blob: b30f5260de6cdc1dffa51159ca25f60d0e49c33d [file] [log] [blame]
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -08001/* linux/arch/arm/mach-msm/timer.c
2 *
3 * Copyright (C) 2007 Google, Inc.
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -07004 * Copyright (c) 2009-2011, Code Aurora Forum. All rights reserved.
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -08005 *
6 * This software is licensed under the terms of the GNU General Public
7 * License version 2, as published by the Free Software Foundation, and
8 * may be copied, distributed, and modified under those terms.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 */
16
17#include <linux/init.h>
18#include <linux/time.h>
19#include <linux/interrupt.h>
20#include <linux/irq.h>
21#include <linux/clk.h>
22#include <linux/clockchips.h>
23#include <linux/delay.h>
Russell Kingfced80c2008-09-06 12:10:45 +010024#include <linux/io.h>
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -070025#include <linux/percpu.h>
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -080026
27#include <asm/mach/time.h>
Stephen Boydebf30dc2011-05-31 16:10:00 -070028#include <asm/hardware/gic.h>
Russell Kinga09e64f2008-08-05 16:14:15 +010029#include <mach/msm_iomap.h>
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -070030#include <mach/irqs.h>
31#include <mach/socinfo.h>
32
33#if defined(CONFIG_MSM_SMD)
34#include "smd_private.h"
35#endif
36#include "timer.h"
37
38enum {
39 MSM_TIMER_DEBUG_SYNC = 1U << 0,
40};
41static int msm_timer_debug_mask;
42module_param_named(debug_mask, msm_timer_debug_mask, int, S_IRUGO | S_IWUSR | S_IWGRP);
43
44#if defined(CONFIG_ARCH_MSM7X30) || defined(CONFIG_ARCH_MSM8X60) || \
45 defined(CONFIG_ARCH_MSM8960) || defined(CONFIG_ARCH_FSM9XXX) || \
46 defined(CONFIG_ARCH_APQ8064)
47#define MSM_GPT_BASE (MSM_TMR_BASE + 0x4)
48#define MSM_DGT_BASE (MSM_TMR_BASE + 0x24)
49#else
50#define MSM_GPT_BASE MSM_TMR_BASE
51#define MSM_DGT_BASE (MSM_TMR_BASE + 0x10)
52#endif
53
54#ifdef CONFIG_MSM7X00A_USE_GP_TIMER
55 #define DG_TIMER_RATING 100
56 #define MSM_GLOBAL_TIMER MSM_CLOCK_GPT
57#else
58 #define DG_TIMER_RATING 300
59 #define MSM_GLOBAL_TIMER MSM_CLOCK_DGT
60#endif
61
62#if defined(CONFIG_ARCH_MSM_ARM11) || defined(CONFIG_ARCH_MSM_CORTEX_A5)
63#define MSM_DGT_SHIFT (5)
64#else
65#define MSM_DGT_SHIFT (0)
66#endif
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -080067
68#define TIMER_MATCH_VAL 0x0000
69#define TIMER_COUNT_VAL 0x0004
70#define TIMER_ENABLE 0x0008
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -080071#define TIMER_CLEAR 0x000C
Jeff Ohlstein672039f2010-10-05 15:23:57 -070072#define DGT_CLK_CTL 0x0034
73enum {
74 DGT_CLK_CTL_DIV_1 = 0,
75 DGT_CLK_CTL_DIV_2 = 1,
76 DGT_CLK_CTL_DIV_3 = 2,
77 DGT_CLK_CTL_DIV_4 = 3,
78};
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -070079#define TIMER_ENABLE_EN 1
80#define TIMER_ENABLE_CLR_ON_MATCH_EN 2
81
82#define LOCAL_TIMER 0
83#define GLOBAL_TIMER 1
84
85/*
86 * MSM_TMR_GLOBAL is added to the regbase of a timer to force the memory access
87 * to come from the CPU0 region.
88 */
89#ifdef MSM_TMR0_BASE
90#define MSM_TMR_GLOBAL (MSM_TMR0_BASE - MSM_TMR_BASE)
91#else
92#define MSM_TMR_GLOBAL 0
93#endif
94
95#if defined(CONFIG_MSM_DIRECT_SCLK_ACCESS)
96#define MPM_SCLK_COUNT_VAL 0x0024
97#endif
98
99#define NR_TIMERS ARRAY_SIZE(msm_clocks)
100
101#if defined(CONFIG_ARCH_QSD8X50)
102#define DGT_HZ 4800000 /* Uses TCXO/4 (19.2 MHz / 4) */
103#elif defined(CONFIG_ARCH_MSM7X30)
104#define DGT_HZ 6144000 /* Uses LPXO/4 (24.576 MHz / 4) */
105#elif defined(CONFIG_ARCH_MSM8X60) || defined(CONFIG_ARCH_MSM8960) || \
106 defined(CONFIG_ARCH_APQ8064)
107/* Uses PXO/4 (24.576 MHz / 4) on V1, (27 MHz / 4) on V2 */
108#define DGT_HZ 6750000
109#else
110#define DGT_HZ 19200000 /* Uses TCXO (19.2 MHz) */
111#endif
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -0800112
113#define GPT_HZ 32768
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700114#define SCLK_HZ 32768
Jeff Ohlstein672039f2010-10-05 15:23:57 -0700115
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700116#if defined(CONFIG_MSM_N_WAY_SMSM)
117/* Time Master State Bits */
118#define MASTER_BITS_PER_CPU 1
119#define MASTER_TIME_PENDING \
120 (0x01UL << (MASTER_BITS_PER_CPU * SMSM_APPS_STATE))
Jeff Ohlstein94790ec2010-12-02 12:05:12 -0800121
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700122/* Time Slave State Bits */
123#define SLAVE_TIME_REQUEST 0x0400
124#define SLAVE_TIME_POLL 0x0800
125#define SLAVE_TIME_INIT 0x1000
Jeff Ohlstein672039f2010-10-05 15:23:57 -0700126#endif
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -0800127
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700128#ifdef CONFIG_SMP
129static struct msm_clock *clockevent_to_clock(struct clock_event_device *evt);
130#endif
131static irqreturn_t msm_timer_interrupt(int irq, void *dev_id);
132static cycle_t msm_gpt_read(struct clocksource *cs);
133static cycle_t msm_dgt_read(struct clocksource *cs);
134static void msm_timer_set_mode(enum clock_event_mode mode,
135 struct clock_event_device *evt);
136static int msm_timer_set_next_event(unsigned long cycles,
137 struct clock_event_device *evt);
138
139enum {
140 MSM_CLOCK_FLAGS_UNSTABLE_COUNT = 1U << 0,
141 MSM_CLOCK_FLAGS_ODD_MATCH_WRITE = 1U << 1,
142 MSM_CLOCK_FLAGS_DELAYED_WRITE_POST = 1U << 2,
143};
144
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -0800145struct msm_clock {
146 struct clock_event_device clockevent;
147 struct clocksource clocksource;
148 struct irqaction irq;
Brian Swetlandbcc0f6a2008-09-10 14:00:53 -0700149 void __iomem *regbase;
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -0800150 uint32_t freq;
151 uint32_t shift;
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700152 uint32_t flags;
153 uint32_t write_delay;
154 uint32_t rollover_offset;
155 uint32_t index;
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -0800156};
157
Jeff Ohlstein94790ec2010-12-02 12:05:12 -0800158enum {
159 MSM_CLOCK_GPT,
160 MSM_CLOCK_DGT,
Jeff Ohlstein94790ec2010-12-02 12:05:12 -0800161};
162
163
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700164struct msm_clock_percpu_data {
165 uint32_t last_set;
166 uint32_t sleep_offset;
167 uint32_t alarm_vtime;
168 uint32_t alarm;
169 uint32_t non_sleep_offset;
170 uint32_t in_sync;
171 cycle_t stopped_tick;
172 int stopped;
173 uint32_t last_sync_gpt;
174 u64 last_sync_jiffies;
175};
Jeff Ohlstein94790ec2010-12-02 12:05:12 -0800176
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700177struct msm_timer_sync_data_t {
178 struct msm_clock *clock;
179 uint32_t timeout;
180 int exit_sleep;
181};
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -0800182
183static struct msm_clock msm_clocks[] = {
Jeff Ohlstein94790ec2010-12-02 12:05:12 -0800184 [MSM_CLOCK_GPT] = {
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -0800185 .clockevent = {
186 .name = "gp_timer",
187 .features = CLOCK_EVT_FEAT_ONESHOT,
188 .shift = 32,
189 .rating = 200,
190 .set_next_event = msm_timer_set_next_event,
191 .set_mode = msm_timer_set_mode,
192 },
193 .clocksource = {
194 .name = "gp_timer",
195 .rating = 200,
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700196 .read = msm_gpt_read,
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -0800197 .mask = CLOCKSOURCE_MASK(32),
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700198 .shift = 17,
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -0800199 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
200 },
201 .irq = {
202 .name = "gp_timer",
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700203 .flags = IRQF_DISABLED | IRQF_TIMER |
204 IRQF_TRIGGER_RISING,
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -0800205 .handler = msm_timer_interrupt,
206 .dev_id = &msm_clocks[0].clockevent,
207 .irq = INT_GP_TIMER_EXP
208 },
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700209 .regbase = MSM_GPT_BASE,
Jeff Ohlstein94790ec2010-12-02 12:05:12 -0800210 .freq = GPT_HZ,
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700211 .index = MSM_CLOCK_GPT,
212 .flags =
213#if defined(CONFIG_ARCH_MSM_ARM11) || defined(CONFIG_ARCH_MSM_CORTEX_A5)
214 MSM_CLOCK_FLAGS_UNSTABLE_COUNT |
215 MSM_CLOCK_FLAGS_ODD_MATCH_WRITE |
216 MSM_CLOCK_FLAGS_DELAYED_WRITE_POST |
217#endif
218 0,
219 .write_delay = 9,
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -0800220 },
Jeff Ohlstein94790ec2010-12-02 12:05:12 -0800221 [MSM_CLOCK_DGT] = {
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -0800222 .clockevent = {
223 .name = "dg_timer",
224 .features = CLOCK_EVT_FEAT_ONESHOT,
225 .shift = 32 + MSM_DGT_SHIFT,
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700226 .rating = DG_TIMER_RATING,
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -0800227 .set_next_event = msm_timer_set_next_event,
228 .set_mode = msm_timer_set_mode,
229 },
230 .clocksource = {
231 .name = "dg_timer",
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700232 .rating = DG_TIMER_RATING,
233 .read = msm_dgt_read,
234 .mask = CLOCKSOURCE_MASK((32-MSM_DGT_SHIFT)),
235 .shift = 24 - MSM_DGT_SHIFT,
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -0800236 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
237 },
238 .irq = {
239 .name = "dg_timer",
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700240 .flags = IRQF_DISABLED | IRQF_TIMER |
241 IRQF_TRIGGER_RISING,
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -0800242 .handler = msm_timer_interrupt,
243 .dev_id = &msm_clocks[1].clockevent,
244 .irq = INT_DEBUG_TIMER_EXP
245 },
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700246 .regbase = MSM_DGT_BASE,
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -0800247 .freq = DGT_HZ >> MSM_DGT_SHIFT,
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700248 .index = MSM_CLOCK_DGT,
Jeff Ohlstein94790ec2010-12-02 12:05:12 -0800249 .shift = MSM_DGT_SHIFT,
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700250 .write_delay = 9,
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -0800251 }
252};
253
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -0700254static DEFINE_PER_CPU(struct clock_event_device*, local_clock_event);
255
256static DEFINE_PER_CPU(struct msm_clock_percpu_data[NR_TIMERS],
257 msm_clocks_percpu);
258
259static DEFINE_PER_CPU(struct msm_clock *, msm_active_clock);
260
261static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
262{
263 struct clock_event_device *evt = dev_id;
264 if (smp_processor_id() != 0)
265 evt = __get_cpu_var(local_clock_event);
266 if (evt->event_handler == NULL)
267 return IRQ_HANDLED;
268 evt->event_handler(evt);
269 return IRQ_HANDLED;
270}
271
272static uint32_t msm_read_timer_count(struct msm_clock *clock, int global)
273{
274 uint32_t t1, t2;
275 int loop_count = 0;
276
277 if (global)
278 t1 = __raw_readl(clock->regbase + TIMER_COUNT_VAL +
279 MSM_TMR_GLOBAL);
280 else
281 t1 = __raw_readl(clock->regbase + TIMER_COUNT_VAL);
282
283 if (!(clock->flags & MSM_CLOCK_FLAGS_UNSTABLE_COUNT))
284 return t1;
285 while (1) {
286 if (global)
287 t2 = __raw_readl(clock->regbase + TIMER_COUNT_VAL +
288 MSM_TMR_GLOBAL);
289 else
290 t2 = __raw_readl(clock->regbase + TIMER_COUNT_VAL);
291 if (t1 == t2)
292 return t1;
293 if (loop_count++ > 10) {
294 printk(KERN_ERR "msm_read_timer_count timer %s did not"
295 "stabilize %u != %u\n", clock->clockevent.name,
296 t2, t1);
297 return t2;
298 }
299 t1 = t2;
300 }
301}
302
303static cycle_t msm_gpt_read(struct clocksource *cs)
304{
305 struct msm_clock *clock = &msm_clocks[MSM_CLOCK_GPT];
306 struct msm_clock_percpu_data *clock_state =
307 &per_cpu(msm_clocks_percpu, 0)[MSM_CLOCK_GPT];
308
309 if (clock_state->stopped)
310 return clock_state->stopped_tick;
311
312 return msm_read_timer_count(clock, GLOBAL_TIMER) +
313 clock_state->sleep_offset;
314}
315
316static cycle_t msm_dgt_read(struct clocksource *cs)
317{
318 struct msm_clock *clock = &msm_clocks[MSM_CLOCK_DGT];
319 struct msm_clock_percpu_data *clock_state =
320 &per_cpu(msm_clocks_percpu, 0)[MSM_CLOCK_DGT];
321
322 if (clock_state->stopped)
323 return clock_state->stopped_tick >> MSM_DGT_SHIFT;
324
325 return (msm_read_timer_count(clock, GLOBAL_TIMER) +
326 clock_state->sleep_offset) >> MSM_DGT_SHIFT;
327}
328
329#ifdef CONFIG_SMP
330static struct msm_clock *clockevent_to_clock(struct clock_event_device *evt)
331{
332 int i;
333 for (i = 0; i < NR_TIMERS; i++)
334 if (evt == &(msm_clocks[i].clockevent))
335 return &msm_clocks[i];
336 return &msm_clocks[MSM_GLOBAL_TIMER];
337}
338#endif
339
340static int msm_timer_set_next_event(unsigned long cycles,
341 struct clock_event_device *evt)
342{
343 int i;
344 struct msm_clock *clock;
345 struct msm_clock_percpu_data *clock_state;
346 uint32_t now;
347 uint32_t alarm;
348 int late;
349
350#ifdef CONFIG_SMP
351 clock = clockevent_to_clock(evt);
352#else
353 clock = container_of(evt, struct msm_clock, clockevent);
354#endif
355 clock_state = &__get_cpu_var(msm_clocks_percpu)[clock->index];
356 if (clock_state->stopped)
357 return 0;
358 now = msm_read_timer_count(clock, LOCAL_TIMER);
359 alarm = now + (cycles << clock->shift);
360 if (clock->flags & MSM_CLOCK_FLAGS_ODD_MATCH_WRITE)
361 while (now == clock_state->last_set)
362 now = msm_read_timer_count(clock, LOCAL_TIMER);
363
364 clock_state->alarm = alarm;
365 __raw_writel(alarm, clock->regbase + TIMER_MATCH_VAL);
366
367 if (clock->flags & MSM_CLOCK_FLAGS_DELAYED_WRITE_POST) {
368 /* read the counter four extra times to make sure write posts
369 before reading the time */
370 for (i = 0; i < 4; i++)
371 __raw_readl(clock->regbase + TIMER_COUNT_VAL);
372 }
373 now = msm_read_timer_count(clock, LOCAL_TIMER);
374 clock_state->last_set = now;
375 clock_state->alarm_vtime = alarm + clock_state->sleep_offset;
376 late = now - alarm;
377 if (late >= (int)(-clock->write_delay << clock->shift) &&
378 late < clock->freq*5)
379 return -ETIME;
380
381 return 0;
382}
383
384static void msm_timer_set_mode(enum clock_event_mode mode,
385 struct clock_event_device *evt)
386{
387 struct msm_clock *clock;
388 struct msm_clock_percpu_data *clock_state, *gpt_state;
389 unsigned long irq_flags;
390
391#ifdef CONFIG_SMP
392 clock = clockevent_to_clock(evt);
393#else
394 clock = container_of(evt, struct msm_clock, clockevent);
395#endif
396 clock_state = &__get_cpu_var(msm_clocks_percpu)[clock->index];
397 gpt_state = &__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT];
398
399 local_irq_save(irq_flags);
400
401 switch (mode) {
402 case CLOCK_EVT_MODE_RESUME:
403 case CLOCK_EVT_MODE_PERIODIC:
404 break;
405 case CLOCK_EVT_MODE_ONESHOT:
406 clock_state->stopped = 0;
407 clock_state->sleep_offset =
408 -msm_read_timer_count(clock, LOCAL_TIMER) +
409 clock_state->stopped_tick;
410 get_cpu_var(msm_active_clock) = clock;
411 put_cpu_var(msm_active_clock);
412 __raw_writel(TIMER_ENABLE_EN, clock->regbase + TIMER_ENABLE);
413 if (irq_get_chip(clock->irq.irq) &&
414 irq_get_chip(clock->irq.irq)->irq_unmask) {
415 irq_get_chip(clock->irq.irq)->irq_unmask(
416 irq_get_irq_data(clock->irq.irq));
417 }
418 if (clock != &msm_clocks[MSM_CLOCK_GPT])
419 __raw_writel(TIMER_ENABLE_EN,
420 msm_clocks[MSM_CLOCK_GPT].regbase +
421 TIMER_ENABLE);
422 break;
423 case CLOCK_EVT_MODE_UNUSED:
424 case CLOCK_EVT_MODE_SHUTDOWN:
425 get_cpu_var(msm_active_clock) = NULL;
426 put_cpu_var(msm_active_clock);
427 clock_state->in_sync = 0;
428 clock_state->stopped = 1;
429 clock_state->stopped_tick =
430 msm_read_timer_count(clock, LOCAL_TIMER) +
431 clock_state->sleep_offset;
432 __raw_writel(0, clock->regbase + TIMER_MATCH_VAL);
433 if (irq_get_chip(clock->irq.irq) &&
434 irq_get_chip(clock->irq.irq)->irq_mask) {
435 irq_get_chip(clock->irq.irq)->irq_mask(
436 irq_get_irq_data(clock->irq.irq));
437 }
438#ifdef CONFIG_MSM_SMP
439 if (clock != &msm_clocks[MSM_CLOCK_DGT] || smp_processor_id())
440#endif
441 __raw_writel(0, clock->regbase + TIMER_ENABLE);
442 if (clock != &msm_clocks[MSM_CLOCK_GPT]) {
443 gpt_state->in_sync = 0;
444 __raw_writel(0, msm_clocks[MSM_CLOCK_GPT].regbase +
445 TIMER_ENABLE);
446 }
447 break;
448 }
449 wmb();
450 local_irq_restore(irq_flags);
451}
452
453#ifdef CONFIG_PM
454/*
455 * Retrieve the cycle count from sclk and optionally synchronize local clock
456 * with the sclk value.
457 *
458 * time_start and time_expired are callbacks that must be specified. The
459 * protocol uses them to detect timeout. The update callback is optional.
460 * If not NULL, update will be called so that it can update local clock.
461 *
462 * The function does not use the argument data directly; it passes data to
463 * the callbacks.
464 *
465 * Return value:
466 * 0: the operation failed
467 * >0: the slow clock value after time-sync
468 */
469static void (*msm_timer_sync_timeout)(void);
470#if defined(CONFIG_MSM_DIRECT_SCLK_ACCESS)
471static uint32_t msm_timer_do_sync_to_sclk(
472 void (*time_start)(struct msm_timer_sync_data_t *data),
473 bool (*time_expired)(struct msm_timer_sync_data_t *data),
474 void (*update)(struct msm_timer_sync_data_t *, uint32_t, uint32_t),
475 struct msm_timer_sync_data_t *data)
476{
477 uint32_t t1, t2;
478 int loop_count = 10;
479 int loop_zero_count = 3;
480 int tmp = USEC_PER_SEC/SCLK_HZ/(loop_zero_count-1);
481
482 while (loop_zero_count--) {
483 t1 = __raw_readl(MSM_RPM_MPM_BASE + MPM_SCLK_COUNT_VAL);
484 do {
485 udelay(1);
486 t2 = t1;
487 t1 = __raw_readl(MSM_RPM_MPM_BASE + MPM_SCLK_COUNT_VAL);
488 } while ((t2 != t1) && --loop_count);
489
490 if (!loop_count) {
491 printk(KERN_EMERG "SCLK did not stabilize\n");
492 return 0;
493 }
494
495 if (t1)
496 break;
497
498 udelay(tmp);
499 }
500
501 if (!loop_zero_count) {
502 printk(KERN_EMERG "SCLK reads zero\n");
503 return 0;
504 }
505
506 if (update != NULL)
507 update(data, t1, SCLK_HZ);
508 return t1;
509}
510#elif defined(CONFIG_MSM_N_WAY_SMSM)
511static uint32_t msm_timer_do_sync_to_sclk(
512 void (*time_start)(struct msm_timer_sync_data_t *data),
513 bool (*time_expired)(struct msm_timer_sync_data_t *data),
514 void (*update)(struct msm_timer_sync_data_t *, uint32_t, uint32_t),
515 struct msm_timer_sync_data_t *data)
516{
517 uint32_t *smem_clock;
518 uint32_t smem_clock_val;
519 uint32_t state;
520
521 smem_clock = smem_alloc(SMEM_SMEM_SLOW_CLOCK_VALUE, sizeof(uint32_t));
522 if (smem_clock == NULL) {
523 printk(KERN_ERR "no smem clock\n");
524 return 0;
525 }
526
527 state = smsm_get_state(SMSM_MODEM_STATE);
528 if ((state & SMSM_INIT) == 0) {
529 printk(KERN_ERR "smsm not initialized\n");
530 return 0;
531 }
532
533 time_start(data);
534 while ((state = smsm_get_state(SMSM_TIME_MASTER_DEM)) &
535 MASTER_TIME_PENDING) {
536 if (time_expired(data)) {
537 printk(KERN_EMERG "get_smem_clock: timeout 1 still "
538 "invalid state %x\n", state);
539 msm_timer_sync_timeout();
540 }
541 }
542
543 smsm_change_state(SMSM_APPS_DEM, SLAVE_TIME_POLL | SLAVE_TIME_INIT,
544 SLAVE_TIME_REQUEST);
545
546 time_start(data);
547 while (!((state = smsm_get_state(SMSM_TIME_MASTER_DEM)) &
548 MASTER_TIME_PENDING)) {
549 if (time_expired(data)) {
550 printk(KERN_EMERG "get_smem_clock: timeout 2 still "
551 "invalid state %x\n", state);
552 msm_timer_sync_timeout();
553 }
554 }
555
556 smsm_change_state(SMSM_APPS_DEM, SLAVE_TIME_REQUEST, SLAVE_TIME_POLL);
557
558 time_start(data);
559 do {
560 smem_clock_val = *smem_clock;
561 } while (smem_clock_val == 0 && !time_expired(data));
562
563 state = smsm_get_state(SMSM_TIME_MASTER_DEM);
564
565 if (smem_clock_val) {
566 if (update != NULL)
567 update(data, smem_clock_val, SCLK_HZ);
568
569 if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC)
570 printk(KERN_INFO
571 "get_smem_clock: state %x clock %u\n",
572 state, smem_clock_val);
573 } else {
574 printk(KERN_EMERG
575 "get_smem_clock: timeout state %x clock %u\n",
576 state, smem_clock_val);
577 msm_timer_sync_timeout();
578 }
579
580 smsm_change_state(SMSM_APPS_DEM, SLAVE_TIME_REQUEST | SLAVE_TIME_POLL,
581 SLAVE_TIME_INIT);
582 return smem_clock_val;
583}
584#else /* CONFIG_MSM_N_WAY_SMSM */
585static uint32_t msm_timer_do_sync_to_sclk(
586 void (*time_start)(struct msm_timer_sync_data_t *data),
587 bool (*time_expired)(struct msm_timer_sync_data_t *data),
588 void (*update)(struct msm_timer_sync_data_t *, uint32_t, uint32_t),
589 struct msm_timer_sync_data_t *data)
590{
591 uint32_t *smem_clock;
592 uint32_t smem_clock_val;
593 uint32_t last_state;
594 uint32_t state;
595
596 smem_clock = smem_alloc(SMEM_SMEM_SLOW_CLOCK_VALUE,
597 sizeof(uint32_t));
598
599 if (smem_clock == NULL) {
600 printk(KERN_ERR "no smem clock\n");
601 return 0;
602 }
603
604 last_state = state = smsm_get_state(SMSM_MODEM_STATE);
605 smem_clock_val = *smem_clock;
606 if (smem_clock_val) {
607 printk(KERN_INFO "get_smem_clock: invalid start state %x "
608 "clock %u\n", state, smem_clock_val);
609 smsm_change_state(SMSM_APPS_STATE,
610 SMSM_TIMEWAIT, SMSM_TIMEINIT);
611
612 time_start(data);
613 while (*smem_clock != 0 && !time_expired(data))
614 ;
615
616 smem_clock_val = *smem_clock;
617 if (smem_clock_val) {
618 printk(KERN_EMERG "get_smem_clock: timeout still "
619 "invalid state %x clock %u\n",
620 state, smem_clock_val);
621 msm_timer_sync_timeout();
622 }
623 }
624
625 time_start(data);
626 smsm_change_state(SMSM_APPS_STATE, SMSM_TIMEINIT, SMSM_TIMEWAIT);
627 do {
628 smem_clock_val = *smem_clock;
629 state = smsm_get_state(SMSM_MODEM_STATE);
630 if (state != last_state) {
631 last_state = state;
632 if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC)
633 printk(KERN_INFO
634 "get_smem_clock: state %x clock %u\n",
635 state, smem_clock_val);
636 }
637 } while (smem_clock_val == 0 && !time_expired(data));
638
639 if (smem_clock_val) {
640 if (update != NULL)
641 update(data, smem_clock_val, SCLK_HZ);
642 } else {
643 printk(KERN_EMERG
644 "get_smem_clock: timeout state %x clock %u\n",
645 state, smem_clock_val);
646 msm_timer_sync_timeout();
647 }
648
649 smsm_change_state(SMSM_APPS_STATE, SMSM_TIMEWAIT, SMSM_TIMEINIT);
650 return smem_clock_val;
651}
652#endif /* CONFIG_MSM_N_WAY_SMSM */
653
654/*
655 * Callback function that initializes the timeout value.
656 */
657static void msm_timer_sync_to_sclk_time_start(
658 struct msm_timer_sync_data_t *data)
659{
660 /* approx 2 seconds */
661 uint32_t delta = data->clock->freq << data->clock->shift << 1;
662 data->timeout = msm_read_timer_count(data->clock, LOCAL_TIMER) + delta;
663}
664
665/*
666 * Callback function that checks the timeout.
667 */
668static bool msm_timer_sync_to_sclk_time_expired(
669 struct msm_timer_sync_data_t *data)
670{
671 uint32_t delta = msm_read_timer_count(data->clock, LOCAL_TIMER) -
672 data->timeout;
673 return ((int32_t) delta) > 0;
674}
675
676/*
677 * Callback function that updates local clock from the specified source clock
678 * value and frequency.
679 */
680static void msm_timer_sync_update(struct msm_timer_sync_data_t *data,
681 uint32_t src_clk_val, uint32_t src_clk_freq)
682{
683 struct msm_clock *dst_clk = data->clock;
684 struct msm_clock_percpu_data *dst_clk_state =
685 &__get_cpu_var(msm_clocks_percpu)[dst_clk->index];
686 uint32_t dst_clk_val = msm_read_timer_count(dst_clk, LOCAL_TIMER);
687 uint32_t new_offset;
688
689 if ((dst_clk->freq << dst_clk->shift) == src_clk_freq) {
690 new_offset = src_clk_val - dst_clk_val;
691 } else {
692 uint64_t temp;
693
694 /* separate multiplication and division steps to reduce
695 rounding error */
696 temp = src_clk_val;
697 temp *= dst_clk->freq << dst_clk->shift;
698 do_div(temp, src_clk_freq);
699
700 new_offset = (uint32_t)(temp) - dst_clk_val;
701 }
702
703 if (dst_clk_state->sleep_offset + dst_clk_state->non_sleep_offset !=
704 new_offset) {
705 if (data->exit_sleep)
706 dst_clk_state->sleep_offset =
707 new_offset - dst_clk_state->non_sleep_offset;
708 else
709 dst_clk_state->non_sleep_offset =
710 new_offset - dst_clk_state->sleep_offset;
711
712 if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC)
713 printk(KERN_INFO "sync clock %s: "
714 "src %u, new offset %u + %u\n",
715 dst_clk->clocksource.name, src_clk_val,
716 dst_clk_state->sleep_offset,
717 dst_clk_state->non_sleep_offset);
718 }
719}
720
721/*
722 * Synchronize GPT clock with sclk.
723 */
724static void msm_timer_sync_gpt_to_sclk(int exit_sleep)
725{
726 struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT];
727 struct msm_clock_percpu_data *gpt_clk_state =
728 &__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT];
729 struct msm_timer_sync_data_t data;
730 uint32_t ret;
731
732 if (gpt_clk_state->in_sync)
733 return;
734
735 data.clock = gpt_clk;
736 data.timeout = 0;
737 data.exit_sleep = exit_sleep;
738
739 ret = msm_timer_do_sync_to_sclk(
740 msm_timer_sync_to_sclk_time_start,
741 msm_timer_sync_to_sclk_time_expired,
742 msm_timer_sync_update,
743 &data);
744
745 if (ret)
746 gpt_clk_state->in_sync = 1;
747}
748
749/*
750 * Synchronize clock with GPT clock.
751 */
752static void msm_timer_sync_to_gpt(struct msm_clock *clock, int exit_sleep)
753{
754 struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT];
755 struct msm_clock_percpu_data *gpt_clk_state =
756 &__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT];
757 struct msm_clock_percpu_data *clock_state =
758 &__get_cpu_var(msm_clocks_percpu)[clock->index];
759 struct msm_timer_sync_data_t data;
760 uint32_t gpt_clk_val;
761 u64 gpt_period = (1ULL << 32) * HZ / GPT_HZ;
762 u64 now = get_jiffies_64();
763
764 BUG_ON(clock == gpt_clk);
765
766 if (clock_state->in_sync &&
767 (now - clock_state->last_sync_jiffies < (gpt_period >> 1)))
768 return;
769
770 gpt_clk_val = msm_read_timer_count(gpt_clk, LOCAL_TIMER)
771 + gpt_clk_state->sleep_offset + gpt_clk_state->non_sleep_offset;
772
773 if (exit_sleep && gpt_clk_val < clock_state->last_sync_gpt)
774 clock_state->non_sleep_offset -= clock->rollover_offset;
775
776 data.clock = clock;
777 data.timeout = 0;
778 data.exit_sleep = exit_sleep;
779
780 msm_timer_sync_update(&data, gpt_clk_val, GPT_HZ);
781
782 clock_state->in_sync = 1;
783 clock_state->last_sync_gpt = gpt_clk_val;
784 clock_state->last_sync_jiffies = now;
785}
786
787static void msm_timer_reactivate_alarm(struct msm_clock *clock)
788{
789 struct msm_clock_percpu_data *clock_state =
790 &__get_cpu_var(msm_clocks_percpu)[clock->index];
791 long alarm_delta = clock_state->alarm_vtime -
792 clock_state->sleep_offset -
793 msm_read_timer_count(clock, LOCAL_TIMER);
794 alarm_delta >>= clock->shift;
795 if (alarm_delta < (long)clock->write_delay + 4)
796 alarm_delta = clock->write_delay + 4;
797 while (msm_timer_set_next_event(alarm_delta, &clock->clockevent))
798 ;
799}
800
801int64_t msm_timer_enter_idle(void)
802{
803 struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT];
804 struct msm_clock *clock = __get_cpu_var(msm_active_clock);
805 struct msm_clock_percpu_data *clock_state =
806 &__get_cpu_var(msm_clocks_percpu)[clock->index];
807 uint32_t alarm;
808 uint32_t count;
809 int32_t delta;
810
811 BUG_ON(clock != &msm_clocks[MSM_CLOCK_GPT] &&
812 clock != &msm_clocks[MSM_CLOCK_DGT]);
813
814 msm_timer_sync_gpt_to_sclk(0);
815 if (clock != gpt_clk)
816 msm_timer_sync_to_gpt(clock, 0);
817
818 count = msm_read_timer_count(clock, LOCAL_TIMER);
819 if (clock_state->stopped++ == 0)
820 clock_state->stopped_tick = count + clock_state->sleep_offset;
821 alarm = clock_state->alarm;
822 delta = alarm - count;
823 if (delta <= -(int32_t)((clock->freq << clock->shift) >> 10)) {
824 /* timer should have triggered 1ms ago */
825 printk(KERN_ERR "msm_timer_enter_idle: timer late %d, "
826 "reprogram it\n", delta);
827 msm_timer_reactivate_alarm(clock);
828 }
829 if (delta <= 0)
830 return 0;
831 return clocksource_cyc2ns((alarm - count) >> clock->shift,
832 clock->clocksource.mult,
833 clock->clocksource.shift);
834}
835
836void msm_timer_exit_idle(int low_power)
837{
838 struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT];
839 struct msm_clock *clock = __get_cpu_var(msm_active_clock);
840 struct msm_clock_percpu_data *gpt_clk_state =
841 &__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT];
842 struct msm_clock_percpu_data *clock_state =
843 &__get_cpu_var(msm_clocks_percpu)[clock->index];
844 uint32_t enabled;
845
846 BUG_ON(clock != &msm_clocks[MSM_CLOCK_GPT] &&
847 clock != &msm_clocks[MSM_CLOCK_DGT]);
848
849 if (!low_power)
850 goto exit_idle_exit;
851
852 enabled = __raw_readl(gpt_clk->regbase + TIMER_ENABLE) &
853 TIMER_ENABLE_EN;
854 if (!enabled)
855 __raw_writel(TIMER_ENABLE_EN, gpt_clk->regbase + TIMER_ENABLE);
856
857#if defined(CONFIG_ARCH_MSM_SCORPION) || defined(CONFIG_ARCH_MSM_KRAIT)
858 gpt_clk_state->in_sync = 0;
859#else
860 gpt_clk_state->in_sync = gpt_clk_state->in_sync && enabled;
861#endif
862 /* Make sure timer is actually enabled before we sync it */
863 wmb();
864 msm_timer_sync_gpt_to_sclk(1);
865
866 if (clock == gpt_clk)
867 goto exit_idle_alarm;
868
869 enabled = __raw_readl(clock->regbase + TIMER_ENABLE) & TIMER_ENABLE_EN;
870 if (!enabled)
871 __raw_writel(TIMER_ENABLE_EN, clock->regbase + TIMER_ENABLE);
872
873#if defined(CONFIG_ARCH_MSM_SCORPION) || defined(CONFIG_ARCH_MSM_KRAIT)
874 clock_state->in_sync = 0;
875#else
876 clock_state->in_sync = clock_state->in_sync && enabled;
877#endif
878 /* Make sure timer is actually enabled before we sync it */
879 wmb();
880 msm_timer_sync_to_gpt(clock, 1);
881
882exit_idle_alarm:
883 msm_timer_reactivate_alarm(clock);
884
885exit_idle_exit:
886 clock_state->stopped--;
887}
888
889/*
890 * Callback function that initializes the timeout value.
891 */
892static void msm_timer_get_sclk_time_start(
893 struct msm_timer_sync_data_t *data)
894{
895 data->timeout = 200000;
896}
897
898/*
899 * Callback function that checks the timeout.
900 */
901static bool msm_timer_get_sclk_time_expired(
902 struct msm_timer_sync_data_t *data)
903{
904 udelay(10);
905 return --data->timeout <= 0;
906}
907
908/*
909 * Retrieve the cycle count from the sclk and convert it into
910 * nanoseconds.
911 *
912 * On exit, if period is not NULL, it contains the period of the
913 * sclk in nanoseconds, i.e. how long the cycle count wraps around.
914 *
915 * Return value:
916 * 0: the operation failed; period is not set either
917 * >0: time in nanoseconds
918 */
919int64_t msm_timer_get_sclk_time(int64_t *period)
920{
921 struct msm_timer_sync_data_t data;
922 uint32_t clock_value;
923 int64_t tmp;
924
925 memset(&data, 0, sizeof(data));
926 clock_value = msm_timer_do_sync_to_sclk(
927 msm_timer_get_sclk_time_start,
928 msm_timer_get_sclk_time_expired,
929 NULL,
930 &data);
931
932 if (!clock_value)
933 return 0;
934
935 if (period) {
936 tmp = 1LL << 32;
937 tmp = tmp * NSEC_PER_SEC / SCLK_HZ;
938 *period = tmp;
939 }
940
941 tmp = (int64_t)clock_value;
942 tmp = tmp * NSEC_PER_SEC / SCLK_HZ;
943 return tmp;
944}
945
946int __init msm_timer_init_time_sync(void (*timeout)(void))
947{
948#if defined(CONFIG_MSM_N_WAY_SMSM) && !defined(CONFIG_MSM_DIRECT_SCLK_ACCESS)
949 int ret = smsm_change_intr_mask(SMSM_TIME_MASTER_DEM, 0xFFFFFFFF, 0);
950
951 if (ret) {
952 printk(KERN_ERR "%s: failed to clear interrupt mask, %d\n",
953 __func__, ret);
954 return ret;
955 }
956
957 smsm_change_state(SMSM_APPS_DEM,
958 SLAVE_TIME_REQUEST | SLAVE_TIME_POLL, SLAVE_TIME_INIT);
959#endif
960
961 BUG_ON(timeout == NULL);
962 msm_timer_sync_timeout = timeout;
963
964 return 0;
965}
966
967#endif
968
969unsigned long long sched_clock(void)
970{
971 static cycle_t last_ticks;
972 static unsigned long long last_ns;
973 static DEFINE_SPINLOCK(msm_timer_sched_clock_lock);
974
975 struct msm_clock *clock;
976 struct clocksource *cs;
977 cycle_t ticks, delta;
978 unsigned long irq_flags;
979
980 clock = &msm_clocks[MSM_GLOBAL_TIMER];
981 cs = &clock->clocksource;
982
983 ticks = cs->read(cs);
984
985 spin_lock_irqsave(&msm_timer_sched_clock_lock, irq_flags);
986 delta = (ticks - last_ticks) & cs->mask;
987
988 if (delta < cs->mask/2) {
989 last_ticks += delta;
990 last_ns += clocksource_cyc2ns(delta, cs->mult, cs->shift);
991 }
992
993 ticks = last_ticks;
994 spin_unlock_irqrestore(&msm_timer_sched_clock_lock, irq_flags);
995
996 return last_ns;
997}
998
999#ifdef CONFIG_MSM_SMP
1000int read_current_timer(unsigned long *timer_val)
1001{
1002 struct msm_clock *dgt = &msm_clocks[MSM_CLOCK_DGT];
1003 *timer_val = msm_read_timer_count(dgt, GLOBAL_TIMER);
1004 return 0;
1005}
1006#endif
1007
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -08001008static void __init msm_timer_init(void)
1009{
1010 int i;
1011 int res;
David Brown8c27e6f2011-01-07 10:20:49 -08001012
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -07001013#if defined(CONFIG_ARCH_MSM8X60) || defined(CONFIG_ARCH_MSM8960) || \
1014 defined(CONFIG_ARCH_APQ8064)
1015 __raw_writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL);
Jeff Ohlstein672039f2010-10-05 15:23:57 -07001016#endif
1017
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -08001018 for (i = 0; i < ARRAY_SIZE(msm_clocks); i++) {
1019 struct msm_clock *clock = &msm_clocks[i];
1020 struct clock_event_device *ce = &clock->clockevent;
1021 struct clocksource *cs = &clock->clocksource;
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -07001022 __raw_writel(0, clock->regbase + TIMER_ENABLE);
1023 __raw_writel(1, clock->regbase + TIMER_CLEAR);
1024 __raw_writel(0, clock->regbase + TIMER_COUNT_VAL);
1025 __raw_writel(~0, clock->regbase + TIMER_MATCH_VAL);
David Brown8c27e6f2011-01-07 10:20:49 -08001026
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -07001027 if ((clock->freq << clock->shift) == GPT_HZ) {
1028 clock->rollover_offset = 0;
1029 } else {
1030 uint64_t temp;
David Brown8c27e6f2011-01-07 10:20:49 -08001031
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -07001032 temp = clock->freq << clock->shift;
1033 temp <<= 32;
1034 temp /= GPT_HZ;
1035
1036 clock->rollover_offset = (uint32_t) temp;
1037 }
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -08001038
1039 ce->mult = div_sc(clock->freq, NSEC_PER_SEC, ce->shift);
1040 /* allow at least 10 seconds to notice that the timer wrapped */
1041 ce->max_delta_ns =
1042 clockevent_delta2ns(0xf0000000 >> clock->shift, ce);
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -07001043 /* ticks gets rounded down by one */
1044 ce->min_delta_ns =
1045 clockevent_delta2ns(clock->write_delay + 4, ce);
Rusty Russell320ab2b2008-12-13 21:20:26 +10301046 ce->cpumask = cpumask_of(0);
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -08001047
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -07001048 cs->mult = clocksource_hz2mult(clock->freq, cs->shift);
1049 res = clocksource_register(cs);
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -08001050 if (res)
1051 printk(KERN_ERR "msm_timer_init: clocksource_register "
1052 "failed for %s\n", cs->name);
1053
1054 res = setup_irq(clock->irq.irq, &clock->irq);
1055 if (res)
1056 printk(KERN_ERR "msm_timer_init: setup_irq "
1057 "failed for %s\n", cs->name);
1058
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -07001059 irq_get_chip(clock->irq.irq)->irq_mask(irq_get_irq_data(
1060 clock->irq.irq));
1061
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -08001062 clockevents_register_device(ce);
1063 }
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -07001064#ifdef CONFIG_MSM_SMP
1065 __raw_writel(1, msm_clocks[MSM_CLOCK_DGT].regbase + TIMER_ENABLE);
1066 set_delay_fn(read_current_timer_delay_loop);
1067#endif
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -08001068}
1069
Jeff Ohlstein94790ec2010-12-02 12:05:12 -08001070#ifdef CONFIG_SMP
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -07001071
Santosh Shilimkaraf90f102011-02-23 18:53:15 +01001072int __cpuinit local_timer_setup(struct clock_event_device *evt)
Jeff Ohlstein94790ec2010-12-02 12:05:12 -08001073{
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -07001074 unsigned long flags;
1075 static bool first_boot = true;
Jeff Ohlstein94790ec2010-12-02 12:05:12 -08001076 struct msm_clock *clock = &msm_clocks[MSM_GLOBAL_TIMER];
1077
1078 /* Use existing clock_event for cpu 0 */
1079 if (!smp_processor_id())
David Brown893b66c2011-03-30 11:26:57 -07001080 return 0;
Jeff Ohlstein94790ec2010-12-02 12:05:12 -08001081
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -07001082 __raw_writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL);
Jeff Ohlstein94790ec2010-12-02 12:05:12 -08001083
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -07001084 if (first_boot) {
1085 __raw_writel(0, clock->regbase + TIMER_ENABLE);
1086 __raw_writel(0, clock->regbase + TIMER_CLEAR);
1087 __raw_writel(~0, clock->regbase + TIMER_MATCH_VAL);
1088 first_boot = false;
Jeff Ohlstein94790ec2010-12-02 12:05:12 -08001089 }
1090 evt->irq = clock->irq.irq;
1091 evt->name = "local_timer";
1092 evt->features = CLOCK_EVT_FEAT_ONESHOT;
1093 evt->rating = clock->clockevent.rating;
1094 evt->set_mode = msm_timer_set_mode;
1095 evt->set_next_event = msm_timer_set_next_event;
1096 evt->shift = clock->clockevent.shift;
1097 evt->mult = div_sc(clock->freq, NSEC_PER_SEC, evt->shift);
1098 evt->max_delta_ns =
1099 clockevent_delta2ns(0xf0000000 >> clock->shift, evt);
1100 evt->min_delta_ns = clockevent_delta2ns(4, evt);
1101
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -07001102 __get_cpu_var(local_clock_event) = evt;
Jeff Ohlstein94790ec2010-12-02 12:05:12 -08001103
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -07001104 local_irq_save(flags);
1105 gic_clear_spi_pending(clock->irq.irq);
1106 local_irq_restore(flags);
Jeff Ohlstein94790ec2010-12-02 12:05:12 -08001107 gic_enable_ppi(clock->irq.irq);
1108
1109 clockevents_register_device(evt);
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -07001110
Santosh Shilimkaraf90f102011-02-23 18:53:15 +01001111 return 0;
Jeff Ohlstein94790ec2010-12-02 12:05:12 -08001112}
1113
Bryan Huntsman3f2bc4d2011-08-16 17:27:22 -07001114int local_timer_ack(void)
Jeff Ohlstein94790ec2010-12-02 12:05:12 -08001115{
1116 return 1;
1117}
Jeff Ohlstein94790ec2010-12-02 12:05:12 -08001118#endif
1119
Arve Hjønnevåg3e4ea372007-11-26 04:11:58 -08001120struct sys_timer msm_timer = {
1121 .init = msm_timer_init
1122};