Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 1995, Russell King. |
| 3 | * |
| 4 | * Based on the arm32 version by RMK (and others). Their copyrights apply to |
| 5 | * Those parts. |
| 6 | * Modified for arm26 by Ian Molton on 25/11/04 |
| 7 | * |
| 8 | * bit 0 is the LSB of an "unsigned long" quantity. |
| 9 | * |
| 10 | * Please note that the code in this file should never be included |
| 11 | * from user space. Many of these are not implemented in assembler |
| 12 | * since they would be too costly. Also, they require privileged |
| 13 | * instructions (which are not available from user mode) to ensure |
| 14 | * that they are atomic. |
| 15 | */ |
| 16 | |
| 17 | #ifndef __ASM_ARM_BITOPS_H |
| 18 | #define __ASM_ARM_BITOPS_H |
| 19 | |
| 20 | #ifdef __KERNEL__ |
| 21 | |
| 22 | #include <linux/compiler.h> |
| 23 | #include <asm/system.h> |
| 24 | |
| 25 | #define smp_mb__before_clear_bit() do { } while (0) |
| 26 | #define smp_mb__after_clear_bit() do { } while (0) |
| 27 | |
| 28 | /* |
| 29 | * These functions are the basis of our bit ops. |
| 30 | * |
| 31 | * First, the atomic bitops. These use native endian. |
| 32 | */ |
| 33 | static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p) |
| 34 | { |
| 35 | unsigned long flags; |
| 36 | unsigned long mask = 1UL << (bit & 31); |
| 37 | |
| 38 | p += bit >> 5; |
| 39 | |
| 40 | local_irq_save(flags); |
| 41 | *p |= mask; |
| 42 | local_irq_restore(flags); |
| 43 | } |
| 44 | |
| 45 | static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p) |
| 46 | { |
| 47 | unsigned long flags; |
| 48 | unsigned long mask = 1UL << (bit & 31); |
| 49 | |
| 50 | p += bit >> 5; |
| 51 | |
| 52 | local_irq_save(flags); |
| 53 | *p &= ~mask; |
| 54 | local_irq_restore(flags); |
| 55 | } |
| 56 | |
| 57 | static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p) |
| 58 | { |
| 59 | unsigned long flags; |
| 60 | unsigned long mask = 1UL << (bit & 31); |
| 61 | |
| 62 | p += bit >> 5; |
| 63 | |
| 64 | local_irq_save(flags); |
| 65 | *p ^= mask; |
| 66 | local_irq_restore(flags); |
| 67 | } |
| 68 | |
| 69 | static inline int |
| 70 | ____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p) |
| 71 | { |
| 72 | unsigned long flags; |
| 73 | unsigned int res; |
| 74 | unsigned long mask = 1UL << (bit & 31); |
| 75 | |
| 76 | p += bit >> 5; |
| 77 | |
| 78 | local_irq_save(flags); |
| 79 | res = *p; |
| 80 | *p = res | mask; |
| 81 | local_irq_restore(flags); |
| 82 | |
| 83 | return res & mask; |
| 84 | } |
| 85 | |
| 86 | static inline int |
| 87 | ____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p) |
| 88 | { |
| 89 | unsigned long flags; |
| 90 | unsigned int res; |
| 91 | unsigned long mask = 1UL << (bit & 31); |
| 92 | |
| 93 | p += bit >> 5; |
| 94 | |
| 95 | local_irq_save(flags); |
| 96 | res = *p; |
| 97 | *p = res & ~mask; |
| 98 | local_irq_restore(flags); |
| 99 | |
| 100 | return res & mask; |
| 101 | } |
| 102 | |
| 103 | static inline int |
| 104 | ____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p) |
| 105 | { |
| 106 | unsigned long flags; |
| 107 | unsigned int res; |
| 108 | unsigned long mask = 1UL << (bit & 31); |
| 109 | |
| 110 | p += bit >> 5; |
| 111 | |
| 112 | local_irq_save(flags); |
| 113 | res = *p; |
| 114 | *p = res ^ mask; |
| 115 | local_irq_restore(flags); |
| 116 | |
| 117 | return res & mask; |
| 118 | } |
| 119 | |
| 120 | /* |
| 121 | * Now the non-atomic variants. We let the compiler handle all |
| 122 | * optimisations for these. These are all _native_ endian. |
| 123 | */ |
| 124 | static inline void __set_bit(int nr, volatile unsigned long *p) |
| 125 | { |
| 126 | p[nr >> 5] |= (1UL << (nr & 31)); |
| 127 | } |
| 128 | |
| 129 | static inline void __clear_bit(int nr, volatile unsigned long *p) |
| 130 | { |
| 131 | p[nr >> 5] &= ~(1UL << (nr & 31)); |
| 132 | } |
| 133 | |
| 134 | static inline void __change_bit(int nr, volatile unsigned long *p) |
| 135 | { |
| 136 | p[nr >> 5] ^= (1UL << (nr & 31)); |
| 137 | } |
| 138 | |
| 139 | static inline int __test_and_set_bit(int nr, volatile unsigned long *p) |
| 140 | { |
| 141 | unsigned long oldval, mask = 1UL << (nr & 31); |
| 142 | |
| 143 | p += nr >> 5; |
| 144 | |
| 145 | oldval = *p; |
| 146 | *p = oldval | mask; |
| 147 | return oldval & mask; |
| 148 | } |
| 149 | |
| 150 | static inline int __test_and_clear_bit(int nr, volatile unsigned long *p) |
| 151 | { |
| 152 | unsigned long oldval, mask = 1UL << (nr & 31); |
| 153 | |
| 154 | p += nr >> 5; |
| 155 | |
| 156 | oldval = *p; |
| 157 | *p = oldval & ~mask; |
| 158 | return oldval & mask; |
| 159 | } |
| 160 | |
| 161 | static inline int __test_and_change_bit(int nr, volatile unsigned long *p) |
| 162 | { |
| 163 | unsigned long oldval, mask = 1UL << (nr & 31); |
| 164 | |
| 165 | p += nr >> 5; |
| 166 | |
| 167 | oldval = *p; |
| 168 | *p = oldval ^ mask; |
| 169 | return oldval & mask; |
| 170 | } |
| 171 | |
| 172 | /* |
| 173 | * This routine doesn't need to be atomic. |
| 174 | */ |
| 175 | static inline int __test_bit(int nr, const volatile unsigned long * p) |
| 176 | { |
| 177 | return (p[nr >> 5] >> (nr & 31)) & 1UL; |
| 178 | } |
| 179 | |
| 180 | /* |
| 181 | * Little endian assembly bitops. nr = 0 -> byte 0 bit 0. |
| 182 | */ |
| 183 | extern void _set_bit_le(int nr, volatile unsigned long * p); |
| 184 | extern void _clear_bit_le(int nr, volatile unsigned long * p); |
| 185 | extern void _change_bit_le(int nr, volatile unsigned long * p); |
| 186 | extern int _test_and_set_bit_le(int nr, volatile unsigned long * p); |
| 187 | extern int _test_and_clear_bit_le(int nr, volatile unsigned long * p); |
| 188 | extern int _test_and_change_bit_le(int nr, volatile unsigned long * p); |
| 189 | extern int _find_first_zero_bit_le(void * p, unsigned size); |
| 190 | extern int _find_next_zero_bit_le(void * p, int size, int offset); |
| 191 | extern int _find_first_bit_le(const unsigned long *p, unsigned size); |
| 192 | extern int _find_next_bit_le(const unsigned long *p, int size, int offset); |
| 193 | |
| 194 | /* |
| 195 | * The __* form of bitops are non-atomic and may be reordered. |
| 196 | */ |
| 197 | #define ATOMIC_BITOP_LE(name,nr,p) \ |
| 198 | (__builtin_constant_p(nr) ? \ |
| 199 | ____atomic_##name(nr, p) : \ |
| 200 | _##name##_le(nr,p)) |
| 201 | |
| 202 | #define NONATOMIC_BITOP(name,nr,p) \ |
| 203 | (____nonatomic_##name(nr, p)) |
| 204 | |
| 205 | /* |
| 206 | * These are the little endian, atomic definitions. |
| 207 | */ |
| 208 | #define set_bit(nr,p) ATOMIC_BITOP_LE(set_bit,nr,p) |
| 209 | #define clear_bit(nr,p) ATOMIC_BITOP_LE(clear_bit,nr,p) |
| 210 | #define change_bit(nr,p) ATOMIC_BITOP_LE(change_bit,nr,p) |
| 211 | #define test_and_set_bit(nr,p) ATOMIC_BITOP_LE(test_and_set_bit,nr,p) |
| 212 | #define test_and_clear_bit(nr,p) ATOMIC_BITOP_LE(test_and_clear_bit,nr,p) |
| 213 | #define test_and_change_bit(nr,p) ATOMIC_BITOP_LE(test_and_change_bit,nr,p) |
| 214 | #define test_bit(nr,p) __test_bit(nr,p) |
| 215 | #define find_first_zero_bit(p,sz) _find_first_zero_bit_le(p,sz) |
| 216 | #define find_next_zero_bit(p,sz,off) _find_next_zero_bit_le(p,sz,off) |
| 217 | #define find_first_bit(p,sz) _find_first_bit_le(p,sz) |
| 218 | #define find_next_bit(p,sz,off) _find_next_bit_le(p,sz,off) |
| 219 | |
| 220 | #define WORD_BITOFF_TO_LE(x) ((x)) |
| 221 | |
| 222 | /* |
| 223 | * ffz = Find First Zero in word. Undefined if no zero exists, |
| 224 | * so code should check against ~0UL first.. |
| 225 | */ |
| 226 | static inline unsigned long ffz(unsigned long word) |
| 227 | { |
| 228 | int k; |
| 229 | |
| 230 | word = ~word; |
| 231 | k = 31; |
| 232 | if (word & 0x0000ffff) { k -= 16; word <<= 16; } |
| 233 | if (word & 0x00ff0000) { k -= 8; word <<= 8; } |
| 234 | if (word & 0x0f000000) { k -= 4; word <<= 4; } |
| 235 | if (word & 0x30000000) { k -= 2; word <<= 2; } |
| 236 | if (word & 0x40000000) { k -= 1; } |
| 237 | return k; |
| 238 | } |
| 239 | |
| 240 | /* |
| 241 | * ffz = Find First Zero in word. Undefined if no zero exists, |
| 242 | * so code should check against ~0UL first.. |
| 243 | */ |
| 244 | static inline unsigned long __ffs(unsigned long word) |
| 245 | { |
| 246 | int k; |
| 247 | |
| 248 | k = 31; |
| 249 | if (word & 0x0000ffff) { k -= 16; word <<= 16; } |
| 250 | if (word & 0x00ff0000) { k -= 8; word <<= 8; } |
| 251 | if (word & 0x0f000000) { k -= 4; word <<= 4; } |
| 252 | if (word & 0x30000000) { k -= 2; word <<= 2; } |
| 253 | if (word & 0x40000000) { k -= 1; } |
| 254 | return k; |
| 255 | } |
| 256 | |
| 257 | /* |
| 258 | * fls: find last bit set. |
| 259 | */ |
| 260 | |
| 261 | #define fls(x) generic_fls(x) |
| 262 | |
| 263 | /* |
| 264 | * ffs: find first bit set. This is defined the same way as |
| 265 | * the libc and compiler builtin ffs routines, therefore |
| 266 | * differs in spirit from the above ffz (man ffs). |
| 267 | */ |
| 268 | |
| 269 | #define ffs(x) generic_ffs(x) |
| 270 | |
| 271 | /* |
| 272 | * Find first bit set in a 168-bit bitmap, where the first |
| 273 | * 128 bits are unlikely to be set. |
| 274 | */ |
| 275 | static inline int sched_find_first_bit(unsigned long *b) |
| 276 | { |
| 277 | unsigned long v; |
| 278 | unsigned int off; |
| 279 | |
| 280 | for (off = 0; v = b[off], off < 4; off++) { |
| 281 | if (unlikely(v)) |
| 282 | break; |
| 283 | } |
| 284 | return __ffs(v) + off * 32; |
| 285 | } |
| 286 | |
| 287 | /* |
| 288 | * hweightN: returns the hamming weight (i.e. the number |
| 289 | * of bits set) of a N-bit word |
| 290 | */ |
| 291 | |
| 292 | #define hweight32(x) generic_hweight32(x) |
| 293 | #define hweight16(x) generic_hweight16(x) |
| 294 | #define hweight8(x) generic_hweight8(x) |
| 295 | |
| 296 | /* |
| 297 | * Ext2 is defined to use little-endian byte ordering. |
| 298 | * These do not need to be atomic. |
| 299 | */ |
| 300 | #define ext2_set_bit(nr,p) \ |
| 301 | __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) |
| 302 | #define ext2_set_bit_atomic(lock,nr,p) \ |
| 303 | test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) |
| 304 | #define ext2_clear_bit(nr,p) \ |
| 305 | __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) |
| 306 | #define ext2_clear_bit_atomic(lock,nr,p) \ |
| 307 | test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) |
| 308 | #define ext2_test_bit(nr,p) \ |
| 309 | __test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) |
| 310 | #define ext2_find_first_zero_bit(p,sz) \ |
| 311 | _find_first_zero_bit_le(p,sz) |
| 312 | #define ext2_find_next_zero_bit(p,sz,off) \ |
| 313 | _find_next_zero_bit_le(p,sz,off) |
| 314 | |
| 315 | /* |
| 316 | * Minix is defined to use little-endian byte ordering. |
| 317 | * These do not need to be atomic. |
| 318 | */ |
| 319 | #define minix_set_bit(nr,p) \ |
| 320 | __set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) |
| 321 | #define minix_test_bit(nr,p) \ |
| 322 | __test_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) |
| 323 | #define minix_test_and_set_bit(nr,p) \ |
| 324 | __test_and_set_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) |
| 325 | #define minix_test_and_clear_bit(nr,p) \ |
| 326 | __test_and_clear_bit(WORD_BITOFF_TO_LE(nr), (unsigned long *)(p)) |
| 327 | #define minix_find_first_zero_bit(p,sz) \ |
| 328 | _find_first_zero_bit_le(p,sz) |
| 329 | |
| 330 | #endif /* __KERNEL__ */ |
| 331 | |
| 332 | #endif /* _ARM_BITOPS_H */ |