blob: d2b3d0e91b26d21423d8202668ac8d512558e7dd [file] [log] [blame]
Mathieu Desnoyers26e3d112007-10-18 23:41:08 -07001 Using the Linux Kernel Markers
2
3 Mathieu Desnoyers
4
5
6This document introduces Linux Kernel Markers and their use. It provides
7examples of how to insert markers in the kernel and connect probe functions to
8them and provides some examples of probe functions.
9
10
11* Purpose of markers
12
13A marker placed in code provides a hook to call a function (probe) that you can
14provide at runtime. A marker can be "on" (a probe is connected to it) or "off"
15(no probe is attached). When a marker is "off" it has no effect, except for
16adding a tiny time penalty (checking a condition for a branch) and space
17penalty (adding a few bytes for the function call at the end of the
18instrumented function and adds a data structure in a separate section). When a
19marker is "on", the function you provide is called each time the marker is
20executed, in the execution context of the caller. When the function provided
21ends its execution, it returns to the caller (continuing from the marker site).
22
23You can put markers at important locations in the code. Markers are
24lightweight hooks that can pass an arbitrary number of parameters,
25described in a printk-like format string, to the attached probe function.
26
27They can be used for tracing and performance accounting.
28
29
30* Usage
31
32In order to use the macro trace_mark, you should include linux/marker.h.
33
34#include <linux/marker.h>
35
36And,
37
Mathieu Desnoyers5f9468c2007-11-14 16:59:49 -080038trace_mark(subsystem_event, "myint %d mystring %s", someint, somestring);
Mathieu Desnoyers26e3d112007-10-18 23:41:08 -070039Where :
40- subsystem_event is an identifier unique to your event
41 - subsystem is the name of your subsystem.
42 - event is the name of the event to mark.
Mathieu Desnoyers5f9468c2007-11-14 16:59:49 -080043- "myint %d mystring %s" is the formatted string for the serializer. "myint" and
44 "mystring" are repectively the field names associated with the first and
45 second parameter.
Mathieu Desnoyers26e3d112007-10-18 23:41:08 -070046- someint is an integer.
47- somestring is a char pointer.
48
49Connecting a function (probe) to a marker is done by providing a probe (function
50to call) for the specific marker through marker_probe_register() and can be
51activated by calling marker_arm(). Marker deactivation can be done by calling
52marker_disarm() as many times as marker_arm() has been called. Removing a probe
Mathieu Desnoyers91a8d462008-09-29 11:10:34 -040053is done through marker_probe_unregister(); it will disarm the probe.
Wu Fengguanga838c2e2008-11-27 16:14:44 +080054
55marker_synchronize_unregister() must be called between probe unregistration and
56the first occurrence of
57- the end of module exit function,
58 to make sure there is no caller left using the probe;
59- the free of any resource used by the probes,
60 to make sure the probes wont be accessing invalid data.
61This, and the fact that preemption is disabled around the probe call, make sure
62that probe removal and module unload are safe. See the "Probe example" section
63below for a sample probe module.
Mathieu Desnoyers26e3d112007-10-18 23:41:08 -070064
65The marker mechanism supports inserting multiple instances of the same marker.
66Markers can be put in inline functions, inlined static functions, and
67unrolled loops as well as regular functions.
68
69The naming scheme "subsystem_event" is suggested here as a convention intended
70to limit collisions. Marker names are global to the kernel: they are considered
71as being the same whether they are in the core kernel image or in modules.
72Conflicting format strings for markers with the same name will cause the markers
73to be detected to have a different format string not to be armed and will output
74a printk warning which identifies the inconsistency:
75
76"Format mismatch for probe probe_name (format), marker (format)"
77
Mathieu Desnoyersa0bca6a2008-11-14 17:47:40 -050078Another way to use markers is to simply define the marker without generating any
79function call to actually call into the marker. This is useful in combination
80with tracepoint probes in a scheme like this :
81
82void probe_tracepoint_name(unsigned int arg1, struct task_struct *tsk);
83
84DEFINE_MARKER_TP(marker_eventname, tracepoint_name, probe_tracepoint_name,
85 "arg1 %u pid %d");
86
87notrace void probe_tracepoint_name(unsigned int arg1, struct task_struct *tsk)
88{
89 struct marker *marker = &GET_MARKER(kernel_irq_entry);
90 /* write data to trace buffers ... */
91}
Mathieu Desnoyers26e3d112007-10-18 23:41:08 -070092
93* Probe / marker example
94
95See the example provided in samples/markers/src
96
97Compile them with your kernel.
98
99Run, as root :
100modprobe marker-example (insmod order is not important)
101modprobe probe-example
102cat /proc/marker-example (returns an expected error)
103rmmod marker-example probe-example
104dmesg