Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * mm/page-writeback.c. |
| 3 | * |
| 4 | * Copyright (C) 2002, Linus Torvalds. |
| 5 | * |
| 6 | * Contains functions related to writing back dirty pages at the |
| 7 | * address_space level. |
| 8 | * |
| 9 | * 10Apr2002 akpm@zip.com.au |
| 10 | * Initial version |
| 11 | */ |
| 12 | |
| 13 | #include <linux/kernel.h> |
| 14 | #include <linux/module.h> |
| 15 | #include <linux/spinlock.h> |
| 16 | #include <linux/fs.h> |
| 17 | #include <linux/mm.h> |
| 18 | #include <linux/swap.h> |
| 19 | #include <linux/slab.h> |
| 20 | #include <linux/pagemap.h> |
| 21 | #include <linux/writeback.h> |
| 22 | #include <linux/init.h> |
| 23 | #include <linux/backing-dev.h> |
| 24 | #include <linux/blkdev.h> |
| 25 | #include <linux/mpage.h> |
| 26 | #include <linux/percpu.h> |
| 27 | #include <linux/notifier.h> |
| 28 | #include <linux/smp.h> |
| 29 | #include <linux/sysctl.h> |
| 30 | #include <linux/cpu.h> |
| 31 | #include <linux/syscalls.h> |
| 32 | |
| 33 | /* |
| 34 | * The maximum number of pages to writeout in a single bdflush/kupdate |
| 35 | * operation. We do this so we don't hold I_LOCK against an inode for |
| 36 | * enormous amounts of time, which would block a userspace task which has |
| 37 | * been forced to throttle against that inode. Also, the code reevaluates |
| 38 | * the dirty each time it has written this many pages. |
| 39 | */ |
| 40 | #define MAX_WRITEBACK_PAGES 1024 |
| 41 | |
| 42 | /* |
| 43 | * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited |
| 44 | * will look to see if it needs to force writeback or throttling. |
| 45 | */ |
| 46 | static long ratelimit_pages = 32; |
| 47 | |
| 48 | static long total_pages; /* The total number of pages in the machine. */ |
| 49 | static int dirty_exceeded; /* Dirty mem may be over limit */ |
| 50 | |
| 51 | /* |
| 52 | * When balance_dirty_pages decides that the caller needs to perform some |
| 53 | * non-background writeback, this is how many pages it will attempt to write. |
| 54 | * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably |
| 55 | * large amounts of I/O are submitted. |
| 56 | */ |
| 57 | static inline long sync_writeback_pages(void) |
| 58 | { |
| 59 | return ratelimit_pages + ratelimit_pages / 2; |
| 60 | } |
| 61 | |
| 62 | /* The following parameters are exported via /proc/sys/vm */ |
| 63 | |
| 64 | /* |
| 65 | * Start background writeback (via pdflush) at this percentage |
| 66 | */ |
| 67 | int dirty_background_ratio = 10; |
| 68 | |
| 69 | /* |
| 70 | * The generator of dirty data starts writeback at this percentage |
| 71 | */ |
| 72 | int vm_dirty_ratio = 40; |
| 73 | |
| 74 | /* |
| 75 | * The interval between `kupdate'-style writebacks, in centiseconds |
| 76 | * (hundredths of a second) |
| 77 | */ |
| 78 | int dirty_writeback_centisecs = 5 * 100; |
| 79 | |
| 80 | /* |
| 81 | * The longest number of centiseconds for which data is allowed to remain dirty |
| 82 | */ |
| 83 | int dirty_expire_centisecs = 30 * 100; |
| 84 | |
| 85 | /* |
| 86 | * Flag that makes the machine dump writes/reads and block dirtyings. |
| 87 | */ |
| 88 | int block_dump; |
| 89 | |
| 90 | /* |
| 91 | * Flag that puts the machine in "laptop mode". |
| 92 | */ |
| 93 | int laptop_mode; |
| 94 | |
| 95 | EXPORT_SYMBOL(laptop_mode); |
| 96 | |
| 97 | /* End of sysctl-exported parameters */ |
| 98 | |
| 99 | |
| 100 | static void background_writeout(unsigned long _min_pages); |
| 101 | |
| 102 | struct writeback_state |
| 103 | { |
| 104 | unsigned long nr_dirty; |
| 105 | unsigned long nr_unstable; |
| 106 | unsigned long nr_mapped; |
| 107 | unsigned long nr_writeback; |
| 108 | }; |
| 109 | |
| 110 | static void get_writeback_state(struct writeback_state *wbs) |
| 111 | { |
| 112 | wbs->nr_dirty = read_page_state(nr_dirty); |
| 113 | wbs->nr_unstable = read_page_state(nr_unstable); |
| 114 | wbs->nr_mapped = read_page_state(nr_mapped); |
| 115 | wbs->nr_writeback = read_page_state(nr_writeback); |
| 116 | } |
| 117 | |
| 118 | /* |
| 119 | * Work out the current dirty-memory clamping and background writeout |
| 120 | * thresholds. |
| 121 | * |
| 122 | * The main aim here is to lower them aggressively if there is a lot of mapped |
| 123 | * memory around. To avoid stressing page reclaim with lots of unreclaimable |
| 124 | * pages. It is better to clamp down on writers than to start swapping, and |
| 125 | * performing lots of scanning. |
| 126 | * |
| 127 | * We only allow 1/2 of the currently-unmapped memory to be dirtied. |
| 128 | * |
| 129 | * We don't permit the clamping level to fall below 5% - that is getting rather |
| 130 | * excessive. |
| 131 | * |
| 132 | * We make sure that the background writeout level is below the adjusted |
| 133 | * clamping level. |
| 134 | */ |
| 135 | static void |
| 136 | get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty, |
| 137 | struct address_space *mapping) |
| 138 | { |
| 139 | int background_ratio; /* Percentages */ |
| 140 | int dirty_ratio; |
| 141 | int unmapped_ratio; |
| 142 | long background; |
| 143 | long dirty; |
| 144 | unsigned long available_memory = total_pages; |
| 145 | struct task_struct *tsk; |
| 146 | |
| 147 | get_writeback_state(wbs); |
| 148 | |
| 149 | #ifdef CONFIG_HIGHMEM |
| 150 | /* |
| 151 | * If this mapping can only allocate from low memory, |
| 152 | * we exclude high memory from our count. |
| 153 | */ |
| 154 | if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM)) |
| 155 | available_memory -= totalhigh_pages; |
| 156 | #endif |
| 157 | |
| 158 | |
| 159 | unmapped_ratio = 100 - (wbs->nr_mapped * 100) / total_pages; |
| 160 | |
| 161 | dirty_ratio = vm_dirty_ratio; |
| 162 | if (dirty_ratio > unmapped_ratio / 2) |
| 163 | dirty_ratio = unmapped_ratio / 2; |
| 164 | |
| 165 | if (dirty_ratio < 5) |
| 166 | dirty_ratio = 5; |
| 167 | |
| 168 | background_ratio = dirty_background_ratio; |
| 169 | if (background_ratio >= dirty_ratio) |
| 170 | background_ratio = dirty_ratio / 2; |
| 171 | |
| 172 | background = (background_ratio * available_memory) / 100; |
| 173 | dirty = (dirty_ratio * available_memory) / 100; |
| 174 | tsk = current; |
| 175 | if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { |
| 176 | background += background / 4; |
| 177 | dirty += dirty / 4; |
| 178 | } |
| 179 | *pbackground = background; |
| 180 | *pdirty = dirty; |
| 181 | } |
| 182 | |
| 183 | /* |
| 184 | * balance_dirty_pages() must be called by processes which are generating dirty |
| 185 | * data. It looks at the number of dirty pages in the machine and will force |
| 186 | * the caller to perform writeback if the system is over `vm_dirty_ratio'. |
| 187 | * If we're over `background_thresh' then pdflush is woken to perform some |
| 188 | * writeout. |
| 189 | */ |
| 190 | static void balance_dirty_pages(struct address_space *mapping) |
| 191 | { |
| 192 | struct writeback_state wbs; |
| 193 | long nr_reclaimable; |
| 194 | long background_thresh; |
| 195 | long dirty_thresh; |
| 196 | unsigned long pages_written = 0; |
| 197 | unsigned long write_chunk = sync_writeback_pages(); |
| 198 | |
| 199 | struct backing_dev_info *bdi = mapping->backing_dev_info; |
| 200 | |
| 201 | for (;;) { |
| 202 | struct writeback_control wbc = { |
| 203 | .bdi = bdi, |
| 204 | .sync_mode = WB_SYNC_NONE, |
| 205 | .older_than_this = NULL, |
| 206 | .nr_to_write = write_chunk, |
| 207 | }; |
| 208 | |
| 209 | get_dirty_limits(&wbs, &background_thresh, |
| 210 | &dirty_thresh, mapping); |
| 211 | nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable; |
| 212 | if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh) |
| 213 | break; |
| 214 | |
| 215 | dirty_exceeded = 1; |
| 216 | |
| 217 | /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. |
| 218 | * Unstable writes are a feature of certain networked |
| 219 | * filesystems (i.e. NFS) in which data may have been |
| 220 | * written to the server's write cache, but has not yet |
| 221 | * been flushed to permanent storage. |
| 222 | */ |
| 223 | if (nr_reclaimable) { |
| 224 | writeback_inodes(&wbc); |
| 225 | get_dirty_limits(&wbs, &background_thresh, |
| 226 | &dirty_thresh, mapping); |
| 227 | nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable; |
| 228 | if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh) |
| 229 | break; |
| 230 | pages_written += write_chunk - wbc.nr_to_write; |
| 231 | if (pages_written >= write_chunk) |
| 232 | break; /* We've done our duty */ |
| 233 | } |
| 234 | blk_congestion_wait(WRITE, HZ/10); |
| 235 | } |
| 236 | |
| 237 | if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh) |
| 238 | dirty_exceeded = 0; |
| 239 | |
| 240 | if (writeback_in_progress(bdi)) |
| 241 | return; /* pdflush is already working this queue */ |
| 242 | |
| 243 | /* |
| 244 | * In laptop mode, we wait until hitting the higher threshold before |
| 245 | * starting background writeout, and then write out all the way down |
| 246 | * to the lower threshold. So slow writers cause minimal disk activity. |
| 247 | * |
| 248 | * In normal mode, we start background writeout at the lower |
| 249 | * background_thresh, to keep the amount of dirty memory low. |
| 250 | */ |
| 251 | if ((laptop_mode && pages_written) || |
| 252 | (!laptop_mode && (nr_reclaimable > background_thresh))) |
| 253 | pdflush_operation(background_writeout, 0); |
| 254 | } |
| 255 | |
| 256 | /** |
| 257 | * balance_dirty_pages_ratelimited - balance dirty memory state |
| 258 | * @mapping - address_space which was dirtied |
| 259 | * |
| 260 | * Processes which are dirtying memory should call in here once for each page |
| 261 | * which was newly dirtied. The function will periodically check the system's |
| 262 | * dirty state and will initiate writeback if needed. |
| 263 | * |
| 264 | * On really big machines, get_writeback_state is expensive, so try to avoid |
| 265 | * calling it too often (ratelimiting). But once we're over the dirty memory |
| 266 | * limit we decrease the ratelimiting by a lot, to prevent individual processes |
| 267 | * from overshooting the limit by (ratelimit_pages) each. |
| 268 | */ |
| 269 | void balance_dirty_pages_ratelimited(struct address_space *mapping) |
| 270 | { |
| 271 | static DEFINE_PER_CPU(int, ratelimits) = 0; |
| 272 | long ratelimit; |
| 273 | |
| 274 | ratelimit = ratelimit_pages; |
| 275 | if (dirty_exceeded) |
| 276 | ratelimit = 8; |
| 277 | |
| 278 | /* |
| 279 | * Check the rate limiting. Also, we do not want to throttle real-time |
| 280 | * tasks in balance_dirty_pages(). Period. |
| 281 | */ |
| 282 | if (get_cpu_var(ratelimits)++ >= ratelimit) { |
| 283 | __get_cpu_var(ratelimits) = 0; |
| 284 | put_cpu_var(ratelimits); |
| 285 | balance_dirty_pages(mapping); |
| 286 | return; |
| 287 | } |
| 288 | put_cpu_var(ratelimits); |
| 289 | } |
| 290 | EXPORT_SYMBOL(balance_dirty_pages_ratelimited); |
| 291 | |
| 292 | void throttle_vm_writeout(void) |
| 293 | { |
| 294 | struct writeback_state wbs; |
| 295 | long background_thresh; |
| 296 | long dirty_thresh; |
| 297 | |
| 298 | for ( ; ; ) { |
| 299 | get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL); |
| 300 | |
| 301 | /* |
| 302 | * Boost the allowable dirty threshold a bit for page |
| 303 | * allocators so they don't get DoS'ed by heavy writers |
| 304 | */ |
| 305 | dirty_thresh += dirty_thresh / 10; /* wheeee... */ |
| 306 | |
| 307 | if (wbs.nr_unstable + wbs.nr_writeback <= dirty_thresh) |
| 308 | break; |
| 309 | blk_congestion_wait(WRITE, HZ/10); |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | |
| 314 | /* |
| 315 | * writeback at least _min_pages, and keep writing until the amount of dirty |
| 316 | * memory is less than the background threshold, or until we're all clean. |
| 317 | */ |
| 318 | static void background_writeout(unsigned long _min_pages) |
| 319 | { |
| 320 | long min_pages = _min_pages; |
| 321 | struct writeback_control wbc = { |
| 322 | .bdi = NULL, |
| 323 | .sync_mode = WB_SYNC_NONE, |
| 324 | .older_than_this = NULL, |
| 325 | .nr_to_write = 0, |
| 326 | .nonblocking = 1, |
| 327 | }; |
| 328 | |
| 329 | for ( ; ; ) { |
| 330 | struct writeback_state wbs; |
| 331 | long background_thresh; |
| 332 | long dirty_thresh; |
| 333 | |
| 334 | get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL); |
| 335 | if (wbs.nr_dirty + wbs.nr_unstable < background_thresh |
| 336 | && min_pages <= 0) |
| 337 | break; |
| 338 | wbc.encountered_congestion = 0; |
| 339 | wbc.nr_to_write = MAX_WRITEBACK_PAGES; |
| 340 | wbc.pages_skipped = 0; |
| 341 | writeback_inodes(&wbc); |
| 342 | min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; |
| 343 | if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) { |
| 344 | /* Wrote less than expected */ |
| 345 | blk_congestion_wait(WRITE, HZ/10); |
| 346 | if (!wbc.encountered_congestion) |
| 347 | break; |
| 348 | } |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | /* |
| 353 | * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back |
| 354 | * the whole world. Returns 0 if a pdflush thread was dispatched. Returns |
| 355 | * -1 if all pdflush threads were busy. |
| 356 | */ |
| 357 | int wakeup_bdflush(long nr_pages) |
| 358 | { |
| 359 | if (nr_pages == 0) { |
| 360 | struct writeback_state wbs; |
| 361 | |
| 362 | get_writeback_state(&wbs); |
| 363 | nr_pages = wbs.nr_dirty + wbs.nr_unstable; |
| 364 | } |
| 365 | return pdflush_operation(background_writeout, nr_pages); |
| 366 | } |
| 367 | |
| 368 | static void wb_timer_fn(unsigned long unused); |
| 369 | static void laptop_timer_fn(unsigned long unused); |
| 370 | |
| 371 | static struct timer_list wb_timer = |
| 372 | TIMER_INITIALIZER(wb_timer_fn, 0, 0); |
| 373 | static struct timer_list laptop_mode_wb_timer = |
| 374 | TIMER_INITIALIZER(laptop_timer_fn, 0, 0); |
| 375 | |
| 376 | /* |
| 377 | * Periodic writeback of "old" data. |
| 378 | * |
| 379 | * Define "old": the first time one of an inode's pages is dirtied, we mark the |
| 380 | * dirtying-time in the inode's address_space. So this periodic writeback code |
| 381 | * just walks the superblock inode list, writing back any inodes which are |
| 382 | * older than a specific point in time. |
| 383 | * |
| 384 | * Try to run once per dirty_writeback_centisecs. But if a writeback event |
| 385 | * takes longer than a dirty_writeback_centisecs interval, then leave a |
| 386 | * one-second gap. |
| 387 | * |
| 388 | * older_than_this takes precedence over nr_to_write. So we'll only write back |
| 389 | * all dirty pages if they are all attached to "old" mappings. |
| 390 | */ |
| 391 | static void wb_kupdate(unsigned long arg) |
| 392 | { |
| 393 | unsigned long oldest_jif; |
| 394 | unsigned long start_jif; |
| 395 | unsigned long next_jif; |
| 396 | long nr_to_write; |
| 397 | struct writeback_state wbs; |
| 398 | struct writeback_control wbc = { |
| 399 | .bdi = NULL, |
| 400 | .sync_mode = WB_SYNC_NONE, |
| 401 | .older_than_this = &oldest_jif, |
| 402 | .nr_to_write = 0, |
| 403 | .nonblocking = 1, |
| 404 | .for_kupdate = 1, |
| 405 | }; |
| 406 | |
| 407 | sync_supers(); |
| 408 | |
| 409 | get_writeback_state(&wbs); |
| 410 | oldest_jif = jiffies - (dirty_expire_centisecs * HZ) / 100; |
| 411 | start_jif = jiffies; |
| 412 | next_jif = start_jif + (dirty_writeback_centisecs * HZ) / 100; |
| 413 | nr_to_write = wbs.nr_dirty + wbs.nr_unstable + |
| 414 | (inodes_stat.nr_inodes - inodes_stat.nr_unused); |
| 415 | while (nr_to_write > 0) { |
| 416 | wbc.encountered_congestion = 0; |
| 417 | wbc.nr_to_write = MAX_WRITEBACK_PAGES; |
| 418 | writeback_inodes(&wbc); |
| 419 | if (wbc.nr_to_write > 0) { |
| 420 | if (wbc.encountered_congestion) |
| 421 | blk_congestion_wait(WRITE, HZ/10); |
| 422 | else |
| 423 | break; /* All the old data is written */ |
| 424 | } |
| 425 | nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; |
| 426 | } |
| 427 | if (time_before(next_jif, jiffies + HZ)) |
| 428 | next_jif = jiffies + HZ; |
| 429 | if (dirty_writeback_centisecs) |
| 430 | mod_timer(&wb_timer, next_jif); |
| 431 | } |
| 432 | |
| 433 | /* |
| 434 | * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs |
| 435 | */ |
| 436 | int dirty_writeback_centisecs_handler(ctl_table *table, int write, |
| 437 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) |
| 438 | { |
| 439 | proc_dointvec(table, write, file, buffer, length, ppos); |
| 440 | if (dirty_writeback_centisecs) { |
| 441 | mod_timer(&wb_timer, |
| 442 | jiffies + (dirty_writeback_centisecs * HZ) / 100); |
| 443 | } else { |
| 444 | del_timer(&wb_timer); |
| 445 | } |
| 446 | return 0; |
| 447 | } |
| 448 | |
| 449 | static void wb_timer_fn(unsigned long unused) |
| 450 | { |
| 451 | if (pdflush_operation(wb_kupdate, 0) < 0) |
| 452 | mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */ |
| 453 | } |
| 454 | |
| 455 | static void laptop_flush(unsigned long unused) |
| 456 | { |
| 457 | sys_sync(); |
| 458 | } |
| 459 | |
| 460 | static void laptop_timer_fn(unsigned long unused) |
| 461 | { |
| 462 | pdflush_operation(laptop_flush, 0); |
| 463 | } |
| 464 | |
| 465 | /* |
| 466 | * We've spun up the disk and we're in laptop mode: schedule writeback |
| 467 | * of all dirty data a few seconds from now. If the flush is already scheduled |
| 468 | * then push it back - the user is still using the disk. |
| 469 | */ |
| 470 | void laptop_io_completion(void) |
| 471 | { |
| 472 | mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode * HZ); |
| 473 | } |
| 474 | |
| 475 | /* |
| 476 | * We're in laptop mode and we've just synced. The sync's writes will have |
| 477 | * caused another writeback to be scheduled by laptop_io_completion. |
| 478 | * Nothing needs to be written back anymore, so we unschedule the writeback. |
| 479 | */ |
| 480 | void laptop_sync_completion(void) |
| 481 | { |
| 482 | del_timer(&laptop_mode_wb_timer); |
| 483 | } |
| 484 | |
| 485 | /* |
| 486 | * If ratelimit_pages is too high then we can get into dirty-data overload |
| 487 | * if a large number of processes all perform writes at the same time. |
| 488 | * If it is too low then SMP machines will call the (expensive) |
| 489 | * get_writeback_state too often. |
| 490 | * |
| 491 | * Here we set ratelimit_pages to a level which ensures that when all CPUs are |
| 492 | * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory |
| 493 | * thresholds before writeback cuts in. |
| 494 | * |
| 495 | * But the limit should not be set too high. Because it also controls the |
| 496 | * amount of memory which the balance_dirty_pages() caller has to write back. |
| 497 | * If this is too large then the caller will block on the IO queue all the |
| 498 | * time. So limit it to four megabytes - the balance_dirty_pages() caller |
| 499 | * will write six megabyte chunks, max. |
| 500 | */ |
| 501 | |
| 502 | static void set_ratelimit(void) |
| 503 | { |
| 504 | ratelimit_pages = total_pages / (num_online_cpus() * 32); |
| 505 | if (ratelimit_pages < 16) |
| 506 | ratelimit_pages = 16; |
| 507 | if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) |
| 508 | ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; |
| 509 | } |
| 510 | |
| 511 | static int |
| 512 | ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) |
| 513 | { |
| 514 | set_ratelimit(); |
| 515 | return 0; |
| 516 | } |
| 517 | |
| 518 | static struct notifier_block ratelimit_nb = { |
| 519 | .notifier_call = ratelimit_handler, |
| 520 | .next = NULL, |
| 521 | }; |
| 522 | |
| 523 | /* |
| 524 | * If the machine has a large highmem:lowmem ratio then scale back the default |
| 525 | * dirty memory thresholds: allowing too much dirty highmem pins an excessive |
| 526 | * number of buffer_heads. |
| 527 | */ |
| 528 | void __init page_writeback_init(void) |
| 529 | { |
| 530 | long buffer_pages = nr_free_buffer_pages(); |
| 531 | long correction; |
| 532 | |
| 533 | total_pages = nr_free_pagecache_pages(); |
| 534 | |
| 535 | correction = (100 * 4 * buffer_pages) / total_pages; |
| 536 | |
| 537 | if (correction < 100) { |
| 538 | dirty_background_ratio *= correction; |
| 539 | dirty_background_ratio /= 100; |
| 540 | vm_dirty_ratio *= correction; |
| 541 | vm_dirty_ratio /= 100; |
| 542 | |
| 543 | if (dirty_background_ratio <= 0) |
| 544 | dirty_background_ratio = 1; |
| 545 | if (vm_dirty_ratio <= 0) |
| 546 | vm_dirty_ratio = 1; |
| 547 | } |
| 548 | mod_timer(&wb_timer, jiffies + (dirty_writeback_centisecs * HZ) / 100); |
| 549 | set_ratelimit(); |
| 550 | register_cpu_notifier(&ratelimit_nb); |
| 551 | } |
| 552 | |
| 553 | int do_writepages(struct address_space *mapping, struct writeback_control *wbc) |
| 554 | { |
| 555 | if (wbc->nr_to_write <= 0) |
| 556 | return 0; |
| 557 | if (mapping->a_ops->writepages) |
| 558 | return mapping->a_ops->writepages(mapping, wbc); |
| 559 | return generic_writepages(mapping, wbc); |
| 560 | } |
| 561 | |
| 562 | /** |
| 563 | * write_one_page - write out a single page and optionally wait on I/O |
| 564 | * |
| 565 | * @page - the page to write |
| 566 | * @wait - if true, wait on writeout |
| 567 | * |
| 568 | * The page must be locked by the caller and will be unlocked upon return. |
| 569 | * |
| 570 | * write_one_page() returns a negative error code if I/O failed. |
| 571 | */ |
| 572 | int write_one_page(struct page *page, int wait) |
| 573 | { |
| 574 | struct address_space *mapping = page->mapping; |
| 575 | int ret = 0; |
| 576 | struct writeback_control wbc = { |
| 577 | .sync_mode = WB_SYNC_ALL, |
| 578 | .nr_to_write = 1, |
| 579 | }; |
| 580 | |
| 581 | BUG_ON(!PageLocked(page)); |
| 582 | |
| 583 | if (wait) |
| 584 | wait_on_page_writeback(page); |
| 585 | |
| 586 | if (clear_page_dirty_for_io(page)) { |
| 587 | page_cache_get(page); |
| 588 | ret = mapping->a_ops->writepage(page, &wbc); |
| 589 | if (ret == 0 && wait) { |
| 590 | wait_on_page_writeback(page); |
| 591 | if (PageError(page)) |
| 592 | ret = -EIO; |
| 593 | } |
| 594 | page_cache_release(page); |
| 595 | } else { |
| 596 | unlock_page(page); |
| 597 | } |
| 598 | return ret; |
| 599 | } |
| 600 | EXPORT_SYMBOL(write_one_page); |
| 601 | |
| 602 | /* |
| 603 | * For address_spaces which do not use buffers. Just tag the page as dirty in |
| 604 | * its radix tree. |
| 605 | * |
| 606 | * This is also used when a single buffer is being dirtied: we want to set the |
| 607 | * page dirty in that case, but not all the buffers. This is a "bottom-up" |
| 608 | * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. |
| 609 | * |
| 610 | * Most callers have locked the page, which pins the address_space in memory. |
| 611 | * But zap_pte_range() does not lock the page, however in that case the |
| 612 | * mapping is pinned by the vma's ->vm_file reference. |
| 613 | * |
| 614 | * We take care to handle the case where the page was truncated from the |
| 615 | * mapping by re-checking page_mapping() insode tree_lock. |
| 616 | */ |
| 617 | int __set_page_dirty_nobuffers(struct page *page) |
| 618 | { |
| 619 | int ret = 0; |
| 620 | |
| 621 | if (!TestSetPageDirty(page)) { |
| 622 | struct address_space *mapping = page_mapping(page); |
| 623 | struct address_space *mapping2; |
| 624 | |
| 625 | if (mapping) { |
| 626 | write_lock_irq(&mapping->tree_lock); |
| 627 | mapping2 = page_mapping(page); |
| 628 | if (mapping2) { /* Race with truncate? */ |
| 629 | BUG_ON(mapping2 != mapping); |
| 630 | if (mapping_cap_account_dirty(mapping)) |
| 631 | inc_page_state(nr_dirty); |
| 632 | radix_tree_tag_set(&mapping->page_tree, |
| 633 | page_index(page), PAGECACHE_TAG_DIRTY); |
| 634 | } |
| 635 | write_unlock_irq(&mapping->tree_lock); |
| 636 | if (mapping->host) { |
| 637 | /* !PageAnon && !swapper_space */ |
| 638 | __mark_inode_dirty(mapping->host, |
| 639 | I_DIRTY_PAGES); |
| 640 | } |
| 641 | } |
| 642 | } |
| 643 | return ret; |
| 644 | } |
| 645 | EXPORT_SYMBOL(__set_page_dirty_nobuffers); |
| 646 | |
| 647 | /* |
| 648 | * When a writepage implementation decides that it doesn't want to write this |
| 649 | * page for some reason, it should redirty the locked page via |
| 650 | * redirty_page_for_writepage() and it should then unlock the page and return 0 |
| 651 | */ |
| 652 | int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) |
| 653 | { |
| 654 | wbc->pages_skipped++; |
| 655 | return __set_page_dirty_nobuffers(page); |
| 656 | } |
| 657 | EXPORT_SYMBOL(redirty_page_for_writepage); |
| 658 | |
| 659 | /* |
| 660 | * If the mapping doesn't provide a set_page_dirty a_op, then |
| 661 | * just fall through and assume that it wants buffer_heads. |
| 662 | */ |
| 663 | int fastcall set_page_dirty(struct page *page) |
| 664 | { |
| 665 | struct address_space *mapping = page_mapping(page); |
| 666 | |
| 667 | if (likely(mapping)) { |
| 668 | int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; |
| 669 | if (spd) |
| 670 | return (*spd)(page); |
| 671 | return __set_page_dirty_buffers(page); |
| 672 | } |
| 673 | if (!PageDirty(page)) |
| 674 | SetPageDirty(page); |
| 675 | return 0; |
| 676 | } |
| 677 | EXPORT_SYMBOL(set_page_dirty); |
| 678 | |
| 679 | /* |
| 680 | * set_page_dirty() is racy if the caller has no reference against |
| 681 | * page->mapping->host, and if the page is unlocked. This is because another |
| 682 | * CPU could truncate the page off the mapping and then free the mapping. |
| 683 | * |
| 684 | * Usually, the page _is_ locked, or the caller is a user-space process which |
| 685 | * holds a reference on the inode by having an open file. |
| 686 | * |
| 687 | * In other cases, the page should be locked before running set_page_dirty(). |
| 688 | */ |
| 689 | int set_page_dirty_lock(struct page *page) |
| 690 | { |
| 691 | int ret; |
| 692 | |
| 693 | lock_page(page); |
| 694 | ret = set_page_dirty(page); |
| 695 | unlock_page(page); |
| 696 | return ret; |
| 697 | } |
| 698 | EXPORT_SYMBOL(set_page_dirty_lock); |
| 699 | |
| 700 | /* |
| 701 | * Clear a page's dirty flag, while caring for dirty memory accounting. |
| 702 | * Returns true if the page was previously dirty. |
| 703 | */ |
| 704 | int test_clear_page_dirty(struct page *page) |
| 705 | { |
| 706 | struct address_space *mapping = page_mapping(page); |
| 707 | unsigned long flags; |
| 708 | |
| 709 | if (mapping) { |
| 710 | write_lock_irqsave(&mapping->tree_lock, flags); |
| 711 | if (TestClearPageDirty(page)) { |
| 712 | radix_tree_tag_clear(&mapping->page_tree, |
| 713 | page_index(page), |
| 714 | PAGECACHE_TAG_DIRTY); |
| 715 | write_unlock_irqrestore(&mapping->tree_lock, flags); |
| 716 | if (mapping_cap_account_dirty(mapping)) |
| 717 | dec_page_state(nr_dirty); |
| 718 | return 1; |
| 719 | } |
| 720 | write_unlock_irqrestore(&mapping->tree_lock, flags); |
| 721 | return 0; |
| 722 | } |
| 723 | return TestClearPageDirty(page); |
| 724 | } |
| 725 | EXPORT_SYMBOL(test_clear_page_dirty); |
| 726 | |
| 727 | /* |
| 728 | * Clear a page's dirty flag, while caring for dirty memory accounting. |
| 729 | * Returns true if the page was previously dirty. |
| 730 | * |
| 731 | * This is for preparing to put the page under writeout. We leave the page |
| 732 | * tagged as dirty in the radix tree so that a concurrent write-for-sync |
| 733 | * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage |
| 734 | * implementation will run either set_page_writeback() or set_page_dirty(), |
| 735 | * at which stage we bring the page's dirty flag and radix-tree dirty tag |
| 736 | * back into sync. |
| 737 | * |
| 738 | * This incoherency between the page's dirty flag and radix-tree tag is |
| 739 | * unfortunate, but it only exists while the page is locked. |
| 740 | */ |
| 741 | int clear_page_dirty_for_io(struct page *page) |
| 742 | { |
| 743 | struct address_space *mapping = page_mapping(page); |
| 744 | |
| 745 | if (mapping) { |
| 746 | if (TestClearPageDirty(page)) { |
| 747 | if (mapping_cap_account_dirty(mapping)) |
| 748 | dec_page_state(nr_dirty); |
| 749 | return 1; |
| 750 | } |
| 751 | return 0; |
| 752 | } |
| 753 | return TestClearPageDirty(page); |
| 754 | } |
| 755 | EXPORT_SYMBOL(clear_page_dirty_for_io); |
| 756 | |
| 757 | int test_clear_page_writeback(struct page *page) |
| 758 | { |
| 759 | struct address_space *mapping = page_mapping(page); |
| 760 | int ret; |
| 761 | |
| 762 | if (mapping) { |
| 763 | unsigned long flags; |
| 764 | |
| 765 | write_lock_irqsave(&mapping->tree_lock, flags); |
| 766 | ret = TestClearPageWriteback(page); |
| 767 | if (ret) |
| 768 | radix_tree_tag_clear(&mapping->page_tree, |
| 769 | page_index(page), |
| 770 | PAGECACHE_TAG_WRITEBACK); |
| 771 | write_unlock_irqrestore(&mapping->tree_lock, flags); |
| 772 | } else { |
| 773 | ret = TestClearPageWriteback(page); |
| 774 | } |
| 775 | return ret; |
| 776 | } |
| 777 | |
| 778 | int test_set_page_writeback(struct page *page) |
| 779 | { |
| 780 | struct address_space *mapping = page_mapping(page); |
| 781 | int ret; |
| 782 | |
| 783 | if (mapping) { |
| 784 | unsigned long flags; |
| 785 | |
| 786 | write_lock_irqsave(&mapping->tree_lock, flags); |
| 787 | ret = TestSetPageWriteback(page); |
| 788 | if (!ret) |
| 789 | radix_tree_tag_set(&mapping->page_tree, |
| 790 | page_index(page), |
| 791 | PAGECACHE_TAG_WRITEBACK); |
| 792 | if (!PageDirty(page)) |
| 793 | radix_tree_tag_clear(&mapping->page_tree, |
| 794 | page_index(page), |
| 795 | PAGECACHE_TAG_DIRTY); |
| 796 | write_unlock_irqrestore(&mapping->tree_lock, flags); |
| 797 | } else { |
| 798 | ret = TestSetPageWriteback(page); |
| 799 | } |
| 800 | return ret; |
| 801 | |
| 802 | } |
| 803 | EXPORT_SYMBOL(test_set_page_writeback); |
| 804 | |
| 805 | /* |
| 806 | * Return true if any of the pages in the mapping are marged with the |
| 807 | * passed tag. |
| 808 | */ |
| 809 | int mapping_tagged(struct address_space *mapping, int tag) |
| 810 | { |
| 811 | unsigned long flags; |
| 812 | int ret; |
| 813 | |
| 814 | read_lock_irqsave(&mapping->tree_lock, flags); |
| 815 | ret = radix_tree_tagged(&mapping->page_tree, tag); |
| 816 | read_unlock_irqrestore(&mapping->tree_lock, flags); |
| 817 | return ret; |
| 818 | } |
| 819 | EXPORT_SYMBOL(mapping_tagged); |