blob: 7d4ccc4b976e2150fb4ab909902c68cf9ea701af [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef _ASM_IA64_ELF_H
2#define _ASM_IA64_ELF_H
3
4/*
5 * ELF-specific definitions.
6 *
7 * Copyright (C) 1998-1999, 2002-2004 Hewlett-Packard Co
8 * David Mosberger-Tang <davidm@hpl.hp.com>
9 */
10
11#include <linux/config.h>
12
13#include <asm/fpu.h>
14#include <asm/page.h>
15
16/*
17 * This is used to ensure we don't load something for the wrong architecture.
18 */
19#define elf_check_arch(x) ((x)->e_machine == EM_IA_64)
20
21/*
22 * These are used to set parameters in the core dumps.
23 */
24#define ELF_CLASS ELFCLASS64
25#define ELF_DATA ELFDATA2LSB
26#define ELF_ARCH EM_IA_64
27
28#define USE_ELF_CORE_DUMP
29
30/* Least-significant four bits of ELF header's e_flags are OS-specific. The bits are
31 interpreted as follows by Linux: */
32#define EF_IA_64_LINUX_EXECUTABLE_STACK 0x1 /* is stack (& heap) executable by default? */
33
34#define ELF_EXEC_PAGESIZE PAGE_SIZE
35
36/*
37 * This is the location that an ET_DYN program is loaded if exec'ed.
38 * Typical use of this is to invoke "./ld.so someprog" to test out a
39 * new version of the loader. We need to make sure that it is out of
40 * the way of the program that it will "exec", and that there is
41 * sufficient room for the brk.
42 */
43#define ELF_ET_DYN_BASE (TASK_UNMAPPED_BASE + 0x800000000UL)
44
45#define PT_IA_64_UNWIND 0x70000001
46
47/* IA-64 relocations: */
48#define R_IA64_NONE 0x00 /* none */
49#define R_IA64_IMM14 0x21 /* symbol + addend, add imm14 */
50#define R_IA64_IMM22 0x22 /* symbol + addend, add imm22 */
51#define R_IA64_IMM64 0x23 /* symbol + addend, mov imm64 */
52#define R_IA64_DIR32MSB 0x24 /* symbol + addend, data4 MSB */
53#define R_IA64_DIR32LSB 0x25 /* symbol + addend, data4 LSB */
54#define R_IA64_DIR64MSB 0x26 /* symbol + addend, data8 MSB */
55#define R_IA64_DIR64LSB 0x27 /* symbol + addend, data8 LSB */
56#define R_IA64_GPREL22 0x2a /* @gprel(sym+add), add imm22 */
57#define R_IA64_GPREL64I 0x2b /* @gprel(sym+add), mov imm64 */
58#define R_IA64_GPREL32MSB 0x2c /* @gprel(sym+add), data4 MSB */
59#define R_IA64_GPREL32LSB 0x2d /* @gprel(sym+add), data4 LSB */
60#define R_IA64_GPREL64MSB 0x2e /* @gprel(sym+add), data8 MSB */
61#define R_IA64_GPREL64LSB 0x2f /* @gprel(sym+add), data8 LSB */
62#define R_IA64_LTOFF22 0x32 /* @ltoff(sym+add), add imm22 */
63#define R_IA64_LTOFF64I 0x33 /* @ltoff(sym+add), mov imm64 */
64#define R_IA64_PLTOFF22 0x3a /* @pltoff(sym+add), add imm22 */
65#define R_IA64_PLTOFF64I 0x3b /* @pltoff(sym+add), mov imm64 */
66#define R_IA64_PLTOFF64MSB 0x3e /* @pltoff(sym+add), data8 MSB */
67#define R_IA64_PLTOFF64LSB 0x3f /* @pltoff(sym+add), data8 LSB */
68#define R_IA64_FPTR64I 0x43 /* @fptr(sym+add), mov imm64 */
69#define R_IA64_FPTR32MSB 0x44 /* @fptr(sym+add), data4 MSB */
70#define R_IA64_FPTR32LSB 0x45 /* @fptr(sym+add), data4 LSB */
71#define R_IA64_FPTR64MSB 0x46 /* @fptr(sym+add), data8 MSB */
72#define R_IA64_FPTR64LSB 0x47 /* @fptr(sym+add), data8 LSB */
73#define R_IA64_PCREL60B 0x48 /* @pcrel(sym+add), brl */
74#define R_IA64_PCREL21B 0x49 /* @pcrel(sym+add), ptb, call */
75#define R_IA64_PCREL21M 0x4a /* @pcrel(sym+add), chk.s */
76#define R_IA64_PCREL21F 0x4b /* @pcrel(sym+add), fchkf */
77#define R_IA64_PCREL32MSB 0x4c /* @pcrel(sym+add), data4 MSB */
78#define R_IA64_PCREL32LSB 0x4d /* @pcrel(sym+add), data4 LSB */
79#define R_IA64_PCREL64MSB 0x4e /* @pcrel(sym+add), data8 MSB */
80#define R_IA64_PCREL64LSB 0x4f /* @pcrel(sym+add), data8 LSB */
81#define R_IA64_LTOFF_FPTR22 0x52 /* @ltoff(@fptr(s+a)), imm22 */
82#define R_IA64_LTOFF_FPTR64I 0x53 /* @ltoff(@fptr(s+a)), imm64 */
83#define R_IA64_LTOFF_FPTR32MSB 0x54 /* @ltoff(@fptr(s+a)), 4 MSB */
84#define R_IA64_LTOFF_FPTR32LSB 0x55 /* @ltoff(@fptr(s+a)), 4 LSB */
85#define R_IA64_LTOFF_FPTR64MSB 0x56 /* @ltoff(@fptr(s+a)), 8 MSB */
86#define R_IA64_LTOFF_FPTR64LSB 0x57 /* @ltoff(@fptr(s+a)), 8 LSB */
87#define R_IA64_SEGREL32MSB 0x5c /* @segrel(sym+add), data4 MSB */
88#define R_IA64_SEGREL32LSB 0x5d /* @segrel(sym+add), data4 LSB */
89#define R_IA64_SEGREL64MSB 0x5e /* @segrel(sym+add), data8 MSB */
90#define R_IA64_SEGREL64LSB 0x5f /* @segrel(sym+add), data8 LSB */
91#define R_IA64_SECREL32MSB 0x64 /* @secrel(sym+add), data4 MSB */
92#define R_IA64_SECREL32LSB 0x65 /* @secrel(sym+add), data4 LSB */
93#define R_IA64_SECREL64MSB 0x66 /* @secrel(sym+add), data8 MSB */
94#define R_IA64_SECREL64LSB 0x67 /* @secrel(sym+add), data8 LSB */
95#define R_IA64_REL32MSB 0x6c /* data 4 + REL */
96#define R_IA64_REL32LSB 0x6d /* data 4 + REL */
97#define R_IA64_REL64MSB 0x6e /* data 8 + REL */
98#define R_IA64_REL64LSB 0x6f /* data 8 + REL */
99#define R_IA64_LTV32MSB 0x74 /* symbol + addend, data4 MSB */
100#define R_IA64_LTV32LSB 0x75 /* symbol + addend, data4 LSB */
101#define R_IA64_LTV64MSB 0x76 /* symbol + addend, data8 MSB */
102#define R_IA64_LTV64LSB 0x77 /* symbol + addend, data8 LSB */
103#define R_IA64_PCREL21BI 0x79 /* @pcrel(sym+add), ptb, call */
104#define R_IA64_PCREL22 0x7a /* @pcrel(sym+add), imm22 */
105#define R_IA64_PCREL64I 0x7b /* @pcrel(sym+add), imm64 */
106#define R_IA64_IPLTMSB 0x80 /* dynamic reloc, imported PLT, MSB */
107#define R_IA64_IPLTLSB 0x81 /* dynamic reloc, imported PLT, LSB */
108#define R_IA64_COPY 0x84 /* dynamic reloc, data copy */
109#define R_IA64_SUB 0x85 /* -symbol + addend, add imm22 */
110#define R_IA64_LTOFF22X 0x86 /* LTOFF22, relaxable. */
111#define R_IA64_LDXMOV 0x87 /* Use of LTOFF22X. */
112#define R_IA64_TPREL14 0x91 /* @tprel(sym+add), add imm14 */
113#define R_IA64_TPREL22 0x92 /* @tprel(sym+add), add imm22 */
114#define R_IA64_TPREL64I 0x93 /* @tprel(sym+add), add imm64 */
115#define R_IA64_TPREL64MSB 0x96 /* @tprel(sym+add), data8 MSB */
116#define R_IA64_TPREL64LSB 0x97 /* @tprel(sym+add), data8 LSB */
117#define R_IA64_LTOFF_TPREL22 0x9a /* @ltoff(@tprel(s+a)), add imm22 */
118#define R_IA64_DTPMOD64MSB 0xa6 /* @dtpmod(sym+add), data8 MSB */
119#define R_IA64_DTPMOD64LSB 0xa7 /* @dtpmod(sym+add), data8 LSB */
120#define R_IA64_LTOFF_DTPMOD22 0xaa /* @ltoff(@dtpmod(s+a)), imm22 */
121#define R_IA64_DTPREL14 0xb1 /* @dtprel(sym+add), imm14 */
122#define R_IA64_DTPREL22 0xb2 /* @dtprel(sym+add), imm22 */
123#define R_IA64_DTPREL64I 0xb3 /* @dtprel(sym+add), imm64 */
124#define R_IA64_DTPREL32MSB 0xb4 /* @dtprel(sym+add), data4 MSB */
125#define R_IA64_DTPREL32LSB 0xb5 /* @dtprel(sym+add), data4 LSB */
126#define R_IA64_DTPREL64MSB 0xb6 /* @dtprel(sym+add), data8 MSB */
127#define R_IA64_DTPREL64LSB 0xb7 /* @dtprel(sym+add), data8 LSB */
128#define R_IA64_LTOFF_DTPREL22 0xba /* @ltoff(@dtprel(s+a)), imm22 */
129
130/* IA-64 specific section flags: */
131#define SHF_IA_64_SHORT 0x10000000 /* section near gp */
132
133/*
134 * We use (abuse?) this macro to insert the (empty) vm_area that is
135 * used to map the register backing store. I don't see any better
136 * place to do this, but we should discuss this with Linus once we can
137 * talk to him...
138 */
139extern void ia64_init_addr_space (void);
140#define ELF_PLAT_INIT(_r, load_addr) ia64_init_addr_space()
141
142/* ELF register definitions. This is needed for core dump support. */
143
144/*
145 * elf_gregset_t contains the application-level state in the following order:
146 * r0-r31
147 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
148 * predicate registers (p0-p63)
149 * b0-b7
150 * ip cfm psr
151 * ar.rsc ar.bsp ar.bspstore ar.rnat
152 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
153 */
154#define ELF_NGREG 128 /* we really need just 72 but let's leave some headroom... */
155#define ELF_NFPREG 128 /* f0 and f1 could be omitted, but so what... */
156
157typedef unsigned long elf_fpxregset_t;
158
159typedef unsigned long elf_greg_t;
160typedef elf_greg_t elf_gregset_t[ELF_NGREG];
161
162typedef struct ia64_fpreg elf_fpreg_t;
163typedef elf_fpreg_t elf_fpregset_t[ELF_NFPREG];
164
165
166
167struct pt_regs; /* forward declaration... */
168extern void ia64_elf_core_copy_regs (struct pt_regs *src, elf_gregset_t dst);
169#define ELF_CORE_COPY_REGS(_dest,_regs) ia64_elf_core_copy_regs(_regs, _dest);
170
171/* This macro yields a bitmask that programs can use to figure out
172 what instruction set this CPU supports. */
173#define ELF_HWCAP 0
174
175/* This macro yields a string that ld.so will use to load
176 implementation specific libraries for optimization. Not terribly
177 relevant until we have real hardware to play with... */
178#define ELF_PLATFORM NULL
179
180/*
181 * Architecture-neutral AT_ values are in the range 0-17. Leave some room for more of
182 * them, start the architecture-specific ones at 32.
183 */
184#define AT_SYSINFO 32
185#define AT_SYSINFO_EHDR 33
186
187#ifdef __KERNEL__
188#define SET_PERSONALITY(ex, ibcs2) set_personality(PER_LINUX)
189#define elf_read_implies_exec(ex, executable_stack) \
190 ((executable_stack!=EXSTACK_DISABLE_X) && ((ex).e_flags & EF_IA_64_LINUX_EXECUTABLE_STACK) != 0)
191
192struct task_struct;
193
194extern int dump_task_regs(struct task_struct *, elf_gregset_t *);
195extern int dump_task_fpu (struct task_struct *, elf_fpregset_t *);
196
197#define ELF_CORE_COPY_TASK_REGS(tsk, elf_gregs) dump_task_regs(tsk, elf_gregs)
198#define ELF_CORE_COPY_FPREGS(tsk, elf_fpregs) dump_task_fpu(tsk, elf_fpregs)
199
200#define GATE_EHDR ((const struct elfhdr *) GATE_ADDR)
201
202#define ARCH_DLINFO \
203do { \
204 extern char __kernel_syscall_via_epc[]; \
205 NEW_AUX_ENT(AT_SYSINFO, (unsigned long) __kernel_syscall_via_epc); \
206 NEW_AUX_ENT(AT_SYSINFO_EHDR, (unsigned long) GATE_EHDR); \
207} while (0)
208
209
210/*
211 * These macros parameterize elf_core_dump in fs/binfmt_elf.c to write out
212 * extra segments containing the gate DSO contents. Dumping its
213 * contents makes post-mortem fully interpretable later without matching up
214 * the same kernel and hardware config to see what PC values meant.
215 * Dumping its extra ELF program headers includes all the other information
216 * a debugger needs to easily find how the gate DSO was being used.
217 */
218#define ELF_CORE_EXTRA_PHDRS (GATE_EHDR->e_phnum)
219#define ELF_CORE_WRITE_EXTRA_PHDRS \
220do { \
221 const struct elf_phdr *const gate_phdrs = \
222 (const struct elf_phdr *) (GATE_ADDR + GATE_EHDR->e_phoff); \
223 int i; \
224 Elf64_Off ofs = 0; \
225 for (i = 0; i < GATE_EHDR->e_phnum; ++i) { \
226 struct elf_phdr phdr = gate_phdrs[i]; \
227 if (phdr.p_type == PT_LOAD) { \
228 phdr.p_memsz = PAGE_ALIGN(phdr.p_memsz); \
229 phdr.p_filesz = phdr.p_memsz; \
230 if (ofs == 0) { \
231 ofs = phdr.p_offset = offset; \
232 offset += phdr.p_filesz; \
233 } \
234 else \
235 phdr.p_offset = ofs; \
236 } \
237 else \
238 phdr.p_offset += ofs; \
239 phdr.p_paddr = 0; /* match other core phdrs */ \
240 DUMP_WRITE(&phdr, sizeof(phdr)); \
241 } \
242} while (0)
243#define ELF_CORE_WRITE_EXTRA_DATA \
244do { \
245 const struct elf_phdr *const gate_phdrs = \
246 (const struct elf_phdr *) (GATE_ADDR + GATE_EHDR->e_phoff); \
247 int i; \
248 for (i = 0; i < GATE_EHDR->e_phnum; ++i) { \
249 if (gate_phdrs[i].p_type == PT_LOAD) { \
250 DUMP_WRITE((void *) gate_phdrs[i].p_vaddr, \
251 PAGE_ALIGN(gate_phdrs[i].p_memsz)); \
252 break; \
253 } \
254 } \
255} while (0)
256
257#endif /* __KERNEL__ */
258
259#endif /* _ASM_IA64_ELF_H */