Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | #ifndef __ASM_SH64_BITOPS_H |
| 2 | #define __ASM_SH64_BITOPS_H |
| 3 | |
| 4 | /* |
| 5 | * This file is subject to the terms and conditions of the GNU General Public |
| 6 | * License. See the file "COPYING" in the main directory of this archive |
| 7 | * for more details. |
| 8 | * |
| 9 | * include/asm-sh64/bitops.h |
| 10 | * |
| 11 | * Copyright (C) 2000, 2001 Paolo Alberelli |
| 12 | * Copyright (C) 2003 Paul Mundt |
| 13 | */ |
| 14 | |
| 15 | #ifdef __KERNEL__ |
| 16 | #include <linux/compiler.h> |
| 17 | #include <asm/system.h> |
| 18 | /* For __swab32 */ |
| 19 | #include <asm/byteorder.h> |
| 20 | |
| 21 | static __inline__ void set_bit(int nr, volatile void * addr) |
| 22 | { |
| 23 | int mask; |
| 24 | volatile unsigned int *a = addr; |
| 25 | unsigned long flags; |
| 26 | |
| 27 | a += nr >> 5; |
| 28 | mask = 1 << (nr & 0x1f); |
| 29 | local_irq_save(flags); |
| 30 | *a |= mask; |
| 31 | local_irq_restore(flags); |
| 32 | } |
| 33 | |
| 34 | static inline void __set_bit(int nr, void *addr) |
| 35 | { |
| 36 | int mask; |
| 37 | unsigned int *a = addr; |
| 38 | |
| 39 | a += nr >> 5; |
| 40 | mask = 1 << (nr & 0x1f); |
| 41 | *a |= mask; |
| 42 | } |
| 43 | |
| 44 | /* |
| 45 | * clear_bit() doesn't provide any barrier for the compiler. |
| 46 | */ |
| 47 | #define smp_mb__before_clear_bit() barrier() |
| 48 | #define smp_mb__after_clear_bit() barrier() |
| 49 | static inline void clear_bit(int nr, volatile unsigned long *a) |
| 50 | { |
| 51 | int mask; |
| 52 | unsigned long flags; |
| 53 | |
| 54 | a += nr >> 5; |
| 55 | mask = 1 << (nr & 0x1f); |
| 56 | local_irq_save(flags); |
| 57 | *a &= ~mask; |
| 58 | local_irq_restore(flags); |
| 59 | } |
| 60 | |
| 61 | static inline void __clear_bit(int nr, volatile unsigned long *a) |
| 62 | { |
| 63 | int mask; |
| 64 | |
| 65 | a += nr >> 5; |
| 66 | mask = 1 << (nr & 0x1f); |
| 67 | *a &= ~mask; |
| 68 | } |
| 69 | |
| 70 | static __inline__ void change_bit(int nr, volatile void * addr) |
| 71 | { |
| 72 | int mask; |
| 73 | volatile unsigned int *a = addr; |
| 74 | unsigned long flags; |
| 75 | |
| 76 | a += nr >> 5; |
| 77 | mask = 1 << (nr & 0x1f); |
| 78 | local_irq_save(flags); |
| 79 | *a ^= mask; |
| 80 | local_irq_restore(flags); |
| 81 | } |
| 82 | |
| 83 | static __inline__ void __change_bit(int nr, volatile void * addr) |
| 84 | { |
| 85 | int mask; |
| 86 | volatile unsigned int *a = addr; |
| 87 | |
| 88 | a += nr >> 5; |
| 89 | mask = 1 << (nr & 0x1f); |
| 90 | *a ^= mask; |
| 91 | } |
| 92 | |
| 93 | static __inline__ int test_and_set_bit(int nr, volatile void * addr) |
| 94 | { |
| 95 | int mask, retval; |
| 96 | volatile unsigned int *a = addr; |
| 97 | unsigned long flags; |
| 98 | |
| 99 | a += nr >> 5; |
| 100 | mask = 1 << (nr & 0x1f); |
| 101 | local_irq_save(flags); |
| 102 | retval = (mask & *a) != 0; |
| 103 | *a |= mask; |
| 104 | local_irq_restore(flags); |
| 105 | |
| 106 | return retval; |
| 107 | } |
| 108 | |
| 109 | static __inline__ int __test_and_set_bit(int nr, volatile void * addr) |
| 110 | { |
| 111 | int mask, retval; |
| 112 | volatile unsigned int *a = addr; |
| 113 | |
| 114 | a += nr >> 5; |
| 115 | mask = 1 << (nr & 0x1f); |
| 116 | retval = (mask & *a) != 0; |
| 117 | *a |= mask; |
| 118 | |
| 119 | return retval; |
| 120 | } |
| 121 | |
| 122 | static __inline__ int test_and_clear_bit(int nr, volatile void * addr) |
| 123 | { |
| 124 | int mask, retval; |
| 125 | volatile unsigned int *a = addr; |
| 126 | unsigned long flags; |
| 127 | |
| 128 | a += nr >> 5; |
| 129 | mask = 1 << (nr & 0x1f); |
| 130 | local_irq_save(flags); |
| 131 | retval = (mask & *a) != 0; |
| 132 | *a &= ~mask; |
| 133 | local_irq_restore(flags); |
| 134 | |
| 135 | return retval; |
| 136 | } |
| 137 | |
| 138 | static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) |
| 139 | { |
| 140 | int mask, retval; |
| 141 | volatile unsigned int *a = addr; |
| 142 | |
| 143 | a += nr >> 5; |
| 144 | mask = 1 << (nr & 0x1f); |
| 145 | retval = (mask & *a) != 0; |
| 146 | *a &= ~mask; |
| 147 | |
| 148 | return retval; |
| 149 | } |
| 150 | |
| 151 | static __inline__ int test_and_change_bit(int nr, volatile void * addr) |
| 152 | { |
| 153 | int mask, retval; |
| 154 | volatile unsigned int *a = addr; |
| 155 | unsigned long flags; |
| 156 | |
| 157 | a += nr >> 5; |
| 158 | mask = 1 << (nr & 0x1f); |
| 159 | local_irq_save(flags); |
| 160 | retval = (mask & *a) != 0; |
| 161 | *a ^= mask; |
| 162 | local_irq_restore(flags); |
| 163 | |
| 164 | return retval; |
| 165 | } |
| 166 | |
| 167 | static __inline__ int __test_and_change_bit(int nr, volatile void * addr) |
| 168 | { |
| 169 | int mask, retval; |
| 170 | volatile unsigned int *a = addr; |
| 171 | |
| 172 | a += nr >> 5; |
| 173 | mask = 1 << (nr & 0x1f); |
| 174 | retval = (mask & *a) != 0; |
| 175 | *a ^= mask; |
| 176 | |
| 177 | return retval; |
| 178 | } |
| 179 | |
| 180 | static __inline__ int test_bit(int nr, const volatile void *addr) |
| 181 | { |
| 182 | return 1UL & (((const volatile unsigned int *) addr)[nr >> 5] >> (nr & 31)); |
| 183 | } |
| 184 | |
| 185 | static __inline__ unsigned long ffz(unsigned long word) |
| 186 | { |
| 187 | unsigned long result, __d2, __d3; |
| 188 | |
| 189 | __asm__("gettr tr0, %2\n\t" |
| 190 | "pta $+32, tr0\n\t" |
| 191 | "andi %1, 1, %3\n\t" |
| 192 | "beq %3, r63, tr0\n\t" |
| 193 | "pta $+4, tr0\n" |
| 194 | "0:\n\t" |
| 195 | "shlri.l %1, 1, %1\n\t" |
| 196 | "addi %0, 1, %0\n\t" |
| 197 | "andi %1, 1, %3\n\t" |
| 198 | "beqi %3, 1, tr0\n" |
| 199 | "1:\n\t" |
| 200 | "ptabs %2, tr0\n\t" |
| 201 | : "=r" (result), "=r" (word), "=r" (__d2), "=r" (__d3) |
| 202 | : "0" (0L), "1" (word)); |
| 203 | |
| 204 | return result; |
| 205 | } |
| 206 | |
| 207 | /** |
| 208 | * __ffs - find first bit in word |
| 209 | * @word: The word to search |
| 210 | * |
| 211 | * Undefined if no bit exists, so code should check against 0 first. |
| 212 | */ |
| 213 | static inline unsigned long __ffs(unsigned long word) |
| 214 | { |
| 215 | int r = 0; |
| 216 | |
| 217 | if (!word) |
| 218 | return 0; |
| 219 | if (!(word & 0xffff)) { |
| 220 | word >>= 16; |
| 221 | r += 16; |
| 222 | } |
| 223 | if (!(word & 0xff)) { |
| 224 | word >>= 8; |
| 225 | r += 8; |
| 226 | } |
| 227 | if (!(word & 0xf)) { |
| 228 | word >>= 4; |
| 229 | r += 4; |
| 230 | } |
| 231 | if (!(word & 3)) { |
| 232 | word >>= 2; |
| 233 | r += 2; |
| 234 | } |
| 235 | if (!(word & 1)) { |
| 236 | word >>= 1; |
| 237 | r += 1; |
| 238 | } |
| 239 | return r; |
| 240 | } |
| 241 | |
| 242 | /** |
| 243 | * find_next_bit - find the next set bit in a memory region |
| 244 | * @addr: The address to base the search on |
| 245 | * @offset: The bitnumber to start searching at |
| 246 | * @size: The maximum size to search |
| 247 | */ |
| 248 | static inline unsigned long find_next_bit(const unsigned long *addr, |
| 249 | unsigned long size, unsigned long offset) |
| 250 | { |
| 251 | unsigned int *p = ((unsigned int *) addr) + (offset >> 5); |
| 252 | unsigned int result = offset & ~31UL; |
| 253 | unsigned int tmp; |
| 254 | |
| 255 | if (offset >= size) |
| 256 | return size; |
| 257 | size -= result; |
| 258 | offset &= 31UL; |
| 259 | if (offset) { |
| 260 | tmp = *p++; |
| 261 | tmp &= ~0UL << offset; |
| 262 | if (size < 32) |
| 263 | goto found_first; |
| 264 | if (tmp) |
| 265 | goto found_middle; |
| 266 | size -= 32; |
| 267 | result += 32; |
| 268 | } |
| 269 | while (size >= 32) { |
| 270 | if ((tmp = *p++) != 0) |
| 271 | goto found_middle; |
| 272 | result += 32; |
| 273 | size -= 32; |
| 274 | } |
| 275 | if (!size) |
| 276 | return result; |
| 277 | tmp = *p; |
| 278 | |
| 279 | found_first: |
| 280 | tmp &= ~0UL >> (32 - size); |
| 281 | if (tmp == 0UL) /* Are any bits set? */ |
| 282 | return result + size; /* Nope. */ |
| 283 | found_middle: |
| 284 | return result + __ffs(tmp); |
| 285 | } |
| 286 | |
| 287 | /** |
| 288 | * find_first_bit - find the first set bit in a memory region |
| 289 | * @addr: The address to start the search at |
| 290 | * @size: The maximum size to search |
| 291 | * |
| 292 | * Returns the bit-number of the first set bit, not the number of the byte |
| 293 | * containing a bit. |
| 294 | */ |
| 295 | #define find_first_bit(addr, size) \ |
| 296 | find_next_bit((addr), (size), 0) |
| 297 | |
| 298 | |
| 299 | static inline int find_next_zero_bit(void *addr, int size, int offset) |
| 300 | { |
| 301 | unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| 302 | unsigned long result = offset & ~31UL; |
| 303 | unsigned long tmp; |
| 304 | |
| 305 | if (offset >= size) |
| 306 | return size; |
| 307 | size -= result; |
| 308 | offset &= 31UL; |
| 309 | if (offset) { |
| 310 | tmp = *(p++); |
| 311 | tmp |= ~0UL >> (32-offset); |
| 312 | if (size < 32) |
| 313 | goto found_first; |
| 314 | if (~tmp) |
| 315 | goto found_middle; |
| 316 | size -= 32; |
| 317 | result += 32; |
| 318 | } |
| 319 | while (size & ~31UL) { |
| 320 | if (~(tmp = *(p++))) |
| 321 | goto found_middle; |
| 322 | result += 32; |
| 323 | size -= 32; |
| 324 | } |
| 325 | if (!size) |
| 326 | return result; |
| 327 | tmp = *p; |
| 328 | |
| 329 | found_first: |
| 330 | tmp |= ~0UL << size; |
| 331 | found_middle: |
| 332 | return result + ffz(tmp); |
| 333 | } |
| 334 | |
| 335 | #define find_first_zero_bit(addr, size) \ |
| 336 | find_next_zero_bit((addr), (size), 0) |
| 337 | |
| 338 | /* |
| 339 | * hweightN: returns the hamming weight (i.e. the number |
| 340 | * of bits set) of a N-bit word |
| 341 | */ |
| 342 | |
| 343 | #define hweight32(x) generic_hweight32(x) |
| 344 | #define hweight16(x) generic_hweight16(x) |
| 345 | #define hweight8(x) generic_hweight8(x) |
| 346 | |
| 347 | /* |
| 348 | * Every architecture must define this function. It's the fastest |
| 349 | * way of searching a 140-bit bitmap where the first 100 bits are |
| 350 | * unlikely to be set. It's guaranteed that at least one of the 140 |
| 351 | * bits is cleared. |
| 352 | */ |
| 353 | |
| 354 | static inline int sched_find_first_bit(unsigned long *b) |
| 355 | { |
| 356 | if (unlikely(b[0])) |
| 357 | return __ffs(b[0]); |
| 358 | if (unlikely(b[1])) |
| 359 | return __ffs(b[1]) + 32; |
| 360 | if (unlikely(b[2])) |
| 361 | return __ffs(b[2]) + 64; |
| 362 | if (b[3]) |
| 363 | return __ffs(b[3]) + 96; |
| 364 | return __ffs(b[4]) + 128; |
| 365 | } |
| 366 | |
| 367 | /* |
| 368 | * ffs: find first bit set. This is defined the same way as |
| 369 | * the libc and compiler builtin ffs routines, therefore |
| 370 | * differs in spirit from the above ffz (man ffs). |
| 371 | */ |
| 372 | |
| 373 | #define ffs(x) generic_ffs(x) |
| 374 | |
| 375 | /* |
| 376 | * hweightN: returns the hamming weight (i.e. the number |
| 377 | * of bits set) of a N-bit word |
| 378 | */ |
| 379 | |
| 380 | #define hweight32(x) generic_hweight32(x) |
| 381 | #define hweight16(x) generic_hweight16(x) |
| 382 | #define hweight8(x) generic_hweight8(x) |
| 383 | |
| 384 | #ifdef __LITTLE_ENDIAN__ |
| 385 | #define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr)) |
| 386 | #define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr)) |
| 387 | #define ext2_test_bit(nr, addr) test_bit((nr), (addr)) |
| 388 | #define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size)) |
| 389 | #define ext2_find_next_zero_bit(addr, size, offset) \ |
| 390 | find_next_zero_bit((addr), (size), (offset)) |
| 391 | #else |
| 392 | static __inline__ int ext2_set_bit(int nr, volatile void * addr) |
| 393 | { |
| 394 | int mask, retval; |
| 395 | unsigned long flags; |
| 396 | volatile unsigned char *ADDR = (unsigned char *) addr; |
| 397 | |
| 398 | ADDR += nr >> 3; |
| 399 | mask = 1 << (nr & 0x07); |
| 400 | local_irq_save(flags); |
| 401 | retval = (mask & *ADDR) != 0; |
| 402 | *ADDR |= mask; |
| 403 | local_irq_restore(flags); |
| 404 | return retval; |
| 405 | } |
| 406 | |
| 407 | static __inline__ int ext2_clear_bit(int nr, volatile void * addr) |
| 408 | { |
| 409 | int mask, retval; |
| 410 | unsigned long flags; |
| 411 | volatile unsigned char *ADDR = (unsigned char *) addr; |
| 412 | |
| 413 | ADDR += nr >> 3; |
| 414 | mask = 1 << (nr & 0x07); |
| 415 | local_irq_save(flags); |
| 416 | retval = (mask & *ADDR) != 0; |
| 417 | *ADDR &= ~mask; |
| 418 | local_irq_restore(flags); |
| 419 | return retval; |
| 420 | } |
| 421 | |
| 422 | static __inline__ int ext2_test_bit(int nr, const volatile void * addr) |
| 423 | { |
| 424 | int mask; |
| 425 | const volatile unsigned char *ADDR = (const unsigned char *) addr; |
| 426 | |
| 427 | ADDR += nr >> 3; |
| 428 | mask = 1 << (nr & 0x07); |
| 429 | return ((mask & *ADDR) != 0); |
| 430 | } |
| 431 | |
| 432 | #define ext2_find_first_zero_bit(addr, size) \ |
| 433 | ext2_find_next_zero_bit((addr), (size), 0) |
| 434 | |
| 435 | static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) |
| 436 | { |
| 437 | unsigned long *p = ((unsigned long *) addr) + (offset >> 5); |
| 438 | unsigned long result = offset & ~31UL; |
| 439 | unsigned long tmp; |
| 440 | |
| 441 | if (offset >= size) |
| 442 | return size; |
| 443 | size -= result; |
| 444 | offset &= 31UL; |
| 445 | if(offset) { |
| 446 | /* We hold the little endian value in tmp, but then the |
| 447 | * shift is illegal. So we could keep a big endian value |
| 448 | * in tmp, like this: |
| 449 | * |
| 450 | * tmp = __swab32(*(p++)); |
| 451 | * tmp |= ~0UL >> (32-offset); |
| 452 | * |
| 453 | * but this would decrease preformance, so we change the |
| 454 | * shift: |
| 455 | */ |
| 456 | tmp = *(p++); |
| 457 | tmp |= __swab32(~0UL >> (32-offset)); |
| 458 | if(size < 32) |
| 459 | goto found_first; |
| 460 | if(~tmp) |
| 461 | goto found_middle; |
| 462 | size -= 32; |
| 463 | result += 32; |
| 464 | } |
| 465 | while(size & ~31UL) { |
| 466 | if(~(tmp = *(p++))) |
| 467 | goto found_middle; |
| 468 | result += 32; |
| 469 | size -= 32; |
| 470 | } |
| 471 | if(!size) |
| 472 | return result; |
| 473 | tmp = *p; |
| 474 | |
| 475 | found_first: |
| 476 | /* tmp is little endian, so we would have to swab the shift, |
| 477 | * see above. But then we have to swab tmp below for ffz, so |
| 478 | * we might as well do this here. |
| 479 | */ |
| 480 | return result + ffz(__swab32(tmp) | (~0UL << size)); |
| 481 | found_middle: |
| 482 | return result + ffz(__swab32(tmp)); |
| 483 | } |
| 484 | #endif |
| 485 | |
| 486 | #define ext2_set_bit_atomic(lock, nr, addr) \ |
| 487 | ({ \ |
| 488 | int ret; \ |
| 489 | spin_lock(lock); \ |
| 490 | ret = ext2_set_bit((nr), (addr)); \ |
| 491 | spin_unlock(lock); \ |
| 492 | ret; \ |
| 493 | }) |
| 494 | |
| 495 | #define ext2_clear_bit_atomic(lock, nr, addr) \ |
| 496 | ({ \ |
| 497 | int ret; \ |
| 498 | spin_lock(lock); \ |
| 499 | ret = ext2_clear_bit((nr), (addr)); \ |
| 500 | spin_unlock(lock); \ |
| 501 | ret; \ |
| 502 | }) |
| 503 | |
| 504 | /* Bitmap functions for the minix filesystem. */ |
| 505 | #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) |
| 506 | #define minix_set_bit(nr,addr) set_bit(nr,addr) |
| 507 | #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) |
| 508 | #define minix_test_bit(nr,addr) test_bit(nr,addr) |
| 509 | #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) |
| 510 | |
| 511 | #define ffs(x) generic_ffs(x) |
| 512 | #define fls(x) generic_fls(x) |
Stephen Hemminger | 3821af2 | 2005-12-21 19:30:53 -0800 | [diff] [blame] | 513 | #define fls64(x) generic_fls64(x) |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 514 | |
| 515 | #endif /* __KERNEL__ */ |
| 516 | |
| 517 | #endif /* __ASM_SH64_BITOPS_H */ |