blob: 030ba49f33ff3f4a338da8331456f47a0a9ebcff [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/******************************************************************************
2** Device driver for the PCI-SCSI NCR538XX controller family.
3**
4** Copyright (C) 1994 Wolfgang Stanglmeier
5**
6** This program is free software; you can redistribute it and/or modify
7** it under the terms of the GNU General Public License as published by
8** the Free Software Foundation; either version 2 of the License, or
9** (at your option) any later version.
10**
11** This program is distributed in the hope that it will be useful,
12** but WITHOUT ANY WARRANTY; without even the implied warranty of
13** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14** GNU General Public License for more details.
15**
16** You should have received a copy of the GNU General Public License
17** along with this program; if not, write to the Free Software
18** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19**
20**-----------------------------------------------------------------------------
21**
22** This driver has been ported to Linux from the FreeBSD NCR53C8XX driver
23** and is currently maintained by
24**
25** Gerard Roudier <groudier@free.fr>
26**
27** Being given that this driver originates from the FreeBSD version, and
28** in order to keep synergy on both, any suggested enhancements and corrections
29** received on Linux are automatically a potential candidate for the FreeBSD
30** version.
31**
32** The original driver has been written for 386bsd and FreeBSD by
33** Wolfgang Stanglmeier <wolf@cologne.de>
34** Stefan Esser <se@mi.Uni-Koeln.de>
35**
36** And has been ported to NetBSD by
37** Charles M. Hannum <mycroft@gnu.ai.mit.edu>
38**
39**-----------------------------------------------------------------------------
40**
41** Brief history
42**
43** December 10 1995 by Gerard Roudier:
44** Initial port to Linux.
45**
46** June 23 1996 by Gerard Roudier:
47** Support for 64 bits architectures (Alpha).
48**
49** November 30 1996 by Gerard Roudier:
50** Support for Fast-20 scsi.
51** Support for large DMA fifo and 128 dwords bursting.
52**
53** February 27 1997 by Gerard Roudier:
54** Support for Fast-40 scsi.
55** Support for on-Board RAM.
56**
57** May 3 1997 by Gerard Roudier:
58** Full support for scsi scripts instructions pre-fetching.
59**
60** May 19 1997 by Richard Waltham <dormouse@farsrobt.demon.co.uk>:
61** Support for NvRAM detection and reading.
62**
63** August 18 1997 by Cort <cort@cs.nmt.edu>:
64** Support for Power/PC (Big Endian).
65**
66** June 20 1998 by Gerard Roudier
67** Support for up to 64 tags per lun.
68** O(1) everywhere (C and SCRIPTS) for normal cases.
69** Low PCI traffic for command handling when on-chip RAM is present.
70** Aggressive SCSI SCRIPTS optimizations.
71**
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -070072** 2005 by Matthew Wilcox and James Bottomley
73** PCI-ectomy. This driver now supports only the 720 chip (see the
74** NCR_Q720 and zalon drivers for the bus probe logic).
75**
Linus Torvalds1da177e2005-04-16 15:20:36 -070076*******************************************************************************
77*/
78
79/*
80** Supported SCSI-II features:
81** Synchronous negotiation
82** Wide negotiation (depends on the NCR Chip)
83** Enable disconnection
84** Tagged command queuing
85** Parity checking
86** Etc...
87**
88** Supported NCR/SYMBIOS chips:
89** 53C720 (Wide, Fast SCSI-2, intfly problems)
90*/
91
92/* Name and version of the driver */
93#define SCSI_NCR_DRIVER_NAME "ncr53c8xx-3.4.3g"
94
95#define SCSI_NCR_DEBUG_FLAGS (0)
96
Linus Torvalds1da177e2005-04-16 15:20:36 -070097#include <linux/blkdev.h>
98#include <linux/delay.h>
99#include <linux/dma-mapping.h>
100#include <linux/errno.h>
101#include <linux/init.h>
102#include <linux/interrupt.h>
103#include <linux/ioport.h>
104#include <linux/mm.h>
105#include <linux/module.h>
106#include <linux/sched.h>
107#include <linux/signal.h>
108#include <linux/spinlock.h>
109#include <linux/stat.h>
110#include <linux/string.h>
111#include <linux/time.h>
112#include <linux/timer.h>
113#include <linux/types.h>
114
115#include <asm/dma.h>
116#include <asm/io.h>
117#include <asm/system.h>
118
119#include <scsi/scsi.h>
120#include <scsi/scsi_cmnd.h>
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -0700121#include <scsi/scsi_dbg.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -0700122#include <scsi/scsi_device.h>
123#include <scsi/scsi_tcq.h>
124#include <scsi/scsi_transport.h>
125#include <scsi/scsi_transport_spi.h>
126
127#include "ncr53c8xx.h"
128
Linus Torvalds1da177e2005-04-16 15:20:36 -0700129#define NAME53C8XX "ncr53c8xx"
130
Matthew Wilcox19c65092005-12-16 12:50:53 -0500131/*==========================================================
132**
133** Debugging tags
134**
135**==========================================================
136*/
137
138#define DEBUG_ALLOC (0x0001)
139#define DEBUG_PHASE (0x0002)
140#define DEBUG_QUEUE (0x0008)
141#define DEBUG_RESULT (0x0010)
142#define DEBUG_POINTER (0x0020)
143#define DEBUG_SCRIPT (0x0040)
144#define DEBUG_TINY (0x0080)
145#define DEBUG_TIMING (0x0100)
146#define DEBUG_NEGO (0x0200)
147#define DEBUG_TAGS (0x0400)
148#define DEBUG_SCATTER (0x0800)
149#define DEBUG_IC (0x1000)
150
151/*
152** Enable/Disable debug messages.
153** Can be changed at runtime too.
154*/
155
156#ifdef SCSI_NCR_DEBUG_INFO_SUPPORT
157static int ncr_debug = SCSI_NCR_DEBUG_FLAGS;
158 #define DEBUG_FLAGS ncr_debug
159#else
160 #define DEBUG_FLAGS SCSI_NCR_DEBUG_FLAGS
161#endif
162
163static inline struct list_head *ncr_list_pop(struct list_head *head)
164{
165 if (!list_empty(head)) {
166 struct list_head *elem = head->next;
167
168 list_del(elem);
169 return elem;
170 }
171
172 return NULL;
173}
174
175/*==========================================================
176**
177** Simple power of two buddy-like allocator.
178**
179** This simple code is not intended to be fast, but to
180** provide power of 2 aligned memory allocations.
181** Since the SCRIPTS processor only supplies 8 bit
182** arithmetic, this allocator allows simple and fast
183** address calculations from the SCRIPTS code.
184** In addition, cache line alignment is guaranteed for
185** power of 2 cache line size.
186** Enhanced in linux-2.3.44 to provide a memory pool
187** per pcidev to support dynamic dma mapping. (I would
Matt LaPlante0779bf22006-11-30 05:24:39 +0100188** have preferred a real bus abstraction, btw).
Matthew Wilcox19c65092005-12-16 12:50:53 -0500189**
190**==========================================================
191*/
192
193#define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */
194#if PAGE_SIZE >= 8192
195#define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */
196#else
197#define MEMO_PAGE_ORDER 1 /* 2 PAGES maximum */
198#endif
199#define MEMO_FREE_UNUSED /* Free unused pages immediately */
200#define MEMO_WARN 1
201#define MEMO_GFP_FLAGS GFP_ATOMIC
202#define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER)
203#define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT)
204#define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1)
205
206typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */
207typedef struct device *m_bush_t; /* Something that addresses DMAable */
208
209typedef struct m_link { /* Link between free memory chunks */
210 struct m_link *next;
211} m_link_s;
212
213typedef struct m_vtob { /* Virtual to Bus address translation */
214 struct m_vtob *next;
215 m_addr_t vaddr;
216 m_addr_t baddr;
217} m_vtob_s;
218#define VTOB_HASH_SHIFT 5
219#define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
220#define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
221#define VTOB_HASH_CODE(m) \
222 ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
223
224typedef struct m_pool { /* Memory pool of a given kind */
225 m_bush_t bush;
226 m_addr_t (*getp)(struct m_pool *);
227 void (*freep)(struct m_pool *, m_addr_t);
228 int nump;
229 m_vtob_s *(vtob[VTOB_HASH_SIZE]);
230 struct m_pool *next;
231 struct m_link h[PAGE_SHIFT-MEMO_SHIFT+MEMO_PAGE_ORDER+1];
232} m_pool_s;
233
234static void *___m_alloc(m_pool_s *mp, int size)
235{
236 int i = 0;
237 int s = (1 << MEMO_SHIFT);
238 int j;
239 m_addr_t a;
240 m_link_s *h = mp->h;
241
242 if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
243 return NULL;
244
245 while (size > s) {
246 s <<= 1;
247 ++i;
248 }
249
250 j = i;
251 while (!h[j].next) {
252 if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
253 h[j].next = (m_link_s *)mp->getp(mp);
254 if (h[j].next)
255 h[j].next->next = NULL;
256 break;
257 }
258 ++j;
259 s <<= 1;
260 }
261 a = (m_addr_t) h[j].next;
262 if (a) {
263 h[j].next = h[j].next->next;
264 while (j > i) {
265 j -= 1;
266 s >>= 1;
267 h[j].next = (m_link_s *) (a+s);
268 h[j].next->next = NULL;
269 }
270 }
271#ifdef DEBUG
272 printk("___m_alloc(%d) = %p\n", size, (void *) a);
273#endif
274 return (void *) a;
275}
276
277static void ___m_free(m_pool_s *mp, void *ptr, int size)
278{
279 int i = 0;
280 int s = (1 << MEMO_SHIFT);
281 m_link_s *q;
282 m_addr_t a, b;
283 m_link_s *h = mp->h;
284
285#ifdef DEBUG
286 printk("___m_free(%p, %d)\n", ptr, size);
287#endif
288
289 if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
290 return;
291
292 while (size > s) {
293 s <<= 1;
294 ++i;
295 }
296
297 a = (m_addr_t) ptr;
298
299 while (1) {
300#ifdef MEMO_FREE_UNUSED
301 if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
302 mp->freep(mp, a);
303 break;
304 }
305#endif
306 b = a ^ s;
307 q = &h[i];
308 while (q->next && q->next != (m_link_s *) b) {
309 q = q->next;
310 }
311 if (!q->next) {
312 ((m_link_s *) a)->next = h[i].next;
313 h[i].next = (m_link_s *) a;
314 break;
315 }
316 q->next = q->next->next;
317 a = a & b;
318 s <<= 1;
319 ++i;
320 }
321}
322
323static DEFINE_SPINLOCK(ncr53c8xx_lock);
324
325static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags)
326{
327 void *p;
328
329 p = ___m_alloc(mp, size);
330
331 if (DEBUG_FLAGS & DEBUG_ALLOC)
332 printk ("new %-10s[%4d] @%p.\n", name, size, p);
333
334 if (p)
335 memset(p, 0, size);
336 else if (uflags & MEMO_WARN)
337 printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size);
338
339 return p;
340}
341
342#define __m_calloc(mp, s, n) __m_calloc2(mp, s, n, MEMO_WARN)
343
344static void __m_free(m_pool_s *mp, void *ptr, int size, char *name)
345{
346 if (DEBUG_FLAGS & DEBUG_ALLOC)
347 printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
348
349 ___m_free(mp, ptr, size);
350
351}
352
353/*
354 * With pci bus iommu support, we use a default pool of unmapped memory
355 * for memory we donnot need to DMA from/to and one pool per pcidev for
356 * memory accessed by the PCI chip. `mp0' is the default not DMAable pool.
357 */
358
359static m_addr_t ___mp0_getp(m_pool_s *mp)
360{
361 m_addr_t m = __get_free_pages(MEMO_GFP_FLAGS, MEMO_PAGE_ORDER);
362 if (m)
363 ++mp->nump;
364 return m;
365}
366
367static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
368{
369 free_pages(m, MEMO_PAGE_ORDER);
370 --mp->nump;
371}
372
373static m_pool_s mp0 = {NULL, ___mp0_getp, ___mp0_freep};
374
375/*
376 * DMAable pools.
377 */
378
379/*
380 * With pci bus iommu support, we maintain one pool per pcidev and a
381 * hashed reverse table for virtual to bus physical address translations.
382 */
383static m_addr_t ___dma_getp(m_pool_s *mp)
384{
385 m_addr_t vp;
386 m_vtob_s *vbp;
387
388 vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB");
389 if (vbp) {
390 dma_addr_t daddr;
391 vp = (m_addr_t) dma_alloc_coherent(mp->bush,
392 PAGE_SIZE<<MEMO_PAGE_ORDER,
393 &daddr, GFP_ATOMIC);
394 if (vp) {
395 int hc = VTOB_HASH_CODE(vp);
396 vbp->vaddr = vp;
397 vbp->baddr = daddr;
398 vbp->next = mp->vtob[hc];
399 mp->vtob[hc] = vbp;
400 ++mp->nump;
401 return vp;
402 }
403 }
404 if (vbp)
405 __m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
406 return 0;
407}
408
409static void ___dma_freep(m_pool_s *mp, m_addr_t m)
410{
411 m_vtob_s **vbpp, *vbp;
412 int hc = VTOB_HASH_CODE(m);
413
414 vbpp = &mp->vtob[hc];
415 while (*vbpp && (*vbpp)->vaddr != m)
416 vbpp = &(*vbpp)->next;
417 if (*vbpp) {
418 vbp = *vbpp;
419 *vbpp = (*vbpp)->next;
420 dma_free_coherent(mp->bush, PAGE_SIZE<<MEMO_PAGE_ORDER,
421 (void *)vbp->vaddr, (dma_addr_t)vbp->baddr);
422 __m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
423 --mp->nump;
424 }
425}
426
427static inline m_pool_s *___get_dma_pool(m_bush_t bush)
428{
429 m_pool_s *mp;
430 for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next);
431 return mp;
432}
433
434static m_pool_s *___cre_dma_pool(m_bush_t bush)
435{
436 m_pool_s *mp;
437 mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL");
438 if (mp) {
439 memset(mp, 0, sizeof(*mp));
440 mp->bush = bush;
441 mp->getp = ___dma_getp;
442 mp->freep = ___dma_freep;
443 mp->next = mp0.next;
444 mp0.next = mp;
445 }
446 return mp;
447}
448
449static void ___del_dma_pool(m_pool_s *p)
450{
451 struct m_pool **pp = &mp0.next;
452
453 while (*pp && *pp != p)
454 pp = &(*pp)->next;
455 if (*pp) {
456 *pp = (*pp)->next;
457 __m_free(&mp0, p, sizeof(*p), "MPOOL");
458 }
459}
460
461static void *__m_calloc_dma(m_bush_t bush, int size, char *name)
462{
463 u_long flags;
464 struct m_pool *mp;
465 void *m = NULL;
466
467 spin_lock_irqsave(&ncr53c8xx_lock, flags);
468 mp = ___get_dma_pool(bush);
469 if (!mp)
470 mp = ___cre_dma_pool(bush);
471 if (mp)
472 m = __m_calloc(mp, size, name);
473 if (mp && !mp->nump)
474 ___del_dma_pool(mp);
475 spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
476
477 return m;
478}
479
480static void __m_free_dma(m_bush_t bush, void *m, int size, char *name)
481{
482 u_long flags;
483 struct m_pool *mp;
484
485 spin_lock_irqsave(&ncr53c8xx_lock, flags);
486 mp = ___get_dma_pool(bush);
487 if (mp)
488 __m_free(mp, m, size, name);
489 if (mp && !mp->nump)
490 ___del_dma_pool(mp);
491 spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
492}
493
494static m_addr_t __vtobus(m_bush_t bush, void *m)
495{
496 u_long flags;
497 m_pool_s *mp;
498 int hc = VTOB_HASH_CODE(m);
499 m_vtob_s *vp = NULL;
500 m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
501
502 spin_lock_irqsave(&ncr53c8xx_lock, flags);
503 mp = ___get_dma_pool(bush);
504 if (mp) {
505 vp = mp->vtob[hc];
506 while (vp && (m_addr_t) vp->vaddr != a)
507 vp = vp->next;
508 }
509 spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
510 return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
511}
512
513#define _m_calloc_dma(np, s, n) __m_calloc_dma(np->dev, s, n)
514#define _m_free_dma(np, p, s, n) __m_free_dma(np->dev, p, s, n)
515#define m_calloc_dma(s, n) _m_calloc_dma(np, s, n)
516#define m_free_dma(p, s, n) _m_free_dma(np, p, s, n)
517#define _vtobus(np, p) __vtobus(np->dev, p)
518#define vtobus(p) _vtobus(np, p)
519
520/*
521 * Deal with DMA mapping/unmapping.
522 */
523
524/* To keep track of the dma mapping (sg/single) that has been set */
525#define __data_mapped SCp.phase
526#define __data_mapping SCp.have_data_in
527
528static void __unmap_scsi_data(struct device *dev, struct scsi_cmnd *cmd)
529{
530 switch(cmd->__data_mapped) {
531 case 2:
FUJITA Tomonori69eca4f2007-05-14 19:22:21 +0900532 scsi_dma_unmap(cmd);
Matthew Wilcox19c65092005-12-16 12:50:53 -0500533 break;
534 }
535 cmd->__data_mapped = 0;
536}
537
Matthew Wilcox19c65092005-12-16 12:50:53 -0500538static int __map_scsi_sg_data(struct device *dev, struct scsi_cmnd *cmd)
539{
540 int use_sg;
541
FUJITA Tomonori69eca4f2007-05-14 19:22:21 +0900542 use_sg = scsi_dma_map(cmd);
543 if (!use_sg)
Matthew Wilcox19c65092005-12-16 12:50:53 -0500544 return 0;
545
Matthew Wilcox19c65092005-12-16 12:50:53 -0500546 cmd->__data_mapped = 2;
547 cmd->__data_mapping = use_sg;
548
549 return use_sg;
550}
551
552#define unmap_scsi_data(np, cmd) __unmap_scsi_data(np->dev, cmd)
Matthew Wilcox19c65092005-12-16 12:50:53 -0500553#define map_scsi_sg_data(np, cmd) __map_scsi_sg_data(np->dev, cmd)
554
555/*==========================================================
556**
557** Driver setup.
558**
559** This structure is initialized from linux config
560** options. It can be overridden at boot-up by the boot
561** command line.
562**
563**==========================================================
564*/
565static struct ncr_driver_setup
566 driver_setup = SCSI_NCR_DRIVER_SETUP;
567
Jeff Garzikdb3a8812006-11-08 19:56:20 -0800568#ifndef MODULE
Matthew Wilcox19c65092005-12-16 12:50:53 -0500569#ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
570static struct ncr_driver_setup
571 driver_safe_setup __initdata = SCSI_NCR_DRIVER_SAFE_SETUP;
572#endif
Jeff Garzikdb3a8812006-11-08 19:56:20 -0800573#endif /* !MODULE */
Matthew Wilcox19c65092005-12-16 12:50:53 -0500574
575#define initverbose (driver_setup.verbose)
576#define bootverbose (np->verbose)
577
578
579/*===================================================================
580**
581** Driver setup from the boot command line
582**
583**===================================================================
584*/
585
586#ifdef MODULE
587#define ARG_SEP ' '
588#else
589#define ARG_SEP ','
590#endif
591
592#define OPT_TAGS 1
593#define OPT_MASTER_PARITY 2
594#define OPT_SCSI_PARITY 3
595#define OPT_DISCONNECTION 4
596#define OPT_SPECIAL_FEATURES 5
597#define OPT_UNUSED_1 6
598#define OPT_FORCE_SYNC_NEGO 7
599#define OPT_REVERSE_PROBE 8
600#define OPT_DEFAULT_SYNC 9
601#define OPT_VERBOSE 10
602#define OPT_DEBUG 11
603#define OPT_BURST_MAX 12
604#define OPT_LED_PIN 13
605#define OPT_MAX_WIDE 14
606#define OPT_SETTLE_DELAY 15
607#define OPT_DIFF_SUPPORT 16
608#define OPT_IRQM 17
609#define OPT_PCI_FIX_UP 18
610#define OPT_BUS_CHECK 19
611#define OPT_OPTIMIZE 20
612#define OPT_RECOVERY 21
613#define OPT_SAFE_SETUP 22
614#define OPT_USE_NVRAM 23
615#define OPT_EXCLUDE 24
616#define OPT_HOST_ID 25
617
618#ifdef SCSI_NCR_IARB_SUPPORT
619#define OPT_IARB 26
620#endif
621
Jeff Garzikdb3a8812006-11-08 19:56:20 -0800622#ifdef MODULE
623#define ARG_SEP ' '
624#else
625#define ARG_SEP ','
626#endif
627
628#ifndef MODULE
Matthew Wilcox19c65092005-12-16 12:50:53 -0500629static char setup_token[] __initdata =
630 "tags:" "mpar:"
631 "spar:" "disc:"
632 "specf:" "ultra:"
633 "fsn:" "revprob:"
634 "sync:" "verb:"
635 "debug:" "burst:"
636 "led:" "wide:"
637 "settle:" "diff:"
638 "irqm:" "pcifix:"
639 "buschk:" "optim:"
640 "recovery:"
641 "safe:" "nvram:"
642 "excl:" "hostid:"
643#ifdef SCSI_NCR_IARB_SUPPORT
644 "iarb:"
645#endif
646 ; /* DONNOT REMOVE THIS ';' */
647
Matthew Wilcox19c65092005-12-16 12:50:53 -0500648static int __init get_setup_token(char *p)
649{
650 char *cur = setup_token;
651 char *pc;
652 int i = 0;
653
654 while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
655 ++pc;
656 ++i;
657 if (!strncmp(p, cur, pc - cur))
658 return i;
659 cur = pc;
660 }
661 return 0;
662}
663
Matthew Wilcox19c65092005-12-16 12:50:53 -0500664static int __init sym53c8xx__setup(char *str)
665{
666#ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
667 char *cur = str;
668 char *pc, *pv;
669 int i, val, c;
670 int xi = 0;
671
672 while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
673 char *pe;
674
675 val = 0;
676 pv = pc;
677 c = *++pv;
678
679 if (c == 'n')
680 val = 0;
681 else if (c == 'y')
682 val = 1;
683 else
684 val = (int) simple_strtoul(pv, &pe, 0);
685
686 switch (get_setup_token(cur)) {
687 case OPT_TAGS:
688 driver_setup.default_tags = val;
689 if (pe && *pe == '/') {
690 i = 0;
691 while (*pe && *pe != ARG_SEP &&
692 i < sizeof(driver_setup.tag_ctrl)-1) {
693 driver_setup.tag_ctrl[i++] = *pe++;
694 }
695 driver_setup.tag_ctrl[i] = '\0';
696 }
697 break;
698 case OPT_MASTER_PARITY:
699 driver_setup.master_parity = val;
700 break;
701 case OPT_SCSI_PARITY:
702 driver_setup.scsi_parity = val;
703 break;
704 case OPT_DISCONNECTION:
705 driver_setup.disconnection = val;
706 break;
707 case OPT_SPECIAL_FEATURES:
708 driver_setup.special_features = val;
709 break;
710 case OPT_FORCE_SYNC_NEGO:
711 driver_setup.force_sync_nego = val;
712 break;
713 case OPT_REVERSE_PROBE:
714 driver_setup.reverse_probe = val;
715 break;
716 case OPT_DEFAULT_SYNC:
717 driver_setup.default_sync = val;
718 break;
719 case OPT_VERBOSE:
720 driver_setup.verbose = val;
721 break;
722 case OPT_DEBUG:
723 driver_setup.debug = val;
724 break;
725 case OPT_BURST_MAX:
726 driver_setup.burst_max = val;
727 break;
728 case OPT_LED_PIN:
729 driver_setup.led_pin = val;
730 break;
731 case OPT_MAX_WIDE:
732 driver_setup.max_wide = val? 1:0;
733 break;
734 case OPT_SETTLE_DELAY:
735 driver_setup.settle_delay = val;
736 break;
737 case OPT_DIFF_SUPPORT:
738 driver_setup.diff_support = val;
739 break;
740 case OPT_IRQM:
741 driver_setup.irqm = val;
742 break;
743 case OPT_PCI_FIX_UP:
744 driver_setup.pci_fix_up = val;
745 break;
746 case OPT_BUS_CHECK:
747 driver_setup.bus_check = val;
748 break;
749 case OPT_OPTIMIZE:
750 driver_setup.optimize = val;
751 break;
752 case OPT_RECOVERY:
753 driver_setup.recovery = val;
754 break;
755 case OPT_USE_NVRAM:
756 driver_setup.use_nvram = val;
757 break;
758 case OPT_SAFE_SETUP:
759 memcpy(&driver_setup, &driver_safe_setup,
760 sizeof(driver_setup));
761 break;
762 case OPT_EXCLUDE:
763 if (xi < SCSI_NCR_MAX_EXCLUDES)
764 driver_setup.excludes[xi++] = val;
765 break;
766 case OPT_HOST_ID:
767 driver_setup.host_id = val;
768 break;
769#ifdef SCSI_NCR_IARB_SUPPORT
770 case OPT_IARB:
771 driver_setup.iarb = val;
772 break;
773#endif
774 default:
775 printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur);
776 break;
777 }
778
779 if ((cur = strchr(cur, ARG_SEP)) != NULL)
780 ++cur;
781 }
782#endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */
783 return 1;
784}
Jeff Garzikdb3a8812006-11-08 19:56:20 -0800785#endif /* !MODULE */
Matthew Wilcox19c65092005-12-16 12:50:53 -0500786
787/*===================================================================
788**
789** Get device queue depth from boot command line.
790**
791**===================================================================
792*/
793#define DEF_DEPTH (driver_setup.default_tags)
794#define ALL_TARGETS -2
795#define NO_TARGET -1
796#define ALL_LUNS -2
797#define NO_LUN -1
798
799static int device_queue_depth(int unit, int target, int lun)
800{
801 int c, h, t, u, v;
802 char *p = driver_setup.tag_ctrl;
803 char *ep;
804
805 h = -1;
806 t = NO_TARGET;
807 u = NO_LUN;
808 while ((c = *p++) != 0) {
809 v = simple_strtoul(p, &ep, 0);
810 switch(c) {
811 case '/':
812 ++h;
813 t = ALL_TARGETS;
814 u = ALL_LUNS;
815 break;
816 case 't':
817 if (t != target)
818 t = (target == v) ? v : NO_TARGET;
819 u = ALL_LUNS;
820 break;
821 case 'u':
822 if (u != lun)
823 u = (lun == v) ? v : NO_LUN;
824 break;
825 case 'q':
826 if (h == unit &&
827 (t == ALL_TARGETS || t == target) &&
828 (u == ALL_LUNS || u == lun))
829 return v;
830 break;
831 case '-':
832 t = ALL_TARGETS;
833 u = ALL_LUNS;
834 break;
835 default:
836 break;
837 }
838 p = ep;
839 }
840 return DEF_DEPTH;
841}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700842
843
844/*==========================================================
845**
846** The CCB done queue uses an array of CCB virtual
847** addresses. Empty entries are flagged using the bogus
848** virtual address 0xffffffff.
849**
850** Since PCI ensures that only aligned DWORDs are accessed
851** atomically, 64 bit little-endian architecture requires
852** to test the high order DWORD of the entry to determine
853** if it is empty or valid.
854**
855** BTW, I will make things differently as soon as I will
856** have a better idea, but this is simple and should work.
857**
858**==========================================================
859*/
860
861#define SCSI_NCR_CCB_DONE_SUPPORT
862#ifdef SCSI_NCR_CCB_DONE_SUPPORT
863
864#define MAX_DONE 24
865#define CCB_DONE_EMPTY 0xffffffffUL
866
867/* All 32 bit architectures */
868#if BITS_PER_LONG == 32
869#define CCB_DONE_VALID(cp) (((u_long) cp) != CCB_DONE_EMPTY)
870
871/* All > 32 bit (64 bit) architectures regardless endian-ness */
872#else
873#define CCB_DONE_VALID(cp) \
874 ((((u_long) cp) & 0xffffffff00000000ul) && \
875 (((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY)
876#endif
877
878#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
879
880/*==========================================================
881**
882** Configuration and Debugging
883**
884**==========================================================
885*/
886
887/*
888** SCSI address of this device.
889** The boot routines should have set it.
890** If not, use this.
891*/
892
893#ifndef SCSI_NCR_MYADDR
894#define SCSI_NCR_MYADDR (7)
895#endif
896
897/*
898** The maximum number of tags per logic unit.
899** Used only for disk devices that support tags.
900*/
901
902#ifndef SCSI_NCR_MAX_TAGS
903#define SCSI_NCR_MAX_TAGS (8)
904#endif
905
906/*
907** TAGS are actually limited to 64 tags/lun.
908** We need to deal with power of 2, for alignment constraints.
909*/
910#if SCSI_NCR_MAX_TAGS > 64
911#define MAX_TAGS (64)
912#else
913#define MAX_TAGS SCSI_NCR_MAX_TAGS
914#endif
915
916#define NO_TAG (255)
917
918/*
919** Choose appropriate type for tag bitmap.
920*/
921#if MAX_TAGS > 32
922typedef u64 tagmap_t;
923#else
924typedef u32 tagmap_t;
925#endif
926
927/*
928** Number of targets supported by the driver.
929** n permits target numbers 0..n-1.
930** Default is 16, meaning targets #0..#15.
931** #7 .. is myself.
932*/
933
934#ifdef SCSI_NCR_MAX_TARGET
935#define MAX_TARGET (SCSI_NCR_MAX_TARGET)
936#else
937#define MAX_TARGET (16)
938#endif
939
940/*
941** Number of logic units supported by the driver.
942** n enables logic unit numbers 0..n-1.
943** The common SCSI devices require only
944** one lun, so take 1 as the default.
945*/
946
947#ifdef SCSI_NCR_MAX_LUN
948#define MAX_LUN SCSI_NCR_MAX_LUN
949#else
950#define MAX_LUN (1)
951#endif
952
953/*
954** Asynchronous pre-scaler (ns). Shall be 40
955*/
956
957#ifndef SCSI_NCR_MIN_ASYNC
958#define SCSI_NCR_MIN_ASYNC (40)
959#endif
960
961/*
962** The maximum number of jobs scheduled for starting.
963** There should be one slot per target, and one slot
964** for each tag of each target in use.
965** The calculation below is actually quite silly ...
966*/
967
968#ifdef SCSI_NCR_CAN_QUEUE
969#define MAX_START (SCSI_NCR_CAN_QUEUE + 4)
970#else
971#define MAX_START (MAX_TARGET + 7 * MAX_TAGS)
972#endif
973
974/*
975** We limit the max number of pending IO to 250.
976** since we donnot want to allocate more than 1
977** PAGE for 'scripth'.
978*/
979#if MAX_START > 250
980#undef MAX_START
981#define MAX_START 250
982#endif
983
984/*
985** The maximum number of segments a transfer is split into.
986** We support up to 127 segments for both read and write.
987** The data scripts are broken into 2 sub-scripts.
988** 80 (MAX_SCATTERL) segments are moved from a sub-script
989** in on-chip RAM. This makes data transfers shorter than
990** 80k (assuming 1k fs) as fast as possible.
991*/
992
993#define MAX_SCATTER (SCSI_NCR_MAX_SCATTER)
994
995#if (MAX_SCATTER > 80)
996#define MAX_SCATTERL 80
997#define MAX_SCATTERH (MAX_SCATTER - MAX_SCATTERL)
998#else
999#define MAX_SCATTERL (MAX_SCATTER-1)
1000#define MAX_SCATTERH 1
1001#endif
1002
1003/*
1004** other
1005*/
1006
1007#define NCR_SNOOP_TIMEOUT (1000000)
1008
1009/*
1010** Other definitions
1011*/
1012
1013#define ScsiResult(host_code, scsi_code) (((host_code) << 16) + ((scsi_code) & 0x7f))
1014
1015#define initverbose (driver_setup.verbose)
1016#define bootverbose (np->verbose)
1017
1018/*==========================================================
1019**
1020** Command control block states.
1021**
1022**==========================================================
1023*/
1024
1025#define HS_IDLE (0)
1026#define HS_BUSY (1)
1027#define HS_NEGOTIATE (2) /* sync/wide data transfer*/
1028#define HS_DISCONNECT (3) /* Disconnected by target */
1029
1030#define HS_DONEMASK (0x80)
1031#define HS_COMPLETE (4|HS_DONEMASK)
1032#define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
1033#define HS_RESET (6|HS_DONEMASK) /* SCSI reset */
1034#define HS_ABORTED (7|HS_DONEMASK) /* Transfer aborted */
1035#define HS_TIMEOUT (8|HS_DONEMASK) /* Software timeout */
1036#define HS_FAIL (9|HS_DONEMASK) /* SCSI or PCI bus errors */
1037#define HS_UNEXPECTED (10|HS_DONEMASK)/* Unexpected disconnect */
1038
1039/*
1040** Invalid host status values used by the SCRIPTS processor
1041** when the nexus is not fully identified.
1042** Shall never appear in a CCB.
1043*/
1044
1045#define HS_INVALMASK (0x40)
1046#define HS_SELECTING (0|HS_INVALMASK)
1047#define HS_IN_RESELECT (1|HS_INVALMASK)
1048#define HS_STARTING (2|HS_INVALMASK)
1049
1050/*
1051** Flags set by the SCRIPT processor for commands
1052** that have been skipped.
1053*/
1054#define HS_SKIPMASK (0x20)
1055
1056/*==========================================================
1057**
1058** Software Interrupt Codes
1059**
1060**==========================================================
1061*/
1062
1063#define SIR_BAD_STATUS (1)
1064#define SIR_XXXXXXXXXX (2)
1065#define SIR_NEGO_SYNC (3)
1066#define SIR_NEGO_WIDE (4)
1067#define SIR_NEGO_FAILED (5)
1068#define SIR_NEGO_PROTO (6)
1069#define SIR_REJECT_RECEIVED (7)
1070#define SIR_REJECT_SENT (8)
1071#define SIR_IGN_RESIDUE (9)
1072#define SIR_MISSING_SAVE (10)
1073#define SIR_RESEL_NO_MSG_IN (11)
1074#define SIR_RESEL_NO_IDENTIFY (12)
1075#define SIR_RESEL_BAD_LUN (13)
1076#define SIR_RESEL_BAD_TARGET (14)
1077#define SIR_RESEL_BAD_I_T_L (15)
1078#define SIR_RESEL_BAD_I_T_L_Q (16)
1079#define SIR_DONE_OVERFLOW (17)
1080#define SIR_INTFLY (18)
1081#define SIR_MAX (18)
1082
1083/*==========================================================
1084**
1085** Extended error codes.
1086** xerr_status field of struct ccb.
1087**
1088**==========================================================
1089*/
1090
1091#define XE_OK (0)
1092#define XE_EXTRA_DATA (1) /* unexpected data phase */
1093#define XE_BAD_PHASE (2) /* illegal phase (4/5) */
1094
1095/*==========================================================
1096**
1097** Negotiation status.
1098** nego_status field of struct ccb.
1099**
1100**==========================================================
1101*/
1102
1103#define NS_NOCHANGE (0)
1104#define NS_SYNC (1)
1105#define NS_WIDE (2)
1106#define NS_PPR (4)
1107
1108/*==========================================================
1109**
1110** Misc.
1111**
1112**==========================================================
1113*/
1114
1115#define CCB_MAGIC (0xf2691ad2)
1116
1117/*==========================================================
1118**
1119** Declaration of structs.
1120**
1121**==========================================================
1122*/
1123
1124static struct scsi_transport_template *ncr53c8xx_transport_template = NULL;
1125
1126struct tcb;
1127struct lcb;
1128struct ccb;
1129struct ncb;
1130struct script;
1131
1132struct link {
1133 ncrcmd l_cmd;
1134 ncrcmd l_paddr;
1135};
1136
1137struct usrcmd {
1138 u_long target;
1139 u_long lun;
1140 u_long data;
1141 u_long cmd;
1142};
1143
1144#define UC_SETSYNC 10
1145#define UC_SETTAGS 11
1146#define UC_SETDEBUG 12
1147#define UC_SETORDER 13
1148#define UC_SETWIDE 14
1149#define UC_SETFLAG 15
1150#define UC_SETVERBOSE 17
1151
1152#define UF_TRACE (0x01)
1153#define UF_NODISC (0x02)
1154#define UF_NOSCAN (0x04)
1155
1156/*========================================================================
1157**
1158** Declaration of structs: target control block
1159**
1160**========================================================================
1161*/
1162struct tcb {
1163 /*----------------------------------------------------------------
1164 ** During reselection the ncr jumps to this point with SFBR
1165 ** set to the encoded target number with bit 7 set.
1166 ** if it's not this target, jump to the next.
1167 **
1168 ** JUMP IF (SFBR != #target#), @(next tcb)
1169 **----------------------------------------------------------------
1170 */
1171 struct link jump_tcb;
1172
1173 /*----------------------------------------------------------------
1174 ** Load the actual values for the sxfer and the scntl3
1175 ** register (sync/wide mode).
1176 **
1177 ** SCR_COPY (1), @(sval field of this tcb), @(sxfer register)
1178 ** SCR_COPY (1), @(wval field of this tcb), @(scntl3 register)
1179 **----------------------------------------------------------------
1180 */
1181 ncrcmd getscr[6];
1182
1183 /*----------------------------------------------------------------
1184 ** Get the IDENTIFY message and load the LUN to SFBR.
1185 **
1186 ** CALL, <RESEL_LUN>
1187 **----------------------------------------------------------------
1188 */
1189 struct link call_lun;
1190
1191 /*----------------------------------------------------------------
1192 ** Now look for the right lun.
1193 **
1194 ** For i = 0 to 3
1195 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i)
1196 **
1197 ** Recent chips will prefetch the 4 JUMPS using only 1 burst.
1198 ** It is kind of hashcoding.
1199 **----------------------------------------------------------------
1200 */
1201 struct link jump_lcb[4]; /* JUMPs for reselection */
1202 struct lcb * lp[MAX_LUN]; /* The lcb's of this tcb */
1203
1204 /*----------------------------------------------------------------
1205 ** Pointer to the ccb used for negotiation.
1206 ** Prevent from starting a negotiation for all queued commands
1207 ** when tagged command queuing is enabled.
1208 **----------------------------------------------------------------
1209 */
1210 struct ccb * nego_cp;
1211
1212 /*----------------------------------------------------------------
1213 ** statistical data
1214 **----------------------------------------------------------------
1215 */
1216 u_long transfers;
1217 u_long bytes;
1218
1219 /*----------------------------------------------------------------
1220 ** negotiation of wide and synch transfer and device quirks.
1221 **----------------------------------------------------------------
1222 */
1223#ifdef SCSI_NCR_BIG_ENDIAN
1224/*0*/ u16 period;
1225/*2*/ u_char sval;
1226/*3*/ u_char minsync;
1227/*0*/ u_char wval;
1228/*1*/ u_char widedone;
1229/*2*/ u_char quirks;
1230/*3*/ u_char maxoffs;
1231#else
1232/*0*/ u_char minsync;
1233/*1*/ u_char sval;
1234/*2*/ u16 period;
1235/*0*/ u_char maxoffs;
1236/*1*/ u_char quirks;
1237/*2*/ u_char widedone;
1238/*3*/ u_char wval;
1239#endif
1240
1241 /* User settable limits and options. */
1242 u_char usrsync;
1243 u_char usrwide;
1244 u_char usrtags;
1245 u_char usrflag;
1246 struct scsi_target *starget;
1247};
1248
1249/*========================================================================
1250**
1251** Declaration of structs: lun control block
1252**
1253**========================================================================
1254*/
1255struct lcb {
1256 /*----------------------------------------------------------------
1257 ** During reselection the ncr jumps to this point
1258 ** with SFBR set to the "Identify" message.
1259 ** if it's not this lun, jump to the next.
1260 **
1261 ** JUMP IF (SFBR != #lun#), @(next lcb of this target)
1262 **
1263 ** It is this lun. Load TEMP with the nexus jumps table
1264 ** address and jump to RESEL_TAG (or RESEL_NOTAG).
1265 **
1266 ** SCR_COPY (4), p_jump_ccb, TEMP,
1267 ** SCR_JUMP, <RESEL_TAG>
1268 **----------------------------------------------------------------
1269 */
1270 struct link jump_lcb;
1271 ncrcmd load_jump_ccb[3];
1272 struct link jump_tag;
1273 ncrcmd p_jump_ccb; /* Jump table bus address */
1274
1275 /*----------------------------------------------------------------
1276 ** Jump table used by the script processor to directly jump
1277 ** to the CCB corresponding to the reselected nexus.
1278 ** Address is allocated on 256 bytes boundary in order to
1279 ** allow 8 bit calculation of the tag jump entry for up to
1280 ** 64 possible tags.
1281 **----------------------------------------------------------------
1282 */
1283 u32 jump_ccb_0; /* Default table if no tags */
1284 u32 *jump_ccb; /* Virtual address */
1285
1286 /*----------------------------------------------------------------
1287 ** CCB queue management.
1288 **----------------------------------------------------------------
1289 */
1290 struct list_head free_ccbq; /* Queue of available CCBs */
1291 struct list_head busy_ccbq; /* Queue of busy CCBs */
1292 struct list_head wait_ccbq; /* Queue of waiting for IO CCBs */
1293 struct list_head skip_ccbq; /* Queue of skipped CCBs */
1294 u_char actccbs; /* Number of allocated CCBs */
1295 u_char busyccbs; /* CCBs busy for this lun */
1296 u_char queuedccbs; /* CCBs queued to the controller*/
1297 u_char queuedepth; /* Queue depth for this lun */
1298 u_char scdev_depth; /* SCSI device queue depth */
1299 u_char maxnxs; /* Max possible nexuses */
1300
1301 /*----------------------------------------------------------------
1302 ** Control of tagged command queuing.
1303 ** Tags allocation is performed using a circular buffer.
1304 ** This avoids using a loop for tag allocation.
1305 **----------------------------------------------------------------
1306 */
1307 u_char ia_tag; /* Allocation index */
1308 u_char if_tag; /* Freeing index */
1309 u_char cb_tags[MAX_TAGS]; /* Circular tags buffer */
1310 u_char usetags; /* Command queuing is active */
1311 u_char maxtags; /* Max nr of tags asked by user */
1312 u_char numtags; /* Current number of tags */
1313
1314 /*----------------------------------------------------------------
1315 ** QUEUE FULL control and ORDERED tag control.
1316 **----------------------------------------------------------------
1317 */
1318 /*----------------------------------------------------------------
1319 ** QUEUE FULL and ORDERED tag control.
1320 **----------------------------------------------------------------
1321 */
1322 u16 num_good; /* Nr of GOOD since QUEUE FULL */
1323 tagmap_t tags_umap; /* Used tags bitmap */
1324 tagmap_t tags_smap; /* Tags in use at 'tag_stime' */
1325 u_long tags_stime; /* Last time we set smap=umap */
1326 struct ccb * held_ccb; /* CCB held for QUEUE FULL */
1327};
1328
1329/*========================================================================
1330**
1331** Declaration of structs: the launch script.
1332**
1333**========================================================================
1334**
1335** It is part of the CCB and is called by the scripts processor to
1336** start or restart the data structure (nexus).
1337** This 6 DWORDs mini script makes use of prefetching.
1338**
1339**------------------------------------------------------------------------
1340*/
1341struct launch {
1342 /*----------------------------------------------------------------
1343 ** SCR_COPY(4), @(p_phys), @(dsa register)
1344 ** SCR_JUMP, @(scheduler_point)
1345 **----------------------------------------------------------------
1346 */
1347 ncrcmd setup_dsa[3]; /* Copy 'phys' address to dsa */
1348 struct link schedule; /* Jump to scheduler point */
1349 ncrcmd p_phys; /* 'phys' header bus address */
1350};
1351
1352/*========================================================================
1353**
1354** Declaration of structs: global HEADER.
1355**
1356**========================================================================
1357**
1358** This substructure is copied from the ccb to a global address after
1359** selection (or reselection) and copied back before disconnect.
1360**
1361** These fields are accessible to the script processor.
1362**
1363**------------------------------------------------------------------------
1364*/
1365
1366struct head {
1367 /*----------------------------------------------------------------
1368 ** Saved data pointer.
1369 ** Points to the position in the script responsible for the
1370 ** actual transfer transfer of data.
1371 ** It's written after reception of a SAVE_DATA_POINTER message.
1372 ** The goalpointer points after the last transfer command.
1373 **----------------------------------------------------------------
1374 */
1375 u32 savep;
1376 u32 lastp;
1377 u32 goalp;
1378
1379 /*----------------------------------------------------------------
1380 ** Alternate data pointer.
1381 ** They are copied back to savep/lastp/goalp by the SCRIPTS
1382 ** when the direction is unknown and the device claims data out.
1383 **----------------------------------------------------------------
1384 */
1385 u32 wlastp;
1386 u32 wgoalp;
1387
1388 /*----------------------------------------------------------------
1389 ** The virtual address of the ccb containing this header.
1390 **----------------------------------------------------------------
1391 */
1392 struct ccb * cp;
1393
1394 /*----------------------------------------------------------------
1395 ** Status fields.
1396 **----------------------------------------------------------------
1397 */
1398 u_char scr_st[4]; /* script status */
1399 u_char status[4]; /* host status. must be the */
1400 /* last DWORD of the header. */
1401};
1402
1403/*
1404** The status bytes are used by the host and the script processor.
1405**
1406** The byte corresponding to the host_status must be stored in the
1407** last DWORD of the CCB header since it is used for command
1408** completion (ncr_wakeup()). Doing so, we are sure that the header
1409** has been entirely copied back to the CCB when the host_status is
1410** seen complete by the CPU.
1411**
1412** The last four bytes (status[4]) are copied to the scratchb register
1413** (declared as scr0..scr3 in ncr_reg.h) just after the select/reselect,
1414** and copied back just after disconnecting.
1415** Inside the script the XX_REG are used.
1416**
1417** The first four bytes (scr_st[4]) are used inside the script by
1418** "COPY" commands.
1419** Because source and destination must have the same alignment
Matt LaPlante0779bf22006-11-30 05:24:39 +01001420** in a DWORD, the fields HAVE to be at the chosen offsets.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001421** xerr_st 0 (0x34) scratcha
1422** sync_st 1 (0x05) sxfer
1423** wide_st 3 (0x03) scntl3
1424*/
1425
1426/*
1427** Last four bytes (script)
1428*/
1429#define QU_REG scr0
1430#define HS_REG scr1
1431#define HS_PRT nc_scr1
1432#define SS_REG scr2
1433#define SS_PRT nc_scr2
1434#define PS_REG scr3
1435
1436/*
1437** Last four bytes (host)
1438*/
1439#ifdef SCSI_NCR_BIG_ENDIAN
1440#define actualquirks phys.header.status[3]
1441#define host_status phys.header.status[2]
1442#define scsi_status phys.header.status[1]
1443#define parity_status phys.header.status[0]
1444#else
1445#define actualquirks phys.header.status[0]
1446#define host_status phys.header.status[1]
1447#define scsi_status phys.header.status[2]
1448#define parity_status phys.header.status[3]
1449#endif
1450
1451/*
1452** First four bytes (script)
1453*/
1454#define xerr_st header.scr_st[0]
1455#define sync_st header.scr_st[1]
1456#define nego_st header.scr_st[2]
1457#define wide_st header.scr_st[3]
1458
1459/*
1460** First four bytes (host)
1461*/
1462#define xerr_status phys.xerr_st
1463#define nego_status phys.nego_st
1464
1465#if 0
1466#define sync_status phys.sync_st
1467#define wide_status phys.wide_st
1468#endif
1469
1470/*==========================================================
1471**
1472** Declaration of structs: Data structure block
1473**
1474**==========================================================
1475**
1476** During execution of a ccb by the script processor,
1477** the DSA (data structure address) register points
1478** to this substructure of the ccb.
1479** This substructure contains the header with
Matt LaPlante0779bf22006-11-30 05:24:39 +01001480** the script-processor-changeable data and
Linus Torvalds1da177e2005-04-16 15:20:36 -07001481** data blocks for the indirect move commands.
1482**
1483**----------------------------------------------------------
1484*/
1485
1486struct dsb {
1487
1488 /*
1489 ** Header.
1490 */
1491
1492 struct head header;
1493
1494 /*
1495 ** Table data for Script
1496 */
1497
1498 struct scr_tblsel select;
1499 struct scr_tblmove smsg ;
1500 struct scr_tblmove cmd ;
1501 struct scr_tblmove sense ;
1502 struct scr_tblmove data[MAX_SCATTER];
1503};
1504
1505
1506/*========================================================================
1507**
1508** Declaration of structs: Command control block.
1509**
1510**========================================================================
1511*/
1512struct ccb {
1513 /*----------------------------------------------------------------
1514 ** This is the data structure which is pointed by the DSA
1515 ** register when it is executed by the script processor.
1516 ** It must be the first entry because it contains the header
1517 ** as first entry that must be cache line aligned.
1518 **----------------------------------------------------------------
1519 */
1520 struct dsb phys;
1521
1522 /*----------------------------------------------------------------
1523 ** Mini-script used at CCB execution start-up.
1524 ** Load the DSA with the data structure address (phys) and
1525 ** jump to SELECT. Jump to CANCEL if CCB is to be canceled.
1526 **----------------------------------------------------------------
1527 */
1528 struct launch start;
1529
1530 /*----------------------------------------------------------------
1531 ** Mini-script used at CCB relection to restart the nexus.
1532 ** Load the DSA with the data structure address (phys) and
1533 ** jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted.
1534 **----------------------------------------------------------------
1535 */
1536 struct launch restart;
1537
1538 /*----------------------------------------------------------------
1539 ** If a data transfer phase is terminated too early
1540 ** (after reception of a message (i.e. DISCONNECT)),
1541 ** we have to prepare a mini script to transfer
1542 ** the rest of the data.
1543 **----------------------------------------------------------------
1544 */
1545 ncrcmd patch[8];
1546
1547 /*----------------------------------------------------------------
1548 ** The general SCSI driver provides a
1549 ** pointer to a control block.
1550 **----------------------------------------------------------------
1551 */
1552 struct scsi_cmnd *cmd; /* SCSI command */
1553 u_char cdb_buf[16]; /* Copy of CDB */
1554 u_char sense_buf[64];
1555 int data_len; /* Total data length */
1556
1557 /*----------------------------------------------------------------
1558 ** Message areas.
1559 ** We prepare a message to be sent after selection.
1560 ** We may use a second one if the command is rescheduled
1561 ** due to GETCC or QFULL.
1562 ** Contents are IDENTIFY and SIMPLE_TAG.
1563 ** While negotiating sync or wide transfer,
1564 ** a SDTR or WDTR message is appended.
1565 **----------------------------------------------------------------
1566 */
1567 u_char scsi_smsg [8];
1568 u_char scsi_smsg2[8];
1569
1570 /*----------------------------------------------------------------
1571 ** Other fields.
1572 **----------------------------------------------------------------
1573 */
1574 u_long p_ccb; /* BUS address of this CCB */
1575 u_char sensecmd[6]; /* Sense command */
1576 u_char tag; /* Tag for this transfer */
1577 /* 255 means no tag */
1578 u_char target;
1579 u_char lun;
1580 u_char queued;
1581 u_char auto_sense;
1582 struct ccb * link_ccb; /* Host adapter CCB chain */
1583 struct list_head link_ccbq; /* Link to unit CCB queue */
1584 u32 startp; /* Initial data pointer */
1585 u_long magic; /* Free / busy CCB flag */
1586};
1587
1588#define CCB_PHYS(cp,lbl) (cp->p_ccb + offsetof(struct ccb, lbl))
1589
1590
1591/*========================================================================
1592**
1593** Declaration of structs: NCR device descriptor
1594**
1595**========================================================================
1596*/
1597struct ncb {
1598 /*----------------------------------------------------------------
1599 ** The global header.
1600 ** It is accessible to both the host and the script processor.
1601 ** Must be cache line size aligned (32 for x86) in order to
1602 ** allow cache line bursting when it is copied to/from CCB.
1603 **----------------------------------------------------------------
1604 */
1605 struct head header;
1606
1607 /*----------------------------------------------------------------
1608 ** CCBs management queues.
1609 **----------------------------------------------------------------
1610 */
1611 struct scsi_cmnd *waiting_list; /* Commands waiting for a CCB */
1612 /* when lcb is not allocated. */
1613 struct scsi_cmnd *done_list; /* Commands waiting for done() */
1614 /* callback to be invoked. */
1615 spinlock_t smp_lock; /* Lock for SMP threading */
1616
1617 /*----------------------------------------------------------------
1618 ** Chip and controller indentification.
1619 **----------------------------------------------------------------
1620 */
1621 int unit; /* Unit number */
1622 char inst_name[16]; /* ncb instance name */
1623
1624 /*----------------------------------------------------------------
1625 ** Initial value of some IO register bits.
1626 ** These values are assumed to have been set by BIOS, and may
1627 ** be used for probing adapter implementation differences.
1628 **----------------------------------------------------------------
1629 */
1630 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest0, sv_ctest3,
1631 sv_ctest4, sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4;
1632
1633 /*----------------------------------------------------------------
1634 ** Actual initial value of IO register bits used by the
1635 ** driver. They are loaded at initialisation according to
1636 ** features that are to be enabled.
1637 **----------------------------------------------------------------
1638 */
1639 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest0, rv_ctest3,
1640 rv_ctest4, rv_ctest5, rv_stest2;
1641
1642 /*----------------------------------------------------------------
1643 ** Targets management.
1644 ** During reselection the ncr jumps to jump_tcb.
1645 ** The SFBR register is loaded with the encoded target id.
1646 ** For i = 0 to 3
1647 ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i)
1648 **
1649 ** Recent chips will prefetch the 4 JUMPS using only 1 burst.
1650 ** It is kind of hashcoding.
1651 **----------------------------------------------------------------
1652 */
1653 struct link jump_tcb[4]; /* JUMPs for reselection */
1654 struct tcb target[MAX_TARGET]; /* Target data */
1655
1656 /*----------------------------------------------------------------
1657 ** Virtual and physical bus addresses of the chip.
1658 **----------------------------------------------------------------
1659 */
1660 void __iomem *vaddr; /* Virtual and bus address of */
1661 unsigned long paddr; /* chip's IO registers. */
1662 unsigned long paddr2; /* On-chip RAM bus address. */
1663 volatile /* Pointer to volatile for */
1664 struct ncr_reg __iomem *reg; /* memory mapped IO. */
1665
1666 /*----------------------------------------------------------------
1667 ** SCRIPTS virtual and physical bus addresses.
1668 ** 'script' is loaded in the on-chip RAM if present.
1669 ** 'scripth' stays in main memory.
1670 **----------------------------------------------------------------
1671 */
1672 struct script *script0; /* Copies of script and scripth */
1673 struct scripth *scripth0; /* relocated for this ncb. */
1674 struct scripth *scripth; /* Actual scripth virt. address */
1675 u_long p_script; /* Actual script and scripth */
1676 u_long p_scripth; /* bus addresses. */
1677
1678 /*----------------------------------------------------------------
1679 ** General controller parameters and configuration.
1680 **----------------------------------------------------------------
1681 */
1682 struct device *dev;
1683 u_char revision_id; /* PCI device revision id */
1684 u32 irq; /* IRQ level */
1685 u32 features; /* Chip features map */
1686 u_char myaddr; /* SCSI id of the adapter */
1687 u_char maxburst; /* log base 2 of dwords burst */
1688 u_char maxwide; /* Maximum transfer width */
1689 u_char minsync; /* Minimum sync period factor */
1690 u_char maxsync; /* Maximum sync period factor */
1691 u_char maxoffs; /* Max scsi offset */
1692 u_char multiplier; /* Clock multiplier (1,2,4) */
1693 u_char clock_divn; /* Number of clock divisors */
1694 u_long clock_khz; /* SCSI clock frequency in KHz */
1695
1696 /*----------------------------------------------------------------
1697 ** Start queue management.
1698 ** It is filled up by the host processor and accessed by the
1699 ** SCRIPTS processor in order to start SCSI commands.
1700 **----------------------------------------------------------------
1701 */
1702 u16 squeueput; /* Next free slot of the queue */
1703 u16 actccbs; /* Number of allocated CCBs */
1704 u16 queuedccbs; /* Number of CCBs in start queue*/
1705 u16 queuedepth; /* Start queue depth */
1706
1707 /*----------------------------------------------------------------
1708 ** Timeout handler.
1709 **----------------------------------------------------------------
1710 */
1711 struct timer_list timer; /* Timer handler link header */
1712 u_long lasttime;
1713 u_long settle_time; /* Resetting the SCSI BUS */
1714
1715 /*----------------------------------------------------------------
1716 ** Debugging and profiling.
1717 **----------------------------------------------------------------
1718 */
1719 struct ncr_reg regdump; /* Register dump */
1720 u_long regtime; /* Time it has been done */
1721
1722 /*----------------------------------------------------------------
1723 ** Miscellaneous buffers accessed by the scripts-processor.
1724 ** They shall be DWORD aligned, because they may be read or
1725 ** written with a SCR_COPY script command.
1726 **----------------------------------------------------------------
1727 */
1728 u_char msgout[8]; /* Buffer for MESSAGE OUT */
1729 u_char msgin [8]; /* Buffer for MESSAGE IN */
1730 u32 lastmsg; /* Last SCSI message sent */
1731 u_char scratch; /* Scratch for SCSI receive */
1732
1733 /*----------------------------------------------------------------
1734 ** Miscellaneous configuration and status parameters.
1735 **----------------------------------------------------------------
1736 */
1737 u_char disc; /* Diconnection allowed */
1738 u_char scsi_mode; /* Current SCSI BUS mode */
1739 u_char order; /* Tag order to use */
1740 u_char verbose; /* Verbosity for this controller*/
1741 int ncr_cache; /* Used for cache test at init. */
1742 u_long p_ncb; /* BUS address of this NCB */
1743
1744 /*----------------------------------------------------------------
1745 ** Command completion handling.
1746 **----------------------------------------------------------------
1747 */
1748#ifdef SCSI_NCR_CCB_DONE_SUPPORT
1749 struct ccb *(ccb_done[MAX_DONE]);
1750 int ccb_done_ic;
1751#endif
1752 /*----------------------------------------------------------------
1753 ** Fields that should be removed or changed.
1754 **----------------------------------------------------------------
1755 */
1756 struct ccb *ccb; /* Global CCB */
1757 struct usrcmd user; /* Command from user */
1758 volatile u_char release_stage; /* Synchronisation stage on release */
1759};
1760
1761#define NCB_SCRIPT_PHYS(np,lbl) (np->p_script + offsetof (struct script, lbl))
1762#define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl))
1763
1764/*==========================================================
1765**
1766**
1767** Script for NCR-Processor.
1768**
1769** Use ncr_script_fill() to create the variable parts.
1770** Use ncr_script_copy_and_bind() to make a copy and
1771** bind to physical addresses.
1772**
1773**
1774**==========================================================
1775**
1776** We have to know the offsets of all labels before
1777** we reach them (for forward jumps).
1778** Therefore we declare a struct here.
1779** If you make changes inside the script,
1780** DONT FORGET TO CHANGE THE LENGTHS HERE!
1781**
1782**----------------------------------------------------------
1783*/
1784
1785/*
1786** For HP Zalon/53c720 systems, the Zalon interface
1787** between CPU and 53c720 does prefetches, which causes
1788** problems with self modifying scripts. The problem
1789** is overcome by calling a dummy subroutine after each
1790** modification, to force a refetch of the script on
1791** return from the subroutine.
1792*/
1793
1794#ifdef CONFIG_NCR53C8XX_PREFETCH
1795#define PREFETCH_FLUSH_CNT 2
1796#define PREFETCH_FLUSH SCR_CALL, PADDRH (wait_dma),
1797#else
1798#define PREFETCH_FLUSH_CNT 0
1799#define PREFETCH_FLUSH
1800#endif
1801
1802/*
1803** Script fragments which are loaded into the on-chip RAM
1804** of 825A, 875 and 895 chips.
1805*/
1806struct script {
1807 ncrcmd start [ 5];
1808 ncrcmd startpos [ 1];
1809 ncrcmd select [ 6];
1810 ncrcmd select2 [ 9 + PREFETCH_FLUSH_CNT];
1811 ncrcmd loadpos [ 4];
1812 ncrcmd send_ident [ 9];
1813 ncrcmd prepare [ 6];
1814 ncrcmd prepare2 [ 7];
1815 ncrcmd command [ 6];
1816 ncrcmd dispatch [ 32];
1817 ncrcmd clrack [ 4];
1818 ncrcmd no_data [ 17];
1819 ncrcmd status [ 8];
1820 ncrcmd msg_in [ 2];
1821 ncrcmd msg_in2 [ 16];
1822 ncrcmd msg_bad [ 4];
1823 ncrcmd setmsg [ 7];
1824 ncrcmd cleanup [ 6];
1825 ncrcmd complete [ 9];
1826 ncrcmd cleanup_ok [ 8 + PREFETCH_FLUSH_CNT];
1827 ncrcmd cleanup0 [ 1];
1828#ifndef SCSI_NCR_CCB_DONE_SUPPORT
1829 ncrcmd signal [ 12];
1830#else
1831 ncrcmd signal [ 9];
1832 ncrcmd done_pos [ 1];
1833 ncrcmd done_plug [ 2];
1834 ncrcmd done_end [ 7];
1835#endif
1836 ncrcmd save_dp [ 7];
1837 ncrcmd restore_dp [ 5];
1838 ncrcmd disconnect [ 10];
1839 ncrcmd msg_out [ 9];
1840 ncrcmd msg_out_done [ 7];
1841 ncrcmd idle [ 2];
1842 ncrcmd reselect [ 8];
1843 ncrcmd reselected [ 8];
1844 ncrcmd resel_dsa [ 6 + PREFETCH_FLUSH_CNT];
1845 ncrcmd loadpos1 [ 4];
1846 ncrcmd resel_lun [ 6];
1847 ncrcmd resel_tag [ 6];
1848 ncrcmd jump_to_nexus [ 4 + PREFETCH_FLUSH_CNT];
1849 ncrcmd nexus_indirect [ 4];
1850 ncrcmd resel_notag [ 4];
1851 ncrcmd data_in [MAX_SCATTERL * 4];
1852 ncrcmd data_in2 [ 4];
1853 ncrcmd data_out [MAX_SCATTERL * 4];
1854 ncrcmd data_out2 [ 4];
1855};
1856
1857/*
1858** Script fragments which stay in main memory for all chips.
1859*/
1860struct scripth {
1861 ncrcmd tryloop [MAX_START*2];
1862 ncrcmd tryloop2 [ 2];
1863#ifdef SCSI_NCR_CCB_DONE_SUPPORT
1864 ncrcmd done_queue [MAX_DONE*5];
1865 ncrcmd done_queue2 [ 2];
1866#endif
1867 ncrcmd select_no_atn [ 8];
1868 ncrcmd cancel [ 4];
1869 ncrcmd skip [ 9 + PREFETCH_FLUSH_CNT];
1870 ncrcmd skip2 [ 19];
1871 ncrcmd par_err_data_in [ 6];
1872 ncrcmd par_err_other [ 4];
1873 ncrcmd msg_reject [ 8];
1874 ncrcmd msg_ign_residue [ 24];
1875 ncrcmd msg_extended [ 10];
1876 ncrcmd msg_ext_2 [ 10];
1877 ncrcmd msg_wdtr [ 14];
1878 ncrcmd send_wdtr [ 7];
1879 ncrcmd msg_ext_3 [ 10];
1880 ncrcmd msg_sdtr [ 14];
1881 ncrcmd send_sdtr [ 7];
1882 ncrcmd nego_bad_phase [ 4];
1883 ncrcmd msg_out_abort [ 10];
1884 ncrcmd hdata_in [MAX_SCATTERH * 4];
1885 ncrcmd hdata_in2 [ 2];
1886 ncrcmd hdata_out [MAX_SCATTERH * 4];
1887 ncrcmd hdata_out2 [ 2];
1888 ncrcmd reset [ 4];
1889 ncrcmd aborttag [ 4];
1890 ncrcmd abort [ 2];
1891 ncrcmd abort_resel [ 20];
1892 ncrcmd resend_ident [ 4];
1893 ncrcmd clratn_go_on [ 3];
1894 ncrcmd nxtdsp_go_on [ 1];
1895 ncrcmd sdata_in [ 8];
1896 ncrcmd data_io [ 18];
1897 ncrcmd bad_identify [ 12];
1898 ncrcmd bad_i_t_l [ 4];
1899 ncrcmd bad_i_t_l_q [ 4];
1900 ncrcmd bad_target [ 8];
1901 ncrcmd bad_status [ 8];
1902 ncrcmd start_ram [ 4 + PREFETCH_FLUSH_CNT];
1903 ncrcmd start_ram0 [ 4];
1904 ncrcmd sto_restart [ 5];
1905 ncrcmd wait_dma [ 2];
1906 ncrcmd snooptest [ 9];
1907 ncrcmd snoopend [ 2];
1908};
1909
1910/*==========================================================
1911**
1912**
1913** Function headers.
1914**
1915**
1916**==========================================================
1917*/
1918
1919static void ncr_alloc_ccb (struct ncb *np, u_char tn, u_char ln);
1920static void ncr_complete (struct ncb *np, struct ccb *cp);
1921static void ncr_exception (struct ncb *np);
1922static void ncr_free_ccb (struct ncb *np, struct ccb *cp);
1923static void ncr_init_ccb (struct ncb *np, struct ccb *cp);
1924static void ncr_init_tcb (struct ncb *np, u_char tn);
1925static struct lcb * ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln);
1926static struct lcb * ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev);
1927static void ncr_getclock (struct ncb *np, int mult);
1928static void ncr_selectclock (struct ncb *np, u_char scntl3);
1929static struct ccb *ncr_get_ccb (struct ncb *np, struct scsi_cmnd *cmd);
1930static void ncr_chip_reset (struct ncb *np, int delay);
1931static void ncr_init (struct ncb *np, int reset, char * msg, u_long code);
1932static int ncr_int_sbmc (struct ncb *np);
1933static int ncr_int_par (struct ncb *np);
1934static void ncr_int_ma (struct ncb *np);
1935static void ncr_int_sir (struct ncb *np);
1936static void ncr_int_sto (struct ncb *np);
1937static void ncr_negotiate (struct ncb* np, struct tcb* tp);
1938static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr);
1939
1940static void ncr_script_copy_and_bind
1941 (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len);
1942static void ncr_script_fill (struct script * scr, struct scripth * scripth);
1943static int ncr_scatter (struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd);
1944static void ncr_getsync (struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p);
1945static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer);
1946static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev);
1947static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack);
1948static int ncr_snooptest (struct ncb *np);
1949static void ncr_timeout (struct ncb *np);
1950static void ncr_wakeup (struct ncb *np, u_long code);
1951static void ncr_wakeup_done (struct ncb *np);
1952static void ncr_start_next_ccb (struct ncb *np, struct lcb * lp, int maxn);
1953static void ncr_put_start_queue(struct ncb *np, struct ccb *cp);
1954
1955static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd);
1956static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd);
1957static void process_waiting_list(struct ncb *np, int sts);
1958
1959#define remove_from_waiting_list(np, cmd) \
1960 retrieve_from_waiting_list(1, (np), (cmd))
1961#define requeue_waiting_list(np) process_waiting_list((np), DID_OK)
1962#define reset_waiting_list(np) process_waiting_list((np), DID_RESET)
1963
1964static inline char *ncr_name (struct ncb *np)
1965{
1966 return np->inst_name;
1967}
1968
1969
1970/*==========================================================
1971**
1972**
1973** Scripts for NCR-Processor.
1974**
1975** Use ncr_script_bind for binding to physical addresses.
1976**
1977**
1978**==========================================================
1979**
1980** NADDR generates a reference to a field of the controller data.
1981** PADDR generates a reference to another part of the script.
1982** RADDR generates a reference to a script processor register.
1983** FADDR generates a reference to a script processor register
1984** with offset.
1985**
1986**----------------------------------------------------------
1987*/
1988
1989#define RELOC_SOFTC 0x40000000
1990#define RELOC_LABEL 0x50000000
1991#define RELOC_REGISTER 0x60000000
1992#if 0
1993#define RELOC_KVAR 0x70000000
1994#endif
1995#define RELOC_LABELH 0x80000000
1996#define RELOC_MASK 0xf0000000
1997
1998#define NADDR(label) (RELOC_SOFTC | offsetof(struct ncb, label))
1999#define PADDR(label) (RELOC_LABEL | offsetof(struct script, label))
2000#define PADDRH(label) (RELOC_LABELH | offsetof(struct scripth, label))
2001#define RADDR(label) (RELOC_REGISTER | REG(label))
2002#define FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs)))
2003#if 0
2004#define KVAR(which) (RELOC_KVAR | (which))
2005#endif
2006
2007#if 0
2008#define SCRIPT_KVAR_JIFFIES (0)
2009#define SCRIPT_KVAR_FIRST SCRIPT_KVAR_JIFFIES
2010#define SCRIPT_KVAR_LAST SCRIPT_KVAR_JIFFIES
2011/*
2012 * Kernel variables referenced in the scripts.
2013 * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY.
2014 */
2015static void *script_kvars[] __initdata =
2016 { (void *)&jiffies };
2017#endif
2018
2019static struct script script0 __initdata = {
2020/*--------------------------< START >-----------------------*/ {
2021 /*
2022 ** This NOP will be patched with LED ON
2023 ** SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2024 */
2025 SCR_NO_OP,
2026 0,
2027 /*
2028 ** Clear SIGP.
2029 */
2030 SCR_FROM_REG (ctest2),
2031 0,
2032 /*
2033 ** Then jump to a certain point in tryloop.
2034 ** Due to the lack of indirect addressing the code
2035 ** is self modifying here.
2036 */
2037 SCR_JUMP,
2038}/*-------------------------< STARTPOS >--------------------*/,{
2039 PADDRH(tryloop),
2040
2041}/*-------------------------< SELECT >----------------------*/,{
2042 /*
2043 ** DSA contains the address of a scheduled
2044 ** data structure.
2045 **
2046 ** SCRATCHA contains the address of the script,
2047 ** which starts the next entry.
2048 **
2049 ** Set Initiator mode.
2050 **
2051 ** (Target mode is left as an exercise for the reader)
2052 */
2053
2054 SCR_CLR (SCR_TRG),
2055 0,
2056 SCR_LOAD_REG (HS_REG, HS_SELECTING),
2057 0,
2058
2059 /*
2060 ** And try to select this target.
2061 */
2062 SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select),
2063 PADDR (reselect),
2064
2065}/*-------------------------< SELECT2 >----------------------*/,{
2066 /*
2067 ** Now there are 4 possibilities:
2068 **
2069 ** (1) The ncr loses arbitration.
2070 ** This is ok, because it will try again,
2071 ** when the bus becomes idle.
2072 ** (But beware of the timeout function!)
2073 **
2074 ** (2) The ncr is reselected.
2075 ** Then the script processor takes the jump
2076 ** to the RESELECT label.
2077 **
2078 ** (3) The ncr wins arbitration.
2079 ** Then it will execute SCRIPTS instruction until
2080 ** the next instruction that checks SCSI phase.
2081 ** Then will stop and wait for selection to be
2082 ** complete or selection time-out to occur.
2083 ** As a result the SCRIPTS instructions until
2084 ** LOADPOS + 2 should be executed in parallel with
2085 ** the SCSI core performing selection.
2086 */
2087
2088 /*
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07002089 ** The MESSAGE_REJECT problem seems to be due to a selection
Linus Torvalds1da177e2005-04-16 15:20:36 -07002090 ** timing problem.
2091 ** Wait immediately for the selection to complete.
2092 ** (2.5x behaves so)
2093 */
2094 SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2095 0,
2096
2097 /*
2098 ** Next time use the next slot.
2099 */
2100 SCR_COPY (4),
2101 RADDR (temp),
2102 PADDR (startpos),
2103 /*
2104 ** The ncr doesn't have an indirect load
2105 ** or store command. So we have to
2106 ** copy part of the control block to a
2107 ** fixed place, where we can access it.
2108 **
2109 ** We patch the address part of a
2110 ** COPY command with the DSA-register.
2111 */
2112 SCR_COPY_F (4),
2113 RADDR (dsa),
2114 PADDR (loadpos),
2115 /*
2116 ** Flush script prefetch if required
2117 */
2118 PREFETCH_FLUSH
2119 /*
2120 ** then we do the actual copy.
2121 */
2122 SCR_COPY (sizeof (struct head)),
2123 /*
2124 ** continued after the next label ...
2125 */
2126}/*-------------------------< LOADPOS >---------------------*/,{
2127 0,
2128 NADDR (header),
2129 /*
2130 ** Wait for the next phase or the selection
2131 ** to complete or time-out.
2132 */
2133 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
2134 PADDR (prepare),
2135
2136}/*-------------------------< SEND_IDENT >----------------------*/,{
2137 /*
2138 ** Selection complete.
2139 ** Send the IDENTIFY and SIMPLE_TAG messages
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07002140 ** (and the EXTENDED_SDTR message)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002141 */
2142 SCR_MOVE_TBL ^ SCR_MSG_OUT,
2143 offsetof (struct dsb, smsg),
2144 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2145 PADDRH (resend_ident),
2146 SCR_LOAD_REG (scratcha, 0x80),
2147 0,
2148 SCR_COPY (1),
2149 RADDR (scratcha),
2150 NADDR (lastmsg),
2151}/*-------------------------< PREPARE >----------------------*/,{
2152 /*
2153 ** load the savep (saved pointer) into
2154 ** the TEMP register (actual pointer)
2155 */
2156 SCR_COPY (4),
2157 NADDR (header.savep),
2158 RADDR (temp),
2159 /*
2160 ** Initialize the status registers
2161 */
2162 SCR_COPY (4),
2163 NADDR (header.status),
2164 RADDR (scr0),
2165}/*-------------------------< PREPARE2 >---------------------*/,{
2166 /*
2167 ** Initialize the msgout buffer with a NOOP message.
2168 */
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07002169 SCR_LOAD_REG (scratcha, NOP),
Linus Torvalds1da177e2005-04-16 15:20:36 -07002170 0,
2171 SCR_COPY (1),
2172 RADDR (scratcha),
2173 NADDR (msgout),
2174#if 0
2175 SCR_COPY (1),
2176 RADDR (scratcha),
2177 NADDR (msgin),
2178#endif
2179 /*
2180 ** Anticipate the COMMAND phase.
2181 ** This is the normal case for initial selection.
2182 */
2183 SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
2184 PADDR (dispatch),
2185
2186}/*-------------------------< COMMAND >--------------------*/,{
2187 /*
2188 ** ... and send the command
2189 */
2190 SCR_MOVE_TBL ^ SCR_COMMAND,
2191 offsetof (struct dsb, cmd),
2192 /*
2193 ** If status is still HS_NEGOTIATE, negotiation failed.
2194 ** We check this here, since we want to do that
2195 ** only once.
2196 */
2197 SCR_FROM_REG (HS_REG),
2198 0,
2199 SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2200 SIR_NEGO_FAILED,
2201
2202}/*-----------------------< DISPATCH >----------------------*/,{
2203 /*
2204 ** MSG_IN is the only phase that shall be
2205 ** entered at least once for each (re)selection.
2206 ** So we test it first.
2207 */
2208 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
2209 PADDR (msg_in),
2210
2211 SCR_RETURN ^ IFTRUE (IF (SCR_DATA_OUT)),
2212 0,
2213 /*
2214 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4.
2215 ** Possible data corruption during Memory Write and Invalidate.
2216 ** This work-around resets the addressing logic prior to the
2217 ** start of the first MOVE of a DATA IN phase.
2218 ** (See Documentation/scsi/ncr53c8xx.txt for more information)
2219 */
2220 SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2221 20,
2222 SCR_COPY (4),
2223 RADDR (scratcha),
2224 RADDR (scratcha),
2225 SCR_RETURN,
2226 0,
2227 SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
2228 PADDR (status),
2229 SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
2230 PADDR (command),
2231 SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
2232 PADDR (msg_out),
2233 /*
2234 ** Discard one illegal phase byte, if required.
2235 */
2236 SCR_LOAD_REG (scratcha, XE_BAD_PHASE),
2237 0,
2238 SCR_COPY (1),
2239 RADDR (scratcha),
2240 NADDR (xerr_st),
2241 SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_OUT)),
2242 8,
2243 SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
2244 NADDR (scratch),
2245 SCR_JUMPR ^ IFFALSE (IF (SCR_ILG_IN)),
2246 8,
2247 SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
2248 NADDR (scratch),
2249 SCR_JUMP,
2250 PADDR (dispatch),
2251
2252}/*-------------------------< CLRACK >----------------------*/,{
2253 /*
2254 ** Terminate possible pending message phase.
2255 */
2256 SCR_CLR (SCR_ACK),
2257 0,
2258 SCR_JUMP,
2259 PADDR (dispatch),
2260
2261}/*-------------------------< NO_DATA >--------------------*/,{
2262 /*
2263 ** The target wants to tranfer too much data
2264 ** or in the wrong direction.
2265 ** Remember that in extended error.
2266 */
2267 SCR_LOAD_REG (scratcha, XE_EXTRA_DATA),
2268 0,
2269 SCR_COPY (1),
2270 RADDR (scratcha),
2271 NADDR (xerr_st),
2272 /*
2273 ** Discard one data byte, if required.
2274 */
2275 SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2276 8,
2277 SCR_MOVE_ABS (1) ^ SCR_DATA_OUT,
2278 NADDR (scratch),
2279 SCR_JUMPR ^ IFFALSE (IF (SCR_DATA_IN)),
2280 8,
2281 SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2282 NADDR (scratch),
2283 /*
2284 ** .. and repeat as required.
2285 */
2286 SCR_CALL,
2287 PADDR (dispatch),
2288 SCR_JUMP,
2289 PADDR (no_data),
2290
2291}/*-------------------------< STATUS >--------------------*/,{
2292 /*
2293 ** get the status
2294 */
2295 SCR_MOVE_ABS (1) ^ SCR_STATUS,
2296 NADDR (scratch),
2297 /*
2298 ** save status to scsi_status.
2299 ** mark as complete.
2300 */
2301 SCR_TO_REG (SS_REG),
2302 0,
2303 SCR_LOAD_REG (HS_REG, HS_COMPLETE),
2304 0,
2305 SCR_JUMP,
2306 PADDR (dispatch),
2307}/*-------------------------< MSG_IN >--------------------*/,{
2308 /*
2309 ** Get the first byte of the message
2310 ** and save it to SCRATCHA.
2311 **
2312 ** The script processor doesn't negate the
2313 ** ACK signal after this transfer.
2314 */
2315 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2316 NADDR (msgin[0]),
2317}/*-------------------------< MSG_IN2 >--------------------*/,{
2318 /*
2319 ** Handle this message.
2320 */
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07002321 SCR_JUMP ^ IFTRUE (DATA (COMMAND_COMPLETE)),
Linus Torvalds1da177e2005-04-16 15:20:36 -07002322 PADDR (complete),
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07002323 SCR_JUMP ^ IFTRUE (DATA (DISCONNECT)),
Linus Torvalds1da177e2005-04-16 15:20:36 -07002324 PADDR (disconnect),
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07002325 SCR_JUMP ^ IFTRUE (DATA (SAVE_POINTERS)),
Linus Torvalds1da177e2005-04-16 15:20:36 -07002326 PADDR (save_dp),
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07002327 SCR_JUMP ^ IFTRUE (DATA (RESTORE_POINTERS)),
Linus Torvalds1da177e2005-04-16 15:20:36 -07002328 PADDR (restore_dp),
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07002329 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_MESSAGE)),
Linus Torvalds1da177e2005-04-16 15:20:36 -07002330 PADDRH (msg_extended),
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07002331 SCR_JUMP ^ IFTRUE (DATA (NOP)),
Linus Torvalds1da177e2005-04-16 15:20:36 -07002332 PADDR (clrack),
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07002333 SCR_JUMP ^ IFTRUE (DATA (MESSAGE_REJECT)),
Linus Torvalds1da177e2005-04-16 15:20:36 -07002334 PADDRH (msg_reject),
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07002335 SCR_JUMP ^ IFTRUE (DATA (IGNORE_WIDE_RESIDUE)),
Linus Torvalds1da177e2005-04-16 15:20:36 -07002336 PADDRH (msg_ign_residue),
2337 /*
2338 ** Rest of the messages left as
2339 ** an exercise ...
2340 **
2341 ** Unimplemented messages:
2342 ** fall through to MSG_BAD.
2343 */
2344}/*-------------------------< MSG_BAD >------------------*/,{
2345 /*
2346 ** unimplemented message - reject it.
2347 */
2348 SCR_INT,
2349 SIR_REJECT_SENT,
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07002350 SCR_LOAD_REG (scratcha, MESSAGE_REJECT),
Linus Torvalds1da177e2005-04-16 15:20:36 -07002351 0,
2352}/*-------------------------< SETMSG >----------------------*/,{
2353 SCR_COPY (1),
2354 RADDR (scratcha),
2355 NADDR (msgout),
2356 SCR_SET (SCR_ATN),
2357 0,
2358 SCR_JUMP,
2359 PADDR (clrack),
2360}/*-------------------------< CLEANUP >-------------------*/,{
2361 /*
2362 ** dsa: Pointer to ccb
2363 ** or xxxxxxFF (no ccb)
2364 **
2365 ** HS_REG: Host-Status (<>0!)
2366 */
2367 SCR_FROM_REG (dsa),
2368 0,
2369 SCR_JUMP ^ IFTRUE (DATA (0xff)),
2370 PADDR (start),
2371 /*
2372 ** dsa is valid.
2373 ** complete the cleanup.
2374 */
2375 SCR_JUMP,
2376 PADDR (cleanup_ok),
2377
2378}/*-------------------------< COMPLETE >-----------------*/,{
2379 /*
2380 ** Complete message.
2381 **
2382 ** Copy TEMP register to LASTP in header.
2383 */
2384 SCR_COPY (4),
2385 RADDR (temp),
2386 NADDR (header.lastp),
2387 /*
2388 ** When we terminate the cycle by clearing ACK,
2389 ** the target may disconnect immediately.
2390 **
2391 ** We don't want to be told of an
2392 ** "unexpected disconnect",
2393 ** so we disable this feature.
2394 */
2395 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2396 0,
2397 /*
2398 ** Terminate cycle ...
2399 */
2400 SCR_CLR (SCR_ACK|SCR_ATN),
2401 0,
2402 /*
2403 ** ... and wait for the disconnect.
2404 */
2405 SCR_WAIT_DISC,
2406 0,
2407}/*-------------------------< CLEANUP_OK >----------------*/,{
2408 /*
2409 ** Save host status to header.
2410 */
2411 SCR_COPY (4),
2412 RADDR (scr0),
2413 NADDR (header.status),
2414 /*
2415 ** and copy back the header to the ccb.
2416 */
2417 SCR_COPY_F (4),
2418 RADDR (dsa),
2419 PADDR (cleanup0),
2420 /*
2421 ** Flush script prefetch if required
2422 */
2423 PREFETCH_FLUSH
2424 SCR_COPY (sizeof (struct head)),
2425 NADDR (header),
2426}/*-------------------------< CLEANUP0 >--------------------*/,{
2427 0,
2428}/*-------------------------< SIGNAL >----------------------*/,{
2429 /*
2430 ** if job not completed ...
2431 */
2432 SCR_FROM_REG (HS_REG),
2433 0,
2434 /*
2435 ** ... start the next command.
2436 */
2437 SCR_JUMP ^ IFTRUE (MASK (0, (HS_DONEMASK|HS_SKIPMASK))),
2438 PADDR(start),
2439 /*
2440 ** If command resulted in not GOOD status,
2441 ** call the C code if needed.
2442 */
2443 SCR_FROM_REG (SS_REG),
2444 0,
2445 SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
2446 PADDRH (bad_status),
2447
2448#ifndef SCSI_NCR_CCB_DONE_SUPPORT
2449
2450 /*
2451 ** ... signal completion to the host
2452 */
2453 SCR_INT,
2454 SIR_INTFLY,
2455 /*
2456 ** Auf zu neuen Schandtaten!
2457 */
2458 SCR_JUMP,
2459 PADDR(start),
2460
2461#else /* defined SCSI_NCR_CCB_DONE_SUPPORT */
2462
2463 /*
2464 ** ... signal completion to the host
2465 */
2466 SCR_JUMP,
2467}/*------------------------< DONE_POS >---------------------*/,{
2468 PADDRH (done_queue),
2469}/*------------------------< DONE_PLUG >--------------------*/,{
2470 SCR_INT,
2471 SIR_DONE_OVERFLOW,
2472}/*------------------------< DONE_END >---------------------*/,{
2473 SCR_INT,
2474 SIR_INTFLY,
2475 SCR_COPY (4),
2476 RADDR (temp),
2477 PADDR (done_pos),
2478 SCR_JUMP,
2479 PADDR (start),
2480
2481#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
2482
2483}/*-------------------------< SAVE_DP >------------------*/,{
2484 /*
2485 ** SAVE_DP message:
2486 ** Copy TEMP register to SAVEP in header.
2487 */
2488 SCR_COPY (4),
2489 RADDR (temp),
2490 NADDR (header.savep),
2491 SCR_CLR (SCR_ACK),
2492 0,
2493 SCR_JUMP,
2494 PADDR (dispatch),
2495}/*-------------------------< RESTORE_DP >---------------*/,{
2496 /*
2497 ** RESTORE_DP message:
2498 ** Copy SAVEP in header to TEMP register.
2499 */
2500 SCR_COPY (4),
2501 NADDR (header.savep),
2502 RADDR (temp),
2503 SCR_JUMP,
2504 PADDR (clrack),
2505
2506}/*-------------------------< DISCONNECT >---------------*/,{
2507 /*
2508 ** DISCONNECTing ...
2509 **
2510 ** disable the "unexpected disconnect" feature,
2511 ** and remove the ACK signal.
2512 */
2513 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2514 0,
2515 SCR_CLR (SCR_ACK|SCR_ATN),
2516 0,
2517 /*
2518 ** Wait for the disconnect.
2519 */
2520 SCR_WAIT_DISC,
2521 0,
2522 /*
2523 ** Status is: DISCONNECTED.
2524 */
2525 SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
2526 0,
2527 SCR_JUMP,
2528 PADDR (cleanup_ok),
2529
2530}/*-------------------------< MSG_OUT >-------------------*/,{
2531 /*
2532 ** The target requests a message.
2533 */
2534 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
2535 NADDR (msgout),
2536 SCR_COPY (1),
2537 NADDR (msgout),
2538 NADDR (lastmsg),
2539 /*
2540 ** If it was no ABORT message ...
2541 */
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07002542 SCR_JUMP ^ IFTRUE (DATA (ABORT_TASK_SET)),
Linus Torvalds1da177e2005-04-16 15:20:36 -07002543 PADDRH (msg_out_abort),
2544 /*
2545 ** ... wait for the next phase
2546 ** if it's a message out, send it again, ...
2547 */
2548 SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2549 PADDR (msg_out),
2550}/*-------------------------< MSG_OUT_DONE >--------------*/,{
2551 /*
2552 ** ... else clear the message ...
2553 */
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07002554 SCR_LOAD_REG (scratcha, NOP),
Linus Torvalds1da177e2005-04-16 15:20:36 -07002555 0,
2556 SCR_COPY (4),
2557 RADDR (scratcha),
2558 NADDR (msgout),
2559 /*
2560 ** ... and process the next phase
2561 */
2562 SCR_JUMP,
2563 PADDR (dispatch),
2564}/*-------------------------< IDLE >------------------------*/,{
2565 /*
2566 ** Nothing to do?
2567 ** Wait for reselect.
2568 ** This NOP will be patched with LED OFF
2569 ** SCR_REG_REG (gpreg, SCR_OR, 0x01)
2570 */
2571 SCR_NO_OP,
2572 0,
2573}/*-------------------------< RESELECT >--------------------*/,{
2574 /*
2575 ** make the DSA invalid.
2576 */
2577 SCR_LOAD_REG (dsa, 0xff),
2578 0,
2579 SCR_CLR (SCR_TRG),
2580 0,
2581 SCR_LOAD_REG (HS_REG, HS_IN_RESELECT),
2582 0,
2583 /*
2584 ** Sleep waiting for a reselection.
2585 ** If SIGP is set, special treatment.
2586 **
2587 ** Zu allem bereit ..
2588 */
2589 SCR_WAIT_RESEL,
2590 PADDR(start),
2591}/*-------------------------< RESELECTED >------------------*/,{
2592 /*
2593 ** This NOP will be patched with LED ON
2594 ** SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2595 */
2596 SCR_NO_OP,
2597 0,
2598 /*
2599 ** ... zu nichts zu gebrauchen ?
2600 **
2601 ** load the target id into the SFBR
2602 ** and jump to the control block.
2603 **
2604 ** Look at the declarations of
2605 ** - struct ncb
2606 ** - struct tcb
2607 ** - struct lcb
2608 ** - struct ccb
2609 ** to understand what's going on.
2610 */
2611 SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
2612 0,
2613 SCR_TO_REG (sdid),
2614 0,
2615 SCR_JUMP,
2616 NADDR (jump_tcb),
2617
2618}/*-------------------------< RESEL_DSA >-------------------*/,{
2619 /*
2620 ** Ack the IDENTIFY or TAG previously received.
2621 */
2622 SCR_CLR (SCR_ACK),
2623 0,
2624 /*
2625 ** The ncr doesn't have an indirect load
2626 ** or store command. So we have to
2627 ** copy part of the control block to a
2628 ** fixed place, where we can access it.
2629 **
2630 ** We patch the address part of a
2631 ** COPY command with the DSA-register.
2632 */
2633 SCR_COPY_F (4),
2634 RADDR (dsa),
2635 PADDR (loadpos1),
2636 /*
2637 ** Flush script prefetch if required
2638 */
2639 PREFETCH_FLUSH
2640 /*
2641 ** then we do the actual copy.
2642 */
2643 SCR_COPY (sizeof (struct head)),
2644 /*
2645 ** continued after the next label ...
2646 */
2647
2648}/*-------------------------< LOADPOS1 >-------------------*/,{
2649 0,
2650 NADDR (header),
2651 /*
2652 ** The DSA contains the data structure address.
2653 */
2654 SCR_JUMP,
2655 PADDR (prepare),
2656
2657}/*-------------------------< RESEL_LUN >-------------------*/,{
2658 /*
2659 ** come back to this point
2660 ** to get an IDENTIFY message
2661 ** Wait for a msg_in phase.
2662 */
2663 SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
2664 SIR_RESEL_NO_MSG_IN,
2665 /*
2666 ** message phase.
2667 ** Read the data directly from the BUS DATA lines.
2668 ** This helps to support very old SCSI devices that
2669 ** may reselect without sending an IDENTIFY.
2670 */
2671 SCR_FROM_REG (sbdl),
2672 0,
2673 /*
2674 ** It should be an Identify message.
2675 */
2676 SCR_RETURN,
2677 0,
2678}/*-------------------------< RESEL_TAG >-------------------*/,{
2679 /*
2680 ** Read IDENTIFY + SIMPLE + TAG using a single MOVE.
2681 ** Agressive optimization, is'nt it?
2682 ** No need to test the SIMPLE TAG message, since the
2683 ** driver only supports conformant devices for tags. ;-)
2684 */
2685 SCR_MOVE_ABS (3) ^ SCR_MSG_IN,
2686 NADDR (msgin),
2687 /*
2688 ** Read the TAG from the SIDL.
2689 ** Still an aggressive optimization. ;-)
2690 ** Compute the CCB indirect jump address which
2691 ** is (#TAG*2 & 0xfc) due to tag numbering using
2692 ** 1,3,5..MAXTAGS*2+1 actual values.
2693 */
2694 SCR_REG_SFBR (sidl, SCR_SHL, 0),
2695 0,
2696 SCR_SFBR_REG (temp, SCR_AND, 0xfc),
2697 0,
2698}/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{
2699 SCR_COPY_F (4),
2700 RADDR (temp),
2701 PADDR (nexus_indirect),
2702 /*
2703 ** Flush script prefetch if required
2704 */
2705 PREFETCH_FLUSH
2706 SCR_COPY (4),
2707}/*-------------------------< NEXUS_INDIRECT >-------------------*/,{
2708 0,
2709 RADDR (temp),
2710 SCR_RETURN,
2711 0,
2712}/*-------------------------< RESEL_NOTAG >-------------------*/,{
2713 /*
2714 ** No tag expected.
2715 ** Read an throw away the IDENTIFY.
2716 */
2717 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2718 NADDR (msgin),
2719 SCR_JUMP,
2720 PADDR (jump_to_nexus),
2721}/*-------------------------< DATA_IN >--------------------*/,{
2722/*
2723** Because the size depends on the
2724** #define MAX_SCATTERL parameter,
2725** it is filled in at runtime.
2726**
2727** ##===========< i=0; i<MAX_SCATTERL >=========
2728** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
2729** || PADDR (dispatch),
2730** || SCR_MOVE_TBL ^ SCR_DATA_IN,
2731** || offsetof (struct dsb, data[ i]),
2732** ##==========================================
2733**
2734**---------------------------------------------------------
2735*/
27360
2737}/*-------------------------< DATA_IN2 >-------------------*/,{
2738 SCR_CALL,
2739 PADDR (dispatch),
2740 SCR_JUMP,
2741 PADDR (no_data),
2742}/*-------------------------< DATA_OUT >--------------------*/,{
2743/*
2744** Because the size depends on the
2745** #define MAX_SCATTERL parameter,
2746** it is filled in at runtime.
2747**
2748** ##===========< i=0; i<MAX_SCATTERL >=========
2749** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2750** || PADDR (dispatch),
2751** || SCR_MOVE_TBL ^ SCR_DATA_OUT,
2752** || offsetof (struct dsb, data[ i]),
2753** ##==========================================
2754**
2755**---------------------------------------------------------
2756*/
27570
2758}/*-------------------------< DATA_OUT2 >-------------------*/,{
2759 SCR_CALL,
2760 PADDR (dispatch),
2761 SCR_JUMP,
2762 PADDR (no_data),
2763}/*--------------------------------------------------------*/
2764};
2765
2766static struct scripth scripth0 __initdata = {
2767/*-------------------------< TRYLOOP >---------------------*/{
2768/*
2769** Start the next entry.
2770** Called addresses point to the launch script in the CCB.
2771** They are patched by the main processor.
2772**
2773** Because the size depends on the
2774** #define MAX_START parameter, it is filled
2775** in at runtime.
2776**
2777**-----------------------------------------------------------
2778**
2779** ##===========< I=0; i<MAX_START >===========
2780** || SCR_CALL,
2781** || PADDR (idle),
2782** ##==========================================
2783**
2784**-----------------------------------------------------------
2785*/
27860
2787}/*------------------------< TRYLOOP2 >---------------------*/,{
2788 SCR_JUMP,
2789 PADDRH(tryloop),
2790
2791#ifdef SCSI_NCR_CCB_DONE_SUPPORT
2792
2793}/*------------------------< DONE_QUEUE >-------------------*/,{
2794/*
2795** Copy the CCB address to the next done entry.
2796** Because the size depends on the
2797** #define MAX_DONE parameter, it is filled
2798** in at runtime.
2799**
2800**-----------------------------------------------------------
2801**
2802** ##===========< I=0; i<MAX_DONE >===========
2803** || SCR_COPY (sizeof(struct ccb *),
2804** || NADDR (header.cp),
2805** || NADDR (ccb_done[i]),
2806** || SCR_CALL,
2807** || PADDR (done_end),
2808** ##==========================================
2809**
2810**-----------------------------------------------------------
2811*/
28120
2813}/*------------------------< DONE_QUEUE2 >------------------*/,{
2814 SCR_JUMP,
2815 PADDRH (done_queue),
2816
2817#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
2818}/*------------------------< SELECT_NO_ATN >-----------------*/,{
2819 /*
2820 ** Set Initiator mode.
2821 ** And try to select this target without ATN.
2822 */
2823
2824 SCR_CLR (SCR_TRG),
2825 0,
2826 SCR_LOAD_REG (HS_REG, HS_SELECTING),
2827 0,
2828 SCR_SEL_TBL ^ offsetof (struct dsb, select),
2829 PADDR (reselect),
2830 SCR_JUMP,
2831 PADDR (select2),
2832
2833}/*-------------------------< CANCEL >------------------------*/,{
2834
2835 SCR_LOAD_REG (scratcha, HS_ABORTED),
2836 0,
2837 SCR_JUMPR,
2838 8,
2839}/*-------------------------< SKIP >------------------------*/,{
2840 SCR_LOAD_REG (scratcha, 0),
2841 0,
2842 /*
2843 ** This entry has been canceled.
2844 ** Next time use the next slot.
2845 */
2846 SCR_COPY (4),
2847 RADDR (temp),
2848 PADDR (startpos),
2849 /*
2850 ** The ncr doesn't have an indirect load
2851 ** or store command. So we have to
2852 ** copy part of the control block to a
2853 ** fixed place, where we can access it.
2854 **
2855 ** We patch the address part of a
2856 ** COPY command with the DSA-register.
2857 */
2858 SCR_COPY_F (4),
2859 RADDR (dsa),
2860 PADDRH (skip2),
2861 /*
2862 ** Flush script prefetch if required
2863 */
2864 PREFETCH_FLUSH
2865 /*
2866 ** then we do the actual copy.
2867 */
2868 SCR_COPY (sizeof (struct head)),
2869 /*
2870 ** continued after the next label ...
2871 */
2872}/*-------------------------< SKIP2 >---------------------*/,{
2873 0,
2874 NADDR (header),
2875 /*
2876 ** Initialize the status registers
2877 */
2878 SCR_COPY (4),
2879 NADDR (header.status),
2880 RADDR (scr0),
2881 /*
2882 ** Force host status.
2883 */
2884 SCR_FROM_REG (scratcha),
2885 0,
2886 SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)),
2887 16,
2888 SCR_REG_REG (HS_REG, SCR_OR, HS_SKIPMASK),
2889 0,
2890 SCR_JUMPR,
2891 8,
2892 SCR_TO_REG (HS_REG),
2893 0,
2894 SCR_LOAD_REG (SS_REG, S_GOOD),
2895 0,
2896 SCR_JUMP,
2897 PADDR (cleanup_ok),
2898
2899},/*-------------------------< PAR_ERR_DATA_IN >---------------*/{
2900 /*
2901 ** Ignore all data in byte, until next phase
2902 */
2903 SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
2904 PADDRH (par_err_other),
2905 SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2906 NADDR (scratch),
2907 SCR_JUMPR,
2908 -24,
2909},/*-------------------------< PAR_ERR_OTHER >------------------*/{
2910 /*
2911 ** count it.
2912 */
2913 SCR_REG_REG (PS_REG, SCR_ADD, 0x01),
2914 0,
2915 /*
2916 ** jump to dispatcher.
2917 */
2918 SCR_JUMP,
2919 PADDR (dispatch),
2920}/*-------------------------< MSG_REJECT >---------------*/,{
2921 /*
2922 ** If a negotiation was in progress,
2923 ** negotiation failed.
2924 ** Otherwise, let the C code print
2925 ** some message.
2926 */
2927 SCR_FROM_REG (HS_REG),
2928 0,
2929 SCR_INT ^ IFFALSE (DATA (HS_NEGOTIATE)),
2930 SIR_REJECT_RECEIVED,
2931 SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
2932 SIR_NEGO_FAILED,
2933 SCR_JUMP,
2934 PADDR (clrack),
2935
2936}/*-------------------------< MSG_IGN_RESIDUE >----------*/,{
2937 /*
2938 ** Terminate cycle
2939 */
2940 SCR_CLR (SCR_ACK),
2941 0,
2942 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2943 PADDR (dispatch),
2944 /*
2945 ** get residue size.
2946 */
2947 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2948 NADDR (msgin[1]),
2949 /*
2950 ** Size is 0 .. ignore message.
2951 */
2952 SCR_JUMP ^ IFTRUE (DATA (0)),
2953 PADDR (clrack),
2954 /*
2955 ** Size is not 1 .. have to interrupt.
2956 */
2957 SCR_JUMPR ^ IFFALSE (DATA (1)),
2958 40,
2959 /*
2960 ** Check for residue byte in swide register
2961 */
2962 SCR_FROM_REG (scntl2),
2963 0,
2964 SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
2965 16,
2966 /*
2967 ** There IS data in the swide register.
2968 ** Discard it.
2969 */
2970 SCR_REG_REG (scntl2, SCR_OR, WSR),
2971 0,
2972 SCR_JUMP,
2973 PADDR (clrack),
2974 /*
2975 ** Load again the size to the sfbr register.
2976 */
2977 SCR_FROM_REG (scratcha),
2978 0,
2979 SCR_INT,
2980 SIR_IGN_RESIDUE,
2981 SCR_JUMP,
2982 PADDR (clrack),
2983
2984}/*-------------------------< MSG_EXTENDED >-------------*/,{
2985 /*
2986 ** Terminate cycle
2987 */
2988 SCR_CLR (SCR_ACK),
2989 0,
2990 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
2991 PADDR (dispatch),
2992 /*
2993 ** get length.
2994 */
2995 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2996 NADDR (msgin[1]),
2997 /*
2998 */
2999 SCR_JUMP ^ IFTRUE (DATA (3)),
3000 PADDRH (msg_ext_3),
3001 SCR_JUMP ^ IFFALSE (DATA (2)),
3002 PADDR (msg_bad),
3003}/*-------------------------< MSG_EXT_2 >----------------*/,{
3004 SCR_CLR (SCR_ACK),
3005 0,
3006 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3007 PADDR (dispatch),
3008 /*
3009 ** get extended message code.
3010 */
3011 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3012 NADDR (msgin[2]),
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07003013 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_WDTR)),
Linus Torvalds1da177e2005-04-16 15:20:36 -07003014 PADDRH (msg_wdtr),
3015 /*
3016 ** unknown extended message
3017 */
3018 SCR_JUMP,
3019 PADDR (msg_bad)
3020}/*-------------------------< MSG_WDTR >-----------------*/,{
3021 SCR_CLR (SCR_ACK),
3022 0,
3023 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3024 PADDR (dispatch),
3025 /*
3026 ** get data bus width
3027 */
3028 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3029 NADDR (msgin[3]),
3030 /*
3031 ** let the host do the real work.
3032 */
3033 SCR_INT,
3034 SIR_NEGO_WIDE,
3035 /*
3036 ** let the target fetch our answer.
3037 */
3038 SCR_SET (SCR_ATN),
3039 0,
3040 SCR_CLR (SCR_ACK),
3041 0,
3042 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3043 PADDRH (nego_bad_phase),
3044
3045}/*-------------------------< SEND_WDTR >----------------*/,{
3046 /*
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07003047 ** Send the EXTENDED_WDTR
Linus Torvalds1da177e2005-04-16 15:20:36 -07003048 */
3049 SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
3050 NADDR (msgout),
3051 SCR_COPY (1),
3052 NADDR (msgout),
3053 NADDR (lastmsg),
3054 SCR_JUMP,
3055 PADDR (msg_out_done),
3056
3057}/*-------------------------< MSG_EXT_3 >----------------*/,{
3058 SCR_CLR (SCR_ACK),
3059 0,
3060 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3061 PADDR (dispatch),
3062 /*
3063 ** get extended message code.
3064 */
3065 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3066 NADDR (msgin[2]),
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07003067 SCR_JUMP ^ IFTRUE (DATA (EXTENDED_SDTR)),
Linus Torvalds1da177e2005-04-16 15:20:36 -07003068 PADDRH (msg_sdtr),
3069 /*
3070 ** unknown extended message
3071 */
3072 SCR_JUMP,
3073 PADDR (msg_bad)
3074
3075}/*-------------------------< MSG_SDTR >-----------------*/,{
3076 SCR_CLR (SCR_ACK),
3077 0,
3078 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
3079 PADDR (dispatch),
3080 /*
3081 ** get period and offset
3082 */
3083 SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
3084 NADDR (msgin[3]),
3085 /*
3086 ** let the host do the real work.
3087 */
3088 SCR_INT,
3089 SIR_NEGO_SYNC,
3090 /*
3091 ** let the target fetch our answer.
3092 */
3093 SCR_SET (SCR_ATN),
3094 0,
3095 SCR_CLR (SCR_ACK),
3096 0,
3097 SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
3098 PADDRH (nego_bad_phase),
3099
3100}/*-------------------------< SEND_SDTR >-------------*/,{
3101 /*
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07003102 ** Send the EXTENDED_SDTR
Linus Torvalds1da177e2005-04-16 15:20:36 -07003103 */
3104 SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
3105 NADDR (msgout),
3106 SCR_COPY (1),
3107 NADDR (msgout),
3108 NADDR (lastmsg),
3109 SCR_JUMP,
3110 PADDR (msg_out_done),
3111
3112}/*-------------------------< NEGO_BAD_PHASE >------------*/,{
3113 SCR_INT,
3114 SIR_NEGO_PROTO,
3115 SCR_JUMP,
3116 PADDR (dispatch),
3117
3118}/*-------------------------< MSG_OUT_ABORT >-------------*/,{
3119 /*
3120 ** After ABORT message,
3121 **
3122 ** expect an immediate disconnect, ...
3123 */
3124 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3125 0,
3126 SCR_CLR (SCR_ACK|SCR_ATN),
3127 0,
3128 SCR_WAIT_DISC,
3129 0,
3130 /*
3131 ** ... and set the status to "ABORTED"
3132 */
3133 SCR_LOAD_REG (HS_REG, HS_ABORTED),
3134 0,
3135 SCR_JUMP,
3136 PADDR (cleanup),
3137
3138}/*-------------------------< HDATA_IN >-------------------*/,{
3139/*
3140** Because the size depends on the
3141** #define MAX_SCATTERH parameter,
3142** it is filled in at runtime.
3143**
3144** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3145** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3146** || PADDR (dispatch),
3147** || SCR_MOVE_TBL ^ SCR_DATA_IN,
3148** || offsetof (struct dsb, data[ i]),
3149** ##===================================================
3150**
3151**---------------------------------------------------------
3152*/
31530
3154}/*-------------------------< HDATA_IN2 >------------------*/,{
3155 SCR_JUMP,
3156 PADDR (data_in),
3157
3158}/*-------------------------< HDATA_OUT >-------------------*/,{
3159/*
3160** Because the size depends on the
3161** #define MAX_SCATTERH parameter,
3162** it is filled in at runtime.
3163**
3164** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3165** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
3166** || PADDR (dispatch),
3167** || SCR_MOVE_TBL ^ SCR_DATA_OUT,
3168** || offsetof (struct dsb, data[ i]),
3169** ##===================================================
3170**
3171**---------------------------------------------------------
3172*/
31730
3174}/*-------------------------< HDATA_OUT2 >------------------*/,{
3175 SCR_JUMP,
3176 PADDR (data_out),
3177
3178}/*-------------------------< RESET >----------------------*/,{
3179 /*
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07003180 ** Send a TARGET_RESET message if bad IDENTIFY
Linus Torvalds1da177e2005-04-16 15:20:36 -07003181 ** received on reselection.
3182 */
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07003183 SCR_LOAD_REG (scratcha, ABORT_TASK),
Linus Torvalds1da177e2005-04-16 15:20:36 -07003184 0,
3185 SCR_JUMP,
3186 PADDRH (abort_resel),
3187}/*-------------------------< ABORTTAG >-------------------*/,{
3188 /*
3189 ** Abort a wrong tag received on reselection.
3190 */
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07003191 SCR_LOAD_REG (scratcha, ABORT_TASK),
Linus Torvalds1da177e2005-04-16 15:20:36 -07003192 0,
3193 SCR_JUMP,
3194 PADDRH (abort_resel),
3195}/*-------------------------< ABORT >----------------------*/,{
3196 /*
3197 ** Abort a reselection when no active CCB.
3198 */
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07003199 SCR_LOAD_REG (scratcha, ABORT_TASK_SET),
Linus Torvalds1da177e2005-04-16 15:20:36 -07003200 0,
3201}/*-------------------------< ABORT_RESEL >----------------*/,{
3202 SCR_COPY (1),
3203 RADDR (scratcha),
3204 NADDR (msgout),
3205 SCR_SET (SCR_ATN),
3206 0,
3207 SCR_CLR (SCR_ACK),
3208 0,
3209 /*
3210 ** and send it.
3211 ** we expect an immediate disconnect
3212 */
3213 SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3214 0,
3215 SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
3216 NADDR (msgout),
3217 SCR_COPY (1),
3218 NADDR (msgout),
3219 NADDR (lastmsg),
3220 SCR_CLR (SCR_ACK|SCR_ATN),
3221 0,
3222 SCR_WAIT_DISC,
3223 0,
3224 SCR_JUMP,
3225 PADDR (start),
3226}/*-------------------------< RESEND_IDENT >-------------------*/,{
3227 /*
3228 ** The target stays in MSG OUT phase after having acked
3229 ** Identify [+ Tag [+ Extended message ]]. Targets shall
3230 ** behave this way on parity error.
3231 ** We must send it again all the messages.
3232 */
3233 SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
3234 0, /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */
3235 SCR_JUMP,
3236 PADDR (send_ident),
3237}/*-------------------------< CLRATN_GO_ON >-------------------*/,{
3238 SCR_CLR (SCR_ATN),
3239 0,
3240 SCR_JUMP,
3241}/*-------------------------< NXTDSP_GO_ON >-------------------*/,{
3242 0,
3243}/*-------------------------< SDATA_IN >-------------------*/,{
3244 SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3245 PADDR (dispatch),
3246 SCR_MOVE_TBL ^ SCR_DATA_IN,
3247 offsetof (struct dsb, sense),
3248 SCR_CALL,
3249 PADDR (dispatch),
3250 SCR_JUMP,
3251 PADDR (no_data),
3252}/*-------------------------< DATA_IO >--------------------*/,{
3253 /*
3254 ** We jump here if the data direction was unknown at the
3255 ** time we had to queue the command to the scripts processor.
3256 ** Pointers had been set as follow in this situation:
3257 ** savep --> DATA_IO
3258 ** lastp --> start pointer when DATA_IN
3259 ** goalp --> goal pointer when DATA_IN
3260 ** wlastp --> start pointer when DATA_OUT
3261 ** wgoalp --> goal pointer when DATA_OUT
3262 ** This script sets savep/lastp/goalp according to the
3263 ** direction chosen by the target.
3264 */
3265 SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_OUT)),
3266 32,
3267 /*
3268 ** Direction is DATA IN.
3269 ** Warning: we jump here, even when phase is DATA OUT.
3270 */
3271 SCR_COPY (4),
3272 NADDR (header.lastp),
3273 NADDR (header.savep),
3274
3275 /*
3276 ** Jump to the SCRIPTS according to actual direction.
3277 */
3278 SCR_COPY (4),
3279 NADDR (header.savep),
3280 RADDR (temp),
3281 SCR_RETURN,
3282 0,
3283 /*
3284 ** Direction is DATA OUT.
3285 */
3286 SCR_COPY (4),
3287 NADDR (header.wlastp),
3288 NADDR (header.lastp),
3289 SCR_COPY (4),
3290 NADDR (header.wgoalp),
3291 NADDR (header.goalp),
3292 SCR_JUMPR,
3293 -64,
3294}/*-------------------------< BAD_IDENTIFY >---------------*/,{
3295 /*
3296 ** If message phase but not an IDENTIFY,
3297 ** get some help from the C code.
3298 ** Old SCSI device may behave so.
3299 */
3300 SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)),
3301 16,
3302 SCR_INT,
3303 SIR_RESEL_NO_IDENTIFY,
3304 SCR_JUMP,
3305 PADDRH (reset),
3306 /*
3307 ** Message is an IDENTIFY, but lun is unknown.
3308 ** Read the message, since we got it directly
3309 ** from the SCSI BUS data lines.
3310 ** Signal problem to C code for logging the event.
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07003311 ** Send an ABORT_TASK_SET to clear all pending tasks.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003312 */
3313 SCR_INT,
3314 SIR_RESEL_BAD_LUN,
3315 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3316 NADDR (msgin),
3317 SCR_JUMP,
3318 PADDRH (abort),
3319}/*-------------------------< BAD_I_T_L >------------------*/,{
3320 /*
3321 ** We donnot have a task for that I_T_L.
3322 ** Signal problem to C code for logging the event.
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07003323 ** Send an ABORT_TASK_SET message.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003324 */
3325 SCR_INT,
3326 SIR_RESEL_BAD_I_T_L,
3327 SCR_JUMP,
3328 PADDRH (abort),
3329}/*-------------------------< BAD_I_T_L_Q >----------------*/,{
3330 /*
3331 ** We donnot have a task that matches the tag.
3332 ** Signal problem to C code for logging the event.
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07003333 ** Send an ABORT_TASK message.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003334 */
3335 SCR_INT,
3336 SIR_RESEL_BAD_I_T_L_Q,
3337 SCR_JUMP,
3338 PADDRH (aborttag),
3339}/*-------------------------< BAD_TARGET >-----------------*/,{
3340 /*
3341 ** We donnot know the target that reselected us.
3342 ** Grab the first message if any (IDENTIFY).
3343 ** Signal problem to C code for logging the event.
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07003344 ** TARGET_RESET message.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003345 */
3346 SCR_INT,
3347 SIR_RESEL_BAD_TARGET,
3348 SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_IN)),
3349 8,
3350 SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3351 NADDR (msgin),
3352 SCR_JUMP,
3353 PADDRH (reset),
3354}/*-------------------------< BAD_STATUS >-----------------*/,{
3355 /*
3356 ** If command resulted in either QUEUE FULL,
3357 ** CHECK CONDITION or COMMAND TERMINATED,
3358 ** call the C code.
3359 */
3360 SCR_INT ^ IFTRUE (DATA (S_QUEUE_FULL)),
3361 SIR_BAD_STATUS,
3362 SCR_INT ^ IFTRUE (DATA (S_CHECK_COND)),
3363 SIR_BAD_STATUS,
3364 SCR_INT ^ IFTRUE (DATA (S_TERMINATED)),
3365 SIR_BAD_STATUS,
3366 SCR_RETURN,
3367 0,
3368}/*-------------------------< START_RAM >-------------------*/,{
3369 /*
3370 ** Load the script into on-chip RAM,
3371 ** and jump to start point.
3372 */
3373 SCR_COPY_F (4),
3374 RADDR (scratcha),
3375 PADDRH (start_ram0),
3376 /*
3377 ** Flush script prefetch if required
3378 */
3379 PREFETCH_FLUSH
3380 SCR_COPY (sizeof (struct script)),
3381}/*-------------------------< START_RAM0 >--------------------*/,{
3382 0,
3383 PADDR (start),
3384 SCR_JUMP,
3385 PADDR (start),
3386}/*-------------------------< STO_RESTART >-------------------*/,{
3387 /*
3388 **
3389 ** Repair start queue (e.g. next time use the next slot)
3390 ** and jump to start point.
3391 */
3392 SCR_COPY (4),
3393 RADDR (temp),
3394 PADDR (startpos),
3395 SCR_JUMP,
3396 PADDR (start),
3397}/*-------------------------< WAIT_DMA >-------------------*/,{
3398 /*
3399 ** For HP Zalon/53c720 systems, the Zalon interface
3400 ** between CPU and 53c720 does prefetches, which causes
3401 ** problems with self modifying scripts. The problem
3402 ** is overcome by calling a dummy subroutine after each
3403 ** modification, to force a refetch of the script on
3404 ** return from the subroutine.
3405 */
3406 SCR_RETURN,
3407 0,
3408}/*-------------------------< SNOOPTEST >-------------------*/,{
3409 /*
3410 ** Read the variable.
3411 */
3412 SCR_COPY (4),
3413 NADDR(ncr_cache),
3414 RADDR (scratcha),
3415 /*
3416 ** Write the variable.
3417 */
3418 SCR_COPY (4),
3419 RADDR (temp),
3420 NADDR(ncr_cache),
3421 /*
3422 ** Read back the variable.
3423 */
3424 SCR_COPY (4),
3425 NADDR(ncr_cache),
3426 RADDR (temp),
3427}/*-------------------------< SNOOPEND >-------------------*/,{
3428 /*
3429 ** And stop.
3430 */
3431 SCR_INT,
3432 99,
3433}/*--------------------------------------------------------*/
3434};
3435
3436/*==========================================================
3437**
3438**
3439** Fill in #define dependent parts of the script
3440**
3441**
3442**==========================================================
3443*/
3444
3445void __init ncr_script_fill (struct script * scr, struct scripth * scrh)
3446{
3447 int i;
3448 ncrcmd *p;
3449
3450 p = scrh->tryloop;
3451 for (i=0; i<MAX_START; i++) {
3452 *p++ =SCR_CALL;
3453 *p++ =PADDR (idle);
3454 }
3455
3456 BUG_ON((u_long)p != (u_long)&scrh->tryloop + sizeof (scrh->tryloop));
3457
3458#ifdef SCSI_NCR_CCB_DONE_SUPPORT
3459
3460 p = scrh->done_queue;
3461 for (i = 0; i<MAX_DONE; i++) {
3462 *p++ =SCR_COPY (sizeof(struct ccb *));
3463 *p++ =NADDR (header.cp);
3464 *p++ =NADDR (ccb_done[i]);
3465 *p++ =SCR_CALL;
3466 *p++ =PADDR (done_end);
3467 }
3468
3469 BUG_ON((u_long)p != (u_long)&scrh->done_queue+sizeof(scrh->done_queue));
3470
3471#endif /* SCSI_NCR_CCB_DONE_SUPPORT */
3472
3473 p = scrh->hdata_in;
3474 for (i=0; i<MAX_SCATTERH; i++) {
3475 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3476 *p++ =PADDR (dispatch);
3477 *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3478 *p++ =offsetof (struct dsb, data[i]);
3479 }
3480
3481 BUG_ON((u_long)p != (u_long)&scrh->hdata_in + sizeof (scrh->hdata_in));
3482
3483 p = scr->data_in;
3484 for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3485 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3486 *p++ =PADDR (dispatch);
3487 *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3488 *p++ =offsetof (struct dsb, data[i]);
3489 }
3490
3491 BUG_ON((u_long)p != (u_long)&scr->data_in + sizeof (scr->data_in));
3492
3493 p = scrh->hdata_out;
3494 for (i=0; i<MAX_SCATTERH; i++) {
3495 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3496 *p++ =PADDR (dispatch);
3497 *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3498 *p++ =offsetof (struct dsb, data[i]);
3499 }
3500
3501 BUG_ON((u_long)p != (u_long)&scrh->hdata_out + sizeof (scrh->hdata_out));
3502
3503 p = scr->data_out;
3504 for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3505 *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3506 *p++ =PADDR (dispatch);
3507 *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3508 *p++ =offsetof (struct dsb, data[i]);
3509 }
3510
3511 BUG_ON((u_long) p != (u_long)&scr->data_out + sizeof (scr->data_out));
3512}
3513
3514/*==========================================================
3515**
3516**
3517** Copy and rebind a script.
3518**
3519**
3520**==========================================================
3521*/
3522
3523static void __init
3524ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len)
3525{
3526 ncrcmd opcode, new, old, tmp1, tmp2;
3527 ncrcmd *start, *end;
3528 int relocs;
3529 int opchanged = 0;
3530
3531 start = src;
3532 end = src + len/4;
3533
3534 while (src < end) {
3535
3536 opcode = *src++;
3537 *dst++ = cpu_to_scr(opcode);
3538
3539 /*
3540 ** If we forget to change the length
3541 ** in struct script, a field will be
3542 ** padded with 0. This is an illegal
3543 ** command.
3544 */
3545
3546 if (opcode == 0) {
3547 printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n",
3548 ncr_name(np), (int) (src-start-1));
3549 mdelay(1000);
3550 }
3551
3552 if (DEBUG_FLAGS & DEBUG_SCRIPT)
3553 printk (KERN_DEBUG "%p: <%x>\n",
3554 (src-1), (unsigned)opcode);
3555
3556 /*
3557 ** We don't have to decode ALL commands
3558 */
3559 switch (opcode >> 28) {
3560
3561 case 0xc:
3562 /*
3563 ** COPY has TWO arguments.
3564 */
3565 relocs = 2;
3566 tmp1 = src[0];
3567#ifdef RELOC_KVAR
3568 if ((tmp1 & RELOC_MASK) == RELOC_KVAR)
3569 tmp1 = 0;
3570#endif
3571 tmp2 = src[1];
3572#ifdef RELOC_KVAR
3573 if ((tmp2 & RELOC_MASK) == RELOC_KVAR)
3574 tmp2 = 0;
3575#endif
3576 if ((tmp1 ^ tmp2) & 3) {
3577 printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n",
3578 ncr_name(np), (int) (src-start-1));
3579 mdelay(1000);
3580 }
3581 /*
3582 ** If PREFETCH feature not enabled, remove
3583 ** the NO FLUSH bit if present.
3584 */
3585 if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) {
3586 dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH);
3587 ++opchanged;
3588 }
3589 break;
3590
3591 case 0x0:
3592 /*
3593 ** MOVE (absolute address)
3594 */
3595 relocs = 1;
3596 break;
3597
3598 case 0x8:
3599 /*
3600 ** JUMP / CALL
3601 ** don't relocate if relative :-)
3602 */
3603 if (opcode & 0x00800000)
3604 relocs = 0;
3605 else
3606 relocs = 1;
3607 break;
3608
3609 case 0x4:
3610 case 0x5:
3611 case 0x6:
3612 case 0x7:
3613 relocs = 1;
3614 break;
3615
3616 default:
3617 relocs = 0;
3618 break;
3619 }
3620
3621 if (relocs) {
3622 while (relocs--) {
3623 old = *src++;
3624
3625 switch (old & RELOC_MASK) {
3626 case RELOC_REGISTER:
3627 new = (old & ~RELOC_MASK) + np->paddr;
3628 break;
3629 case RELOC_LABEL:
3630 new = (old & ~RELOC_MASK) + np->p_script;
3631 break;
3632 case RELOC_LABELH:
3633 new = (old & ~RELOC_MASK) + np->p_scripth;
3634 break;
3635 case RELOC_SOFTC:
3636 new = (old & ~RELOC_MASK) + np->p_ncb;
3637 break;
3638#ifdef RELOC_KVAR
3639 case RELOC_KVAR:
3640 if (((old & ~RELOC_MASK) <
3641 SCRIPT_KVAR_FIRST) ||
3642 ((old & ~RELOC_MASK) >
3643 SCRIPT_KVAR_LAST))
3644 panic("ncr KVAR out of range");
3645 new = vtophys(script_kvars[old &
3646 ~RELOC_MASK]);
3647 break;
3648#endif
3649 case 0:
3650 /* Don't relocate a 0 address. */
3651 if (old == 0) {
3652 new = old;
3653 break;
3654 }
3655 /* fall through */
3656 default:
3657 panic("ncr_script_copy_and_bind: weird relocation %x\n", old);
3658 break;
3659 }
3660
3661 *dst++ = cpu_to_scr(new);
3662 }
3663 } else
3664 *dst++ = cpu_to_scr(*src++);
3665
3666 }
3667}
3668
3669/*
3670** Linux host data structure
3671*/
3672
3673struct host_data {
3674 struct ncb *ncb;
3675};
3676
3677#define PRINT_ADDR(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg)
3678
3679static void ncr_print_msg(struct ccb *cp, char *label, u_char *msg)
3680{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003681 PRINT_ADDR(cp->cmd, "%s: ", label);
3682
Matthew Wilcoxcd453c62005-12-16 12:50:53 -05003683 spi_print_msg(msg);
3684 printk("\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003685}
3686
3687/*==========================================================
3688**
3689** NCR chip clock divisor table.
3690** Divisors are multiplied by 10,000,000 in order to make
3691** calculations more simple.
3692**
3693**==========================================================
3694*/
3695
3696#define _5M 5000000
3697static u_long div_10M[] =
3698 {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
3699
3700
3701/*===============================================================
3702**
3703** Prepare io register values used by ncr_init() according
3704** to selected and supported features.
3705**
3706** NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128
3707** transfers. 32,64,128 are only supported by 875 and 895 chips.
3708** We use log base 2 (burst length) as internal code, with
3709** value 0 meaning "burst disabled".
3710**
3711**===============================================================
3712*/
3713
3714/*
3715 * Burst length from burst code.
3716 */
3717#define burst_length(bc) (!(bc))? 0 : 1 << (bc)
3718
3719/*
3720 * Burst code from io register bits. Burst enable is ctest0 for c720
3721 */
3722#define burst_code(dmode, ctest0) \
3723 (ctest0) & 0x80 ? 0 : (((dmode) & 0xc0) >> 6) + 1
3724
3725/*
3726 * Set initial io register bits from burst code.
3727 */
3728static inline void ncr_init_burst(struct ncb *np, u_char bc)
3729{
3730 u_char *be = &np->rv_ctest0;
3731 *be &= ~0x80;
3732 np->rv_dmode &= ~(0x3 << 6);
3733 np->rv_ctest5 &= ~0x4;
3734
3735 if (!bc) {
3736 *be |= 0x80;
3737 } else {
3738 --bc;
3739 np->rv_dmode |= ((bc & 0x3) << 6);
3740 np->rv_ctest5 |= (bc & 0x4);
3741 }
3742}
3743
3744static void __init ncr_prepare_setting(struct ncb *np)
3745{
3746 u_char burst_max;
3747 u_long period;
3748 int i;
3749
3750 /*
3751 ** Save assumed BIOS setting
3752 */
3753
3754 np->sv_scntl0 = INB(nc_scntl0) & 0x0a;
3755 np->sv_scntl3 = INB(nc_scntl3) & 0x07;
3756 np->sv_dmode = INB(nc_dmode) & 0xce;
3757 np->sv_dcntl = INB(nc_dcntl) & 0xa8;
3758 np->sv_ctest0 = INB(nc_ctest0) & 0x84;
3759 np->sv_ctest3 = INB(nc_ctest3) & 0x01;
3760 np->sv_ctest4 = INB(nc_ctest4) & 0x80;
3761 np->sv_ctest5 = INB(nc_ctest5) & 0x24;
3762 np->sv_gpcntl = INB(nc_gpcntl);
3763 np->sv_stest2 = INB(nc_stest2) & 0x20;
3764 np->sv_stest4 = INB(nc_stest4);
3765
3766 /*
3767 ** Wide ?
3768 */
3769
3770 np->maxwide = (np->features & FE_WIDE)? 1 : 0;
3771
3772 /*
3773 * Guess the frequency of the chip's clock.
3774 */
3775 if (np->features & FE_ULTRA)
3776 np->clock_khz = 80000;
3777 else
3778 np->clock_khz = 40000;
3779
3780 /*
3781 * Get the clock multiplier factor.
3782 */
3783 if (np->features & FE_QUAD)
3784 np->multiplier = 4;
3785 else if (np->features & FE_DBLR)
3786 np->multiplier = 2;
3787 else
3788 np->multiplier = 1;
3789
3790 /*
3791 * Measure SCSI clock frequency for chips
3792 * it may vary from assumed one.
3793 */
3794 if (np->features & FE_VARCLK)
3795 ncr_getclock(np, np->multiplier);
3796
3797 /*
3798 * Divisor to be used for async (timer pre-scaler).
3799 */
3800 i = np->clock_divn - 1;
3801 while (--i >= 0) {
3802 if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) {
3803 ++i;
3804 break;
3805 }
3806 }
3807 np->rv_scntl3 = i+1;
3808
3809 /*
3810 * Minimum synchronous period factor supported by the chip.
3811 * Btw, 'period' is in tenths of nanoseconds.
3812 */
3813
3814 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
3815 if (period <= 250) np->minsync = 10;
3816 else if (period <= 303) np->minsync = 11;
3817 else if (period <= 500) np->minsync = 12;
3818 else np->minsync = (period + 40 - 1) / 40;
3819
3820 /*
3821 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
3822 */
3823
3824 if (np->minsync < 25 && !(np->features & FE_ULTRA))
3825 np->minsync = 25;
3826
3827 /*
3828 * Maximum synchronous period factor supported by the chip.
3829 */
3830
3831 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
3832 np->maxsync = period > 2540 ? 254 : period / 10;
3833
3834 /*
3835 ** Prepare initial value of other IO registers
3836 */
3837#if defined SCSI_NCR_TRUST_BIOS_SETTING
3838 np->rv_scntl0 = np->sv_scntl0;
3839 np->rv_dmode = np->sv_dmode;
3840 np->rv_dcntl = np->sv_dcntl;
3841 np->rv_ctest0 = np->sv_ctest0;
3842 np->rv_ctest3 = np->sv_ctest3;
3843 np->rv_ctest4 = np->sv_ctest4;
3844 np->rv_ctest5 = np->sv_ctest5;
3845 burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
3846#else
3847
3848 /*
3849 ** Select burst length (dwords)
3850 */
3851 burst_max = driver_setup.burst_max;
3852 if (burst_max == 255)
3853 burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
3854 if (burst_max > 7)
3855 burst_max = 7;
3856 if (burst_max > np->maxburst)
3857 burst_max = np->maxburst;
3858
3859 /*
3860 ** Select all supported special features
3861 */
3862 if (np->features & FE_ERL)
3863 np->rv_dmode |= ERL; /* Enable Read Line */
3864 if (np->features & FE_BOF)
3865 np->rv_dmode |= BOF; /* Burst Opcode Fetch */
3866 if (np->features & FE_ERMP)
3867 np->rv_dmode |= ERMP; /* Enable Read Multiple */
3868 if (np->features & FE_PFEN)
3869 np->rv_dcntl |= PFEN; /* Prefetch Enable */
3870 if (np->features & FE_CLSE)
3871 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
3872 if (np->features & FE_WRIE)
3873 np->rv_ctest3 |= WRIE; /* Write and Invalidate */
3874 if (np->features & FE_DFS)
3875 np->rv_ctest5 |= DFS; /* Dma Fifo Size */
3876 if (np->features & FE_MUX)
3877 np->rv_ctest4 |= MUX; /* Host bus multiplex mode */
3878 if (np->features & FE_EA)
3879 np->rv_dcntl |= EA; /* Enable ACK */
3880 if (np->features & FE_EHP)
3881 np->rv_ctest0 |= EHP; /* Even host parity */
3882
3883 /*
3884 ** Select some other
3885 */
3886 if (driver_setup.master_parity)
3887 np->rv_ctest4 |= MPEE; /* Master parity checking */
3888 if (driver_setup.scsi_parity)
3889 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
3890
3891 /*
3892 ** Get SCSI addr of host adapter (set by bios?).
3893 */
3894 if (np->myaddr == 255) {
3895 np->myaddr = INB(nc_scid) & 0x07;
3896 if (!np->myaddr)
3897 np->myaddr = SCSI_NCR_MYADDR;
3898 }
3899
3900#endif /* SCSI_NCR_TRUST_BIOS_SETTING */
3901
3902 /*
3903 * Prepare initial io register bits for burst length
3904 */
3905 ncr_init_burst(np, burst_max);
3906
3907 /*
3908 ** Set SCSI BUS mode.
3909 **
3910 ** - ULTRA2 chips (895/895A/896) report the current
3911 ** BUS mode through the STEST4 IO register.
3912 ** - For previous generation chips (825/825A/875),
3913 ** user has to tell us how to check against HVD,
3914 ** since a 100% safe algorithm is not possible.
3915 */
3916 np->scsi_mode = SMODE_SE;
3917 if (np->features & FE_DIFF) {
3918 switch(driver_setup.diff_support) {
3919 case 4: /* Trust previous settings if present, then GPIO3 */
3920 if (np->sv_scntl3) {
3921 if (np->sv_stest2 & 0x20)
3922 np->scsi_mode = SMODE_HVD;
3923 break;
3924 }
3925 case 3: /* SYMBIOS controllers report HVD through GPIO3 */
3926 if (INB(nc_gpreg) & 0x08)
3927 break;
3928 case 2: /* Set HVD unconditionally */
3929 np->scsi_mode = SMODE_HVD;
3930 case 1: /* Trust previous settings for HVD */
3931 if (np->sv_stest2 & 0x20)
3932 np->scsi_mode = SMODE_HVD;
3933 break;
3934 default:/* Don't care about HVD */
3935 break;
3936 }
3937 }
3938 if (np->scsi_mode == SMODE_HVD)
3939 np->rv_stest2 |= 0x20;
3940
3941 /*
3942 ** Set LED support from SCRIPTS.
3943 ** Ignore this feature for boards known to use a
3944 ** specific GPIO wiring and for the 895A or 896
3945 ** that drive the LED directly.
3946 ** Also probe initial setting of GPIO0 as output.
3947 */
3948 if ((driver_setup.led_pin) &&
3949 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
3950 np->features |= FE_LED0;
3951
3952 /*
3953 ** Set irq mode.
3954 */
3955 switch(driver_setup.irqm & 3) {
3956 case 2:
3957 np->rv_dcntl |= IRQM;
3958 break;
3959 case 1:
3960 np->rv_dcntl |= (np->sv_dcntl & IRQM);
3961 break;
3962 default:
3963 break;
3964 }
3965
3966 /*
3967 ** Configure targets according to driver setup.
3968 ** Allow to override sync, wide and NOSCAN from
3969 ** boot command line.
3970 */
3971 for (i = 0 ; i < MAX_TARGET ; i++) {
3972 struct tcb *tp = &np->target[i];
3973
3974 tp->usrsync = driver_setup.default_sync;
3975 tp->usrwide = driver_setup.max_wide;
3976 tp->usrtags = MAX_TAGS;
3977 tp->period = 0xffff;
3978 if (!driver_setup.disconnection)
3979 np->target[i].usrflag = UF_NODISC;
3980 }
3981
3982 /*
3983 ** Announce all that stuff to user.
3984 */
3985
3986 printk(KERN_INFO "%s: ID %d, Fast-%d%s%s\n", ncr_name(np),
3987 np->myaddr,
3988 np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10),
3989 (np->rv_scntl0 & 0xa) ? ", Parity Checking" : ", NO Parity",
3990 (np->rv_stest2 & 0x20) ? ", Differential" : "");
3991
3992 if (bootverbose > 1) {
3993 printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3994 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
3995 ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
3996 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
3997
3998 printk (KERN_INFO "%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3999 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
4000 ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
4001 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
4002 }
4003
4004 if (bootverbose && np->paddr2)
4005 printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n",
4006 ncr_name(np), np->paddr2);
4007}
4008
4009/*==========================================================
4010**
4011**
4012** Done SCSI commands list management.
4013**
4014** We donnot enter the scsi_done() callback immediately
4015** after a command has been seen as completed but we
4016** insert it into a list which is flushed outside any kind
4017** of driver critical section.
4018** This allows to do minimal stuff under interrupt and
4019** inside critical sections and to also avoid locking up
4020** on recursive calls to driver entry points under SMP.
4021** In fact, the only kernel point which is entered by the
4022** driver with a driver lock set is kmalloc(GFP_ATOMIC)
4023** that shall not reenter the driver under any circumstances,
4024** AFAIK.
4025**
4026**==========================================================
4027*/
4028static inline void ncr_queue_done_cmd(struct ncb *np, struct scsi_cmnd *cmd)
4029{
4030 unmap_scsi_data(np, cmd);
4031 cmd->host_scribble = (char *) np->done_list;
4032 np->done_list = cmd;
4033}
4034
4035static inline void ncr_flush_done_cmds(struct scsi_cmnd *lcmd)
4036{
4037 struct scsi_cmnd *cmd;
4038
4039 while (lcmd) {
4040 cmd = lcmd;
4041 lcmd = (struct scsi_cmnd *) cmd->host_scribble;
4042 cmd->scsi_done(cmd);
4043 }
4044}
4045
4046/*==========================================================
4047**
4048**
4049** Prepare the next negotiation message if needed.
4050**
4051** Fill in the part of message buffer that contains the
4052** negotiation and the nego_status field of the CCB.
4053** Returns the size of the message in bytes.
4054**
4055**
4056**==========================================================
4057*/
4058
4059
4060static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr)
4061{
4062 struct tcb *tp = &np->target[cp->target];
4063 int msglen = 0;
4064 int nego = 0;
4065 struct scsi_target *starget = tp->starget;
4066
4067 /* negotiate wide transfers ? */
4068 if (!tp->widedone) {
4069 if (spi_support_wide(starget)) {
4070 nego = NS_WIDE;
4071 } else
4072 tp->widedone=1;
4073 }
4074
4075 /* negotiate synchronous transfers? */
4076 if (!nego && !tp->period) {
4077 if (spi_support_sync(starget)) {
4078 nego = NS_SYNC;
4079 } else {
4080 tp->period =0xffff;
4081 dev_info(&starget->dev, "target did not report SYNC.\n");
4082 }
4083 }
4084
4085 switch (nego) {
4086 case NS_SYNC:
Matthew Wilcox6ea3c0b2006-02-07 07:54:46 -07004087 msglen += spi_populate_sync_msg(msgptr + msglen,
4088 tp->maxoffs ? tp->minsync : 0, tp->maxoffs);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004089 break;
4090 case NS_WIDE:
Matthew Wilcox6ea3c0b2006-02-07 07:54:46 -07004091 msglen += spi_populate_width_msg(msgptr + msglen, tp->usrwide);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004092 break;
4093 }
4094
4095 cp->nego_status = nego;
4096
4097 if (nego) {
4098 tp->nego_cp = cp;
4099 if (DEBUG_FLAGS & DEBUG_NEGO) {
4100 ncr_print_msg(cp, nego == NS_WIDE ?
4101 "wide msgout":"sync_msgout", msgptr);
4102 }
4103 }
4104
4105 return msglen;
4106}
4107
4108
4109
4110/*==========================================================
4111**
4112**
4113** Start execution of a SCSI command.
4114** This is called from the generic SCSI driver.
4115**
4116**
4117**==========================================================
4118*/
4119static int ncr_queue_command (struct ncb *np, struct scsi_cmnd *cmd)
4120{
4121 struct scsi_device *sdev = cmd->device;
4122 struct tcb *tp = &np->target[sdev->id];
4123 struct lcb *lp = tp->lp[sdev->lun];
4124 struct ccb *cp;
4125
4126 int segments;
4127 u_char idmsg, *msgptr;
4128 u32 msglen;
4129 int direction;
4130 u32 lastp, goalp;
4131
4132 /*---------------------------------------------
4133 **
4134 ** Some shortcuts ...
4135 **
4136 **---------------------------------------------
4137 */
4138 if ((sdev->id == np->myaddr ) ||
4139 (sdev->id >= MAX_TARGET) ||
4140 (sdev->lun >= MAX_LUN )) {
4141 return(DID_BAD_TARGET);
4142 }
4143
4144 /*---------------------------------------------
4145 **
4146 ** Complete the 1st TEST UNIT READY command
4147 ** with error condition if the device is
4148 ** flagged NOSCAN, in order to speed up
4149 ** the boot.
4150 **
4151 **---------------------------------------------
4152 */
4153 if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12) &&
4154 (tp->usrflag & UF_NOSCAN)) {
4155 tp->usrflag &= ~UF_NOSCAN;
4156 return DID_BAD_TARGET;
4157 }
4158
4159 if (DEBUG_FLAGS & DEBUG_TINY) {
4160 PRINT_ADDR(cmd, "CMD=%x ", cmd->cmnd[0]);
4161 }
4162
4163 /*---------------------------------------------------
4164 **
4165 ** Assign a ccb / bind cmd.
4166 ** If resetting, shorten settle_time if necessary
4167 ** in order to avoid spurious timeouts.
4168 ** If resetting or no free ccb,
4169 ** insert cmd into the waiting list.
4170 **
4171 **----------------------------------------------------
4172 */
4173 if (np->settle_time && cmd->timeout_per_command >= HZ) {
Matthew Wilcoxf2be34a2005-10-25 22:16:02 -06004174 u_long tlimit = jiffies + cmd->timeout_per_command - HZ;
4175 if (time_after(np->settle_time, tlimit))
Linus Torvalds1da177e2005-04-16 15:20:36 -07004176 np->settle_time = tlimit;
4177 }
4178
4179 if (np->settle_time || !(cp=ncr_get_ccb (np, cmd))) {
4180 insert_into_waiting_list(np, cmd);
4181 return(DID_OK);
4182 }
4183 cp->cmd = cmd;
4184
4185 /*----------------------------------------------------
4186 **
4187 ** Build the identify / tag / sdtr message
4188 **
4189 **----------------------------------------------------
4190 */
4191
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07004192 idmsg = IDENTIFY(0, sdev->lun);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004193
4194 if (cp ->tag != NO_TAG ||
4195 (cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC)))
4196 idmsg |= 0x40;
4197
4198 msgptr = cp->scsi_smsg;
4199 msglen = 0;
4200 msgptr[msglen++] = idmsg;
4201
4202 if (cp->tag != NO_TAG) {
4203 char order = np->order;
4204
4205 /*
4206 ** Force ordered tag if necessary to avoid timeouts
4207 ** and to preserve interactivity.
4208 */
Matthew Wilcoxf2be34a2005-10-25 22:16:02 -06004209 if (lp && time_after(jiffies, lp->tags_stime)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004210 if (lp->tags_smap) {
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07004211 order = ORDERED_QUEUE_TAG;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004212 if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){
4213 PRINT_ADDR(cmd,
4214 "ordered tag forced.\n");
4215 }
4216 }
Matthew Wilcoxf2be34a2005-10-25 22:16:02 -06004217 lp->tags_stime = jiffies + 3*HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004218 lp->tags_smap = lp->tags_umap;
4219 }
4220
4221 if (order == 0) {
4222 /*
4223 ** Ordered write ops, unordered read ops.
4224 */
4225 switch (cmd->cmnd[0]) {
4226 case 0x08: /* READ_SMALL (6) */
4227 case 0x28: /* READ_BIG (10) */
4228 case 0xa8: /* READ_HUGE (12) */
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07004229 order = SIMPLE_QUEUE_TAG;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004230 break;
4231 default:
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07004232 order = ORDERED_QUEUE_TAG;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004233 }
4234 }
4235 msgptr[msglen++] = order;
4236 /*
4237 ** Actual tags are numbered 1,3,5,..2*MAXTAGS+1,
4238 ** since we may have to deal with devices that have
4239 ** problems with #TAG 0 or too great #TAG numbers.
4240 */
4241 msgptr[msglen++] = (cp->tag << 1) + 1;
4242 }
4243
4244 /*----------------------------------------------------
4245 **
4246 ** Build the data descriptors
4247 **
4248 **----------------------------------------------------
4249 */
4250
4251 direction = cmd->sc_data_direction;
4252 if (direction != DMA_NONE) {
4253 segments = ncr_scatter(np, cp, cp->cmd);
4254 if (segments < 0) {
4255 ncr_free_ccb(np, cp);
4256 return(DID_ERROR);
4257 }
4258 }
4259 else {
4260 cp->data_len = 0;
4261 segments = 0;
4262 }
4263
4264 /*---------------------------------------------------
4265 **
4266 ** negotiation required?
4267 **
4268 ** (nego_status is filled by ncr_prepare_nego())
4269 **
4270 **---------------------------------------------------
4271 */
4272
4273 cp->nego_status = 0;
4274
4275 if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) {
4276 msglen += ncr_prepare_nego (np, cp, msgptr + msglen);
4277 }
4278
4279 /*----------------------------------------------------
4280 **
4281 ** Determine xfer direction.
4282 **
4283 **----------------------------------------------------
4284 */
4285 if (!cp->data_len)
4286 direction = DMA_NONE;
4287
4288 /*
4289 ** If data direction is BIDIRECTIONAL, speculate FROM_DEVICE
4290 ** but prepare alternate pointers for TO_DEVICE in case
4291 ** of our speculation will be just wrong.
4292 ** SCRIPTS will swap values if needed.
4293 */
4294 switch(direction) {
4295 case DMA_BIDIRECTIONAL:
4296 case DMA_TO_DEVICE:
4297 goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8;
4298 if (segments <= MAX_SCATTERL)
4299 lastp = goalp - 8 - (segments * 16);
4300 else {
4301 lastp = NCB_SCRIPTH_PHYS (np, hdata_out2);
4302 lastp -= (segments - MAX_SCATTERL) * 16;
4303 }
4304 if (direction != DMA_BIDIRECTIONAL)
4305 break;
4306 cp->phys.header.wgoalp = cpu_to_scr(goalp);
4307 cp->phys.header.wlastp = cpu_to_scr(lastp);
4308 /* fall through */
4309 case DMA_FROM_DEVICE:
4310 goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8;
4311 if (segments <= MAX_SCATTERL)
4312 lastp = goalp - 8 - (segments * 16);
4313 else {
4314 lastp = NCB_SCRIPTH_PHYS (np, hdata_in2);
4315 lastp -= (segments - MAX_SCATTERL) * 16;
4316 }
4317 break;
4318 default:
4319 case DMA_NONE:
4320 lastp = goalp = NCB_SCRIPT_PHYS (np, no_data);
4321 break;
4322 }
4323
4324 /*
4325 ** Set all pointers values needed by SCRIPTS.
4326 ** If direction is unknown, start at data_io.
4327 */
4328 cp->phys.header.lastp = cpu_to_scr(lastp);
4329 cp->phys.header.goalp = cpu_to_scr(goalp);
4330
4331 if (direction == DMA_BIDIRECTIONAL)
4332 cp->phys.header.savep =
4333 cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io));
4334 else
4335 cp->phys.header.savep= cpu_to_scr(lastp);
4336
4337 /*
4338 ** Save the initial data pointer in order to be able
4339 ** to redo the command.
4340 */
4341 cp->startp = cp->phys.header.savep;
4342
4343 /*----------------------------------------------------
4344 **
4345 ** fill in ccb
4346 **
4347 **----------------------------------------------------
4348 **
4349 **
4350 ** physical -> virtual backlink
4351 ** Generic SCSI command
4352 */
4353
4354 /*
4355 ** Startqueue
4356 */
4357 cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
4358 cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa));
4359 /*
4360 ** select
4361 */
Jeff Garzik422c0d62005-10-24 18:05:09 -04004362 cp->phys.select.sel_id = sdev_id(sdev);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004363 cp->phys.select.sel_scntl3 = tp->wval;
4364 cp->phys.select.sel_sxfer = tp->sval;
4365 /*
4366 ** message
4367 */
4368 cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg));
4369 cp->phys.smsg.size = cpu_to_scr(msglen);
4370
4371 /*
4372 ** command
4373 */
4374 memcpy(cp->cdb_buf, cmd->cmnd, min_t(int, cmd->cmd_len, sizeof(cp->cdb_buf)));
4375 cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, cdb_buf[0]));
4376 cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);
4377
4378 /*
4379 ** status
4380 */
4381 cp->actualquirks = 0;
4382 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4383 cp->scsi_status = S_ILLEGAL;
4384 cp->parity_status = 0;
4385
4386 cp->xerr_status = XE_OK;
4387#if 0
4388 cp->sync_status = tp->sval;
4389 cp->wide_status = tp->wval;
4390#endif
4391
4392 /*----------------------------------------------------
4393 **
4394 ** Critical region: start this job.
4395 **
4396 **----------------------------------------------------
4397 */
4398
4399 /* activate this job. */
4400 cp->magic = CCB_MAGIC;
4401
4402 /*
4403 ** insert next CCBs into start queue.
4404 ** 2 max at a time is enough to flush the CCB wait queue.
4405 */
4406 cp->auto_sense = 0;
4407 if (lp)
4408 ncr_start_next_ccb(np, lp, 2);
4409 else
4410 ncr_put_start_queue(np, cp);
4411
4412 /* Command is successfully queued. */
4413
4414 return DID_OK;
4415}
4416
4417
4418/*==========================================================
4419**
4420**
4421** Insert a CCB into the start queue and wake up the
4422** SCRIPTS processor.
4423**
4424**
4425**==========================================================
4426*/
4427
4428static void ncr_start_next_ccb(struct ncb *np, struct lcb *lp, int maxn)
4429{
4430 struct list_head *qp;
4431 struct ccb *cp;
4432
4433 if (lp->held_ccb)
4434 return;
4435
4436 while (maxn-- && lp->queuedccbs < lp->queuedepth) {
4437 qp = ncr_list_pop(&lp->wait_ccbq);
4438 if (!qp)
4439 break;
4440 ++lp->queuedccbs;
4441 cp = list_entry(qp, struct ccb, link_ccbq);
4442 list_add_tail(qp, &lp->busy_ccbq);
4443 lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] =
4444 cpu_to_scr(CCB_PHYS (cp, restart));
4445 ncr_put_start_queue(np, cp);
4446 }
4447}
4448
4449static void ncr_put_start_queue(struct ncb *np, struct ccb *cp)
4450{
4451 u16 qidx;
4452
4453 /*
4454 ** insert into start queue.
4455 */
4456 if (!np->squeueput) np->squeueput = 1;
4457 qidx = np->squeueput + 2;
4458 if (qidx >= MAX_START + MAX_START) qidx = 1;
4459
4460 np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
4461 MEMORY_BARRIER();
4462 np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start));
4463
4464 np->squeueput = qidx;
4465 ++np->queuedccbs;
4466 cp->queued = 1;
4467
4468 if (DEBUG_FLAGS & DEBUG_QUEUE)
4469 printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput);
4470
4471 /*
4472 ** Script processor may be waiting for reselect.
4473 ** Wake it up.
4474 */
4475 MEMORY_BARRIER();
4476 OUTB (nc_istat, SIGP);
4477}
4478
4479
4480static int ncr_reset_scsi_bus(struct ncb *np, int enab_int, int settle_delay)
4481{
4482 u32 term;
4483 int retv = 0;
4484
Matthew Wilcoxf2be34a2005-10-25 22:16:02 -06004485 np->settle_time = jiffies + settle_delay * HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004486
4487 if (bootverbose > 1)
4488 printk("%s: resetting, "
4489 "command processing suspended for %d seconds\n",
4490 ncr_name(np), settle_delay);
4491
4492 ncr_chip_reset(np, 100);
4493 udelay(2000); /* The 895 needs time for the bus mode to settle */
4494 if (enab_int)
4495 OUTW (nc_sien, RST);
4496 /*
4497 ** Enable Tolerant, reset IRQD if present and
4498 ** properly set IRQ mode, prior to resetting the bus.
4499 */
4500 OUTB (nc_stest3, TE);
4501 OUTB (nc_scntl1, CRST);
4502 udelay(200);
4503
4504 if (!driver_setup.bus_check)
4505 goto out;
4506 /*
4507 ** Check for no terminators or SCSI bus shorts to ground.
4508 ** Read SCSI data bus, data parity bits and control signals.
4509 ** We are expecting RESET to be TRUE and other signals to be
4510 ** FALSE.
4511 */
4512
4513 term = INB(nc_sstat0);
4514 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
4515 term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */
4516 ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */
4517 ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */
4518 INB(nc_sbcl); /* req ack bsy sel atn msg cd io */
4519
4520 if (!(np->features & FE_WIDE))
4521 term &= 0x3ffff;
4522
4523 if (term != (2<<7)) {
4524 printk("%s: suspicious SCSI data while resetting the BUS.\n",
4525 ncr_name(np));
4526 printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
4527 "0x%lx, expecting 0x%lx\n",
4528 ncr_name(np),
4529 (np->features & FE_WIDE) ? "dp1,d15-8," : "",
4530 (u_long)term, (u_long)(2<<7));
4531 if (driver_setup.bus_check == 1)
4532 retv = 1;
4533 }
4534out:
4535 OUTB (nc_scntl1, 0);
4536 return retv;
4537}
4538
4539/*
4540 * Start reset process.
4541 * If reset in progress do nothing.
4542 * The interrupt handler will reinitialize the chip.
4543 * The timeout handler will wait for settle_time before
4544 * clearing it and so resuming command processing.
4545 */
4546static void ncr_start_reset(struct ncb *np)
4547{
4548 if (!np->settle_time) {
4549 ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay);
4550 }
4551}
4552
4553/*==========================================================
4554**
4555**
4556** Reset the SCSI BUS.
4557** This is called from the generic SCSI driver.
4558**
4559**
4560**==========================================================
4561*/
4562static int ncr_reset_bus (struct ncb *np, struct scsi_cmnd *cmd, int sync_reset)
4563{
4564/* struct scsi_device *device = cmd->device; */
4565 struct ccb *cp;
4566 int found;
4567
4568/*
4569 * Return immediately if reset is in progress.
4570 */
4571 if (np->settle_time) {
4572 return FAILED;
4573 }
4574/*
4575 * Start the reset process.
4576 * The script processor is then assumed to be stopped.
4577 * Commands will now be queued in the waiting list until a settle
4578 * delay of 2 seconds will be completed.
4579 */
4580 ncr_start_reset(np);
4581/*
4582 * First, look in the wakeup list
4583 */
4584 for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4585 /*
4586 ** look for the ccb of this command.
4587 */
4588 if (cp->host_status == HS_IDLE) continue;
4589 if (cp->cmd == cmd) {
4590 found = 1;
4591 break;
4592 }
4593 }
4594/*
4595 * Then, look in the waiting list
4596 */
4597 if (!found && retrieve_from_waiting_list(0, np, cmd))
4598 found = 1;
4599/*
4600 * Wake-up all awaiting commands with DID_RESET.
4601 */
4602 reset_waiting_list(np);
4603/*
4604 * Wake-up all pending commands with HS_RESET -> DID_RESET.
4605 */
4606 ncr_wakeup(np, HS_RESET);
4607/*
4608 * If the involved command was not in a driver queue, and the
4609 * scsi driver told us reset is synchronous, and the command is not
4610 * currently in the waiting list, complete it with DID_RESET status,
4611 * in order to keep it alive.
4612 */
4613 if (!found && sync_reset && !retrieve_from_waiting_list(0, np, cmd)) {
4614 cmd->result = ScsiResult(DID_RESET, 0);
4615 ncr_queue_done_cmd(np, cmd);
4616 }
4617
4618 return SUCCESS;
4619}
4620
4621#if 0 /* unused and broken.. */
4622/*==========================================================
4623**
4624**
4625** Abort an SCSI command.
4626** This is called from the generic SCSI driver.
4627**
4628**
4629**==========================================================
4630*/
4631static int ncr_abort_command (struct ncb *np, struct scsi_cmnd *cmd)
4632{
4633/* struct scsi_device *device = cmd->device; */
4634 struct ccb *cp;
4635 int found;
4636 int retv;
4637
4638/*
4639 * First, look for the scsi command in the waiting list
4640 */
4641 if (remove_from_waiting_list(np, cmd)) {
4642 cmd->result = ScsiResult(DID_ABORT, 0);
4643 ncr_queue_done_cmd(np, cmd);
4644 return SCSI_ABORT_SUCCESS;
4645 }
4646
4647/*
4648 * Then, look in the wakeup list
4649 */
4650 for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4651 /*
4652 ** look for the ccb of this command.
4653 */
4654 if (cp->host_status == HS_IDLE) continue;
4655 if (cp->cmd == cmd) {
4656 found = 1;
4657 break;
4658 }
4659 }
4660
4661 if (!found) {
4662 return SCSI_ABORT_NOT_RUNNING;
4663 }
4664
4665 if (np->settle_time) {
4666 return SCSI_ABORT_SNOOZE;
4667 }
4668
4669 /*
4670 ** If the CCB is active, patch schedule jumps for the
4671 ** script to abort the command.
4672 */
4673
4674 switch(cp->host_status) {
4675 case HS_BUSY:
4676 case HS_NEGOTIATE:
4677 printk ("%s: abort ccb=%p (cancel)\n", ncr_name (np), cp);
4678 cp->start.schedule.l_paddr =
4679 cpu_to_scr(NCB_SCRIPTH_PHYS (np, cancel));
4680 retv = SCSI_ABORT_PENDING;
4681 break;
4682 case HS_DISCONNECT:
4683 cp->restart.schedule.l_paddr =
4684 cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
4685 retv = SCSI_ABORT_PENDING;
4686 break;
4687 default:
4688 retv = SCSI_ABORT_NOT_RUNNING;
4689 break;
4690
4691 }
4692
4693 /*
4694 ** If there are no requests, the script
4695 ** processor will sleep on SEL_WAIT_RESEL.
4696 ** Let's wake it up, since it may have to work.
4697 */
4698 OUTB (nc_istat, SIGP);
4699
4700 return retv;
4701}
4702#endif
4703
4704static void ncr_detach(struct ncb *np)
4705{
4706 struct ccb *cp;
4707 struct tcb *tp;
4708 struct lcb *lp;
4709 int target, lun;
4710 int i;
4711 char inst_name[16];
4712
4713 /* Local copy so we don't access np after freeing it! */
4714 strlcpy(inst_name, ncr_name(np), sizeof(inst_name));
4715
4716 printk("%s: releasing host resources\n", ncr_name(np));
4717
4718/*
4719** Stop the ncr_timeout process
4720** Set release_stage to 1 and wait that ncr_timeout() set it to 2.
4721*/
4722
4723#ifdef DEBUG_NCR53C8XX
4724 printk("%s: stopping the timer\n", ncr_name(np));
4725#endif
4726 np->release_stage = 1;
4727 for (i = 50 ; i && np->release_stage != 2 ; i--)
4728 mdelay(100);
4729 if (np->release_stage != 2)
4730 printk("%s: the timer seems to be already stopped\n", ncr_name(np));
4731 else np->release_stage = 2;
4732
4733/*
4734** Disable chip interrupts
4735*/
4736
4737#ifdef DEBUG_NCR53C8XX
4738 printk("%s: disabling chip interrupts\n", ncr_name(np));
4739#endif
4740 OUTW (nc_sien , 0);
4741 OUTB (nc_dien , 0);
4742
4743 /*
4744 ** Reset NCR chip
4745 ** Restore bios setting for automatic clock detection.
4746 */
4747
4748 printk("%s: resetting chip\n", ncr_name(np));
4749 ncr_chip_reset(np, 100);
4750
4751 OUTB(nc_dmode, np->sv_dmode);
4752 OUTB(nc_dcntl, np->sv_dcntl);
4753 OUTB(nc_ctest0, np->sv_ctest0);
4754 OUTB(nc_ctest3, np->sv_ctest3);
4755 OUTB(nc_ctest4, np->sv_ctest4);
4756 OUTB(nc_ctest5, np->sv_ctest5);
4757 OUTB(nc_gpcntl, np->sv_gpcntl);
4758 OUTB(nc_stest2, np->sv_stest2);
4759
4760 ncr_selectclock(np, np->sv_scntl3);
4761
4762 /*
4763 ** Free allocated ccb(s)
4764 */
4765
4766 while ((cp=np->ccb->link_ccb) != NULL) {
4767 np->ccb->link_ccb = cp->link_ccb;
4768 if (cp->host_status) {
4769 printk("%s: shall free an active ccb (host_status=%d)\n",
4770 ncr_name(np), cp->host_status);
4771 }
4772#ifdef DEBUG_NCR53C8XX
4773 printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp);
4774#endif
4775 m_free_dma(cp, sizeof(*cp), "CCB");
4776 }
4777
4778 /* Free allocated tp(s) */
4779
4780 for (target = 0; target < MAX_TARGET ; target++) {
4781 tp=&np->target[target];
4782 for (lun = 0 ; lun < MAX_LUN ; lun++) {
4783 lp = tp->lp[lun];
4784 if (lp) {
4785#ifdef DEBUG_NCR53C8XX
4786 printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp);
4787#endif
4788 if (lp->jump_ccb != &lp->jump_ccb_0)
4789 m_free_dma(lp->jump_ccb,256,"JUMP_CCB");
4790 m_free_dma(lp, sizeof(*lp), "LCB");
4791 }
4792 }
4793 }
4794
4795 if (np->scripth0)
4796 m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
4797 if (np->script0)
4798 m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
4799 if (np->ccb)
4800 m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
4801 m_free_dma(np, sizeof(struct ncb), "NCB");
4802
4803 printk("%s: host resources successfully released\n", inst_name);
4804}
4805
4806/*==========================================================
4807**
4808**
4809** Complete execution of a SCSI command.
4810** Signal completion to the generic SCSI driver.
4811**
4812**
4813**==========================================================
4814*/
4815
4816void ncr_complete (struct ncb *np, struct ccb *cp)
4817{
4818 struct scsi_cmnd *cmd;
4819 struct tcb *tp;
4820 struct lcb *lp;
4821
4822 /*
4823 ** Sanity check
4824 */
4825
4826 if (!cp || cp->magic != CCB_MAGIC || !cp->cmd)
4827 return;
4828
4829 /*
4830 ** Print minimal debug information.
4831 */
4832
4833 if (DEBUG_FLAGS & DEBUG_TINY)
4834 printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp,
4835 cp->host_status,cp->scsi_status);
4836
4837 /*
4838 ** Get command, target and lun pointers.
4839 */
4840
4841 cmd = cp->cmd;
4842 cp->cmd = NULL;
4843 tp = &np->target[cmd->device->id];
4844 lp = tp->lp[cmd->device->lun];
4845
4846 /*
4847 ** We donnot queue more than 1 ccb per target
4848 ** with negotiation at any time. If this ccb was
4849 ** used for negotiation, clear this info in the tcb.
4850 */
4851
4852 if (cp == tp->nego_cp)
4853 tp->nego_cp = NULL;
4854
4855 /*
4856 ** If auto-sense performed, change scsi status.
4857 */
4858 if (cp->auto_sense) {
4859 cp->scsi_status = cp->auto_sense;
4860 }
4861
4862 /*
4863 ** If we were recovering from queue full or performing
4864 ** auto-sense, requeue skipped CCBs to the wait queue.
4865 */
4866
4867 if (lp && lp->held_ccb) {
4868 if (cp == lp->held_ccb) {
4869 list_splice_init(&lp->skip_ccbq, &lp->wait_ccbq);
4870 lp->held_ccb = NULL;
4871 }
4872 }
4873
4874 /*
4875 ** Check for parity errors.
4876 */
4877
4878 if (cp->parity_status > 1) {
4879 PRINT_ADDR(cmd, "%d parity error(s).\n",cp->parity_status);
4880 }
4881
4882 /*
4883 ** Check for extended errors.
4884 */
4885
4886 if (cp->xerr_status != XE_OK) {
4887 switch (cp->xerr_status) {
4888 case XE_EXTRA_DATA:
4889 PRINT_ADDR(cmd, "extraneous data discarded.\n");
4890 break;
4891 case XE_BAD_PHASE:
4892 PRINT_ADDR(cmd, "invalid scsi phase (4/5).\n");
4893 break;
4894 default:
4895 PRINT_ADDR(cmd, "extended error %d.\n",
4896 cp->xerr_status);
4897 break;
4898 }
4899 if (cp->host_status==HS_COMPLETE)
4900 cp->host_status = HS_FAIL;
4901 }
4902
4903 /*
4904 ** Print out any error for debugging purpose.
4905 */
4906 if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4907 if (cp->host_status!=HS_COMPLETE || cp->scsi_status!=S_GOOD) {
4908 PRINT_ADDR(cmd, "ERROR: cmd=%x host_status=%x "
4909 "scsi_status=%x\n", cmd->cmnd[0],
4910 cp->host_status, cp->scsi_status);
4911 }
4912 }
4913
4914 /*
4915 ** Check the status.
4916 */
4917 if ( (cp->host_status == HS_COMPLETE)
4918 && (cp->scsi_status == S_GOOD ||
4919 cp->scsi_status == S_COND_MET)) {
4920 /*
4921 * All went well (GOOD status).
4922 * CONDITION MET status is returned on
4923 * `Pre-Fetch' or `Search data' success.
4924 */
4925 cmd->result = ScsiResult(DID_OK, cp->scsi_status);
4926
4927 /*
4928 ** @RESID@
4929 ** Could dig out the correct value for resid,
4930 ** but it would be quite complicated.
4931 */
4932 /* if (cp->phys.header.lastp != cp->phys.header.goalp) */
4933
4934 /*
4935 ** Allocate the lcb if not yet.
4936 */
4937 if (!lp)
4938 ncr_alloc_lcb (np, cmd->device->id, cmd->device->lun);
4939
4940 tp->bytes += cp->data_len;
4941 tp->transfers ++;
4942
4943 /*
4944 ** If tags was reduced due to queue full,
4945 ** increase tags if 1000 good status received.
4946 */
4947 if (lp && lp->usetags && lp->numtags < lp->maxtags) {
4948 ++lp->num_good;
4949 if (lp->num_good >= 1000) {
4950 lp->num_good = 0;
4951 ++lp->numtags;
4952 ncr_setup_tags (np, cmd->device);
4953 }
4954 }
4955 } else if ((cp->host_status == HS_COMPLETE)
4956 && (cp->scsi_status == S_CHECK_COND)) {
4957 /*
4958 ** Check condition code
4959 */
4960 cmd->result = ScsiResult(DID_OK, S_CHECK_COND);
4961
4962 /*
4963 ** Copy back sense data to caller's buffer.
4964 */
4965 memcpy(cmd->sense_buffer, cp->sense_buf,
4966 min(sizeof(cmd->sense_buffer), sizeof(cp->sense_buf)));
4967
4968 if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4969 u_char * p = (u_char*) & cmd->sense_buffer;
4970 int i;
4971 PRINT_ADDR(cmd, "sense data:");
4972 for (i=0; i<14; i++) printk (" %x", *p++);
4973 printk (".\n");
4974 }
4975 } else if ((cp->host_status == HS_COMPLETE)
4976 && (cp->scsi_status == S_CONFLICT)) {
4977 /*
4978 ** Reservation Conflict condition code
4979 */
4980 cmd->result = ScsiResult(DID_OK, S_CONFLICT);
4981
4982 } else if ((cp->host_status == HS_COMPLETE)
4983 && (cp->scsi_status == S_BUSY ||
4984 cp->scsi_status == S_QUEUE_FULL)) {
4985
4986 /*
4987 ** Target is busy.
4988 */
4989 cmd->result = ScsiResult(DID_OK, cp->scsi_status);
4990
4991 } else if ((cp->host_status == HS_SEL_TIMEOUT)
4992 || (cp->host_status == HS_TIMEOUT)) {
4993
4994 /*
4995 ** No response
4996 */
4997 cmd->result = ScsiResult(DID_TIME_OUT, cp->scsi_status);
4998
4999 } else if (cp->host_status == HS_RESET) {
5000
5001 /*
5002 ** SCSI bus reset
5003 */
5004 cmd->result = ScsiResult(DID_RESET, cp->scsi_status);
5005
5006 } else if (cp->host_status == HS_ABORTED) {
5007
5008 /*
5009 ** Transfer aborted
5010 */
5011 cmd->result = ScsiResult(DID_ABORT, cp->scsi_status);
5012
5013 } else {
5014
5015 /*
5016 ** Other protocol messes
5017 */
5018 PRINT_ADDR(cmd, "COMMAND FAILED (%x %x) @%p.\n",
5019 cp->host_status, cp->scsi_status, cp);
5020
5021 cmd->result = ScsiResult(DID_ERROR, cp->scsi_status);
5022 }
5023
5024 /*
5025 ** trace output
5026 */
5027
5028 if (tp->usrflag & UF_TRACE) {
5029 u_char * p;
5030 int i;
5031 PRINT_ADDR(cmd, " CMD:");
5032 p = (u_char*) &cmd->cmnd[0];
5033 for (i=0; i<cmd->cmd_len; i++) printk (" %x", *p++);
5034
5035 if (cp->host_status==HS_COMPLETE) {
5036 switch (cp->scsi_status) {
5037 case S_GOOD:
5038 printk (" GOOD");
5039 break;
5040 case S_CHECK_COND:
5041 printk (" SENSE:");
5042 p = (u_char*) &cmd->sense_buffer;
5043 for (i=0; i<14; i++)
5044 printk (" %x", *p++);
5045 break;
5046 default:
5047 printk (" STAT: %x\n", cp->scsi_status);
5048 break;
5049 }
5050 } else printk (" HOSTERROR: %x", cp->host_status);
5051 printk ("\n");
5052 }
5053
5054 /*
5055 ** Free this ccb
5056 */
5057 ncr_free_ccb (np, cp);
5058
5059 /*
5060 ** requeue awaiting scsi commands for this lun.
5061 */
5062 if (lp && lp->queuedccbs < lp->queuedepth &&
5063 !list_empty(&lp->wait_ccbq))
5064 ncr_start_next_ccb(np, lp, 2);
5065
5066 /*
5067 ** requeue awaiting scsi commands for this controller.
5068 */
5069 if (np->waiting_list)
5070 requeue_waiting_list(np);
5071
5072 /*
5073 ** signal completion to generic driver.
5074 */
5075 ncr_queue_done_cmd(np, cmd);
5076}
5077
5078/*==========================================================
5079**
5080**
5081** Signal all (or one) control block done.
5082**
5083**
5084**==========================================================
5085*/
5086
5087/*
5088** This CCB has been skipped by the NCR.
Matt LaPlante0779bf22006-11-30 05:24:39 +01005089** Queue it in the corresponding unit queue.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005090*/
5091static void ncr_ccb_skipped(struct ncb *np, struct ccb *cp)
5092{
5093 struct tcb *tp = &np->target[cp->target];
5094 struct lcb *lp = tp->lp[cp->lun];
5095
5096 if (lp && cp != np->ccb) {
5097 cp->host_status &= ~HS_SKIPMASK;
5098 cp->start.schedule.l_paddr =
5099 cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
Akinobu Mita179e0912006-06-26 00:24:41 -07005100 list_move_tail(&cp->link_ccbq, &lp->skip_ccbq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005101 if (cp->queued) {
5102 --lp->queuedccbs;
5103 }
5104 }
5105 if (cp->queued) {
5106 --np->queuedccbs;
5107 cp->queued = 0;
5108 }
5109}
5110
5111/*
5112** The NCR has completed CCBs.
5113** Look at the DONE QUEUE if enabled, otherwise scan all CCBs
5114*/
5115void ncr_wakeup_done (struct ncb *np)
5116{
5117 struct ccb *cp;
5118#ifdef SCSI_NCR_CCB_DONE_SUPPORT
5119 int i, j;
5120
5121 i = np->ccb_done_ic;
5122 while (1) {
5123 j = i+1;
5124 if (j >= MAX_DONE)
5125 j = 0;
5126
5127 cp = np->ccb_done[j];
5128 if (!CCB_DONE_VALID(cp))
5129 break;
5130
5131 np->ccb_done[j] = (struct ccb *)CCB_DONE_EMPTY;
5132 np->scripth->done_queue[5*j + 4] =
5133 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5134 MEMORY_BARRIER();
5135 np->scripth->done_queue[5*i + 4] =
5136 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5137
5138 if (cp->host_status & HS_DONEMASK)
5139 ncr_complete (np, cp);
5140 else if (cp->host_status & HS_SKIPMASK)
5141 ncr_ccb_skipped (np, cp);
5142
5143 i = j;
5144 }
5145 np->ccb_done_ic = i;
5146#else
5147 cp = np->ccb;
5148 while (cp) {
5149 if (cp->host_status & HS_DONEMASK)
5150 ncr_complete (np, cp);
5151 else if (cp->host_status & HS_SKIPMASK)
5152 ncr_ccb_skipped (np, cp);
5153 cp = cp->link_ccb;
5154 }
5155#endif
5156}
5157
5158/*
5159** Complete all active CCBs.
5160*/
5161void ncr_wakeup (struct ncb *np, u_long code)
5162{
5163 struct ccb *cp = np->ccb;
5164
5165 while (cp) {
5166 if (cp->host_status != HS_IDLE) {
5167 cp->host_status = code;
5168 ncr_complete (np, cp);
5169 }
5170 cp = cp->link_ccb;
5171 }
5172}
5173
5174/*
5175** Reset ncr chip.
5176*/
5177
5178/* Some initialisation must be done immediately following reset, for 53c720,
5179 * at least. EA (dcntl bit 5) isn't set here as it is set once only in
5180 * the _detect function.
5181 */
5182static void ncr_chip_reset(struct ncb *np, int delay)
5183{
5184 OUTB (nc_istat, SRST);
5185 udelay(delay);
5186 OUTB (nc_istat, 0 );
5187
5188 if (np->features & FE_EHP)
5189 OUTB (nc_ctest0, EHP);
5190 if (np->features & FE_MUX)
5191 OUTB (nc_ctest4, MUX);
5192}
5193
5194
5195/*==========================================================
5196**
5197**
5198** Start NCR chip.
5199**
5200**
5201**==========================================================
5202*/
5203
5204void ncr_init (struct ncb *np, int reset, char * msg, u_long code)
5205{
5206 int i;
5207
5208 /*
5209 ** Reset chip if asked, otherwise just clear fifos.
5210 */
5211
5212 if (reset) {
5213 OUTB (nc_istat, SRST);
5214 udelay(100);
5215 }
5216 else {
5217 OUTB (nc_stest3, TE|CSF);
5218 OUTONB (nc_ctest3, CLF);
5219 }
5220
5221 /*
5222 ** Message.
5223 */
5224
5225 if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg);
5226
5227 /*
5228 ** Clear Start Queue
5229 */
5230 np->queuedepth = MAX_START - 1; /* 1 entry needed as end marker */
5231 for (i = 1; i < MAX_START + MAX_START; i += 2)
5232 np->scripth0->tryloop[i] =
5233 cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
5234
5235 /*
5236 ** Start at first entry.
5237 */
5238 np->squeueput = 0;
5239 np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop));
5240
5241#ifdef SCSI_NCR_CCB_DONE_SUPPORT
5242 /*
5243 ** Clear Done Queue
5244 */
5245 for (i = 0; i < MAX_DONE; i++) {
5246 np->ccb_done[i] = (struct ccb *)CCB_DONE_EMPTY;
5247 np->scripth0->done_queue[5*i + 4] =
5248 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5249 }
5250#endif
5251
5252 /*
5253 ** Start at first entry.
5254 */
5255 np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue));
5256 np->ccb_done_ic = MAX_DONE-1;
5257 np->scripth0->done_queue[5*(MAX_DONE-1) + 4] =
5258 cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5259
5260 /*
5261 ** Wakeup all pending jobs.
5262 */
5263 ncr_wakeup (np, code);
5264
5265 /*
5266 ** Init chip.
5267 */
5268
5269 /*
5270 ** Remove reset; big delay because the 895 needs time for the
5271 ** bus mode to settle
5272 */
5273 ncr_chip_reset(np, 2000);
5274
5275 OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
5276 /* full arb., ena parity, par->ATN */
5277 OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
5278
5279 ncr_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
5280
5281 OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
5282 OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */
5283 OUTB (nc_istat , SIGP ); /* Signal Process */
5284 OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */
5285 OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
5286
5287 OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
5288 OUTB (nc_ctest0, np->rv_ctest0); /* 720: CDIS and EHP */
5289 OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */
5290 OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */
5291
5292 OUTB (nc_stest2, EXT|np->rv_stest2); /* Extended Sreq/Sack filtering */
5293 OUTB (nc_stest3, TE); /* TolerANT enable */
5294 OUTB (nc_stime0, 0x0c ); /* HTH disabled STO 0.25 sec */
5295
5296 /*
5297 ** Disable disconnects.
5298 */
5299
5300 np->disc = 0;
5301
5302 /*
5303 ** Enable GPIO0 pin for writing if LED support.
5304 */
5305
5306 if (np->features & FE_LED0) {
5307 OUTOFFB (nc_gpcntl, 0x01);
5308 }
5309
5310 /*
5311 ** enable ints
5312 */
5313
5314 OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
5315 OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID);
5316
5317 /*
5318 ** Fill in target structure.
5319 ** Reinitialize usrsync.
5320 ** Reinitialize usrwide.
5321 ** Prepare sync negotiation according to actual SCSI bus mode.
5322 */
5323
5324 for (i=0;i<MAX_TARGET;i++) {
5325 struct tcb *tp = &np->target[i];
5326
5327 tp->sval = 0;
5328 tp->wval = np->rv_scntl3;
5329
5330 if (tp->usrsync != 255) {
5331 if (tp->usrsync <= np->maxsync) {
5332 if (tp->usrsync < np->minsync) {
5333 tp->usrsync = np->minsync;
5334 }
5335 }
5336 else
5337 tp->usrsync = 255;
5338 }
5339
5340 if (tp->usrwide > np->maxwide)
5341 tp->usrwide = np->maxwide;
5342
5343 }
5344
5345 /*
5346 ** Start script processor.
5347 */
5348 if (np->paddr2) {
5349 if (bootverbose)
5350 printk ("%s: Downloading SCSI SCRIPTS.\n",
5351 ncr_name(np));
5352 OUTL (nc_scratcha, vtobus(np->script0));
5353 OUTL_DSP (NCB_SCRIPTH_PHYS (np, start_ram));
5354 }
5355 else
5356 OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
5357}
5358
5359/*==========================================================
5360**
5361** Prepare the negotiation values for wide and
5362** synchronous transfers.
5363**
5364**==========================================================
5365*/
5366
5367static void ncr_negotiate (struct ncb* np, struct tcb* tp)
5368{
5369 /*
5370 ** minsync unit is 4ns !
5371 */
5372
5373 u_long minsync = tp->usrsync;
5374
5375 /*
5376 ** SCSI bus mode limit
5377 */
5378
5379 if (np->scsi_mode && np->scsi_mode == SMODE_SE) {
5380 if (minsync < 12) minsync = 12;
5381 }
5382
5383 /*
5384 ** our limit ..
5385 */
5386
5387 if (minsync < np->minsync)
5388 minsync = np->minsync;
5389
5390 /*
5391 ** divider limit
5392 */
5393
5394 if (minsync > np->maxsync)
5395 minsync = 255;
5396
5397 if (tp->maxoffs > np->maxoffs)
5398 tp->maxoffs = np->maxoffs;
5399
5400 tp->minsync = minsync;
5401 tp->maxoffs = (minsync<255 ? tp->maxoffs : 0);
5402
5403 /*
5404 ** period=0: has to negotiate sync transfer
5405 */
5406
5407 tp->period=0;
5408
5409 /*
5410 ** widedone=0: has to negotiate wide transfer
5411 */
5412 tp->widedone=0;
5413}
5414
5415/*==========================================================
5416**
5417** Get clock factor and sync divisor for a given
5418** synchronous factor period.
5419** Returns the clock factor (in sxfer) and scntl3
5420** synchronous divisor field.
5421**
5422**==========================================================
5423*/
5424
5425static void ncr_getsync(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p)
5426{
5427 u_long clk = np->clock_khz; /* SCSI clock frequency in kHz */
5428 int div = np->clock_divn; /* Number of divisors supported */
5429 u_long fak; /* Sync factor in sxfer */
5430 u_long per; /* Period in tenths of ns */
5431 u_long kpc; /* (per * clk) */
5432
5433 /*
5434 ** Compute the synchronous period in tenths of nano-seconds
5435 */
5436 if (sfac <= 10) per = 250;
5437 else if (sfac == 11) per = 303;
5438 else if (sfac == 12) per = 500;
5439 else per = 40 * sfac;
5440
5441 /*
5442 ** Look for the greatest clock divisor that allows an
5443 ** input speed faster than the period.
5444 */
5445 kpc = per * clk;
5446 while (--div >= 0)
5447 if (kpc >= (div_10M[div] << 2)) break;
5448
5449 /*
5450 ** Calculate the lowest clock factor that allows an output
5451 ** speed not faster than the period.
5452 */
5453 fak = (kpc - 1) / div_10M[div] + 1;
5454
5455#if 0 /* This optimization does not seem very useful */
5456
5457 per = (fak * div_10M[div]) / clk;
5458
5459 /*
5460 ** Why not to try the immediate lower divisor and to choose
5461 ** the one that allows the fastest output speed ?
5462 ** We don't want input speed too much greater than output speed.
5463 */
5464 if (div >= 1 && fak < 8) {
5465 u_long fak2, per2;
5466 fak2 = (kpc - 1) / div_10M[div-1] + 1;
5467 per2 = (fak2 * div_10M[div-1]) / clk;
5468 if (per2 < per && fak2 <= 8) {
5469 fak = fak2;
5470 per = per2;
5471 --div;
5472 }
5473 }
5474#endif
5475
5476 if (fak < 4) fak = 4; /* Should never happen, too bad ... */
5477
5478 /*
5479 ** Compute and return sync parameters for the ncr
5480 */
5481 *fakp = fak - 4;
5482 *scntl3p = ((div+1) << 4) + (sfac < 25 ? 0x80 : 0);
5483}
5484
5485
5486/*==========================================================
5487**
5488** Set actual values, sync status and patch all ccbs of
5489** a target according to new sync/wide agreement.
5490**
5491**==========================================================
5492*/
5493
5494static void ncr_set_sync_wide_status (struct ncb *np, u_char target)
5495{
5496 struct ccb *cp;
5497 struct tcb *tp = &np->target[target];
5498
5499 /*
5500 ** set actual value and sync_status
5501 */
5502 OUTB (nc_sxfer, tp->sval);
5503 np->sync_st = tp->sval;
5504 OUTB (nc_scntl3, tp->wval);
5505 np->wide_st = tp->wval;
5506
5507 /*
5508 ** patch ALL ccbs of this target.
5509 */
5510 for (cp = np->ccb; cp; cp = cp->link_ccb) {
5511 if (!cp->cmd) continue;
Jeff Garzik422c0d62005-10-24 18:05:09 -04005512 if (scmd_id(cp->cmd) != target) continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005513#if 0
5514 cp->sync_status = tp->sval;
5515 cp->wide_status = tp->wval;
5516#endif
5517 cp->phys.select.sel_scntl3 = tp->wval;
5518 cp->phys.select.sel_sxfer = tp->sval;
5519 }
5520}
5521
5522/*==========================================================
5523**
5524** Switch sync mode for current job and it's target
5525**
5526**==========================================================
5527*/
5528
5529static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer)
5530{
5531 struct scsi_cmnd *cmd = cp->cmd;
5532 struct tcb *tp;
5533 u_char target = INB (nc_sdid) & 0x0f;
5534 u_char idiv;
5535
Jeff Garzik422c0d62005-10-24 18:05:09 -04005536 BUG_ON(target != (scmd_id(cmd) & 0xf));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005537
5538 tp = &np->target[target];
5539
5540 if (!scntl3 || !(sxfer & 0x1f))
5541 scntl3 = np->rv_scntl3;
5542 scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07);
5543
5544 /*
5545 ** Deduce the value of controller sync period from scntl3.
5546 ** period is in tenths of nano-seconds.
5547 */
5548
5549 idiv = ((scntl3 >> 4) & 0x7);
5550 if ((sxfer & 0x1f) && idiv)
5551 tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz;
5552 else
5553 tp->period = 0xffff;
5554
5555 /* Stop there if sync parameters are unchanged */
5556 if (tp->sval == sxfer && tp->wval == scntl3)
5557 return;
5558 tp->sval = sxfer;
5559 tp->wval = scntl3;
5560
5561 if (sxfer & 0x01f) {
5562 /* Disable extended Sreq/Sack filtering */
5563 if (tp->period <= 2000)
5564 OUTOFFB(nc_stest2, EXT);
5565 }
5566
5567 spi_display_xfer_agreement(tp->starget);
5568
5569 /*
5570 ** set actual value and sync_status
5571 ** patch ALL ccbs of this target.
5572 */
5573 ncr_set_sync_wide_status(np, target);
5574}
5575
5576/*==========================================================
5577**
5578** Switch wide mode for current job and it's target
5579** SCSI specs say: a SCSI device that accepts a WDTR
5580** message shall reset the synchronous agreement to
5581** asynchronous mode.
5582**
5583**==========================================================
5584*/
5585
5586static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack)
5587{
5588 struct scsi_cmnd *cmd = cp->cmd;
5589 u16 target = INB (nc_sdid) & 0x0f;
5590 struct tcb *tp;
5591 u_char scntl3;
5592 u_char sxfer;
5593
Jeff Garzik422c0d62005-10-24 18:05:09 -04005594 BUG_ON(target != (scmd_id(cmd) & 0xf));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005595
5596 tp = &np->target[target];
5597 tp->widedone = wide+1;
5598 scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0);
5599
5600 sxfer = ack ? 0 : tp->sval;
5601
5602 /*
5603 ** Stop there if sync/wide parameters are unchanged
5604 */
5605 if (tp->sval == sxfer && tp->wval == scntl3) return;
5606 tp->sval = sxfer;
5607 tp->wval = scntl3;
5608
5609 /*
5610 ** Bells and whistles ;-)
5611 */
5612 if (bootverbose >= 2) {
5613 dev_info(&cmd->device->sdev_target->dev, "WIDE SCSI %sabled.\n",
5614 (scntl3 & EWS) ? "en" : "dis");
5615 }
5616
5617 /*
5618 ** set actual value and sync_status
5619 ** patch ALL ccbs of this target.
5620 */
5621 ncr_set_sync_wide_status(np, target);
5622}
5623
5624/*==========================================================
5625**
5626** Switch tagged mode for a target.
5627**
5628**==========================================================
5629*/
5630
5631static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev)
5632{
5633 unsigned char tn = sdev->id, ln = sdev->lun;
5634 struct tcb *tp = &np->target[tn];
5635 struct lcb *lp = tp->lp[ln];
5636 u_char reqtags, maxdepth;
5637
5638 /*
5639 ** Just in case ...
5640 */
5641 if ((!tp) || (!lp) || !sdev)
5642 return;
5643
5644 /*
5645 ** If SCSI device queue depth is not yet set, leave here.
5646 */
5647 if (!lp->scdev_depth)
5648 return;
5649
5650 /*
5651 ** Donnot allow more tags than the SCSI driver can queue
5652 ** for this device.
5653 ** Donnot allow more tags than we can handle.
5654 */
5655 maxdepth = lp->scdev_depth;
5656 if (maxdepth > lp->maxnxs) maxdepth = lp->maxnxs;
5657 if (lp->maxtags > maxdepth) lp->maxtags = maxdepth;
5658 if (lp->numtags > maxdepth) lp->numtags = maxdepth;
5659
5660 /*
5661 ** only devices conformant to ANSI Version >= 2
5662 ** only devices capable of tagged commands
5663 ** only if enabled by user ..
5664 */
5665 if (sdev->tagged_supported && lp->numtags > 1) {
5666 reqtags = lp->numtags;
5667 } else {
5668 reqtags = 1;
5669 }
5670
5671 /*
5672 ** Update max number of tags
5673 */
5674 lp->numtags = reqtags;
5675 if (lp->numtags > lp->maxtags)
5676 lp->maxtags = lp->numtags;
5677
5678 /*
5679 ** If we want to switch tag mode, we must wait
5680 ** for no CCB to be active.
5681 */
5682 if (reqtags > 1 && lp->usetags) { /* Stay in tagged mode */
5683 if (lp->queuedepth == reqtags) /* Already announced */
5684 return;
5685 lp->queuedepth = reqtags;
5686 }
5687 else if (reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode */
5688 lp->queuedepth = reqtags;
5689 return;
5690 }
5691 else { /* Want to switch tag mode */
5692 if (lp->busyccbs) /* If not yet safe, return */
5693 return;
5694 lp->queuedepth = reqtags;
5695 lp->usetags = reqtags > 1 ? 1 : 0;
5696 }
5697
5698 /*
5699 ** Patch the lun mini-script, according to tag mode.
5700 */
5701 lp->jump_tag.l_paddr = lp->usetags?
5702 cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) :
5703 cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag));
5704
5705 /*
5706 ** Announce change to user.
5707 */
5708 if (bootverbose) {
5709 if (lp->usetags) {
5710 dev_info(&sdev->sdev_gendev,
5711 "tagged command queue depth set to %d\n",
5712 reqtags);
5713 } else {
5714 dev_info(&sdev->sdev_gendev,
5715 "tagged command queueing disabled\n");
5716 }
5717 }
5718}
5719
5720/*==========================================================
5721**
5722**
5723** ncr timeout handler.
5724**
5725**
5726**==========================================================
5727**
5728** Misused to keep the driver running when
5729** interrupts are not configured correctly.
5730**
5731**----------------------------------------------------------
5732*/
5733
5734static void ncr_timeout (struct ncb *np)
5735{
Matthew Wilcoxf2be34a2005-10-25 22:16:02 -06005736 u_long thistime = jiffies;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005737
5738 /*
5739 ** If release process in progress, let's go
5740 ** Set the release stage from 1 to 2 to synchronize
5741 ** with the release process.
5742 */
5743
5744 if (np->release_stage) {
5745 if (np->release_stage == 1) np->release_stage = 2;
5746 return;
5747 }
5748
Matthew Wilcoxf2be34a2005-10-25 22:16:02 -06005749 np->timer.expires = jiffies + SCSI_NCR_TIMER_INTERVAL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005750 add_timer(&np->timer);
5751
5752 /*
5753 ** If we are resetting the ncr, wait for settle_time before
5754 ** clearing it. Then command processing will be resumed.
5755 */
5756 if (np->settle_time) {
5757 if (np->settle_time <= thistime) {
5758 if (bootverbose > 1)
5759 printk("%s: command processing resumed\n", ncr_name(np));
5760 np->settle_time = 0;
5761 np->disc = 1;
5762 requeue_waiting_list(np);
5763 }
5764 return;
5765 }
5766
5767 /*
5768 ** Since the generic scsi driver only allows us 0.5 second
5769 ** to perform abort of a command, we must look at ccbs about
5770 ** every 0.25 second.
5771 */
5772 if (np->lasttime + 4*HZ < thistime) {
5773 /*
5774 ** block ncr interrupts
5775 */
5776 np->lasttime = thistime;
5777 }
5778
5779#ifdef SCSI_NCR_BROKEN_INTR
5780 if (INB(nc_istat) & (INTF|SIP|DIP)) {
5781
5782 /*
5783 ** Process pending interrupts.
5784 */
5785 if (DEBUG_FLAGS & DEBUG_TINY) printk ("{");
5786 ncr_exception (np);
5787 if (DEBUG_FLAGS & DEBUG_TINY) printk ("}");
5788 }
5789#endif /* SCSI_NCR_BROKEN_INTR */
5790}
5791
5792/*==========================================================
5793**
5794** log message for real hard errors
5795**
5796** "ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)."
5797** " reg: r0 r1 r2 r3 r4 r5 r6 ..... rf."
5798**
5799** exception register:
5800** ds: dstat
5801** si: sist
5802**
5803** SCSI bus lines:
5804** so: control lines as driver by NCR.
5805** si: control lines as seen by NCR.
5806** sd: scsi data lines as seen by NCR.
5807**
5808** wide/fastmode:
5809** sxfer: (see the manual)
5810** scntl3: (see the manual)
5811**
5812** current script command:
5813** dsp: script address (relative to start of script).
5814** dbc: first word of script command.
5815**
5816** First 16 register of the chip:
5817** r0..rf
5818**
5819**==========================================================
5820*/
5821
5822static void ncr_log_hard_error(struct ncb *np, u16 sist, u_char dstat)
5823{
5824 u32 dsp;
5825 int script_ofs;
5826 int script_size;
5827 char *script_name;
5828 u_char *script_base;
5829 int i;
5830
5831 dsp = INL (nc_dsp);
5832
5833 if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) {
5834 script_ofs = dsp - np->p_script;
5835 script_size = sizeof(struct script);
5836 script_base = (u_char *) np->script0;
5837 script_name = "script";
5838 }
5839 else if (np->p_scripth < dsp &&
5840 dsp <= np->p_scripth + sizeof(struct scripth)) {
5841 script_ofs = dsp - np->p_scripth;
5842 script_size = sizeof(struct scripth);
5843 script_base = (u_char *) np->scripth0;
5844 script_name = "scripth";
5845 } else {
5846 script_ofs = dsp;
5847 script_size = 0;
5848 script_base = NULL;
5849 script_name = "mem";
5850 }
5851
5852 printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
5853 ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
5854 (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl),
5855 (unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs,
5856 (unsigned)INL (nc_dbc));
5857
5858 if (((script_ofs & 3) == 0) &&
5859 (unsigned)script_ofs < script_size) {
5860 printk ("%s: script cmd = %08x\n", ncr_name(np),
5861 scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs)));
5862 }
5863
5864 printk ("%s: regdump:", ncr_name(np));
5865 for (i=0; i<16;i++)
5866 printk (" %02x", (unsigned)INB_OFF(i));
5867 printk (".\n");
5868}
5869
5870/*============================================================
5871**
5872** ncr chip exception handler.
5873**
5874**============================================================
5875**
5876** In normal cases, interrupt conditions occur one at a
5877** time. The ncr is able to stack in some extra registers
Matt LaPlante0779bf22006-11-30 05:24:39 +01005878** other interrupts that will occur after the first one.
5879** But, several interrupts may occur at the same time.
Linus Torvalds1da177e2005-04-16 15:20:36 -07005880**
5881** We probably should only try to deal with the normal
5882** case, but it seems that multiple interrupts occur in
5883** some cases that are not abnormal at all.
5884**
5885** The most frequent interrupt condition is Phase Mismatch.
5886** We should want to service this interrupt quickly.
5887** A SCSI parity error may be delivered at the same time.
5888** The SIR interrupt is not very frequent in this driver,
5889** since the INTFLY is likely used for command completion
5890** signaling.
5891** The Selection Timeout interrupt may be triggered with
5892** IID and/or UDC.
5893** The SBMC interrupt (SCSI Bus Mode Change) may probably
5894** occur at any time.
5895**
5896** This handler try to deal as cleverly as possible with all
5897** the above.
5898**
5899**============================================================
5900*/
5901
5902void ncr_exception (struct ncb *np)
5903{
5904 u_char istat, dstat;
5905 u16 sist;
5906 int i;
5907
5908 /*
5909 ** interrupt on the fly ?
5910 ** Since the global header may be copied back to a CCB
5911 ** using a posted PCI memory write, the last operation on
5912 ** the istat register is a READ in order to flush posted
5913 ** PCI write commands.
5914 */
5915 istat = INB (nc_istat);
5916 if (istat & INTF) {
5917 OUTB (nc_istat, (istat & SIGP) | INTF);
5918 istat = INB (nc_istat);
5919 if (DEBUG_FLAGS & DEBUG_TINY) printk ("F ");
5920 ncr_wakeup_done (np);
5921 }
5922
5923 if (!(istat & (SIP|DIP)))
5924 return;
5925
5926 if (istat & CABRT)
5927 OUTB (nc_istat, CABRT);
5928
5929 /*
5930 ** Steinbach's Guideline for Systems Programming:
5931 ** Never test for an error condition you don't know how to handle.
5932 */
5933
5934 sist = (istat & SIP) ? INW (nc_sist) : 0;
5935 dstat = (istat & DIP) ? INB (nc_dstat) : 0;
5936
5937 if (DEBUG_FLAGS & DEBUG_TINY)
5938 printk ("<%d|%x:%x|%x:%x>",
5939 (int)INB(nc_scr0),
5940 dstat,sist,
5941 (unsigned)INL(nc_dsp),
5942 (unsigned)INL(nc_dbc));
5943
5944 /*========================================================
5945 ** First, interrupts we want to service cleanly.
5946 **
5947 ** Phase mismatch is the most frequent interrupt, and
5948 ** so we have to service it as quickly and as cleanly
5949 ** as possible.
5950 ** Programmed interrupts are rarely used in this driver,
5951 ** but we must handle them cleanly anyway.
5952 ** We try to deal with PAR and SBMC combined with
5953 ** some other interrupt(s).
5954 **=========================================================
5955 */
5956
5957 if (!(sist & (STO|GEN|HTH|SGE|UDC|RST)) &&
5958 !(dstat & (MDPE|BF|ABRT|IID))) {
5959 if ((sist & SBMC) && ncr_int_sbmc (np))
5960 return;
5961 if ((sist & PAR) && ncr_int_par (np))
5962 return;
5963 if (sist & MA) {
5964 ncr_int_ma (np);
5965 return;
5966 }
5967 if (dstat & SIR) {
5968 ncr_int_sir (np);
5969 return;
5970 }
5971 /*
5972 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2.
5973 */
5974 if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) {
5975 printk( "%s: unknown interrupt(s) ignored, "
5976 "ISTAT=%x DSTAT=%x SIST=%x\n",
5977 ncr_name(np), istat, dstat, sist);
5978 return;
5979 }
5980 OUTONB_STD ();
5981 return;
5982 }
5983
5984 /*========================================================
5985 ** Now, interrupts that need some fixing up.
5986 ** Order and multiple interrupts is so less important.
5987 **
5988 ** If SRST has been asserted, we just reset the chip.
5989 **
5990 ** Selection is intirely handled by the chip. If the
5991 ** chip says STO, we trust it. Seems some other
5992 ** interrupts may occur at the same time (UDC, IID), so
5993 ** we ignore them. In any case we do enough fix-up
5994 ** in the service routine.
5995 ** We just exclude some fatal dma errors.
5996 **=========================================================
5997 */
5998
5999 if (sist & RST) {
6000 ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET);
6001 return;
6002 }
6003
6004 if ((sist & STO) &&
6005 !(dstat & (MDPE|BF|ABRT))) {
6006 /*
6007 ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1.
6008 */
6009 OUTONB (nc_ctest3, CLF);
6010
6011 ncr_int_sto (np);
6012 return;
6013 }
6014
6015 /*=========================================================
6016 ** Now, interrupts we are not able to recover cleanly.
6017 ** (At least for the moment).
6018 **
6019 ** Do the register dump.
6020 ** Log message for real hard errors.
6021 ** Clear all fifos.
6022 ** For MDPE, BF, ABORT, IID, SGE and HTH we reset the
6023 ** BUS and the chip.
6024 ** We are more soft for UDC.
6025 **=========================================================
6026 */
6027
Matthew Wilcoxf2be34a2005-10-25 22:16:02 -06006028 if (time_after(jiffies, np->regtime)) {
6029 np->regtime = jiffies + 10*HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006030 for (i = 0; i<sizeof(np->regdump); i++)
6031 ((char*)&np->regdump)[i] = INB_OFF(i);
6032 np->regdump.nc_dstat = dstat;
6033 np->regdump.nc_sist = sist;
6034 }
6035
6036 ncr_log_hard_error(np, sist, dstat);
6037
6038 printk ("%s: have to clear fifos.\n", ncr_name (np));
6039 OUTB (nc_stest3, TE|CSF);
6040 OUTONB (nc_ctest3, CLF);
6041
6042 if ((sist & (SGE)) ||
6043 (dstat & (MDPE|BF|ABRT|IID))) {
6044 ncr_start_reset(np);
6045 return;
6046 }
6047
6048 if (sist & HTH) {
6049 printk ("%s: handshake timeout\n", ncr_name(np));
6050 ncr_start_reset(np);
6051 return;
6052 }
6053
6054 if (sist & UDC) {
6055 printk ("%s: unexpected disconnect\n", ncr_name(np));
6056 OUTB (HS_PRT, HS_UNEXPECTED);
6057 OUTL_DSP (NCB_SCRIPT_PHYS (np, cleanup));
6058 return;
6059 }
6060
6061 /*=========================================================
6062 ** We just miss the cause of the interrupt. :(
6063 ** Print a message. The timeout will do the real work.
6064 **=========================================================
6065 */
6066 printk ("%s: unknown interrupt\n", ncr_name(np));
6067}
6068
6069/*==========================================================
6070**
6071** ncr chip exception handler for selection timeout
6072**
6073**==========================================================
6074**
6075** There seems to be a bug in the 53c810.
6076** Although a STO-Interrupt is pending,
6077** it continues executing script commands.
6078** But it will fail and interrupt (IID) on
6079** the next instruction where it's looking
6080** for a valid phase.
6081**
6082**----------------------------------------------------------
6083*/
6084
6085void ncr_int_sto (struct ncb *np)
6086{
6087 u_long dsa;
6088 struct ccb *cp;
6089 if (DEBUG_FLAGS & DEBUG_TINY) printk ("T");
6090
6091 /*
6092 ** look for ccb and set the status.
6093 */
6094
6095 dsa = INL (nc_dsa);
6096 cp = np->ccb;
6097 while (cp && (CCB_PHYS (cp, phys) != dsa))
6098 cp = cp->link_ccb;
6099
6100 if (cp) {
6101 cp-> host_status = HS_SEL_TIMEOUT;
6102 ncr_complete (np, cp);
6103 }
6104
6105 /*
6106 ** repair start queue and jump to start point.
6107 */
6108
6109 OUTL_DSP (NCB_SCRIPTH_PHYS (np, sto_restart));
6110 return;
6111}
6112
6113/*==========================================================
6114**
6115** ncr chip exception handler for SCSI bus mode change
6116**
6117**==========================================================
6118**
6119** spi2-r12 11.2.3 says a transceiver mode change must
6120** generate a reset event and a device that detects a reset
6121** event shall initiate a hard reset. It says also that a
6122** device that detects a mode change shall set data transfer
6123** mode to eight bit asynchronous, etc...
6124** So, just resetting should be enough.
6125**
6126**
6127**----------------------------------------------------------
6128*/
6129
6130static int ncr_int_sbmc (struct ncb *np)
6131{
6132 u_char scsi_mode = INB (nc_stest4) & SMODE;
6133
6134 if (scsi_mode != np->scsi_mode) {
6135 printk("%s: SCSI bus mode change from %x to %x.\n",
6136 ncr_name(np), np->scsi_mode, scsi_mode);
6137
6138 np->scsi_mode = scsi_mode;
6139
6140
6141 /*
6142 ** Suspend command processing for 1 second and
6143 ** reinitialize all except the chip.
6144 */
Matthew Wilcoxf2be34a2005-10-25 22:16:02 -06006145 np->settle_time = jiffies + HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006146 ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET);
6147 return 1;
6148 }
6149 return 0;
6150}
6151
6152/*==========================================================
6153**
6154** ncr chip exception handler for SCSI parity error.
6155**
6156**==========================================================
6157**
6158**
6159**----------------------------------------------------------
6160*/
6161
6162static int ncr_int_par (struct ncb *np)
6163{
6164 u_char hsts = INB (HS_PRT);
6165 u32 dbc = INL (nc_dbc);
6166 u_char sstat1 = INB (nc_sstat1);
6167 int phase = -1;
6168 int msg = -1;
6169 u32 jmp;
6170
6171 printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n",
6172 ncr_name(np), hsts, dbc, sstat1);
6173
6174 /*
6175 * Ignore the interrupt if the NCR is not connected
6176 * to the SCSI bus, since the right work should have
6177 * been done on unexpected disconnection handling.
6178 */
6179 if (!(INB (nc_scntl1) & ISCON))
6180 return 0;
6181
6182 /*
6183 * If the nexus is not clearly identified, reset the bus.
6184 * We will try to do better later.
6185 */
6186 if (hsts & HS_INVALMASK)
6187 goto reset_all;
6188
6189 /*
6190 * If the SCSI parity error occurs in MSG IN phase, prepare a
6191 * MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED
6192 * ERROR message and let the device decide to retry the command
6193 * or to terminate with check condition. If we were in MSG IN
6194 * phase waiting for the response of a negotiation, we will
6195 * get SIR_NEGO_FAILED at dispatch.
6196 */
6197 if (!(dbc & 0xc0000000))
6198 phase = (dbc >> 24) & 7;
6199 if (phase == 7)
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07006200 msg = MSG_PARITY_ERROR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006201 else
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07006202 msg = INITIATOR_ERROR;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006203
6204
6205 /*
6206 * If the NCR stopped on a MOVE ^ DATA_IN, we jump to a
6207 * script that will ignore all data in bytes until phase
6208 * change, since we are not sure the chip will wait the phase
6209 * change prior to delivering the interrupt.
6210 */
6211 if (phase == 1)
6212 jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in);
6213 else
6214 jmp = NCB_SCRIPTH_PHYS (np, par_err_other);
6215
6216 OUTONB (nc_ctest3, CLF ); /* clear dma fifo */
6217 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
6218
6219 np->msgout[0] = msg;
6220 OUTL_DSP (jmp);
6221 return 1;
6222
6223reset_all:
6224 ncr_start_reset(np);
6225 return 1;
6226}
6227
6228/*==========================================================
6229**
6230**
6231** ncr chip exception handler for phase errors.
6232**
6233**
6234**==========================================================
6235**
6236** We have to construct a new transfer descriptor,
6237** to transfer the rest of the current block.
6238**
6239**----------------------------------------------------------
6240*/
6241
6242static void ncr_int_ma (struct ncb *np)
6243{
6244 u32 dbc;
6245 u32 rest;
6246 u32 dsp;
6247 u32 dsa;
6248 u32 nxtdsp;
6249 u32 newtmp;
6250 u32 *vdsp;
6251 u32 oadr, olen;
6252 u32 *tblp;
6253 ncrcmd *newcmd;
6254 u_char cmd, sbcl;
6255 struct ccb *cp;
6256
6257 dsp = INL (nc_dsp);
6258 dbc = INL (nc_dbc);
6259 sbcl = INB (nc_sbcl);
6260
6261 cmd = dbc >> 24;
6262 rest = dbc & 0xffffff;
6263
6264 /*
6265 ** Take into account dma fifo and various buffers and latches,
6266 ** only if the interrupted phase is an OUTPUT phase.
6267 */
6268
6269 if ((cmd & 1) == 0) {
6270 u_char ctest5, ss0, ss2;
6271 u16 delta;
6272
6273 ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0;
6274 if (ctest5 & DFS)
6275 delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff;
6276 else
6277 delta=(INB (nc_dfifo) - rest) & 0x7f;
6278
6279 /*
6280 ** The data in the dma fifo has not been transferred to
6281 ** the target -> add the amount to the rest
6282 ** and clear the data.
6283 ** Check the sstat2 register in case of wide transfer.
6284 */
6285
6286 rest += delta;
6287 ss0 = INB (nc_sstat0);
6288 if (ss0 & OLF) rest++;
6289 if (ss0 & ORF) rest++;
6290 if (INB(nc_scntl3) & EWS) {
6291 ss2 = INB (nc_sstat2);
6292 if (ss2 & OLF1) rest++;
6293 if (ss2 & ORF1) rest++;
6294 }
6295
6296 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6297 printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7,
6298 (unsigned) rest, (unsigned) delta, ss0);
6299
6300 } else {
6301 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6302 printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest);
6303 }
6304
6305 /*
6306 ** Clear fifos.
6307 */
6308 OUTONB (nc_ctest3, CLF ); /* clear dma fifo */
6309 OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
6310
6311 /*
6312 ** locate matching cp.
6313 ** if the interrupted phase is DATA IN or DATA OUT,
6314 ** trust the global header.
6315 */
6316 dsa = INL (nc_dsa);
6317 if (!(cmd & 6)) {
6318 cp = np->header.cp;
6319 if (CCB_PHYS(cp, phys) != dsa)
6320 cp = NULL;
6321 } else {
6322 cp = np->ccb;
6323 while (cp && (CCB_PHYS (cp, phys) != dsa))
6324 cp = cp->link_ccb;
6325 }
6326
6327 /*
6328 ** try to find the interrupted script command,
6329 ** and the address at which to continue.
6330 */
6331 vdsp = NULL;
6332 nxtdsp = 0;
6333 if (dsp > np->p_script &&
6334 dsp <= np->p_script + sizeof(struct script)) {
6335 vdsp = (u32 *)((char*)np->script0 + (dsp-np->p_script-8));
6336 nxtdsp = dsp;
6337 }
6338 else if (dsp > np->p_scripth &&
6339 dsp <= np->p_scripth + sizeof(struct scripth)) {
6340 vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8));
6341 nxtdsp = dsp;
6342 }
6343 else if (cp) {
6344 if (dsp == CCB_PHYS (cp, patch[2])) {
6345 vdsp = &cp->patch[0];
6346 nxtdsp = scr_to_cpu(vdsp[3]);
6347 }
6348 else if (dsp == CCB_PHYS (cp, patch[6])) {
6349 vdsp = &cp->patch[4];
6350 nxtdsp = scr_to_cpu(vdsp[3]);
6351 }
6352 }
6353
6354 /*
6355 ** log the information
6356 */
6357
6358 if (DEBUG_FLAGS & DEBUG_PHASE) {
6359 printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
6360 cp, np->header.cp,
6361 (unsigned)dsp,
6362 (unsigned)nxtdsp, vdsp, cmd);
6363 }
6364
6365 /*
6366 ** cp=0 means that the DSA does not point to a valid control
6367 ** block. This should not happen since we donnot use multi-byte
6368 ** move while we are being reselected ot after command complete.
6369 ** We are not able to recover from such a phase error.
6370 */
6371 if (!cp) {
6372 printk ("%s: SCSI phase error fixup: "
6373 "CCB already dequeued (0x%08lx)\n",
6374 ncr_name (np), (u_long) np->header.cp);
6375 goto reset_all;
6376 }
6377
6378 /*
6379 ** get old startaddress and old length.
6380 */
6381
6382 oadr = scr_to_cpu(vdsp[1]);
6383
6384 if (cmd & 0x10) { /* Table indirect */
6385 tblp = (u32 *) ((char*) &cp->phys + oadr);
6386 olen = scr_to_cpu(tblp[0]);
6387 oadr = scr_to_cpu(tblp[1]);
6388 } else {
6389 tblp = (u32 *) 0;
6390 olen = scr_to_cpu(vdsp[0]) & 0xffffff;
6391 }
6392
6393 if (DEBUG_FLAGS & DEBUG_PHASE) {
6394 printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
6395 (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
6396 tblp,
6397 (unsigned) olen,
6398 (unsigned) oadr);
6399 }
6400
6401 /*
6402 ** check cmd against assumed interrupted script command.
6403 */
6404
6405 if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) {
6406 PRINT_ADDR(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] "
6407 ">> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24);
6408
6409 goto reset_all;
6410 }
6411
6412 /*
6413 ** cp != np->header.cp means that the header of the CCB
6414 ** currently being processed has not yet been copied to
6415 ** the global header area. That may happen if the device did
6416 ** not accept all our messages after having been selected.
6417 */
6418 if (cp != np->header.cp) {
6419 printk ("%s: SCSI phase error fixup: "
6420 "CCB address mismatch (0x%08lx != 0x%08lx)\n",
6421 ncr_name (np), (u_long) cp, (u_long) np->header.cp);
6422 }
6423
6424 /*
6425 ** if old phase not dataphase, leave here.
6426 */
6427
6428 if (cmd & 0x06) {
6429 PRINT_ADDR(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n",
6430 cmd&7, sbcl&7, (unsigned)olen,
6431 (unsigned)oadr, (unsigned)rest);
6432 goto unexpected_phase;
6433 }
6434
6435 /*
6436 ** choose the correct patch area.
6437 ** if savep points to one, choose the other.
6438 */
6439
6440 newcmd = cp->patch;
6441 newtmp = CCB_PHYS (cp, patch);
6442 if (newtmp == scr_to_cpu(cp->phys.header.savep)) {
6443 newcmd = &cp->patch[4];
6444 newtmp = CCB_PHYS (cp, patch[4]);
6445 }
6446
6447 /*
6448 ** fillin the commands
6449 */
6450
6451 newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest);
6452 newcmd[1] = cpu_to_scr(oadr + olen - rest);
6453 newcmd[2] = cpu_to_scr(SCR_JUMP);
6454 newcmd[3] = cpu_to_scr(nxtdsp);
6455
6456 if (DEBUG_FLAGS & DEBUG_PHASE) {
6457 PRINT_ADDR(cp->cmd, "newcmd[%d] %x %x %x %x.\n",
6458 (int) (newcmd - cp->patch),
6459 (unsigned)scr_to_cpu(newcmd[0]),
6460 (unsigned)scr_to_cpu(newcmd[1]),
6461 (unsigned)scr_to_cpu(newcmd[2]),
6462 (unsigned)scr_to_cpu(newcmd[3]));
6463 }
6464 /*
6465 ** fake the return address (to the patch).
6466 ** and restart script processor at dispatcher.
6467 */
6468 OUTL (nc_temp, newtmp);
6469 OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch));
6470 return;
6471
6472 /*
6473 ** Unexpected phase changes that occurs when the current phase
6474 ** is not a DATA IN or DATA OUT phase are due to error conditions.
6475 ** Such event may only happen when the SCRIPTS is using a
6476 ** multibyte SCSI MOVE.
6477 **
6478 ** Phase change Some possible cause
6479 **
6480 ** COMMAND --> MSG IN SCSI parity error detected by target.
6481 ** COMMAND --> STATUS Bad command or refused by target.
6482 ** MSG OUT --> MSG IN Message rejected by target.
6483 ** MSG OUT --> COMMAND Bogus target that discards extended
6484 ** negotiation messages.
6485 **
6486 ** The code below does not care of the new phase and so
6487 ** trusts the target. Why to annoy it ?
6488 ** If the interrupted phase is COMMAND phase, we restart at
6489 ** dispatcher.
6490 ** If a target does not get all the messages after selection,
6491 ** the code assumes blindly that the target discards extended
6492 ** messages and clears the negotiation status.
6493 ** If the target does not want all our response to negotiation,
6494 ** we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
6495 ** bloat for such a should_not_happen situation).
6496 ** In all other situation, we reset the BUS.
6497 ** Are these assumptions reasonnable ? (Wait and see ...)
6498 */
6499unexpected_phase:
6500 dsp -= 8;
6501 nxtdsp = 0;
6502
6503 switch (cmd & 7) {
6504 case 2: /* COMMAND phase */
6505 nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6506 break;
6507#if 0
6508 case 3: /* STATUS phase */
6509 nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6510 break;
6511#endif
6512 case 6: /* MSG OUT phase */
6513 np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8);
6514 if (dsp == NCB_SCRIPT_PHYS (np, send_ident)) {
6515 cp->host_status = HS_BUSY;
6516 nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on);
6517 }
6518 else if (dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) ||
6519 dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) {
6520 nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase);
6521 }
6522 break;
6523#if 0
6524 case 7: /* MSG IN phase */
6525 nxtdsp = NCB_SCRIPT_PHYS (np, clrack);
6526 break;
6527#endif
6528 }
6529
6530 if (nxtdsp) {
6531 OUTL_DSP (nxtdsp);
6532 return;
6533 }
6534
6535reset_all:
6536 ncr_start_reset(np);
6537}
6538
6539
6540static void ncr_sir_to_redo(struct ncb *np, int num, struct ccb *cp)
6541{
6542 struct scsi_cmnd *cmd = cp->cmd;
6543 struct tcb *tp = &np->target[cmd->device->id];
6544 struct lcb *lp = tp->lp[cmd->device->lun];
6545 struct list_head *qp;
6546 struct ccb * cp2;
6547 int disc_cnt = 0;
6548 int busy_cnt = 0;
6549 u32 startp;
6550 u_char s_status = INB (SS_PRT);
6551
6552 /*
6553 ** Let the SCRIPTS processor skip all not yet started CCBs,
6554 ** and count disconnected CCBs. Since the busy queue is in
6555 ** the same order as the chip start queue, disconnected CCBs
6556 ** are before cp and busy ones after.
6557 */
6558 if (lp) {
6559 qp = lp->busy_ccbq.prev;
6560 while (qp != &lp->busy_ccbq) {
6561 cp2 = list_entry(qp, struct ccb, link_ccbq);
6562 qp = qp->prev;
6563 ++busy_cnt;
6564 if (cp2 == cp)
6565 break;
6566 cp2->start.schedule.l_paddr =
6567 cpu_to_scr(NCB_SCRIPTH_PHYS (np, skip));
6568 }
6569 lp->held_ccb = cp; /* Requeue when this one completes */
6570 disc_cnt = lp->queuedccbs - busy_cnt;
6571 }
6572
6573 switch(s_status) {
6574 default: /* Just for safety, should never happen */
6575 case S_QUEUE_FULL:
6576 /*
6577 ** Decrease number of tags to the number of
6578 ** disconnected commands.
6579 */
6580 if (!lp)
6581 goto out;
6582 if (bootverbose >= 1) {
6583 PRINT_ADDR(cmd, "QUEUE FULL! %d busy, %d disconnected "
6584 "CCBs\n", busy_cnt, disc_cnt);
6585 }
6586 if (disc_cnt < lp->numtags) {
6587 lp->numtags = disc_cnt > 2 ? disc_cnt : 2;
6588 lp->num_good = 0;
6589 ncr_setup_tags (np, cmd->device);
6590 }
6591 /*
6592 ** Requeue the command to the start queue.
6593 ** If any disconnected commands,
6594 ** Clear SIGP.
6595 ** Jump to reselect.
6596 */
6597 cp->phys.header.savep = cp->startp;
6598 cp->host_status = HS_BUSY;
6599 cp->scsi_status = S_ILLEGAL;
6600
6601 ncr_put_start_queue(np, cp);
6602 if (disc_cnt)
6603 INB (nc_ctest2); /* Clear SIGP */
6604 OUTL_DSP (NCB_SCRIPT_PHYS (np, reselect));
6605 return;
6606 case S_TERMINATED:
6607 case S_CHECK_COND:
6608 /*
6609 ** If we were requesting sense, give up.
6610 */
6611 if (cp->auto_sense)
6612 goto out;
6613
6614 /*
6615 ** Device returned CHECK CONDITION status.
6616 ** Prepare all needed data strutures for getting
6617 ** sense data.
6618 **
6619 ** identify message
6620 */
6621 cp->scsi_smsg2[0] = IDENTIFY(0, cmd->device->lun);
6622 cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2));
6623 cp->phys.smsg.size = cpu_to_scr(1);
6624
6625 /*
6626 ** sense command
6627 */
6628 cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd));
6629 cp->phys.cmd.size = cpu_to_scr(6);
6630
6631 /*
6632 ** patch requested size into sense command
6633 */
6634 cp->sensecmd[0] = 0x03;
6635 cp->sensecmd[1] = cmd->device->lun << 5;
6636 cp->sensecmd[4] = sizeof(cp->sense_buf);
6637
6638 /*
6639 ** sense data
6640 */
6641 memset(cp->sense_buf, 0, sizeof(cp->sense_buf));
6642 cp->phys.sense.addr = cpu_to_scr(CCB_PHYS(cp,sense_buf[0]));
6643 cp->phys.sense.size = cpu_to_scr(sizeof(cp->sense_buf));
6644
6645 /*
6646 ** requeue the command.
6647 */
6648 startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in));
6649
6650 cp->phys.header.savep = startp;
6651 cp->phys.header.goalp = startp + 24;
6652 cp->phys.header.lastp = startp;
6653 cp->phys.header.wgoalp = startp + 24;
6654 cp->phys.header.wlastp = startp;
6655
6656 cp->host_status = HS_BUSY;
6657 cp->scsi_status = S_ILLEGAL;
6658 cp->auto_sense = s_status;
6659
6660 cp->start.schedule.l_paddr =
6661 cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
6662
6663 /*
6664 ** Select without ATN for quirky devices.
6665 */
6666 if (cmd->device->select_no_atn)
6667 cp->start.schedule.l_paddr =
6668 cpu_to_scr(NCB_SCRIPTH_PHYS (np, select_no_atn));
6669
6670 ncr_put_start_queue(np, cp);
6671
6672 OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
6673 return;
6674 }
6675
6676out:
6677 OUTONB_STD ();
6678 return;
6679}
6680
6681
6682/*==========================================================
6683**
6684**
6685** ncr chip exception handler for programmed interrupts.
6686**
6687**
6688**==========================================================
6689*/
6690
6691void ncr_int_sir (struct ncb *np)
6692{
6693 u_char scntl3;
6694 u_char chg, ofs, per, fak, wide;
6695 u_char num = INB (nc_dsps);
6696 struct ccb *cp=NULL;
6697 u_long dsa = INL (nc_dsa);
6698 u_char target = INB (nc_sdid) & 0x0f;
6699 struct tcb *tp = &np->target[target];
6700 struct scsi_target *starget = tp->starget;
6701
6702 if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num);
6703
6704 switch (num) {
6705 case SIR_INTFLY:
6706 /*
6707 ** This is used for HP Zalon/53c720 where INTFLY
6708 ** operation is currently broken.
6709 */
6710 ncr_wakeup_done(np);
6711#ifdef SCSI_NCR_CCB_DONE_SUPPORT
6712 OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, done_end) + 8);
6713#else
6714 OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, start));
6715#endif
6716 return;
6717 case SIR_RESEL_NO_MSG_IN:
6718 case SIR_RESEL_NO_IDENTIFY:
6719 /*
6720 ** If devices reselecting without sending an IDENTIFY
6721 ** message still exist, this should help.
6722 ** We just assume lun=0, 1 CCB, no tag.
6723 */
6724 if (tp->lp[0]) {
6725 OUTL_DSP (scr_to_cpu(tp->lp[0]->jump_ccb[0]));
6726 return;
6727 }
6728 case SIR_RESEL_BAD_TARGET: /* Will send a TARGET RESET message */
6729 case SIR_RESEL_BAD_LUN: /* Will send a TARGET RESET message */
6730 case SIR_RESEL_BAD_I_T_L_Q: /* Will send an ABORT TAG message */
6731 case SIR_RESEL_BAD_I_T_L: /* Will send an ABORT message */
6732 printk ("%s:%d: SIR %d, "
6733 "incorrect nexus identification on reselection\n",
6734 ncr_name (np), target, num);
6735 goto out;
6736 case SIR_DONE_OVERFLOW:
6737 printk ("%s:%d: SIR %d, "
6738 "CCB done queue overflow\n",
6739 ncr_name (np), target, num);
6740 goto out;
6741 case SIR_BAD_STATUS:
6742 cp = np->header.cp;
6743 if (!cp || CCB_PHYS (cp, phys) != dsa)
6744 goto out;
6745 ncr_sir_to_redo(np, num, cp);
6746 return;
6747 default:
6748 /*
6749 ** lookup the ccb
6750 */
6751 cp = np->ccb;
6752 while (cp && (CCB_PHYS (cp, phys) != dsa))
6753 cp = cp->link_ccb;
6754
6755 BUG_ON(!cp);
6756 BUG_ON(cp != np->header.cp);
6757
6758 if (!cp || cp != np->header.cp)
6759 goto out;
6760 }
6761
6762 switch (num) {
6763/*-----------------------------------------------------------------------------
6764**
6765** Was Sie schon immer ueber transfermode negotiation wissen wollten ...
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07006766** ("Everything you've always wanted to know about transfer mode
6767** negotiation")
Linus Torvalds1da177e2005-04-16 15:20:36 -07006768**
6769** We try to negotiate sync and wide transfer only after
6770** a successful inquire command. We look at byte 7 of the
6771** inquire data to determine the capabilities of the target.
6772**
6773** When we try to negotiate, we append the negotiation message
6774** to the identify and (maybe) simple tag message.
6775** The host status field is set to HS_NEGOTIATE to mark this
6776** situation.
6777**
Matt LaPlante0779bf22006-11-30 05:24:39 +01006778** If the target doesn't answer this message immediately
Linus Torvalds1da177e2005-04-16 15:20:36 -07006779** (as required by the standard), the SIR_NEGO_FAIL interrupt
6780** will be raised eventually.
6781** The handler removes the HS_NEGOTIATE status, and sets the
6782** negotiated value to the default (async / nowide).
6783**
6784** If we receive a matching answer immediately, we check it
6785** for validity, and set the values.
6786**
6787** If we receive a Reject message immediately, we assume the
6788** negotiation has failed, and fall back to standard values.
6789**
6790** If we receive a negotiation message while not in HS_NEGOTIATE
6791** state, it's a target initiated negotiation. We prepare a
6792** (hopefully) valid answer, set our parameters, and send back
6793** this answer to the target.
6794**
6795** If the target doesn't fetch the answer (no message out phase),
6796** we assume the negotiation has failed, and fall back to default
6797** settings.
6798**
6799** When we set the values, we adjust them in all ccbs belonging
6800** to this target, in the controller's register, and in the "phys"
6801** field of the controller's struct ncb.
6802**
6803** Possible cases: hs sir msg_in value send goto
6804** We try to negotiate:
6805** -> target doesn't msgin NEG FAIL noop defa. - dispatch
6806** -> target rejected our msg NEG FAIL reject defa. - dispatch
6807** -> target answered (ok) NEG SYNC sdtr set - clrack
6808** -> target answered (!ok) NEG SYNC sdtr defa. REJ--->msg_bad
6809** -> target answered (ok) NEG WIDE wdtr set - clrack
6810** -> target answered (!ok) NEG WIDE wdtr defa. REJ--->msg_bad
6811** -> any other msgin NEG FAIL noop defa. - dispatch
6812**
6813** Target tries to negotiate:
6814** -> incoming message --- SYNC sdtr set SDTR -
6815** -> incoming message --- WIDE wdtr set WDTR -
6816** We sent our answer:
6817** -> target doesn't msgout --- PROTO ? defa. - dispatch
6818**
6819**-----------------------------------------------------------------------------
6820*/
6821
6822 case SIR_NEGO_FAILED:
6823 /*-------------------------------------------------------
6824 **
6825 ** Negotiation failed.
6826 ** Target doesn't send an answer message,
6827 ** or target rejected our message.
6828 **
6829 ** Remove negotiation request.
6830 **
6831 **-------------------------------------------------------
6832 */
6833 OUTB (HS_PRT, HS_BUSY);
6834
6835 /* fall through */
6836
6837 case SIR_NEGO_PROTO:
6838 /*-------------------------------------------------------
6839 **
6840 ** Negotiation failed.
6841 ** Target doesn't fetch the answer message.
6842 **
6843 **-------------------------------------------------------
6844 */
6845
6846 if (DEBUG_FLAGS & DEBUG_NEGO) {
6847 PRINT_ADDR(cp->cmd, "negotiation failed sir=%x "
6848 "status=%x.\n", num, cp->nego_status);
6849 }
6850
6851 /*
6852 ** any error in negotiation:
6853 ** fall back to default mode.
6854 */
6855 switch (cp->nego_status) {
6856
6857 case NS_SYNC:
6858 spi_period(starget) = 0;
6859 spi_offset(starget) = 0;
6860 ncr_setsync (np, cp, 0, 0xe0);
6861 break;
6862
6863 case NS_WIDE:
6864 spi_width(starget) = 0;
6865 ncr_setwide (np, cp, 0, 0);
6866 break;
6867
6868 }
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07006869 np->msgin [0] = NOP;
6870 np->msgout[0] = NOP;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006871 cp->nego_status = 0;
6872 break;
6873
6874 case SIR_NEGO_SYNC:
6875 if (DEBUG_FLAGS & DEBUG_NEGO) {
6876 ncr_print_msg(cp, "sync msgin", np->msgin);
6877 }
6878
6879 chg = 0;
6880 per = np->msgin[3];
6881 ofs = np->msgin[4];
6882 if (ofs==0) per=255;
6883
6884 /*
6885 ** if target sends SDTR message,
6886 ** it CAN transfer synch.
6887 */
6888
6889 if (ofs && starget)
6890 spi_support_sync(starget) = 1;
6891
6892 /*
6893 ** check values against driver limits.
6894 */
6895
6896 if (per < np->minsync)
6897 {chg = 1; per = np->minsync;}
6898 if (per < tp->minsync)
6899 {chg = 1; per = tp->minsync;}
6900 if (ofs > tp->maxoffs)
6901 {chg = 1; ofs = tp->maxoffs;}
6902
6903 /*
6904 ** Check against controller limits.
6905 */
6906 fak = 7;
6907 scntl3 = 0;
6908 if (ofs != 0) {
6909 ncr_getsync(np, per, &fak, &scntl3);
6910 if (fak > 7) {
6911 chg = 1;
6912 ofs = 0;
6913 }
6914 }
6915 if (ofs == 0) {
6916 fak = 7;
6917 per = 0;
6918 scntl3 = 0;
6919 tp->minsync = 0;
6920 }
6921
6922 if (DEBUG_FLAGS & DEBUG_NEGO) {
6923 PRINT_ADDR(cp->cmd, "sync: per=%d scntl3=0x%x ofs=%d "
6924 "fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg);
6925 }
6926
6927 if (INB (HS_PRT) == HS_NEGOTIATE) {
6928 OUTB (HS_PRT, HS_BUSY);
6929 switch (cp->nego_status) {
6930
6931 case NS_SYNC:
6932 /* This was an answer message */
6933 if (chg) {
6934 /* Answer wasn't acceptable. */
6935 spi_period(starget) = 0;
6936 spi_offset(starget) = 0;
6937 ncr_setsync(np, cp, 0, 0xe0);
6938 OUTL_DSP(NCB_SCRIPT_PHYS (np, msg_bad));
6939 } else {
6940 /* Answer is ok. */
6941 spi_period(starget) = per;
6942 spi_offset(starget) = ofs;
6943 ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6944 OUTL_DSP(NCB_SCRIPT_PHYS (np, clrack));
6945 }
6946 return;
6947
6948 case NS_WIDE:
6949 spi_width(starget) = 0;
6950 ncr_setwide(np, cp, 0, 0);
6951 break;
6952 }
6953 }
6954
6955 /*
6956 ** It was a request. Set value and
6957 ** prepare an answer message
6958 */
6959
6960 spi_period(starget) = per;
6961 spi_offset(starget) = ofs;
6962 ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6963
Matthew Wilcox6ea3c0b2006-02-07 07:54:46 -07006964 spi_populate_sync_msg(np->msgout, per, ofs);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006965 cp->nego_status = NS_SYNC;
6966
6967 if (DEBUG_FLAGS & DEBUG_NEGO) {
6968 ncr_print_msg(cp, "sync msgout", np->msgout);
6969 }
6970
6971 if (!ofs) {
6972 OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
6973 return;
6974 }
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07006975 np->msgin [0] = NOP;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006976
6977 break;
6978
6979 case SIR_NEGO_WIDE:
6980 /*
6981 ** Wide request message received.
6982 */
6983 if (DEBUG_FLAGS & DEBUG_NEGO) {
6984 ncr_print_msg(cp, "wide msgin", np->msgin);
6985 }
6986
6987 /*
6988 ** get requested values.
6989 */
6990
6991 chg = 0;
6992 wide = np->msgin[3];
6993
6994 /*
6995 ** if target sends WDTR message,
6996 ** it CAN transfer wide.
6997 */
6998
6999 if (wide && starget)
7000 spi_support_wide(starget) = 1;
7001
7002 /*
7003 ** check values against driver limits.
7004 */
7005
7006 if (wide > tp->usrwide)
7007 {chg = 1; wide = tp->usrwide;}
7008
7009 if (DEBUG_FLAGS & DEBUG_NEGO) {
7010 PRINT_ADDR(cp->cmd, "wide: wide=%d chg=%d.\n", wide,
7011 chg);
7012 }
7013
7014 if (INB (HS_PRT) == HS_NEGOTIATE) {
7015 OUTB (HS_PRT, HS_BUSY);
7016 switch (cp->nego_status) {
7017
7018 case NS_WIDE:
7019 /*
7020 ** This was an answer message
7021 */
7022 if (chg) {
7023 /* Answer wasn't acceptable. */
7024 spi_width(starget) = 0;
7025 ncr_setwide(np, cp, 0, 1);
7026 OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
7027 } else {
7028 /* Answer is ok. */
7029 spi_width(starget) = wide;
7030 ncr_setwide(np, cp, wide, 1);
7031 OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack));
7032 }
7033 return;
7034
7035 case NS_SYNC:
7036 spi_period(starget) = 0;
7037 spi_offset(starget) = 0;
7038 ncr_setsync(np, cp, 0, 0xe0);
7039 break;
7040 }
7041 }
7042
7043 /*
7044 ** It was a request, set value and
7045 ** prepare an answer message
7046 */
7047
7048 spi_width(starget) = wide;
7049 ncr_setwide(np, cp, wide, 1);
Matthew Wilcox6ea3c0b2006-02-07 07:54:46 -07007050 spi_populate_width_msg(np->msgout, wide);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007051
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07007052 np->msgin [0] = NOP;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007053
7054 cp->nego_status = NS_WIDE;
7055
7056 if (DEBUG_FLAGS & DEBUG_NEGO) {
7057 ncr_print_msg(cp, "wide msgout", np->msgin);
7058 }
7059 break;
7060
7061/*--------------------------------------------------------------------
7062**
7063** Processing of special messages
7064**
7065**--------------------------------------------------------------------
7066*/
7067
7068 case SIR_REJECT_RECEIVED:
7069 /*-----------------------------------------------
7070 **
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07007071 ** We received a MESSAGE_REJECT.
Linus Torvalds1da177e2005-04-16 15:20:36 -07007072 **
7073 **-----------------------------------------------
7074 */
7075
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07007076 PRINT_ADDR(cp->cmd, "MESSAGE_REJECT received (%x:%x).\n",
Linus Torvalds1da177e2005-04-16 15:20:36 -07007077 (unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]);
7078 break;
7079
7080 case SIR_REJECT_SENT:
7081 /*-----------------------------------------------
7082 **
7083 ** We received an unknown message
7084 **
7085 **-----------------------------------------------
7086 */
7087
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07007088 ncr_print_msg(cp, "MESSAGE_REJECT sent for", np->msgin);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007089 break;
7090
7091/*--------------------------------------------------------------------
7092**
7093** Processing of special messages
7094**
7095**--------------------------------------------------------------------
7096*/
7097
7098 case SIR_IGN_RESIDUE:
7099 /*-----------------------------------------------
7100 **
7101 ** We received an IGNORE RESIDUE message,
7102 ** which couldn't be handled by the script.
7103 **
7104 **-----------------------------------------------
7105 */
7106
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07007107 PRINT_ADDR(cp->cmd, "IGNORE_WIDE_RESIDUE received, but not yet "
Linus Torvalds1da177e2005-04-16 15:20:36 -07007108 "implemented.\n");
7109 break;
7110#if 0
7111 case SIR_MISSING_SAVE:
7112 /*-----------------------------------------------
7113 **
7114 ** We received an DISCONNECT message,
7115 ** but the datapointer wasn't saved before.
7116 **
7117 **-----------------------------------------------
7118 */
7119
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07007120 PRINT_ADDR(cp->cmd, "DISCONNECT received, but datapointer "
Linus Torvalds1da177e2005-04-16 15:20:36 -07007121 "not saved: data=%x save=%x goal=%x.\n",
7122 (unsigned) INL (nc_temp),
7123 (unsigned) scr_to_cpu(np->header.savep),
7124 (unsigned) scr_to_cpu(np->header.goalp));
7125 break;
7126#endif
7127 }
7128
7129out:
7130 OUTONB_STD ();
7131}
7132
7133/*==========================================================
7134**
7135**
7136** Acquire a control block
7137**
7138**
7139**==========================================================
7140*/
7141
7142static struct ccb *ncr_get_ccb(struct ncb *np, struct scsi_cmnd *cmd)
7143{
7144 u_char tn = cmd->device->id;
7145 u_char ln = cmd->device->lun;
7146 struct tcb *tp = &np->target[tn];
7147 struct lcb *lp = tp->lp[ln];
7148 u_char tag = NO_TAG;
7149 struct ccb *cp = NULL;
7150
7151 /*
7152 ** Lun structure available ?
7153 */
7154 if (lp) {
7155 struct list_head *qp;
7156 /*
7157 ** Keep from using more tags than we can handle.
7158 */
7159 if (lp->usetags && lp->busyccbs >= lp->maxnxs)
7160 return NULL;
7161
7162 /*
7163 ** Allocate a new CCB if needed.
7164 */
7165 if (list_empty(&lp->free_ccbq))
7166 ncr_alloc_ccb(np, tn, ln);
7167
7168 /*
7169 ** Look for free CCB
7170 */
7171 qp = ncr_list_pop(&lp->free_ccbq);
7172 if (qp) {
7173 cp = list_entry(qp, struct ccb, link_ccbq);
7174 if (cp->magic) {
7175 PRINT_ADDR(cmd, "ccb free list corrupted "
7176 "(@%p)\n", cp);
7177 cp = NULL;
7178 } else {
7179 list_add_tail(qp, &lp->wait_ccbq);
7180 ++lp->busyccbs;
7181 }
7182 }
7183
7184 /*
7185 ** If a CCB is available,
7186 ** Get a tag for this nexus if required.
7187 */
7188 if (cp) {
7189 if (lp->usetags)
7190 tag = lp->cb_tags[lp->ia_tag];
7191 }
7192 else if (lp->actccbs > 0)
7193 return NULL;
7194 }
7195
7196 /*
7197 ** if nothing available, take the default.
7198 */
7199 if (!cp)
7200 cp = np->ccb;
7201
7202 /*
7203 ** Wait until available.
7204 */
7205#if 0
7206 while (cp->magic) {
7207 if (flags & SCSI_NOSLEEP) break;
7208 if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0))
7209 break;
7210 }
7211#endif
7212
7213 if (cp->magic)
7214 return NULL;
7215
7216 cp->magic = 1;
7217
7218 /*
7219 ** Move to next available tag if tag used.
7220 */
7221 if (lp) {
7222 if (tag != NO_TAG) {
7223 ++lp->ia_tag;
7224 if (lp->ia_tag == MAX_TAGS)
7225 lp->ia_tag = 0;
7226 lp->tags_umap |= (((tagmap_t) 1) << tag);
7227 }
7228 }
7229
7230 /*
7231 ** Remember all informations needed to free this CCB.
7232 */
7233 cp->tag = tag;
7234 cp->target = tn;
7235 cp->lun = ln;
7236
7237 if (DEBUG_FLAGS & DEBUG_TAGS) {
7238 PRINT_ADDR(cmd, "ccb @%p using tag %d.\n", cp, tag);
7239 }
7240
7241 return cp;
7242}
7243
7244/*==========================================================
7245**
7246**
7247** Release one control block
7248**
7249**
7250**==========================================================
7251*/
7252
7253static void ncr_free_ccb (struct ncb *np, struct ccb *cp)
7254{
7255 struct tcb *tp = &np->target[cp->target];
7256 struct lcb *lp = tp->lp[cp->lun];
7257
7258 if (DEBUG_FLAGS & DEBUG_TAGS) {
7259 PRINT_ADDR(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag);
7260 }
7261
7262 /*
7263 ** If lun control block available,
7264 ** decrement active commands and increment credit,
7265 ** free the tag if any and remove the JUMP for reselect.
7266 */
7267 if (lp) {
7268 if (cp->tag != NO_TAG) {
7269 lp->cb_tags[lp->if_tag++] = cp->tag;
7270 if (lp->if_tag == MAX_TAGS)
7271 lp->if_tag = 0;
7272 lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag);
7273 lp->tags_smap &= lp->tags_umap;
7274 lp->jump_ccb[cp->tag] =
7275 cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q));
7276 } else {
7277 lp->jump_ccb[0] =
7278 cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l));
7279 }
7280 }
7281
7282 /*
7283 ** Make this CCB available.
7284 */
7285
7286 if (lp) {
7287 if (cp != np->ccb)
7288 list_move(&cp->link_ccbq, &lp->free_ccbq);
7289 --lp->busyccbs;
7290 if (cp->queued) {
7291 --lp->queuedccbs;
7292 }
7293 }
7294 cp -> host_status = HS_IDLE;
7295 cp -> magic = 0;
7296 if (cp->queued) {
7297 --np->queuedccbs;
7298 cp->queued = 0;
7299 }
7300
7301#if 0
7302 if (cp == np->ccb)
7303 wakeup ((caddr_t) cp);
7304#endif
7305}
7306
7307
7308#define ncr_reg_bus_addr(r) (np->paddr + offsetof (struct ncr_reg, r))
7309
7310/*------------------------------------------------------------------------
7311** Initialize the fixed part of a CCB structure.
7312**------------------------------------------------------------------------
7313**------------------------------------------------------------------------
7314*/
7315static void ncr_init_ccb(struct ncb *np, struct ccb *cp)
7316{
7317 ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7318
7319 /*
7320 ** Remember virtual and bus address of this ccb.
7321 */
7322 cp->p_ccb = vtobus(cp);
7323 cp->phys.header.cp = cp;
7324
7325 /*
7326 ** This allows list_del to work for the default ccb.
7327 */
7328 INIT_LIST_HEAD(&cp->link_ccbq);
7329
7330 /*
7331 ** Initialyze the start and restart launch script.
7332 **
7333 ** COPY(4) @(...p_phys), @(dsa)
7334 ** JUMP @(sched_point)
7335 */
7336 cp->start.setup_dsa[0] = cpu_to_scr(copy_4);
7337 cp->start.setup_dsa[1] = cpu_to_scr(CCB_PHYS(cp, start.p_phys));
7338 cp->start.setup_dsa[2] = cpu_to_scr(ncr_reg_bus_addr(nc_dsa));
7339 cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP);
7340 cp->start.p_phys = cpu_to_scr(CCB_PHYS(cp, phys));
7341
7342 memcpy(&cp->restart, &cp->start, sizeof(cp->restart));
7343
7344 cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
7345 cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
7346}
7347
7348
7349/*------------------------------------------------------------------------
7350** Allocate a CCB and initialize its fixed part.
7351**------------------------------------------------------------------------
7352**------------------------------------------------------------------------
7353*/
7354static void ncr_alloc_ccb(struct ncb *np, u_char tn, u_char ln)
7355{
7356 struct tcb *tp = &np->target[tn];
7357 struct lcb *lp = tp->lp[ln];
7358 struct ccb *cp = NULL;
7359
7360 /*
7361 ** Allocate memory for this CCB.
7362 */
7363 cp = m_calloc_dma(sizeof(struct ccb), "CCB");
7364 if (!cp)
7365 return;
7366
7367 /*
7368 ** Count it and initialyze it.
7369 */
7370 lp->actccbs++;
7371 np->actccbs++;
7372 memset(cp, 0, sizeof (*cp));
7373 ncr_init_ccb(np, cp);
7374
7375 /*
7376 ** Chain into wakeup list and free ccb queue and take it
7377 ** into account for tagged commands.
7378 */
7379 cp->link_ccb = np->ccb->link_ccb;
7380 np->ccb->link_ccb = cp;
7381
7382 list_add(&cp->link_ccbq, &lp->free_ccbq);
7383}
7384
7385/*==========================================================
7386**
7387**
7388** Allocation of resources for Targets/Luns/Tags.
7389**
7390**
7391**==========================================================
7392*/
7393
7394
7395/*------------------------------------------------------------------------
7396** Target control block initialisation.
7397**------------------------------------------------------------------------
7398** This data structure is fully initialized after a SCSI command
7399** has been successfully completed for this target.
7400** It contains a SCRIPT that is called on target reselection.
7401**------------------------------------------------------------------------
7402*/
7403static void ncr_init_tcb (struct ncb *np, u_char tn)
7404{
7405 struct tcb *tp = &np->target[tn];
7406 ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1);
7407 int th = tn & 3;
7408 int i;
7409
7410 /*
7411 ** Jump to next tcb if SFBR does not match this target.
7412 ** JUMP IF (SFBR != #target#), @(next tcb)
7413 */
7414 tp->jump_tcb.l_cmd =
7415 cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn))));
7416 tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr;
7417
7418 /*
7419 ** Load the synchronous transfer register.
7420 ** COPY @(tp->sval), @(sxfer)
7421 */
7422 tp->getscr[0] = cpu_to_scr(copy_1);
7423 tp->getscr[1] = cpu_to_scr(vtobus (&tp->sval));
7424#ifdef SCSI_NCR_BIG_ENDIAN
7425 tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer) ^ 3);
7426#else
7427 tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer));
7428#endif
7429
7430 /*
7431 ** Load the timing register.
7432 ** COPY @(tp->wval), @(scntl3)
7433 */
7434 tp->getscr[3] = cpu_to_scr(copy_1);
7435 tp->getscr[4] = cpu_to_scr(vtobus (&tp->wval));
7436#ifdef SCSI_NCR_BIG_ENDIAN
7437 tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3) ^ 3);
7438#else
7439 tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3));
7440#endif
7441
7442 /*
7443 ** Get the IDENTIFY message and the lun.
7444 ** CALL @script(resel_lun)
7445 */
7446 tp->call_lun.l_cmd = cpu_to_scr(SCR_CALL);
7447 tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun));
7448
7449 /*
7450 ** Look for the lun control block of this nexus.
7451 ** For i = 0 to 3
7452 ** JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
7453 */
7454 for (i = 0 ; i < 4 ; i++) {
7455 tp->jump_lcb[i].l_cmd =
7456 cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
7457 tp->jump_lcb[i].l_paddr =
7458 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify));
7459 }
7460
7461 /*
7462 ** Link this target control block to the JUMP chain.
7463 */
7464 np->jump_tcb[th].l_paddr = cpu_to_scr(vtobus (&tp->jump_tcb));
7465
7466 /*
7467 ** These assert's should be moved at driver initialisations.
7468 */
7469#ifdef SCSI_NCR_BIG_ENDIAN
7470 BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7471 offsetof(struct tcb , sval )) &3) != 3);
7472 BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7473 offsetof(struct tcb , wval )) &3) != 3);
7474#else
7475 BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7476 offsetof(struct tcb , sval )) &3) != 0);
7477 BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7478 offsetof(struct tcb , wval )) &3) != 0);
7479#endif
7480}
7481
7482
7483/*------------------------------------------------------------------------
7484** Lun control block allocation and initialization.
7485**------------------------------------------------------------------------
7486** This data structure is allocated and initialized after a SCSI
7487** command has been successfully completed for this target/lun.
7488**------------------------------------------------------------------------
7489*/
7490static struct lcb *ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln)
7491{
7492 struct tcb *tp = &np->target[tn];
7493 struct lcb *lp = tp->lp[ln];
7494 ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7495 int lh = ln & 3;
7496
7497 /*
7498 ** Already done, return.
7499 */
7500 if (lp)
7501 return lp;
7502
7503 /*
7504 ** Allocate the lcb.
7505 */
7506 lp = m_calloc_dma(sizeof(struct lcb), "LCB");
7507 if (!lp)
7508 goto fail;
7509 memset(lp, 0, sizeof(*lp));
7510 tp->lp[ln] = lp;
7511
7512 /*
7513 ** Initialize the target control block if not yet.
7514 */
7515 if (!tp->jump_tcb.l_cmd)
7516 ncr_init_tcb(np, tn);
7517
7518 /*
7519 ** Initialize the CCB queue headers.
7520 */
7521 INIT_LIST_HEAD(&lp->free_ccbq);
7522 INIT_LIST_HEAD(&lp->busy_ccbq);
7523 INIT_LIST_HEAD(&lp->wait_ccbq);
7524 INIT_LIST_HEAD(&lp->skip_ccbq);
7525
7526 /*
7527 ** Set max CCBs to 1 and use the default 1 entry
7528 ** jump table by default.
7529 */
7530 lp->maxnxs = 1;
7531 lp->jump_ccb = &lp->jump_ccb_0;
7532 lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
7533
7534 /*
7535 ** Initilialyze the reselect script:
7536 **
7537 ** Jump to next lcb if SFBR does not match this lun.
7538 ** Load TEMP with the CCB direct jump table bus address.
7539 ** Get the SIMPLE TAG message and the tag.
7540 **
7541 ** JUMP IF (SFBR != #lun#), @(next lcb)
7542 ** COPY @(lp->p_jump_ccb), @(temp)
7543 ** JUMP @script(resel_notag)
7544 */
7545 lp->jump_lcb.l_cmd =
7546 cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff))));
7547 lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr;
7548
7549 lp->load_jump_ccb[0] = cpu_to_scr(copy_4);
7550 lp->load_jump_ccb[1] = cpu_to_scr(vtobus (&lp->p_jump_ccb));
7551 lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp));
7552
7553 lp->jump_tag.l_cmd = cpu_to_scr(SCR_JUMP);
7554 lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag));
7555
7556 /*
7557 ** Link this lun control block to the JUMP chain.
7558 */
7559 tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtobus (&lp->jump_lcb));
7560
7561 /*
7562 ** Initialize command queuing control.
7563 */
7564 lp->busyccbs = 1;
7565 lp->queuedccbs = 1;
7566 lp->queuedepth = 1;
7567fail:
7568 return lp;
7569}
7570
7571
7572/*------------------------------------------------------------------------
7573** Lun control block setup on INQUIRY data received.
7574**------------------------------------------------------------------------
7575** We only support WIDE, SYNC for targets and CMDQ for logical units.
7576** This setup is done on each INQUIRY since we are expecting user
7577** will play with CHANGE DEFINITION commands. :-)
7578**------------------------------------------------------------------------
7579*/
7580static struct lcb *ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev)
7581{
7582 unsigned char tn = sdev->id, ln = sdev->lun;
7583 struct tcb *tp = &np->target[tn];
7584 struct lcb *lp = tp->lp[ln];
7585
7586 /* If no lcb, try to allocate it. */
7587 if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln)))
7588 goto fail;
7589
7590 /*
7591 ** If unit supports tagged commands, allocate the
7592 ** CCB JUMP table if not yet.
7593 */
7594 if (sdev->tagged_supported && lp->jump_ccb == &lp->jump_ccb_0) {
7595 int i;
7596 lp->jump_ccb = m_calloc_dma(256, "JUMP_CCB");
7597 if (!lp->jump_ccb) {
7598 lp->jump_ccb = &lp->jump_ccb_0;
7599 goto fail;
7600 }
7601 lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
7602 for (i = 0 ; i < 64 ; i++)
7603 lp->jump_ccb[i] =
7604 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q));
7605 for (i = 0 ; i < MAX_TAGS ; i++)
7606 lp->cb_tags[i] = i;
7607 lp->maxnxs = MAX_TAGS;
Matthew Wilcoxf2be34a2005-10-25 22:16:02 -06007608 lp->tags_stime = jiffies + 3*HZ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007609 ncr_setup_tags (np, sdev);
7610 }
7611
7612
7613fail:
7614 return lp;
7615}
7616
7617/*==========================================================
7618**
7619**
7620** Build Scatter Gather Block
7621**
7622**
7623**==========================================================
7624**
7625** The transfer area may be scattered among
7626** several non adjacent physical pages.
7627**
7628** We may use MAX_SCATTER blocks.
7629**
7630**----------------------------------------------------------
7631*/
7632
7633/*
7634** We try to reduce the number of interrupts caused
7635** by unexpected phase changes due to disconnects.
7636** A typical harddisk may disconnect before ANY block.
7637** If we wanted to avoid unexpected phase changes at all
7638** we had to use a break point every 512 bytes.
7639** Of course the number of scatter/gather blocks is
7640** limited.
7641** Under Linux, the scatter/gatter blocks are provided by
7642** the generic driver. We just have to copy addresses and
7643** sizes to the data segment array.
7644*/
7645
Linus Torvalds1da177e2005-04-16 15:20:36 -07007646static int ncr_scatter(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd)
7647{
7648 int segment = 0;
FUJITA Tomonori69eca4f2007-05-14 19:22:21 +09007649 int use_sg = scsi_sg_count(cmd);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007650
7651 cp->data_len = 0;
7652
FUJITA Tomonori69eca4f2007-05-14 19:22:21 +09007653 use_sg = map_scsi_sg_data(np, cmd);
7654 if (use_sg > 0) {
7655 struct scatterlist *sg;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007656 struct scr_tblmove *data;
7657
7658 if (use_sg > MAX_SCATTER) {
7659 unmap_scsi_data(np, cmd);
7660 return -1;
7661 }
7662
7663 data = &cp->phys.data[MAX_SCATTER - use_sg];
7664
FUJITA Tomonori69eca4f2007-05-14 19:22:21 +09007665 scsi_for_each_sg(cmd, sg, use_sg, segment) {
7666 dma_addr_t baddr = sg_dma_address(sg);
7667 unsigned int len = sg_dma_len(sg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007668
7669 ncr_build_sge(np, &data[segment], baddr, len);
7670 cp->data_len += len;
7671 }
FUJITA Tomonori69eca4f2007-05-14 19:22:21 +09007672 } else
Linus Torvalds1da177e2005-04-16 15:20:36 -07007673 segment = -2;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007674
7675 return segment;
7676}
7677
7678/*==========================================================
7679**
7680**
7681** Test the bus snoop logic :-(
7682**
7683** Has to be called with interrupts disabled.
7684**
7685**
7686**==========================================================
7687*/
7688
7689static int __init ncr_regtest (struct ncb* np)
7690{
7691 register volatile u32 data;
7692 /*
7693 ** ncr registers may NOT be cached.
7694 ** write 0xffffffff to a read only register area,
7695 ** and try to read it back.
7696 */
7697 data = 0xffffffff;
7698 OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data);
7699 data = INL_OFF(offsetof(struct ncr_reg, nc_dstat));
7700#if 1
7701 if (data == 0xffffffff) {
7702#else
7703 if ((data & 0xe2f0fffd) != 0x02000080) {
7704#endif
7705 printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
7706 (unsigned) data);
7707 return (0x10);
7708 }
7709 return (0);
7710}
7711
7712static int __init ncr_snooptest (struct ncb* np)
7713{
7714 u32 ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc;
7715 int i, err=0;
7716 if (np->reg) {
7717 err |= ncr_regtest (np);
7718 if (err)
7719 return (err);
7720 }
7721
7722 /* init */
7723 pc = NCB_SCRIPTH_PHYS (np, snooptest);
7724 host_wr = 1;
7725 ncr_wr = 2;
7726 /*
7727 ** Set memory and register.
7728 */
7729 np->ncr_cache = cpu_to_scr(host_wr);
7730 OUTL (nc_temp, ncr_wr);
7731 /*
7732 ** Start script (exchange values)
7733 */
7734 OUTL_DSP (pc);
7735 /*
7736 ** Wait 'til done (with timeout)
7737 */
7738 for (i=0; i<NCR_SNOOP_TIMEOUT; i++)
7739 if (INB(nc_istat) & (INTF|SIP|DIP))
7740 break;
7741 /*
7742 ** Save termination position.
7743 */
7744 pc = INL (nc_dsp);
7745 /*
7746 ** Read memory and register.
7747 */
7748 host_rd = scr_to_cpu(np->ncr_cache);
7749 ncr_rd = INL (nc_scratcha);
7750 ncr_bk = INL (nc_temp);
7751 /*
7752 ** Reset ncr chip
7753 */
7754 ncr_chip_reset(np, 100);
7755 /*
7756 ** check for timeout
7757 */
7758 if (i>=NCR_SNOOP_TIMEOUT) {
7759 printk ("CACHE TEST FAILED: timeout.\n");
7760 return (0x20);
7761 }
7762 /*
7763 ** Check termination position.
7764 */
7765 if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) {
7766 printk ("CACHE TEST FAILED: script execution failed.\n");
7767 printk ("start=%08lx, pc=%08lx, end=%08lx\n",
7768 (u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc,
7769 (u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8);
7770 return (0x40);
7771 }
7772 /*
7773 ** Show results.
7774 */
7775 if (host_wr != ncr_rd) {
7776 printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n",
7777 (int) host_wr, (int) ncr_rd);
7778 err |= 1;
7779 }
7780 if (host_rd != ncr_wr) {
7781 printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n",
7782 (int) ncr_wr, (int) host_rd);
7783 err |= 2;
7784 }
7785 if (ncr_bk != ncr_wr) {
7786 printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n",
7787 (int) ncr_wr, (int) ncr_bk);
7788 err |= 4;
7789 }
7790 return (err);
7791}
7792
7793/*==========================================================
7794**
7795** Determine the ncr's clock frequency.
7796** This is essential for the negotiation
7797** of the synchronous transfer rate.
7798**
7799**==========================================================
7800**
7801** Note: we have to return the correct value.
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07007802** THERE IS NO SAFE DEFAULT VALUE.
Linus Torvalds1da177e2005-04-16 15:20:36 -07007803**
7804** Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
7805** 53C860 and 53C875 rev. 1 support fast20 transfers but
7806** do not have a clock doubler and so are provided with a
7807** 80 MHz clock. All other fast20 boards incorporate a doubler
7808** and so should be delivered with a 40 MHz clock.
7809** The future fast40 chips (895/895) use a 40 Mhz base clock
7810** and provide a clock quadrupler (160 Mhz). The code below
7811** tries to deal as cleverly as possible with all this stuff.
7812**
7813**----------------------------------------------------------
7814*/
7815
7816/*
7817 * Select NCR SCSI clock frequency
7818 */
7819static void ncr_selectclock(struct ncb *np, u_char scntl3)
7820{
7821 if (np->multiplier < 2) {
7822 OUTB(nc_scntl3, scntl3);
7823 return;
7824 }
7825
7826 if (bootverbose >= 2)
7827 printk ("%s: enabling clock multiplier\n", ncr_name(np));
7828
7829 OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */
7830 if (np->multiplier > 2) { /* Poll bit 5 of stest4 for quadrupler */
7831 int i = 20;
7832 while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
7833 udelay(20);
7834 if (!i)
7835 printk("%s: the chip cannot lock the frequency\n", ncr_name(np));
7836 } else /* Wait 20 micro-seconds for doubler */
7837 udelay(20);
7838 OUTB(nc_stest3, HSC); /* Halt the scsi clock */
7839 OUTB(nc_scntl3, scntl3);
7840 OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
7841 OUTB(nc_stest3, 0x00); /* Restart scsi clock */
7842}
7843
7844
7845/*
7846 * calculate NCR SCSI clock frequency (in KHz)
7847 */
7848static unsigned __init ncrgetfreq (struct ncb *np, int gen)
7849{
7850 unsigned ms = 0;
7851 char count = 0;
7852
7853 /*
7854 * Measure GEN timer delay in order
7855 * to calculate SCSI clock frequency
7856 *
7857 * This code will never execute too
7858 * many loop iterations (if DELAY is
7859 * reasonably correct). It could get
7860 * too low a delay (too high a freq.)
7861 * if the CPU is slow executing the
7862 * loop for some reason (an NMI, for
7863 * example). For this reason we will
7864 * if multiple measurements are to be
7865 * performed trust the higher delay
7866 * (lower frequency returned).
7867 */
7868 OUTB (nc_stest1, 0); /* make sure clock doubler is OFF */
7869 OUTW (nc_sien , 0); /* mask all scsi interrupts */
7870 (void) INW (nc_sist); /* clear pending scsi interrupt */
7871 OUTB (nc_dien , 0); /* mask all dma interrupts */
7872 (void) INW (nc_sist); /* another one, just to be sure :) */
7873 OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */
7874 OUTB (nc_stime1, 0); /* disable general purpose timer */
7875 OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
7876 while (!(INW(nc_sist) & GEN) && ms++ < 100000) {
7877 for (count = 0; count < 10; count ++)
7878 udelay(100); /* count ms */
7879 }
7880 OUTB (nc_stime1, 0); /* disable general purpose timer */
7881 /*
7882 * set prescaler to divide by whatever 0 means
7883 * 0 ought to choose divide by 2, but appears
7884 * to set divide by 3.5 mode in my 53c810 ...
7885 */
7886 OUTB (nc_scntl3, 0);
7887
7888 if (bootverbose >= 2)
7889 printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms);
7890 /*
7891 * adjust for prescaler, and convert into KHz
7892 */
7893 return ms ? ((1 << gen) * 4340) / ms : 0;
7894}
7895
7896/*
7897 * Get/probe NCR SCSI clock frequency
7898 */
7899static void __init ncr_getclock (struct ncb *np, int mult)
7900{
7901 unsigned char scntl3 = INB(nc_scntl3);
7902 unsigned char stest1 = INB(nc_stest1);
7903 unsigned f1;
7904
7905 np->multiplier = 1;
7906 f1 = 40000;
7907
7908 /*
7909 ** True with 875 or 895 with clock multiplier selected
7910 */
7911 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7912 if (bootverbose >= 2)
7913 printk ("%s: clock multiplier found\n", ncr_name(np));
7914 np->multiplier = mult;
7915 }
7916
7917 /*
7918 ** If multiplier not found or scntl3 not 7,5,3,
7919 ** reset chip and get frequency from general purpose timer.
7920 ** Otherwise trust scntl3 BIOS setting.
7921 */
7922 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7923 unsigned f2;
7924
7925 ncr_chip_reset(np, 5);
7926
7927 (void) ncrgetfreq (np, 11); /* throw away first result */
7928 f1 = ncrgetfreq (np, 11);
7929 f2 = ncrgetfreq (np, 11);
7930
7931 if(bootverbose)
7932 printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2);
7933
7934 if (f1 > f2) f1 = f2; /* trust lower result */
7935
7936 if (f1 < 45000) f1 = 40000;
7937 else if (f1 < 55000) f1 = 50000;
7938 else f1 = 80000;
7939
7940 if (f1 < 80000 && mult > 1) {
7941 if (bootverbose >= 2)
7942 printk ("%s: clock multiplier assumed\n", ncr_name(np));
7943 np->multiplier = mult;
7944 }
7945 } else {
7946 if ((scntl3 & 7) == 3) f1 = 40000;
7947 else if ((scntl3 & 7) == 5) f1 = 80000;
7948 else f1 = 160000;
7949
7950 f1 /= np->multiplier;
7951 }
7952
7953 /*
7954 ** Compute controller synchronous parameters.
7955 */
7956 f1 *= np->multiplier;
7957 np->clock_khz = f1;
7958}
7959
7960/*===================== LINUX ENTRY POINTS SECTION ==========================*/
7961
7962static int ncr53c8xx_slave_alloc(struct scsi_device *device)
7963{
7964 struct Scsi_Host *host = device->host;
7965 struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
7966 struct tcb *tp = &np->target[device->id];
7967 tp->starget = device->sdev_target;
7968
7969 return 0;
7970}
7971
7972static int ncr53c8xx_slave_configure(struct scsi_device *device)
7973{
7974 struct Scsi_Host *host = device->host;
7975 struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
7976 struct tcb *tp = &np->target[device->id];
7977 struct lcb *lp = tp->lp[device->lun];
7978 int numtags, depth_to_use;
7979
7980 ncr_setup_lcb(np, device);
7981
7982 /*
7983 ** Select queue depth from driver setup.
7984 ** Donnot use more than configured by user.
7985 ** Use at least 2.
7986 ** Donnot use more than our maximum.
7987 */
7988 numtags = device_queue_depth(np->unit, device->id, device->lun);
7989 if (numtags > tp->usrtags)
7990 numtags = tp->usrtags;
7991 if (!device->tagged_supported)
7992 numtags = 1;
7993 depth_to_use = numtags;
7994 if (depth_to_use < 2)
7995 depth_to_use = 2;
7996 if (depth_to_use > MAX_TAGS)
7997 depth_to_use = MAX_TAGS;
7998
7999 scsi_adjust_queue_depth(device,
8000 (device->tagged_supported ?
8001 MSG_SIMPLE_TAG : 0),
8002 depth_to_use);
8003
8004 /*
8005 ** Since the queue depth is not tunable under Linux,
8006 ** we need to know this value in order not to
8007 ** announce stupid things to user.
8008 **
8009 ** XXX(hch): As of Linux 2.6 it certainly _is_ tunable..
8010 ** In fact we just tuned it, or did I miss
8011 ** something important? :)
8012 */
8013 if (lp) {
8014 lp->numtags = lp->maxtags = numtags;
8015 lp->scdev_depth = depth_to_use;
8016 }
8017 ncr_setup_tags (np, device);
8018
8019#ifdef DEBUG_NCR53C8XX
8020 printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n",
8021 np->unit, device->id, device->lun, depth_to_use);
8022#endif
8023
8024 if (spi_support_sync(device->sdev_target) &&
8025 !spi_initial_dv(device->sdev_target))
8026 spi_dv_device(device);
8027 return 0;
8028}
8029
8030static int ncr53c8xx_queue_command (struct scsi_cmnd *cmd, void (* done)(struct scsi_cmnd *))
8031{
8032 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8033 unsigned long flags;
8034 int sts;
8035
8036#ifdef DEBUG_NCR53C8XX
8037printk("ncr53c8xx_queue_command\n");
8038#endif
8039
8040 cmd->scsi_done = done;
8041 cmd->host_scribble = NULL;
8042 cmd->__data_mapped = 0;
8043 cmd->__data_mapping = 0;
8044
8045 spin_lock_irqsave(&np->smp_lock, flags);
8046
8047 if ((sts = ncr_queue_command(np, cmd)) != DID_OK) {
8048 cmd->result = ScsiResult(sts, 0);
8049#ifdef DEBUG_NCR53C8XX
8050printk("ncr53c8xx : command not queued - result=%d\n", sts);
8051#endif
8052 }
8053#ifdef DEBUG_NCR53C8XX
8054 else
8055printk("ncr53c8xx : command successfully queued\n");
8056#endif
8057
8058 spin_unlock_irqrestore(&np->smp_lock, flags);
8059
8060 if (sts != DID_OK) {
8061 unmap_scsi_data(np, cmd);
8062 done(cmd);
8063 sts = 0;
8064 }
8065
8066 return sts;
8067}
8068
David Howells7d12e782006-10-05 14:55:46 +01008069irqreturn_t ncr53c8xx_intr(int irq, void *dev_id)
Linus Torvalds1da177e2005-04-16 15:20:36 -07008070{
8071 unsigned long flags;
8072 struct Scsi_Host *shost = (struct Scsi_Host *)dev_id;
8073 struct host_data *host_data = (struct host_data *)shost->hostdata;
8074 struct ncb *np = host_data->ncb;
8075 struct scsi_cmnd *done_list;
8076
8077#ifdef DEBUG_NCR53C8XX
8078 printk("ncr53c8xx : interrupt received\n");
8079#endif
8080
8081 if (DEBUG_FLAGS & DEBUG_TINY) printk ("[");
8082
8083 spin_lock_irqsave(&np->smp_lock, flags);
8084 ncr_exception(np);
8085 done_list = np->done_list;
8086 np->done_list = NULL;
8087 spin_unlock_irqrestore(&np->smp_lock, flags);
8088
8089 if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n");
8090
8091 if (done_list)
8092 ncr_flush_done_cmds(done_list);
8093 return IRQ_HANDLED;
8094}
8095
8096static void ncr53c8xx_timeout(unsigned long npref)
8097{
8098 struct ncb *np = (struct ncb *) npref;
8099 unsigned long flags;
8100 struct scsi_cmnd *done_list;
8101
8102 spin_lock_irqsave(&np->smp_lock, flags);
8103 ncr_timeout(np);
8104 done_list = np->done_list;
8105 np->done_list = NULL;
8106 spin_unlock_irqrestore(&np->smp_lock, flags);
8107
8108 if (done_list)
8109 ncr_flush_done_cmds(done_list);
8110}
8111
8112static int ncr53c8xx_bus_reset(struct scsi_cmnd *cmd)
8113{
8114 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8115 int sts;
8116 unsigned long flags;
8117 struct scsi_cmnd *done_list;
8118
8119 /*
8120 * If the mid-level driver told us reset is synchronous, it seems
8121 * that we must call the done() callback for the involved command,
8122 * even if this command was not queued to the low-level driver,
8123 * before returning SUCCESS.
8124 */
8125
8126 spin_lock_irqsave(&np->smp_lock, flags);
8127 sts = ncr_reset_bus(np, cmd, 1);
8128
8129 done_list = np->done_list;
8130 np->done_list = NULL;
8131 spin_unlock_irqrestore(&np->smp_lock, flags);
8132
8133 ncr_flush_done_cmds(done_list);
8134
8135 return sts;
8136}
8137
8138#if 0 /* unused and broken */
8139static int ncr53c8xx_abort(struct scsi_cmnd *cmd)
8140{
8141 struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8142 int sts;
8143 unsigned long flags;
8144 struct scsi_cmnd *done_list;
8145
8146#if defined SCSI_RESET_SYNCHRONOUS && defined SCSI_RESET_ASYNCHRONOUS
c6295cd2005-04-03 14:59:11 -05008147 printk("ncr53c8xx_abort: pid=%lu serial_number=%ld\n",
8148 cmd->pid, cmd->serial_number);
Linus Torvalds1da177e2005-04-16 15:20:36 -07008149#else
8150 printk("ncr53c8xx_abort: command pid %lu\n", cmd->pid);
8151#endif
8152
8153 NCR_LOCK_NCB(np, flags);
8154
Linus Torvalds1da177e2005-04-16 15:20:36 -07008155 sts = ncr_abort_command(np, cmd);
8156out:
8157 done_list = np->done_list;
8158 np->done_list = NULL;
8159 NCR_UNLOCK_NCB(np, flags);
8160
8161 ncr_flush_done_cmds(done_list);
8162
8163 return sts;
8164}
8165#endif
8166
8167
8168/*
8169** Scsi command waiting list management.
8170**
8171** It may happen that we cannot insert a scsi command into the start queue,
8172** in the following circumstances.
8173** Too few preallocated ccb(s),
8174** maxtags < cmd_per_lun of the Linux host control block,
8175** etc...
8176** Such scsi commands are inserted into a waiting list.
8177** When a scsi command complete, we try to requeue the commands of the
8178** waiting list.
8179*/
8180
8181#define next_wcmd host_scribble
8182
8183static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd)
8184{
8185 struct scsi_cmnd *wcmd;
8186
8187#ifdef DEBUG_WAITING_LIST
8188 printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd);
8189#endif
8190 cmd->next_wcmd = NULL;
8191 if (!(wcmd = np->waiting_list)) np->waiting_list = cmd;
8192 else {
8193 while ((wcmd->next_wcmd) != 0)
8194 wcmd = (struct scsi_cmnd *) wcmd->next_wcmd;
8195 wcmd->next_wcmd = (char *) cmd;
8196 }
8197}
8198
8199static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd)
8200{
8201 struct scsi_cmnd **pcmd = &np->waiting_list;
8202
8203 while (*pcmd) {
8204 if (cmd == *pcmd) {
8205 if (to_remove) {
8206 *pcmd = (struct scsi_cmnd *) cmd->next_wcmd;
8207 cmd->next_wcmd = NULL;
8208 }
8209#ifdef DEBUG_WAITING_LIST
8210 printk("%s: cmd %lx retrieved from waiting list\n", ncr_name(np), (u_long) cmd);
8211#endif
8212 return cmd;
8213 }
8214 pcmd = (struct scsi_cmnd **) &(*pcmd)->next_wcmd;
8215 }
8216 return NULL;
8217}
8218
8219static void process_waiting_list(struct ncb *np, int sts)
8220{
8221 struct scsi_cmnd *waiting_list, *wcmd;
8222
8223 waiting_list = np->waiting_list;
8224 np->waiting_list = NULL;
8225
8226#ifdef DEBUG_WAITING_LIST
8227 if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts);
8228#endif
8229 while ((wcmd = waiting_list) != 0) {
8230 waiting_list = (struct scsi_cmnd *) wcmd->next_wcmd;
8231 wcmd->next_wcmd = NULL;
8232 if (sts == DID_OK) {
8233#ifdef DEBUG_WAITING_LIST
8234 printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd);
8235#endif
8236 sts = ncr_queue_command(np, wcmd);
8237 }
8238 if (sts != DID_OK) {
8239#ifdef DEBUG_WAITING_LIST
8240 printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts);
8241#endif
8242 wcmd->result = ScsiResult(sts, 0);
8243 ncr_queue_done_cmd(np, wcmd);
8244 }
8245 }
8246}
8247
8248#undef next_wcmd
8249
8250static ssize_t show_ncr53c8xx_revision(struct class_device *dev, char *buf)
8251{
8252 struct Scsi_Host *host = class_to_shost(dev);
8253 struct host_data *host_data = (struct host_data *)host->hostdata;
8254
8255 return snprintf(buf, 20, "0x%x\n", host_data->ncb->revision_id);
8256}
8257
8258static struct class_device_attribute ncr53c8xx_revision_attr = {
8259 .attr = { .name = "revision", .mode = S_IRUGO, },
8260 .show = show_ncr53c8xx_revision,
8261};
8262
8263static struct class_device_attribute *ncr53c8xx_host_attrs[] = {
8264 &ncr53c8xx_revision_attr,
8265 NULL
8266};
8267
8268/*==========================================================
8269**
8270** Boot command line.
8271**
8272**==========================================================
8273*/
8274#ifdef MODULE
8275char *ncr53c8xx; /* command line passed by insmod */
8276module_param(ncr53c8xx, charp, 0);
8277#endif
8278
Jeff Garzikdb3a8812006-11-08 19:56:20 -08008279#ifndef MODULE
Linus Torvalds1da177e2005-04-16 15:20:36 -07008280static int __init ncr53c8xx_setup(char *str)
8281{
8282 return sym53c8xx__setup(str);
8283}
8284
Linus Torvalds1da177e2005-04-16 15:20:36 -07008285__setup("ncr53c8xx=", ncr53c8xx_setup);
8286#endif
8287
8288
8289/*
8290 * Host attach and initialisations.
8291 *
8292 * Allocate host data and ncb structure.
8293 * Request IO region and remap MMIO region.
8294 * Do chip initialization.
8295 * If all is OK, install interrupt handling and
8296 * start the timer daemon.
8297 */
8298struct Scsi_Host * __init ncr_attach(struct scsi_host_template *tpnt,
8299 int unit, struct ncr_device *device)
8300{
8301 struct host_data *host_data;
8302 struct ncb *np = NULL;
8303 struct Scsi_Host *instance = NULL;
8304 u_long flags = 0;
8305 int i;
8306
8307 if (!tpnt->name)
8308 tpnt->name = SCSI_NCR_DRIVER_NAME;
8309 if (!tpnt->shost_attrs)
8310 tpnt->shost_attrs = ncr53c8xx_host_attrs;
8311
8312 tpnt->queuecommand = ncr53c8xx_queue_command;
8313 tpnt->slave_configure = ncr53c8xx_slave_configure;
8314 tpnt->slave_alloc = ncr53c8xx_slave_alloc;
8315 tpnt->eh_bus_reset_handler = ncr53c8xx_bus_reset;
8316 tpnt->can_queue = SCSI_NCR_CAN_QUEUE;
8317 tpnt->this_id = 7;
8318 tpnt->sg_tablesize = SCSI_NCR_SG_TABLESIZE;
8319 tpnt->cmd_per_lun = SCSI_NCR_CMD_PER_LUN;
8320 tpnt->use_clustering = ENABLE_CLUSTERING;
8321
8322 if (device->differential)
8323 driver_setup.diff_support = device->differential;
8324
8325 printk(KERN_INFO "ncr53c720-%d: rev 0x%x irq %d\n",
8326 unit, device->chip.revision_id, device->slot.irq);
8327
8328 instance = scsi_host_alloc(tpnt, sizeof(*host_data));
8329 if (!instance)
8330 goto attach_error;
8331 host_data = (struct host_data *) instance->hostdata;
8332
8333 np = __m_calloc_dma(device->dev, sizeof(struct ncb), "NCB");
8334 if (!np)
8335 goto attach_error;
8336 spin_lock_init(&np->smp_lock);
8337 np->dev = device->dev;
8338 np->p_ncb = vtobus(np);
8339 host_data->ncb = np;
8340
8341 np->ccb = m_calloc_dma(sizeof(struct ccb), "CCB");
8342 if (!np->ccb)
8343 goto attach_error;
8344
8345 /* Store input information in the host data structure. */
8346 np->unit = unit;
8347 np->verbose = driver_setup.verbose;
8348 sprintf(np->inst_name, "ncr53c720-%d", np->unit);
8349 np->revision_id = device->chip.revision_id;
8350 np->features = device->chip.features;
8351 np->clock_divn = device->chip.nr_divisor;
8352 np->maxoffs = device->chip.offset_max;
8353 np->maxburst = device->chip.burst_max;
8354 np->myaddr = device->host_id;
8355
8356 /* Allocate SCRIPTS areas. */
8357 np->script0 = m_calloc_dma(sizeof(struct script), "SCRIPT");
8358 if (!np->script0)
8359 goto attach_error;
8360 np->scripth0 = m_calloc_dma(sizeof(struct scripth), "SCRIPTH");
8361 if (!np->scripth0)
8362 goto attach_error;
8363
8364 init_timer(&np->timer);
8365 np->timer.data = (unsigned long) np;
8366 np->timer.function = ncr53c8xx_timeout;
8367
8368 /* Try to map the controller chip to virtual and physical memory. */
8369
8370 np->paddr = device->slot.base;
8371 np->paddr2 = (np->features & FE_RAM) ? device->slot.base_2 : 0;
8372
8373 if (device->slot.base_v)
8374 np->vaddr = device->slot.base_v;
8375 else
8376 np->vaddr = ioremap(device->slot.base_c, 128);
8377
8378 if (!np->vaddr) {
8379 printk(KERN_ERR
8380 "%s: can't map memory mapped IO region\n",ncr_name(np));
8381 goto attach_error;
8382 } else {
8383 if (bootverbose > 1)
8384 printk(KERN_INFO
8385 "%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr);
8386 }
8387
8388 /* Make the controller's registers available. Now the INB INW INL
8389 * OUTB OUTW OUTL macros can be used safely.
8390 */
8391
8392 np->reg = (struct ncr_reg __iomem *)np->vaddr;
8393
8394 /* Do chip dependent initialization. */
8395 ncr_prepare_setting(np);
8396
8397 if (np->paddr2 && sizeof(struct script) > 4096) {
8398 np->paddr2 = 0;
8399 printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n",
8400 ncr_name(np));
8401 }
8402
8403 instance->max_channel = 0;
8404 instance->this_id = np->myaddr;
8405 instance->max_id = np->maxwide ? 16 : 8;
8406 instance->max_lun = SCSI_NCR_MAX_LUN;
8407 instance->base = (unsigned long) np->reg;
8408 instance->irq = device->slot.irq;
8409 instance->unique_id = device->slot.base;
8410 instance->dma_channel = 0;
8411 instance->cmd_per_lun = MAX_TAGS;
8412 instance->can_queue = (MAX_START-4);
8413 /* This can happen if you forget to call ncr53c8xx_init from
8414 * your module_init */
8415 BUG_ON(!ncr53c8xx_transport_template);
8416 instance->transportt = ncr53c8xx_transport_template;
Linus Torvalds1da177e2005-04-16 15:20:36 -07008417
8418 /* Patch script to physical addresses */
8419 ncr_script_fill(&script0, &scripth0);
8420
8421 np->scripth = np->scripth0;
8422 np->p_scripth = vtobus(np->scripth);
8423 np->p_script = (np->paddr2) ? np->paddr2 : vtobus(np->script0);
8424
8425 ncr_script_copy_and_bind(np, (ncrcmd *) &script0,
8426 (ncrcmd *) np->script0, sizeof(struct script));
8427 ncr_script_copy_and_bind(np, (ncrcmd *) &scripth0,
8428 (ncrcmd *) np->scripth0, sizeof(struct scripth));
8429 np->ccb->p_ccb = vtobus (np->ccb);
8430
8431 /* Patch the script for LED support. */
8432
8433 if (np->features & FE_LED0) {
8434 np->script0->idle[0] =
8435 cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR, 0x01));
8436 np->script0->reselected[0] =
8437 cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8438 np->script0->start[0] =
8439 cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8440 }
8441
8442 /*
8443 * Look for the target control block of this nexus.
8444 * For i = 0 to 3
8445 * JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
8446 */
8447 for (i = 0 ; i < 4 ; i++) {
8448 np->jump_tcb[i].l_cmd =
8449 cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
8450 np->jump_tcb[i].l_paddr =
8451 cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target));
8452 }
8453
8454 ncr_chip_reset(np, 100);
8455
8456 /* Now check the cache handling of the chipset. */
8457
8458 if (ncr_snooptest(np)) {
8459 printk(KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n");
8460 goto attach_error;
8461 }
8462
8463 /* Install the interrupt handler. */
8464 np->irq = device->slot.irq;
8465
8466 /* Initialize the fixed part of the default ccb. */
8467 ncr_init_ccb(np, np->ccb);
8468
8469 /*
8470 * After SCSI devices have been opened, we cannot reset the bus
8471 * safely, so we do it here. Interrupt handler does the real work.
8472 * Process the reset exception if interrupts are not enabled yet.
8473 * Then enable disconnects.
8474 */
8475 spin_lock_irqsave(&np->smp_lock, flags);
8476 if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) {
8477 printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np));
8478
8479 spin_unlock_irqrestore(&np->smp_lock, flags);
8480 goto attach_error;
8481 }
8482 ncr_exception(np);
8483
8484 np->disc = 1;
8485
8486 /*
8487 * The middle-level SCSI driver does not wait for devices to settle.
8488 * Wait synchronously if more than 2 seconds.
8489 */
8490 if (driver_setup.settle_delay > 2) {
8491 printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n",
8492 ncr_name(np), driver_setup.settle_delay);
8493 mdelay(1000 * driver_setup.settle_delay);
8494 }
8495
8496 /* start the timeout daemon */
8497 np->lasttime=0;
8498 ncr_timeout (np);
8499
8500 /* use SIMPLE TAG messages by default */
8501#ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG
Matthew Wilcoxb0dc1db2006-02-17 13:18:41 -07008502 np->order = SIMPLE_QUEUE_TAG;
Linus Torvalds1da177e2005-04-16 15:20:36 -07008503#endif
8504
8505 spin_unlock_irqrestore(&np->smp_lock, flags);
8506
8507 return instance;
8508
8509 attach_error:
8510 if (!instance)
8511 return NULL;
8512 printk(KERN_INFO "%s: detaching...\n", ncr_name(np));
8513 if (!np)
8514 goto unregister;
8515 if (np->scripth0)
8516 m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
8517 if (np->script0)
8518 m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
8519 if (np->ccb)
8520 m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
8521 m_free_dma(np, sizeof(struct ncb), "NCB");
8522 host_data->ncb = NULL;
8523
8524 unregister:
8525 scsi_host_put(instance);
8526
8527 return NULL;
8528}
8529
8530
8531int ncr53c8xx_release(struct Scsi_Host *host)
8532{
8533 struct host_data *host_data;
8534#ifdef DEBUG_NCR53C8XX
8535 printk("ncr53c8xx: release\n");
8536#endif
8537 if (!host)
8538 return 1;
8539 host_data = (struct host_data *)host->hostdata;
8540 if (host_data && host_data->ncb)
8541 ncr_detach(host_data->ncb);
8542 return 1;
8543}
8544
8545static void ncr53c8xx_set_period(struct scsi_target *starget, int period)
8546{
8547 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8548 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8549 struct tcb *tp = &np->target[starget->id];
8550
8551 if (period > np->maxsync)
8552 period = np->maxsync;
8553 else if (period < np->minsync)
8554 period = np->minsync;
8555
8556 tp->usrsync = period;
8557
8558 ncr_negotiate(np, tp);
8559}
8560
8561static void ncr53c8xx_set_offset(struct scsi_target *starget, int offset)
8562{
8563 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8564 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8565 struct tcb *tp = &np->target[starget->id];
8566
8567 if (offset > np->maxoffs)
8568 offset = np->maxoffs;
8569 else if (offset < 0)
8570 offset = 0;
8571
8572 tp->maxoffs = offset;
8573
8574 ncr_negotiate(np, tp);
8575}
8576
8577static void ncr53c8xx_set_width(struct scsi_target *starget, int width)
8578{
8579 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8580 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8581 struct tcb *tp = &np->target[starget->id];
8582
8583 if (width > np->maxwide)
8584 width = np->maxwide;
8585 else if (width < 0)
8586 width = 0;
8587
8588 tp->usrwide = width;
8589
8590 ncr_negotiate(np, tp);
8591}
8592
8593static void ncr53c8xx_get_signalling(struct Scsi_Host *shost)
8594{
8595 struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8596 enum spi_signal_type type;
8597
8598 switch (np->scsi_mode) {
8599 case SMODE_SE:
8600 type = SPI_SIGNAL_SE;
8601 break;
8602 case SMODE_HVD:
8603 type = SPI_SIGNAL_HVD;
8604 break;
8605 default:
8606 type = SPI_SIGNAL_UNKNOWN;
8607 break;
8608 }
8609 spi_signalling(shost) = type;
8610}
8611
8612static struct spi_function_template ncr53c8xx_transport_functions = {
8613 .set_period = ncr53c8xx_set_period,
8614 .show_period = 1,
8615 .set_offset = ncr53c8xx_set_offset,
8616 .show_offset = 1,
8617 .set_width = ncr53c8xx_set_width,
8618 .show_width = 1,
8619 .get_signalling = ncr53c8xx_get_signalling,
8620};
8621
8622int __init ncr53c8xx_init(void)
8623{
8624 ncr53c8xx_transport_template = spi_attach_transport(&ncr53c8xx_transport_functions);
8625 if (!ncr53c8xx_transport_template)
8626 return -ENODEV;
8627 return 0;
8628}
8629
8630void ncr53c8xx_exit(void)
8631{
8632 spi_release_transport(ncr53c8xx_transport_template);
8633}