blob: 53a63890aea49a9def4240e426ddce1db32439c8 [file] [log] [blame]
Jim Kenistond27a4dd2005-08-04 12:53:35 -07001Title : Kernel Probes (Kprobes)
2Authors : Jim Keniston <jkenisto@us.ibm.com>
3 : Prasanna S Panchamukhi <prasanna@in.ibm.com>
4
5CONTENTS
6
71. Concepts: Kprobes, Jprobes, Return Probes
82. Architectures Supported
93. Configuring Kprobes
104. API Reference
115. Kprobes Features and Limitations
126. Probe Overhead
137. TODO
148. Kprobes Example
159. Jprobes Example
1610. Kretprobes Example
Ananth N Mavinakayanahallibf8f6e52007-05-08 00:34:16 -070017Appendix A: The kprobes debugfs interface
Jim Kenistond27a4dd2005-08-04 12:53:35 -070018
191. Concepts: Kprobes, Jprobes, Return Probes
20
21Kprobes enables you to dynamically break into any kernel routine and
22collect debugging and performance information non-disruptively. You
23can trap at almost any kernel code address, specifying a handler
24routine to be invoked when the breakpoint is hit.
25
26There are currently three types of probes: kprobes, jprobes, and
27kretprobes (also called return probes). A kprobe can be inserted
28on virtually any instruction in the kernel. A jprobe is inserted at
29the entry to a kernel function, and provides convenient access to the
30function's arguments. A return probe fires when a specified function
31returns.
32
33In the typical case, Kprobes-based instrumentation is packaged as
34a kernel module. The module's init function installs ("registers")
35one or more probes, and the exit function unregisters them. A
36registration function such as register_kprobe() specifies where
37the probe is to be inserted and what handler is to be called when
38the probe is hit.
39
40The next three subsections explain how the different types of
41probes work. They explain certain things that you'll need to
42know in order to make the best use of Kprobes -- e.g., the
43difference between a pre_handler and a post_handler, and how
44to use the maxactive and nmissed fields of a kretprobe. But
45if you're in a hurry to start using Kprobes, you can skip ahead
46to section 2.
47
481.1 How Does a Kprobe Work?
49
50When a kprobe is registered, Kprobes makes a copy of the probed
51instruction and replaces the first byte(s) of the probed instruction
52with a breakpoint instruction (e.g., int3 on i386 and x86_64).
53
54When a CPU hits the breakpoint instruction, a trap occurs, the CPU's
55registers are saved, and control passes to Kprobes via the
56notifier_call_chain mechanism. Kprobes executes the "pre_handler"
57associated with the kprobe, passing the handler the addresses of the
58kprobe struct and the saved registers.
59
60Next, Kprobes single-steps its copy of the probed instruction.
61(It would be simpler to single-step the actual instruction in place,
62but then Kprobes would have to temporarily remove the breakpoint
63instruction. This would open a small time window when another CPU
64could sail right past the probepoint.)
65
66After the instruction is single-stepped, Kprobes executes the
67"post_handler," if any, that is associated with the kprobe.
68Execution then continues with the instruction following the probepoint.
69
701.2 How Does a Jprobe Work?
71
72A jprobe is implemented using a kprobe that is placed on a function's
73entry point. It employs a simple mirroring principle to allow
74seamless access to the probed function's arguments. The jprobe
75handler routine should have the same signature (arg list and return
76type) as the function being probed, and must always end by calling
77the Kprobes function jprobe_return().
78
79Here's how it works. When the probe is hit, Kprobes makes a copy of
80the saved registers and a generous portion of the stack (see below).
81Kprobes then points the saved instruction pointer at the jprobe's
82handler routine, and returns from the trap. As a result, control
83passes to the handler, which is presented with the same register and
84stack contents as the probed function. When it is done, the handler
85calls jprobe_return(), which traps again to restore the original stack
86contents and processor state and switch to the probed function.
87
88By convention, the callee owns its arguments, so gcc may produce code
89that unexpectedly modifies that portion of the stack. This is why
90Kprobes saves a copy of the stack and restores it after the jprobe
91handler has run. Up to MAX_STACK_SIZE bytes are copied -- e.g.,
9264 bytes on i386.
93
94Note that the probed function's args may be passed on the stack
95or in registers (e.g., for x86_64 or for an i386 fastcall function).
96The jprobe will work in either case, so long as the handler's
97prototype matches that of the probed function.
98
991.3 How Does a Return Probe Work?
100
101When you call register_kretprobe(), Kprobes establishes a kprobe at
102the entry to the function. When the probed function is called and this
103probe is hit, Kprobes saves a copy of the return address, and replaces
104the return address with the address of a "trampoline." The trampoline
105is an arbitrary piece of code -- typically just a nop instruction.
106At boot time, Kprobes registers a kprobe at the trampoline.
107
108When the probed function executes its return instruction, control
109passes to the trampoline and that probe is hit. Kprobes' trampoline
110handler calls the user-specified handler associated with the kretprobe,
111then sets the saved instruction pointer to the saved return address,
112and that's where execution resumes upon return from the trap.
113
114While the probed function is executing, its return address is
115stored in an object of type kretprobe_instance. Before calling
116register_kretprobe(), the user sets the maxactive field of the
117kretprobe struct to specify how many instances of the specified
118function can be probed simultaneously. register_kretprobe()
119pre-allocates the indicated number of kretprobe_instance objects.
120
121For example, if the function is non-recursive and is called with a
122spinlock held, maxactive = 1 should be enough. If the function is
123non-recursive and can never relinquish the CPU (e.g., via a semaphore
124or preemption), NR_CPUS should be enough. If maxactive <= 0, it is
125set to a default value. If CONFIG_PREEMPT is enabled, the default
126is max(10, 2*NR_CPUS). Otherwise, the default is NR_CPUS.
127
128It's not a disaster if you set maxactive too low; you'll just miss
129some probes. In the kretprobe struct, the nmissed field is set to
130zero when the return probe is registered, and is incremented every
131time the probed function is entered but there is no kretprobe_instance
132object available for establishing the return probe.
133
1342. Architectures Supported
135
136Kprobes, jprobes, and return probes are implemented on the following
137architectures:
138
139- i386
Jim Keniston8861da32006-02-14 13:53:06 -0800140- x86_64 (AMD-64, EM64T)
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700141- ppc64
Jim Keniston8861da32006-02-14 13:53:06 -0800142- ia64 (Does not support probes on instruction slot1.)
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700143- sparc64 (Return probes not yet implemented.)
Nicolas Pitre5de865b2007-12-03 17:15:52 -0500144- arm
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700145
1463. Configuring Kprobes
147
148When configuring the kernel using make menuconfig/xconfig/oldconfig,
Jim Keniston8861da32006-02-14 13:53:06 -0800149ensure that CONFIG_KPROBES is set to "y". Under "Instrumentation
150Support", look for "Kprobes".
151
152So that you can load and unload Kprobes-based instrumentation modules,
153make sure "Loadable module support" (CONFIG_MODULES) and "Module
154unloading" (CONFIG_MODULE_UNLOAD) are set to "y".
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700155
Ananth N Mavinakayanahalli09b18202006-10-02 02:17:32 -0700156Also make sure that CONFIG_KALLSYMS and perhaps even CONFIG_KALLSYMS_ALL
157are set to "y", since kallsyms_lookup_name() is used by the in-kernel
158kprobe address resolution code.
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700159
160If you need to insert a probe in the middle of a function, you may find
161it useful to "Compile the kernel with debug info" (CONFIG_DEBUG_INFO),
162so you can use "objdump -d -l vmlinux" to see the source-to-object
163code mapping.
164
1654. API Reference
166
167The Kprobes API includes a "register" function and an "unregister"
168function for each type of probe. Here are terse, mini-man-page
169specifications for these functions and the associated probe handlers
170that you'll write. See the latter half of this document for examples.
171
1724.1 register_kprobe
173
174#include <linux/kprobes.h>
175int register_kprobe(struct kprobe *kp);
176
177Sets a breakpoint at the address kp->addr. When the breakpoint is
178hit, Kprobes calls kp->pre_handler. After the probed instruction
179is single-stepped, Kprobe calls kp->post_handler. If a fault
180occurs during execution of kp->pre_handler or kp->post_handler,
181or during single-stepping of the probed instruction, Kprobes calls
182kp->fault_handler. Any or all handlers can be NULL.
183
Ananth N Mavinakayanahalli09b18202006-10-02 02:17:32 -0700184NOTE:
1851. With the introduction of the "symbol_name" field to struct kprobe,
186the probepoint address resolution will now be taken care of by the kernel.
187The following will now work:
188
189 kp.symbol_name = "symbol_name";
190
191(64-bit powerpc intricacies such as function descriptors are handled
192transparently)
193
1942. Use the "offset" field of struct kprobe if the offset into the symbol
195to install a probepoint is known. This field is used to calculate the
196probepoint.
197
1983. Specify either the kprobe "symbol_name" OR the "addr". If both are
199specified, kprobe registration will fail with -EINVAL.
200
2014. With CISC architectures (such as i386 and x86_64), the kprobes code
202does not validate if the kprobe.addr is at an instruction boundary.
203Use "offset" with caution.
204
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700205register_kprobe() returns 0 on success, or a negative errno otherwise.
206
207User's pre-handler (kp->pre_handler):
208#include <linux/kprobes.h>
209#include <linux/ptrace.h>
210int pre_handler(struct kprobe *p, struct pt_regs *regs);
211
212Called with p pointing to the kprobe associated with the breakpoint,
213and regs pointing to the struct containing the registers saved when
214the breakpoint was hit. Return 0 here unless you're a Kprobes geek.
215
216User's post-handler (kp->post_handler):
217#include <linux/kprobes.h>
218#include <linux/ptrace.h>
219void post_handler(struct kprobe *p, struct pt_regs *regs,
220 unsigned long flags);
221
222p and regs are as described for the pre_handler. flags always seems
223to be zero.
224
225User's fault-handler (kp->fault_handler):
226#include <linux/kprobes.h>
227#include <linux/ptrace.h>
228int fault_handler(struct kprobe *p, struct pt_regs *regs, int trapnr);
229
230p and regs are as described for the pre_handler. trapnr is the
231architecture-specific trap number associated with the fault (e.g.,
232on i386, 13 for a general protection fault or 14 for a page fault).
233Returns 1 if it successfully handled the exception.
234
2354.2 register_jprobe
236
237#include <linux/kprobes.h>
238int register_jprobe(struct jprobe *jp)
239
240Sets a breakpoint at the address jp->kp.addr, which must be the address
241of the first instruction of a function. When the breakpoint is hit,
242Kprobes runs the handler whose address is jp->entry.
243
244The handler should have the same arg list and return type as the probed
245function; and just before it returns, it must call jprobe_return().
246(The handler never actually returns, since jprobe_return() returns
247control to Kprobes.) If the probed function is declared asmlinkage,
248fastcall, or anything else that affects how args are passed, the
249handler's declaration must match.
250
251register_jprobe() returns 0 on success, or a negative errno otherwise.
252
2534.3 register_kretprobe
254
255#include <linux/kprobes.h>
256int register_kretprobe(struct kretprobe *rp);
257
258Establishes a return probe for the function whose address is
259rp->kp.addr. When that function returns, Kprobes calls rp->handler.
260You must set rp->maxactive appropriately before you call
261register_kretprobe(); see "How Does a Return Probe Work?" for details.
262
263register_kretprobe() returns 0 on success, or a negative errno
264otherwise.
265
266User's return-probe handler (rp->handler):
267#include <linux/kprobes.h>
268#include <linux/ptrace.h>
269int kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs);
270
271regs is as described for kprobe.pre_handler. ri points to the
272kretprobe_instance object, of which the following fields may be
273of interest:
274- ret_addr: the return address
275- rp: points to the corresponding kretprobe object
276- task: points to the corresponding task struct
Ananth N Mavinakayanahalli09b18202006-10-02 02:17:32 -0700277
278The regs_return_value(regs) macro provides a simple abstraction to
279extract the return value from the appropriate register as defined by
280the architecture's ABI.
281
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700282The handler's return value is currently ignored.
283
2844.4 unregister_*probe
285
286#include <linux/kprobes.h>
287void unregister_kprobe(struct kprobe *kp);
288void unregister_jprobe(struct jprobe *jp);
289void unregister_kretprobe(struct kretprobe *rp);
290
291Removes the specified probe. The unregister function can be called
292at any time after the probe has been registered.
293
2945. Kprobes Features and Limitations
295
Jim Keniston8861da32006-02-14 13:53:06 -0800296Kprobes allows multiple probes at the same address. Currently,
297however, there cannot be multiple jprobes on the same function at
298the same time.
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700299
300In general, you can install a probe anywhere in the kernel.
301In particular, you can probe interrupt handlers. Known exceptions
302are discussed in this section.
303
Jim Keniston8861da32006-02-14 13:53:06 -0800304The register_*probe functions will return -EINVAL if you attempt
305to install a probe in the code that implements Kprobes (mostly
306kernel/kprobes.c and arch/*/kernel/kprobes.c, but also functions such
307as do_page_fault and notifier_call_chain).
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700308
309If you install a probe in an inline-able function, Kprobes makes
310no attempt to chase down all inline instances of the function and
311install probes there. gcc may inline a function without being asked,
312so keep this in mind if you're not seeing the probe hits you expect.
313
314A probe handler can modify the environment of the probed function
315-- e.g., by modifying kernel data structures, or by modifying the
316contents of the pt_regs struct (which are restored to the registers
317upon return from the breakpoint). So Kprobes can be used, for example,
318to install a bug fix or to inject faults for testing. Kprobes, of
319course, has no way to distinguish the deliberately injected faults
320from the accidental ones. Don't drink and probe.
321
322Kprobes makes no attempt to prevent probe handlers from stepping on
323each other -- e.g., probing printk() and then calling printk() from a
Jim Keniston8861da32006-02-14 13:53:06 -0800324probe handler. If a probe handler hits a probe, that second probe's
325handlers won't be run in that instance, and the kprobe.nmissed member
326of the second probe will be incremented.
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700327
Jim Keniston8861da32006-02-14 13:53:06 -0800328As of Linux v2.6.15-rc1, multiple handlers (or multiple instances of
329the same handler) may run concurrently on different CPUs.
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700330
Jim Keniston8861da32006-02-14 13:53:06 -0800331Kprobes does not use mutexes or allocate memory except during
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700332registration and unregistration.
333
334Probe handlers are run with preemption disabled. Depending on the
335architecture, handlers may also run with interrupts disabled. In any
336case, your handler should not yield the CPU (e.g., by attempting to
337acquire a semaphore).
338
339Since a return probe is implemented by replacing the return
340address with the trampoline's address, stack backtraces and calls
341to __builtin_return_address() will typically yield the trampoline's
342address instead of the real return address for kretprobed functions.
343(As far as we can tell, __builtin_return_address() is used only
344for instrumentation and error reporting.)
345
Jim Keniston8861da32006-02-14 13:53:06 -0800346If the number of times a function is called does not match the number
347of times it returns, registering a return probe on that function may
Ananth N Mavinakayanahallibf8f6e52007-05-08 00:34:16 -0700348produce undesirable results. In such a case, a line:
349kretprobe BUG!: Processing kretprobe d000000000041aa8 @ c00000000004f48c
350gets printed. With this information, one will be able to correlate the
351exact instance of the kretprobe that caused the problem. We have the
352do_exit() case covered. do_execve() and do_fork() are not an issue.
353We're unaware of other specific cases where this could be a problem.
Jim Keniston8861da32006-02-14 13:53:06 -0800354
355If, upon entry to or exit from a function, the CPU is running on
356a stack other than that of the current task, registering a return
357probe on that function may produce undesirable results. For this
358reason, Kprobes doesn't support return probes (or kprobes or jprobes)
359on the x86_64 version of __switch_to(); the registration functions
360return -EINVAL.
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700361
3626. Probe Overhead
363
364On a typical CPU in use in 2005, a kprobe hit takes 0.5 to 1.0
365microseconds to process. Specifically, a benchmark that hits the same
366probepoint repeatedly, firing a simple handler each time, reports 1-2
367million hits per second, depending on the architecture. A jprobe or
368return-probe hit typically takes 50-75% longer than a kprobe hit.
369When you have a return probe set on a function, adding a kprobe at
370the entry to that function adds essentially no overhead.
371
372Here are sample overhead figures (in usec) for different architectures.
373k = kprobe; j = jprobe; r = return probe; kr = kprobe + return probe
374on same function; jr = jprobe + return probe on same function
375
376i386: Intel Pentium M, 1495 MHz, 2957.31 bogomips
377k = 0.57 usec; j = 1.00; r = 0.92; kr = 0.99; jr = 1.40
378
379x86_64: AMD Opteron 246, 1994 MHz, 3971.48 bogomips
380k = 0.49 usec; j = 0.76; r = 0.80; kr = 0.82; jr = 1.07
381
382ppc64: POWER5 (gr), 1656 MHz (SMT disabled, 1 virtual CPU per physical CPU)
383k = 0.77 usec; j = 1.31; r = 1.26; kr = 1.45; jr = 1.99
384
3857. TODO
386
Jim Keniston8861da32006-02-14 13:53:06 -0800387a. SystemTap (http://sourceware.org/systemtap): Provides a simplified
388programming interface for probe-based instrumentation. Try it out.
389b. Kernel return probes for sparc64.
390c. Support for other architectures.
391d. User-space probes.
392e. Watchpoint probes (which fire on data references).
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700393
3948. Kprobes Example
395
396Here's a sample kernel module showing the use of kprobes to dump a
397stack trace and selected i386 registers when do_fork() is called.
398----- cut here -----
399/*kprobe_example.c*/
400#include <linux/kernel.h>
401#include <linux/module.h>
402#include <linux/kprobes.h>
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700403#include <linux/sched.h>
404
405/*For each probe you need to allocate a kprobe structure*/
406static struct kprobe kp;
407
408/*kprobe pre_handler: called just before the probed instruction is executed*/
409int handler_pre(struct kprobe *p, struct pt_regs *regs)
410{
411 printk("pre_handler: p->addr=0x%p, eip=%lx, eflags=0x%lx\n",
412 p->addr, regs->eip, regs->eflags);
413 dump_stack();
414 return 0;
415}
416
417/*kprobe post_handler: called after the probed instruction is executed*/
418void handler_post(struct kprobe *p, struct pt_regs *regs, unsigned long flags)
419{
420 printk("post_handler: p->addr=0x%p, eflags=0x%lx\n",
421 p->addr, regs->eflags);
422}
423
424/* fault_handler: this is called if an exception is generated for any
425 * instruction within the pre- or post-handler, or when Kprobes
426 * single-steps the probed instruction.
427 */
428int handler_fault(struct kprobe *p, struct pt_regs *regs, int trapnr)
429{
430 printk("fault_handler: p->addr=0x%p, trap #%dn",
431 p->addr, trapnr);
432 /* Return 0 because we don't handle the fault. */
433 return 0;
434}
435
Ananth N Mavinakayanahalli09b18202006-10-02 02:17:32 -0700436static int __init kprobe_init(void)
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700437{
438 int ret;
439 kp.pre_handler = handler_pre;
440 kp.post_handler = handler_post;
441 kp.fault_handler = handler_fault;
Ananth N Mavinakayanahalli09b18202006-10-02 02:17:32 -0700442 kp.symbol_name = "do_fork";
443
Alexey Dobriyan565762f2006-11-16 01:19:28 -0800444 ret = register_kprobe(&kp);
445 if (ret < 0) {
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700446 printk("register_kprobe failed, returned %d\n", ret);
Alexey Dobriyan565762f2006-11-16 01:19:28 -0800447 return ret;
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700448 }
449 printk("kprobe registered\n");
450 return 0;
451}
452
Ananth N Mavinakayanahalli09b18202006-10-02 02:17:32 -0700453static void __exit kprobe_exit(void)
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700454{
455 unregister_kprobe(&kp);
456 printk("kprobe unregistered\n");
457}
458
Ananth N Mavinakayanahalli09b18202006-10-02 02:17:32 -0700459module_init(kprobe_init)
460module_exit(kprobe_exit)
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700461MODULE_LICENSE("GPL");
462----- cut here -----
463
464You can build the kernel module, kprobe-example.ko, using the following
465Makefile:
466----- cut here -----
467obj-m := kprobe-example.o
468KDIR := /lib/modules/$(shell uname -r)/build
469PWD := $(shell pwd)
470default:
471 $(MAKE) -C $(KDIR) SUBDIRS=$(PWD) modules
472clean:
473 rm -f *.mod.c *.ko *.o
474----- cut here -----
475
476$ make
477$ su -
478...
479# insmod kprobe-example.ko
480
481You will see the trace data in /var/log/messages and on the console
482whenever do_fork() is invoked to create a new process.
483
4849. Jprobes Example
485
486Here's a sample kernel module showing the use of jprobes to dump
487the arguments of do_fork().
488----- cut here -----
489/*jprobe-example.c */
490#include <linux/kernel.h>
491#include <linux/module.h>
492#include <linux/fs.h>
493#include <linux/uio.h>
494#include <linux/kprobes.h>
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700495
496/*
497 * Jumper probe for do_fork.
498 * Mirror principle enables access to arguments of the probed routine
499 * from the probe handler.
500 */
501
502/* Proxy routine having the same arguments as actual do_fork() routine */
503long jdo_fork(unsigned long clone_flags, unsigned long stack_start,
504 struct pt_regs *regs, unsigned long stack_size,
505 int __user * parent_tidptr, int __user * child_tidptr)
506{
507 printk("jprobe: clone_flags=0x%lx, stack_size=0x%lx, regs=0x%p\n",
508 clone_flags, stack_size, regs);
509 /* Always end with a call to jprobe_return(). */
510 jprobe_return();
511 /*NOTREACHED*/
512 return 0;
513}
514
515static struct jprobe my_jprobe = {
Michael Ellerman9e367d82007-07-19 01:48:10 -0700516 .entry = jdo_fork
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700517};
518
Ananth N Mavinakayanahalli09b18202006-10-02 02:17:32 -0700519static int __init jprobe_init(void)
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700520{
521 int ret;
Ananth N Mavinakayanahalli09b18202006-10-02 02:17:32 -0700522 my_jprobe.kp.symbol_name = "do_fork";
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700523
524 if ((ret = register_jprobe(&my_jprobe)) <0) {
525 printk("register_jprobe failed, returned %d\n", ret);
526 return -1;
527 }
528 printk("Planted jprobe at %p, handler addr %p\n",
529 my_jprobe.kp.addr, my_jprobe.entry);
530 return 0;
531}
532
Ananth N Mavinakayanahalli09b18202006-10-02 02:17:32 -0700533static void __exit jprobe_exit(void)
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700534{
535 unregister_jprobe(&my_jprobe);
536 printk("jprobe unregistered\n");
537}
538
Ananth N Mavinakayanahalli09b18202006-10-02 02:17:32 -0700539module_init(jprobe_init)
540module_exit(jprobe_exit)
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700541MODULE_LICENSE("GPL");
542----- cut here -----
543
544Build and insert the kernel module as shown in the above kprobe
545example. You will see the trace data in /var/log/messages and on
546the console whenever do_fork() is invoked to create a new process.
547(Some messages may be suppressed if syslogd is configured to
548eliminate duplicate messages.)
549
55010. Kretprobes Example
551
552Here's a sample kernel module showing the use of return probes to
553report failed calls to sys_open().
554----- cut here -----
555/*kretprobe-example.c*/
556#include <linux/kernel.h>
557#include <linux/module.h>
558#include <linux/kprobes.h>
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700559
560static const char *probed_func = "sys_open";
561
562/* Return-probe handler: If the probed function fails, log the return value. */
563static int ret_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
564{
Ananth N Mavinakayanahalli09b18202006-10-02 02:17:32 -0700565 int retval = regs_return_value(regs);
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700566 if (retval < 0) {
567 printk("%s returns %d\n", probed_func, retval);
568 }
569 return 0;
570}
571
572static struct kretprobe my_kretprobe = {
573 .handler = ret_handler,
574 /* Probe up to 20 instances concurrently. */
575 .maxactive = 20
576};
577
Ananth N Mavinakayanahalli09b18202006-10-02 02:17:32 -0700578static int __init kretprobe_init(void)
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700579{
580 int ret;
Ananth N Mavinakayanahalli09b18202006-10-02 02:17:32 -0700581 my_kretprobe.kp.symbol_name = (char *)probed_func;
582
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700583 if ((ret = register_kretprobe(&my_kretprobe)) < 0) {
584 printk("register_kretprobe failed, returned %d\n", ret);
585 return -1;
586 }
587 printk("Planted return probe at %p\n", my_kretprobe.kp.addr);
588 return 0;
589}
590
Ananth N Mavinakayanahalli09b18202006-10-02 02:17:32 -0700591static void __exit kretprobe_exit(void)
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700592{
593 unregister_kretprobe(&my_kretprobe);
594 printk("kretprobe unregistered\n");
595 /* nmissed > 0 suggests that maxactive was set too low. */
596 printk("Missed probing %d instances of %s\n",
597 my_kretprobe.nmissed, probed_func);
598}
599
Ananth N Mavinakayanahalli09b18202006-10-02 02:17:32 -0700600module_init(kretprobe_init)
601module_exit(kretprobe_exit)
Jim Kenistond27a4dd2005-08-04 12:53:35 -0700602MODULE_LICENSE("GPL");
603----- cut here -----
604
605Build and insert the kernel module as shown in the above kprobe
606example. You will see the trace data in /var/log/messages and on the
607console whenever sys_open() returns a negative value. (Some messages
608may be suppressed if syslogd is configured to eliminate duplicate
609messages.)
610
611For additional information on Kprobes, refer to the following URLs:
612http://www-106.ibm.com/developerworks/library/l-kprobes.html?ca=dgr-lnxw42Kprobe
613http://www.redhat.com/magazine/005mar05/features/kprobes/
Ananth N Mavinakayanahalli09b18202006-10-02 02:17:32 -0700614http://www-users.cs.umn.edu/~boutcher/kprobes/
615http://www.linuxsymposium.org/2006/linuxsymposium_procv2.pdf (pages 101-115)
Ananth N Mavinakayanahallibf8f6e52007-05-08 00:34:16 -0700616
617
618Appendix A: The kprobes debugfs interface
619
620With recent kernels (> 2.6.20) the list of registered kprobes is visible
621under the /debug/kprobes/ directory (assuming debugfs is mounted at /debug).
622
623/debug/kprobes/list: Lists all registered probes on the system
624
625c015d71a k vfs_read+0x0
626c011a316 j do_fork+0x0
627c03dedc5 r tcp_v4_rcv+0x0
628
629The first column provides the kernel address where the probe is inserted.
630The second column identifies the type of probe (k - kprobe, r - kretprobe
631and j - jprobe), while the third column specifies the symbol+offset of
632the probe. If the probed function belongs to a module, the module name
633is also specified.
634
635/debug/kprobes/enabled: Turn kprobes ON/OFF
636
637Provides a knob to globally turn registered kprobes ON or OFF. By default,
638all kprobes are enabled. By echoing "0" to this file, all registered probes
639will be disarmed, till such time a "1" is echoed to this file.