blob: 39dd33ff6f37e594ae0235fca1676c329258616a [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * arch/arm/common/dmabounce.c
3 *
4 * Special dma_{map/unmap/dma_sync}_* routines for systems that have
5 * limited DMA windows. These functions utilize bounce buffers to
6 * copy data to/from buffers located outside the DMA region. This
7 * only works for systems in which DMA memory is at the bottom of
8 * RAM and the remainder of memory is at the top an the DMA memory
9 * can be marked as ZONE_DMA. Anything beyond that such as discontigous
10 * DMA windows will require custom implementations that reserve memory
11 * areas at early bootup.
12 *
13 * Original version by Brad Parker (brad@heeltoe.com)
14 * Re-written by Christopher Hoover <ch@murgatroid.com>
15 * Made generic by Deepak Saxena <dsaxena@plexity.net>
16 *
17 * Copyright (C) 2002 Hewlett Packard Company.
18 * Copyright (C) 2004 MontaVista Software, Inc.
19 *
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License
22 * version 2 as published by the Free Software Foundation.
23 */
24
25#include <linux/module.h>
26#include <linux/init.h>
27#include <linux/slab.h>
28#include <linux/device.h>
29#include <linux/dma-mapping.h>
30#include <linux/dmapool.h>
31#include <linux/list.h>
32
33#undef DEBUG
34
35#undef STATS
36#ifdef STATS
37#define DO_STATS(X) do { X ; } while (0)
38#else
39#define DO_STATS(X) do { } while (0)
40#endif
41
42/* ************************************************** */
43
44struct safe_buffer {
45 struct list_head node;
46
47 /* original request */
48 void *ptr;
49 size_t size;
50 int direction;
51
52 /* safe buffer info */
53 struct dma_pool *pool;
54 void *safe;
55 dma_addr_t safe_dma_addr;
56};
57
58struct dmabounce_device_info {
59 struct list_head node;
60
61 struct device *dev;
62 struct dma_pool *small_buffer_pool;
63 struct dma_pool *large_buffer_pool;
64 struct list_head safe_buffers;
65 unsigned long small_buffer_size, large_buffer_size;
66#ifdef STATS
67 unsigned long sbp_allocs;
68 unsigned long lbp_allocs;
69 unsigned long total_allocs;
70 unsigned long map_op_count;
71 unsigned long bounce_count;
72#endif
73};
74
75static LIST_HEAD(dmabounce_devs);
76
77#ifdef STATS
78static void print_alloc_stats(struct dmabounce_device_info *device_info)
79{
80 printk(KERN_INFO
81 "%s: dmabounce: sbp: %lu, lbp: %lu, other: %lu, total: %lu\n",
82 device_info->dev->bus_id,
83 device_info->sbp_allocs, device_info->lbp_allocs,
84 device_info->total_allocs - device_info->sbp_allocs -
85 device_info->lbp_allocs,
86 device_info->total_allocs);
87}
88#endif
89
90/* find the given device in the dmabounce device list */
91static inline struct dmabounce_device_info *
92find_dmabounce_dev(struct device *dev)
93{
94 struct list_head *entry;
95
96 list_for_each(entry, &dmabounce_devs) {
97 struct dmabounce_device_info *d =
98 list_entry(entry, struct dmabounce_device_info, node);
99
100 if (d->dev == dev)
101 return d;
102 }
103 return NULL;
104}
105
106
107/* allocate a 'safe' buffer and keep track of it */
108static inline struct safe_buffer *
109alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,
110 size_t size, enum dma_data_direction dir)
111{
112 struct safe_buffer *buf;
113 struct dma_pool *pool;
114 struct device *dev = device_info->dev;
115 void *safe;
116 dma_addr_t safe_dma_addr;
117
118 dev_dbg(dev, "%s(ptr=%p, size=%d, dir=%d)\n",
119 __func__, ptr, size, dir);
120
121 DO_STATS ( device_info->total_allocs++ );
122
123 buf = kmalloc(sizeof(struct safe_buffer), GFP_ATOMIC);
124 if (buf == NULL) {
125 dev_warn(dev, "%s: kmalloc failed\n", __func__);
126 return NULL;
127 }
128
129 if (size <= device_info->small_buffer_size) {
130 pool = device_info->small_buffer_pool;
131 safe = dma_pool_alloc(pool, GFP_ATOMIC, &safe_dma_addr);
132
133 DO_STATS ( device_info->sbp_allocs++ );
134 } else if (size <= device_info->large_buffer_size) {
135 pool = device_info->large_buffer_pool;
136 safe = dma_pool_alloc(pool, GFP_ATOMIC, &safe_dma_addr);
137
138 DO_STATS ( device_info->lbp_allocs++ );
139 } else {
140 pool = NULL;
141 safe = dma_alloc_coherent(dev, size, &safe_dma_addr, GFP_ATOMIC);
142 }
143
144 if (safe == NULL) {
145 dev_warn(device_info->dev,
146 "%s: could not alloc dma memory (size=%d)\n",
147 __func__, size);
148 kfree(buf);
149 return NULL;
150 }
151
152#ifdef STATS
153 if (device_info->total_allocs % 1000 == 0)
154 print_alloc_stats(device_info);
155#endif
156
157 buf->ptr = ptr;
158 buf->size = size;
159 buf->direction = dir;
160 buf->pool = pool;
161 buf->safe = safe;
162 buf->safe_dma_addr = safe_dma_addr;
163
164 list_add(&buf->node, &device_info->safe_buffers);
165
166 return buf;
167}
168
169/* determine if a buffer is from our "safe" pool */
170static inline struct safe_buffer *
171find_safe_buffer(struct dmabounce_device_info *device_info, dma_addr_t safe_dma_addr)
172{
173 struct list_head *entry;
174
175 list_for_each(entry, &device_info->safe_buffers) {
176 struct safe_buffer *b =
177 list_entry(entry, struct safe_buffer, node);
178
179 if (b->safe_dma_addr == safe_dma_addr)
180 return b;
181 }
182
183 return NULL;
184}
185
186static inline void
187free_safe_buffer(struct dmabounce_device_info *device_info, struct safe_buffer *buf)
188{
189 dev_dbg(device_info->dev, "%s(buf=%p)\n", __func__, buf);
190
191 list_del(&buf->node);
192
193 if (buf->pool)
194 dma_pool_free(buf->pool, buf->safe, buf->safe_dma_addr);
195 else
196 dma_free_coherent(device_info->dev, buf->size, buf->safe,
197 buf->safe_dma_addr);
198
199 kfree(buf);
200}
201
202/* ************************************************** */
203
204#ifdef STATS
205
206static void print_map_stats(struct dmabounce_device_info *device_info)
207{
208 printk(KERN_INFO
209 "%s: dmabounce: map_op_count=%lu, bounce_count=%lu\n",
210 device_info->dev->bus_id,
211 device_info->map_op_count, device_info->bounce_count);
212}
213#endif
214
215static inline dma_addr_t
216map_single(struct device *dev, void *ptr, size_t size,
217 enum dma_data_direction dir)
218{
219 struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
220 dma_addr_t dma_addr;
221 int needs_bounce = 0;
222
223 if (device_info)
224 DO_STATS ( device_info->map_op_count++ );
225
226 dma_addr = virt_to_dma(dev, ptr);
227
228 if (dev->dma_mask) {
229 unsigned long mask = *dev->dma_mask;
230 unsigned long limit;
231
232 limit = (mask + 1) & ~mask;
233 if (limit && size > limit) {
234 dev_err(dev, "DMA mapping too big (requested %#x "
235 "mask %#Lx)\n", size, *dev->dma_mask);
236 return ~0;
237 }
238
239 /*
240 * Figure out if we need to bounce from the DMA mask.
241 */
242 needs_bounce = (dma_addr | (dma_addr + size - 1)) & ~mask;
243 }
244
245 if (device_info && (needs_bounce || dma_needs_bounce(dev, dma_addr, size))) {
246 struct safe_buffer *buf;
247
248 buf = alloc_safe_buffer(device_info, ptr, size, dir);
249 if (buf == 0) {
250 dev_err(dev, "%s: unable to map unsafe buffer %p!\n",
251 __func__, ptr);
252 return 0;
253 }
254
255 dev_dbg(dev,
256 "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
257 __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
258 buf->safe, (void *) buf->safe_dma_addr);
259
260 if ((dir == DMA_TO_DEVICE) ||
261 (dir == DMA_BIDIRECTIONAL)) {
262 dev_dbg(dev, "%s: copy unsafe %p to safe %p, size %d\n",
263 __func__, ptr, buf->safe, size);
264 memcpy(buf->safe, ptr, size);
265 }
266 consistent_sync(buf->safe, size, dir);
267
268 dma_addr = buf->safe_dma_addr;
269 } else {
270 consistent_sync(ptr, size, dir);
271 }
272
273 return dma_addr;
274}
275
276static inline void
277unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
278 enum dma_data_direction dir)
279{
280 struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
281 struct safe_buffer *buf = NULL;
282
283 /*
284 * Trying to unmap an invalid mapping
285 */
286 if (dma_addr == ~0) {
287 dev_err(dev, "Trying to unmap invalid mapping\n");
288 return;
289 }
290
291 if (device_info)
292 buf = find_safe_buffer(device_info, dma_addr);
293
294 if (buf) {
295 BUG_ON(buf->size != size);
296
297 dev_dbg(dev,
298 "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
299 __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
300 buf->safe, (void *) buf->safe_dma_addr);
301
302
303 DO_STATS ( device_info->bounce_count++ );
304
Russell King5abc1002005-06-20 12:31:14 +0100305 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) {
306 unsigned long ptr;
307
Linus Torvalds1da177e2005-04-16 15:20:36 -0700308 dev_dbg(dev,
309 "%s: copy back safe %p to unsafe %p size %d\n",
310 __func__, buf->safe, buf->ptr, size);
311 memcpy(buf->ptr, buf->safe, size);
Russell King5abc1002005-06-20 12:31:14 +0100312
313 /*
314 * DMA buffers must have the same cache properties
315 * as if they were really used for DMA - which means
316 * data must be written back to RAM. Note that
317 * we don't use dmac_flush_range() here for the
318 * bidirectional case because we know the cache
319 * lines will be coherent with the data written.
320 */
321 ptr = (unsigned long)buf->ptr;
322 dmac_clean_range(ptr, ptr + size);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700323 }
324 free_safe_buffer(device_info, buf);
325 }
326}
327
328static inline void
329sync_single(struct device *dev, dma_addr_t dma_addr, size_t size,
330 enum dma_data_direction dir)
331{
332 struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
333 struct safe_buffer *buf = NULL;
334
335 if (device_info)
336 buf = find_safe_buffer(device_info, dma_addr);
337
338 if (buf) {
339 /*
340 * Both of these checks from original code need to be
341 * commented out b/c some drivers rely on the following:
342 *
343 * 1) Drivers may map a large chunk of memory into DMA space
344 * but only sync a small portion of it. Good example is
345 * allocating a large buffer, mapping it, and then
346 * breaking it up into small descriptors. No point
347 * in syncing the whole buffer if you only have to
348 * touch one descriptor.
349 *
350 * 2) Buffers that are mapped as DMA_BIDIRECTIONAL are
351 * usually only synced in one dir at a time.
352 *
353 * See drivers/net/eepro100.c for examples of both cases.
354 *
355 * -ds
356 *
357 * BUG_ON(buf->size != size);
358 * BUG_ON(buf->direction != dir);
359 */
360
361 dev_dbg(dev,
362 "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
363 __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
364 buf->safe, (void *) buf->safe_dma_addr);
365
366 DO_STATS ( device_info->bounce_count++ );
367
368 switch (dir) {
369 case DMA_FROM_DEVICE:
370 dev_dbg(dev,
371 "%s: copy back safe %p to unsafe %p size %d\n",
372 __func__, buf->safe, buf->ptr, size);
373 memcpy(buf->ptr, buf->safe, size);
374 break;
375 case DMA_TO_DEVICE:
376 dev_dbg(dev,
377 "%s: copy out unsafe %p to safe %p, size %d\n",
378 __func__,buf->ptr, buf->safe, size);
379 memcpy(buf->safe, buf->ptr, size);
380 break;
381 case DMA_BIDIRECTIONAL:
382 BUG(); /* is this allowed? what does it mean? */
383 default:
384 BUG();
385 }
386 consistent_sync(buf->safe, size, dir);
387 } else {
388 consistent_sync(dma_to_virt(dev, dma_addr), size, dir);
389 }
390}
391
392/* ************************************************** */
393
394/*
395 * see if a buffer address is in an 'unsafe' range. if it is
396 * allocate a 'safe' buffer and copy the unsafe buffer into it.
397 * substitute the safe buffer for the unsafe one.
398 * (basically move the buffer from an unsafe area to a safe one)
399 */
400dma_addr_t
401dma_map_single(struct device *dev, void *ptr, size_t size,
402 enum dma_data_direction dir)
403{
404 unsigned long flags;
405 dma_addr_t dma_addr;
406
407 dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
408 __func__, ptr, size, dir);
409
410 BUG_ON(dir == DMA_NONE);
411
412 local_irq_save(flags);
413
414 dma_addr = map_single(dev, ptr, size, dir);
415
416 local_irq_restore(flags);
417
418 return dma_addr;
419}
420
421/*
422 * see if a mapped address was really a "safe" buffer and if so, copy
423 * the data from the safe buffer back to the unsafe buffer and free up
424 * the safe buffer. (basically return things back to the way they
425 * should be)
426 */
427
428void
429dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
430 enum dma_data_direction dir)
431{
432 unsigned long flags;
433
434 dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
435 __func__, (void *) dma_addr, size, dir);
436
437 BUG_ON(dir == DMA_NONE);
438
439 local_irq_save(flags);
440
441 unmap_single(dev, dma_addr, size, dir);
442
443 local_irq_restore(flags);
444}
445
446int
447dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
448 enum dma_data_direction dir)
449{
450 unsigned long flags;
451 int i;
452
453 dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
454 __func__, sg, nents, dir);
455
456 BUG_ON(dir == DMA_NONE);
457
458 local_irq_save(flags);
459
460 for (i = 0; i < nents; i++, sg++) {
461 struct page *page = sg->page;
462 unsigned int offset = sg->offset;
463 unsigned int length = sg->length;
464 void *ptr = page_address(page) + offset;
465
466 sg->dma_address =
467 map_single(dev, ptr, length, dir);
468 }
469
470 local_irq_restore(flags);
471
472 return nents;
473}
474
475void
476dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
477 enum dma_data_direction dir)
478{
479 unsigned long flags;
480 int i;
481
482 dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
483 __func__, sg, nents, dir);
484
485 BUG_ON(dir == DMA_NONE);
486
487 local_irq_save(flags);
488
489 for (i = 0; i < nents; i++, sg++) {
490 dma_addr_t dma_addr = sg->dma_address;
491 unsigned int length = sg->length;
492
493 unmap_single(dev, dma_addr, length, dir);
494 }
495
496 local_irq_restore(flags);
497}
498
499void
500dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, size_t size,
501 enum dma_data_direction dir)
502{
503 unsigned long flags;
504
505 dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
506 __func__, (void *) dma_addr, size, dir);
507
508 local_irq_save(flags);
509
510 sync_single(dev, dma_addr, size, dir);
511
512 local_irq_restore(flags);
513}
514
515void
516dma_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, size_t size,
517 enum dma_data_direction dir)
518{
519 unsigned long flags;
520
521 dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
522 __func__, (void *) dma_addr, size, dir);
523
524 local_irq_save(flags);
525
526 sync_single(dev, dma_addr, size, dir);
527
528 local_irq_restore(flags);
529}
530
531void
532dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents,
533 enum dma_data_direction dir)
534{
535 unsigned long flags;
536 int i;
537
538 dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
539 __func__, sg, nents, dir);
540
541 BUG_ON(dir == DMA_NONE);
542
543 local_irq_save(flags);
544
545 for (i = 0; i < nents; i++, sg++) {
546 dma_addr_t dma_addr = sg->dma_address;
547 unsigned int length = sg->length;
548
549 sync_single(dev, dma_addr, length, dir);
550 }
551
552 local_irq_restore(flags);
553}
554
555void
556dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents,
557 enum dma_data_direction dir)
558{
559 unsigned long flags;
560 int i;
561
562 dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
563 __func__, sg, nents, dir);
564
565 BUG_ON(dir == DMA_NONE);
566
567 local_irq_save(flags);
568
569 for (i = 0; i < nents; i++, sg++) {
570 dma_addr_t dma_addr = sg->dma_address;
571 unsigned int length = sg->length;
572
573 sync_single(dev, dma_addr, length, dir);
574 }
575
576 local_irq_restore(flags);
577}
578
579int
580dmabounce_register_dev(struct device *dev, unsigned long small_buffer_size,
581 unsigned long large_buffer_size)
582{
583 struct dmabounce_device_info *device_info;
584
585 device_info = kmalloc(sizeof(struct dmabounce_device_info), GFP_ATOMIC);
586 if (!device_info) {
587 printk(KERN_ERR
588 "Could not allocated dmabounce_device_info for %s",
589 dev->bus_id);
590 return -ENOMEM;
591 }
592
593 device_info->small_buffer_pool =
594 dma_pool_create("small_dmabounce_pool",
595 dev,
596 small_buffer_size,
597 0 /* byte alignment */,
598 0 /* no page-crossing issues */);
599 if (!device_info->small_buffer_pool) {
600 printk(KERN_ERR
601 "dmabounce: could not allocate small DMA pool for %s\n",
602 dev->bus_id);
603 kfree(device_info);
604 return -ENOMEM;
605 }
606
607 if (large_buffer_size) {
608 device_info->large_buffer_pool =
609 dma_pool_create("large_dmabounce_pool",
610 dev,
611 large_buffer_size,
612 0 /* byte alignment */,
613 0 /* no page-crossing issues */);
614 if (!device_info->large_buffer_pool) {
615 printk(KERN_ERR
616 "dmabounce: could not allocate large DMA pool for %s\n",
617 dev->bus_id);
618 dma_pool_destroy(device_info->small_buffer_pool);
619
620 return -ENOMEM;
621 }
622 }
623
624 device_info->dev = dev;
625 device_info->small_buffer_size = small_buffer_size;
626 device_info->large_buffer_size = large_buffer_size;
627 INIT_LIST_HEAD(&device_info->safe_buffers);
628
629#ifdef STATS
630 device_info->sbp_allocs = 0;
631 device_info->lbp_allocs = 0;
632 device_info->total_allocs = 0;
633 device_info->map_op_count = 0;
634 device_info->bounce_count = 0;
635#endif
636
637 list_add(&device_info->node, &dmabounce_devs);
638
639 printk(KERN_INFO "dmabounce: registered device %s on %s bus\n",
640 dev->bus_id, dev->bus->name);
641
642 return 0;
643}
644
645void
646dmabounce_unregister_dev(struct device *dev)
647{
648 struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
649
650 if (!device_info) {
651 printk(KERN_WARNING
652 "%s: Never registered with dmabounce but attempting" \
653 "to unregister!\n", dev->bus_id);
654 return;
655 }
656
657 if (!list_empty(&device_info->safe_buffers)) {
658 printk(KERN_ERR
659 "%s: Removing from dmabounce with pending buffers!\n",
660 dev->bus_id);
661 BUG();
662 }
663
664 if (device_info->small_buffer_pool)
665 dma_pool_destroy(device_info->small_buffer_pool);
666 if (device_info->large_buffer_pool)
667 dma_pool_destroy(device_info->large_buffer_pool);
668
669#ifdef STATS
670 print_alloc_stats(device_info);
671 print_map_stats(device_info);
672#endif
673
674 list_del(&device_info->node);
675
676 kfree(device_info);
677
678 printk(KERN_INFO "dmabounce: device %s on %s bus unregistered\n",
679 dev->bus_id, dev->bus->name);
680}
681
682
683EXPORT_SYMBOL(dma_map_single);
684EXPORT_SYMBOL(dma_unmap_single);
685EXPORT_SYMBOL(dma_map_sg);
686EXPORT_SYMBOL(dma_unmap_sg);
687EXPORT_SYMBOL(dma_sync_single);
688EXPORT_SYMBOL(dma_sync_sg);
689EXPORT_SYMBOL(dmabounce_register_dev);
690EXPORT_SYMBOL(dmabounce_unregister_dev);
691
692MODULE_AUTHOR("Christopher Hoover <ch@hpl.hp.com>, Deepak Saxena <dsaxena@plexity.net>");
693MODULE_DESCRIPTION("Special dma_{map/unmap/dma_sync}_* routines for systems with limited DMA windows");
694MODULE_LICENSE("GPL");