_nan( a ); |
| 146 | aIsSignalingNaN = float32_is_signaling_nan( a ); |
| 147 | bIsNaN = float32_is_nan( b ); |
| 148 | bIsSignalingNaN = float32_is_signaling_nan( b ); |
| 149 | a |= 0x00400000; |
| 150 | b |= 0x00400000; |
| 151 | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); |
| 152 | if ( aIsNaN ) { |
| 153 | return ( aIsSignalingNaN & bIsNaN ) ? b : a; |
| 154 | } |
| 155 | else { |
| 156 | return b; |
| 157 | } |
| 158 | |
| 159 | } |
| 160 | |
| 161 | /* |
| 162 | ------------------------------------------------------------------------------- |
| 163 | The pattern for a default generated double-precision NaN. |
| 164 | ------------------------------------------------------------------------------- |
| 165 | */ |
| 166 | #define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF ) |
| 167 | |
| 168 | /* |
| 169 | ------------------------------------------------------------------------------- |
| 170 | Returns 1 if the double-precision floating-point value `a' is a NaN; |
| 171 | otherwise returns 0. |
| 172 | ------------------------------------------------------------------------------- |
| 173 | */ |
| 174 | flag float64_is_nan( float64 a ) |
| 175 | { |
| 176 | |
| 177 | return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) ); |
| 178 | |
| 179 | } |
| 180 | |
| 181 | /* |
| 182 | ------------------------------------------------------------------------------- |
| 183 | Returns 1 if the double-precision floating-point value `a' is a signaling |
| 184 | NaN; otherwise returns 0. |
| 185 | ------------------------------------------------------------------------------- |
| 186 | */ |
| 187 | flag float64_is_signaling_nan( float64 a ) |
| 188 | { |
| 189 | |
| 190 | return |
| 191 | ( ( ( a>>51 ) & 0xFFF ) == 0xFFE ) |
| 192 | && ( a & LIT64( 0x0007FFFFFFFFFFFF ) ); |
| 193 | |
| 194 | } |
| 195 | |
| 196 | /* |
| 197 | ------------------------------------------------------------------------------- |
| 198 | Returns the result of converting the double-precision floating-point NaN |
| 199 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid |
| 200 | exception is raised. |
| 201 | ------------------------------------------------------------------------------- |
| 202 | */ |
| 203 | static commonNaNT float64ToCommonNaN( float64 a ) |
| 204 | { |
| 205 | commonNaNT z; |
| 206 | |
| 207 | if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); |
| 208 | z.sign = a>>63; |
| 209 | z.low = 0; |
| 210 | z.high = a<<12; |
| 211 | return z; |
| 212 | |
| 213 | } |
| 214 | |
| 215 | /* |
| 216 | ------------------------------------------------------------------------------- |
| 217 | Returns the result of converting the canonical NaN `a' to the double- |
| 218 | precision floating-point format. |
| 219 | ------------------------------------------------------------------------------- |
| 220 | */ |
| 221 | static float64 commonNaNToFloat64( commonNaNT a ) |
| 222 | { |
| 223 | |
| 224 | return |
| 225 | ( ( (bits64) a.sign )<<63 ) |
| 226 | | LIT64( 0x7FF8000000000000 ) |
| 227 | | ( a.high>>12 ); |
| 228 | |
| 229 | } |
| 230 | |
| 231 | /* |
| 232 | ------------------------------------------------------------------------------- |
| 233 | Takes two double-precision floating-point values `a' and `b', one of which |
| 234 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a |
| 235 | signaling NaN, the invalid exception is raised. |
| 236 | ------------------------------------------------------------------------------- |
| 237 | */ |
| 238 | static float64 propagateFloat64NaN( float64 a, float64 b ) |
| 239 | { |
| 240 | flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; |
| 241 | |
| 242 | aIsNaN = float64_is_nan( a ); |
| 243 | aIsSignalingNaN = float64_is_signaling_nan( a ); |
| 244 | bIsNaN = float64_is_nan( b ); |
| 245 | bIsSignalingNaN = float64_is_signaling_nan( b ); |
| 246 | a |= LIT64( 0x0008000000000000 ); |
| 247 | b |= LIT64( 0x0008000000000000 ); |
| 248 | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); |
| 249 | if ( aIsNaN ) { |
| 250 | return ( aIsSignalingNaN & bIsNaN ) ? b : a; |
| 251 | } |
| 252 | else { |
| 253 | return b; |
| 254 | } |
| 255 | |
| 256 | } |
| 257 | |
| 258 | #ifdef FLOATX80 |
| 259 | |
| 260 | /* |
| 261 | ------------------------------------------------------------------------------- |
| 262 | The pattern for a default generated extended double-precision NaN. The |
| 263 | `high' and `low' values hold the most- and least-significant bits, |
| 264 | respectively. |
| 265 | ------------------------------------------------------------------------------- |
| 266 | */ |
| 267 | #define floatx80_default_nan_high 0xFFFF |
| 268 | #define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) |
| 269 | |
| 270 | /* |
| 271 | ------------------------------------------------------------------------------- |
| 272 | Returns 1 if the extended double-precision floating-point value `a' is a |
| 273 | NaN; otherwise returns 0. |
| 274 | ------------------------------------------------------------------------------- |
| 275 | */ |
| 276 | flag floatx80_is_nan( floatx80 a ) |
| 277 | { |
| 278 | |
| 279 | return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); |
| 280 | |
| 281 | } |
| 282 | |
| 283 | /* |
| 284 | ------------------------------------------------------------------------------- |
| 285 | Returns 1 if the extended double-precision floating-point value `a' is a |
| 286 | signaling NaN; otherwise returns 0. |
| 287 | ------------------------------------------------------------------------------- |
| 288 | */ |
| 289 | flag floatx80_is_signaling_nan( floatx80 a ) |
| 290 | { |
| 291 | //register int lr; |
| 292 | bits64 aLow; |
| 293 | |
| 294 | //__asm__("mov %0, lr" : : "g" (lr)); |
| 295 | //fp_printk("floatx80_is_signalling_nan() called from 0x%08x\n",lr); |
| 296 | aLow = a.low & ~ LIT64( 0x4000000000000000 ); |
| 297 | return |
| 298 | ( ( a.high & 0x7FFF ) == 0x7FFF ) |
| 299 | && (bits64) ( aLow<<1 ) |
| 300 | && ( a.low == aLow ); |
| 301 | |
| 302 | } |
| 303 | |
| 304 | /* |
| 305 | ------------------------------------------------------------------------------- |
| 306 | Returns the result of converting the extended double-precision floating- |
| 307 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the |
| 308 | invalid exception is raised. |
| 309 | ------------------------------------------------------------------------------- |
| 310 | */ |
| 311 | static commonNaNT floatx80ToCommonNaN( floatx80 a ) |
| 312 | { |
| 313 | commonNaNT z; |
| 314 | |
| 315 | if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); |
| 316 | z.sign = a.high>>15; |
| 317 | z.low = 0; |
| 318 | z.high = a.low<<1; |
| 319 | return z; |
| 320 | |
| 321 | } |
| 322 | |
| 323 | /* |
| 324 | ------------------------------------------------------------------------------- |
| 325 | Returns the result of converting the canonical NaN `a' to the extended |
| 326 | double-precision floating-point format. |
| 327 | ------------------------------------------------------------------------------- |
| 328 | */ |
| 329 | static floatx80 commonNaNToFloatx80( commonNaNT a ) |
| 330 | { |
| 331 | floatx80 z; |
| 332 | |
| 333 | z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 ); |
| 334 | z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF; |
| 335 | return z; |
| 336 | |
| 337 | } |
| 338 | |
| 339 | /* |
| 340 | ------------------------------------------------------------------------------- |
| 341 | Takes two extended double-precision floating-point values `a' and `b', one |
| 342 | of which is a NaN, and returns the appropriate NaN result. If either `a' or |
| 343 | `b' is a signaling NaN, the invalid exception is raised. |
| 344 | ------------------------------------------------------------------------------- |
| 345 | */ |
| 346 | static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b ) |
| 347 | { |
| 348 | flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; |
| 349 | |
| 350 | aIsNaN = floatx80_is_nan( a ); |
| 351 | aIsSignalingNaN = floatx80_is_signaling_nan( a ); |
| 352 | bIsNaN = floatx80_is_nan( b ); |
| 353 | bIsSignalingNaN = floatx80_is_signaling_nan( b ); |
| 354 | a.low |= LIT64( 0xC000000000000000 ); |
| 355 | b.low |= LIT64( 0xC000000000000000 ); |
| 356 | if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); |
| 357 | if ( aIsNaN ) { |
| 358 | return ( aIsSignalingNaN & bIsNaN ) ? b : a; |
| 359 | } |
| 360 | else { |
| 361 | return b; |
| 362 | } |
| 363 | |
| 364 | } |
| 365 | |
| 366 | #endif |