blob: f501dd5e7b166cba76d3762c8ccd9b888ce164ae [file] [log] [blame]
Auke Kokbc7f75f2007-09-17 12:30:59 -07001/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2007 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/module.h>
30#include <linux/types.h>
31#include <linux/init.h>
32#include <linux/pci.h>
33#include <linux/vmalloc.h>
34#include <linux/pagemap.h>
35#include <linux/delay.h>
36#include <linux/netdevice.h>
37#include <linux/tcp.h>
38#include <linux/ipv6.h>
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
41#include <linux/mii.h>
42#include <linux/ethtool.h>
43#include <linux/if_vlan.h>
44#include <linux/cpu.h>
45#include <linux/smp.h>
46
47#include "e1000.h"
48
49#define DRV_VERSION "0.2.0"
50char e1000e_driver_name[] = "e1000e";
51const char e1000e_driver_version[] = DRV_VERSION;
52
53static const struct e1000_info *e1000_info_tbl[] = {
54 [board_82571] = &e1000_82571_info,
55 [board_82572] = &e1000_82572_info,
56 [board_82573] = &e1000_82573_info,
57 [board_80003es2lan] = &e1000_es2_info,
58 [board_ich8lan] = &e1000_ich8_info,
59 [board_ich9lan] = &e1000_ich9_info,
60};
61
62#ifdef DEBUG
63/**
64 * e1000_get_hw_dev_name - return device name string
65 * used by hardware layer to print debugging information
66 **/
67char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
68{
Auke Kok589c0852007-10-04 11:38:43 -070069 return hw->adapter->netdev->name;
Auke Kokbc7f75f2007-09-17 12:30:59 -070070}
71#endif
72
73/**
74 * e1000_desc_unused - calculate if we have unused descriptors
75 **/
76static int e1000_desc_unused(struct e1000_ring *ring)
77{
78 if (ring->next_to_clean > ring->next_to_use)
79 return ring->next_to_clean - ring->next_to_use - 1;
80
81 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
82}
83
84/**
85 * e1000_receive_skb - helper function to handle rx indications
86 * @adapter: board private structure
87 * @status: descriptor status field as written by hardware
88 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
89 * @skb: pointer to sk_buff to be indicated to stack
90 **/
91static void e1000_receive_skb(struct e1000_adapter *adapter,
92 struct net_device *netdev,
93 struct sk_buff *skb,
Al Viroa39fe742007-12-11 19:50:34 +000094 u8 status, __le16 vlan)
Auke Kokbc7f75f2007-09-17 12:30:59 -070095{
96 skb->protocol = eth_type_trans(skb, netdev);
97
98 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
99 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
100 le16_to_cpu(vlan) &
101 E1000_RXD_SPC_VLAN_MASK);
102 else
103 netif_receive_skb(skb);
104
105 netdev->last_rx = jiffies;
106}
107
108/**
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
114 **/
115static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116 u32 csum, struct sk_buff *skb)
117{
118 u16 status = (u16)status_err;
119 u8 errors = (u8)(status_err >> 24);
120 skb->ip_summed = CHECKSUM_NONE;
121
122 /* Ignore Checksum bit is set */
123 if (status & E1000_RXD_STAT_IXSM)
124 return;
125 /* TCP/UDP checksum error bit is set */
126 if (errors & E1000_RXD_ERR_TCPE) {
127 /* let the stack verify checksum errors */
128 adapter->hw_csum_err++;
129 return;
130 }
131
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
134 return;
135
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status & E1000_RXD_STAT_TCPCS) {
138 /* TCP checksum is good */
139 skb->ip_summed = CHECKSUM_UNNECESSARY;
140 } else {
141 /* IP fragment with UDP payload */
142 /* Hardware complements the payload checksum, so we undo it
143 * and then put the value in host order for further stack use.
144 */
Al Viroa39fe742007-12-11 19:50:34 +0000145 __sum16 sum = (__force __sum16)htons(csum);
146 skb->csum = csum_unfold(~sum);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700147 skb->ip_summed = CHECKSUM_COMPLETE;
148 }
149 adapter->hw_csum_good++;
150}
151
152/**
153 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
154 * @adapter: address of board private structure
155 **/
156static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
157 int cleaned_count)
158{
159 struct net_device *netdev = adapter->netdev;
160 struct pci_dev *pdev = adapter->pdev;
161 struct e1000_ring *rx_ring = adapter->rx_ring;
162 struct e1000_rx_desc *rx_desc;
163 struct e1000_buffer *buffer_info;
164 struct sk_buff *skb;
165 unsigned int i;
166 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
167
168 i = rx_ring->next_to_use;
169 buffer_info = &rx_ring->buffer_info[i];
170
171 while (cleaned_count--) {
172 skb = buffer_info->skb;
173 if (skb) {
174 skb_trim(skb, 0);
175 goto map_skb;
176 }
177
178 skb = netdev_alloc_skb(netdev, bufsz);
179 if (!skb) {
180 /* Better luck next round */
181 adapter->alloc_rx_buff_failed++;
182 break;
183 }
184
185 /* Make buffer alignment 2 beyond a 16 byte boundary
186 * this will result in a 16 byte aligned IP header after
187 * the 14 byte MAC header is removed
188 */
189 skb_reserve(skb, NET_IP_ALIGN);
190
191 buffer_info->skb = skb;
192map_skb:
193 buffer_info->dma = pci_map_single(pdev, skb->data,
194 adapter->rx_buffer_len,
195 PCI_DMA_FROMDEVICE);
196 if (pci_dma_mapping_error(buffer_info->dma)) {
197 dev_err(&pdev->dev, "RX DMA map failed\n");
198 adapter->rx_dma_failed++;
199 break;
200 }
201
202 rx_desc = E1000_RX_DESC(*rx_ring, i);
203 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
204
205 i++;
206 if (i == rx_ring->count)
207 i = 0;
208 buffer_info = &rx_ring->buffer_info[i];
209 }
210
211 if (rx_ring->next_to_use != i) {
212 rx_ring->next_to_use = i;
213 if (i-- == 0)
214 i = (rx_ring->count - 1);
215
216 /* Force memory writes to complete before letting h/w
217 * know there are new descriptors to fetch. (Only
218 * applicable for weak-ordered memory model archs,
219 * such as IA-64). */
220 wmb();
221 writel(i, adapter->hw.hw_addr + rx_ring->tail);
222 }
223}
224
225/**
226 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
227 * @adapter: address of board private structure
228 **/
229static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
230 int cleaned_count)
231{
232 struct net_device *netdev = adapter->netdev;
233 struct pci_dev *pdev = adapter->pdev;
234 union e1000_rx_desc_packet_split *rx_desc;
235 struct e1000_ring *rx_ring = adapter->rx_ring;
236 struct e1000_buffer *buffer_info;
237 struct e1000_ps_page *ps_page;
238 struct sk_buff *skb;
239 unsigned int i, j;
240
241 i = rx_ring->next_to_use;
242 buffer_info = &rx_ring->buffer_info[i];
243
244 while (cleaned_count--) {
245 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
246
247 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
Auke Kok47f44e42007-10-25 13:57:44 -0700248 ps_page = &buffer_info->ps_pages[j];
249 if (j >= adapter->rx_ps_pages) {
250 /* all unused desc entries get hw null ptr */
Al Viroa39fe742007-12-11 19:50:34 +0000251 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
Auke Kok47f44e42007-10-25 13:57:44 -0700252 continue;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700253 }
Auke Kok47f44e42007-10-25 13:57:44 -0700254 if (!ps_page->page) {
255 ps_page->page = alloc_page(GFP_ATOMIC);
256 if (!ps_page->page) {
257 adapter->alloc_rx_buff_failed++;
258 goto no_buffers;
259 }
260 ps_page->dma = pci_map_page(pdev,
261 ps_page->page,
262 0, PAGE_SIZE,
263 PCI_DMA_FROMDEVICE);
264 if (pci_dma_mapping_error(ps_page->dma)) {
265 dev_err(&adapter->pdev->dev,
266 "RX DMA page map failed\n");
267 adapter->rx_dma_failed++;
268 goto no_buffers;
269 }
270 }
271 /*
272 * Refresh the desc even if buffer_addrs
273 * didn't change because each write-back
274 * erases this info.
275 */
276 rx_desc->read.buffer_addr[j+1] =
277 cpu_to_le64(ps_page->dma);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700278 }
279
280 skb = netdev_alloc_skb(netdev,
281 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
282
283 if (!skb) {
284 adapter->alloc_rx_buff_failed++;
285 break;
286 }
287
288 /* Make buffer alignment 2 beyond a 16 byte boundary
289 * this will result in a 16 byte aligned IP header after
290 * the 14 byte MAC header is removed
291 */
292 skb_reserve(skb, NET_IP_ALIGN);
293
294 buffer_info->skb = skb;
295 buffer_info->dma = pci_map_single(pdev, skb->data,
296 adapter->rx_ps_bsize0,
297 PCI_DMA_FROMDEVICE);
298 if (pci_dma_mapping_error(buffer_info->dma)) {
299 dev_err(&pdev->dev, "RX DMA map failed\n");
300 adapter->rx_dma_failed++;
301 /* cleanup skb */
302 dev_kfree_skb_any(skb);
303 buffer_info->skb = NULL;
304 break;
305 }
306
307 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
308
309 i++;
310 if (i == rx_ring->count)
311 i = 0;
312 buffer_info = &rx_ring->buffer_info[i];
313 }
314
315no_buffers:
316 if (rx_ring->next_to_use != i) {
317 rx_ring->next_to_use = i;
318
319 if (!(i--))
320 i = (rx_ring->count - 1);
321
322 /* Force memory writes to complete before letting h/w
323 * know there are new descriptors to fetch. (Only
324 * applicable for weak-ordered memory model archs,
325 * such as IA-64). */
326 wmb();
327 /* Hardware increments by 16 bytes, but packet split
328 * descriptors are 32 bytes...so we increment tail
329 * twice as much.
330 */
331 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
332 }
333}
334
335/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700336 * e1000_clean_rx_irq - Send received data up the network stack; legacy
337 * @adapter: board private structure
338 *
339 * the return value indicates whether actual cleaning was done, there
340 * is no guarantee that everything was cleaned
341 **/
342static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
343 int *work_done, int work_to_do)
344{
345 struct net_device *netdev = adapter->netdev;
346 struct pci_dev *pdev = adapter->pdev;
347 struct e1000_ring *rx_ring = adapter->rx_ring;
348 struct e1000_rx_desc *rx_desc, *next_rxd;
349 struct e1000_buffer *buffer_info, *next_buffer;
350 u32 length;
351 unsigned int i;
352 int cleaned_count = 0;
353 bool cleaned = 0;
354 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
355
356 i = rx_ring->next_to_clean;
357 rx_desc = E1000_RX_DESC(*rx_ring, i);
358 buffer_info = &rx_ring->buffer_info[i];
359
360 while (rx_desc->status & E1000_RXD_STAT_DD) {
361 struct sk_buff *skb;
362 u8 status;
363
364 if (*work_done >= work_to_do)
365 break;
366 (*work_done)++;
367
368 status = rx_desc->status;
369 skb = buffer_info->skb;
370 buffer_info->skb = NULL;
371
372 prefetch(skb->data - NET_IP_ALIGN);
373
374 i++;
375 if (i == rx_ring->count)
376 i = 0;
377 next_rxd = E1000_RX_DESC(*rx_ring, i);
378 prefetch(next_rxd);
379
380 next_buffer = &rx_ring->buffer_info[i];
381
382 cleaned = 1;
383 cleaned_count++;
384 pci_unmap_single(pdev,
385 buffer_info->dma,
386 adapter->rx_buffer_len,
387 PCI_DMA_FROMDEVICE);
388 buffer_info->dma = 0;
389
390 length = le16_to_cpu(rx_desc->length);
391
392 /* !EOP means multiple descriptors were used to store a single
393 * packet, also make sure the frame isn't just CRC only */
394 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
395 /* All receives must fit into a single buffer */
396 ndev_dbg(netdev, "%s: Receive packet consumed "
397 "multiple buffers\n", netdev->name);
398 /* recycle */
399 buffer_info->skb = skb;
400 goto next_desc;
401 }
402
403 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
404 /* recycle */
405 buffer_info->skb = skb;
406 goto next_desc;
407 }
408
Auke Kokbc7f75f2007-09-17 12:30:59 -0700409 total_rx_bytes += length;
410 total_rx_packets++;
411
412 /* code added for copybreak, this should improve
413 * performance for small packets with large amounts
414 * of reassembly being done in the stack */
415 if (length < copybreak) {
416 struct sk_buff *new_skb =
417 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
418 if (new_skb) {
419 skb_reserve(new_skb, NET_IP_ALIGN);
420 memcpy(new_skb->data - NET_IP_ALIGN,
421 skb->data - NET_IP_ALIGN,
422 length + NET_IP_ALIGN);
423 /* save the skb in buffer_info as good */
424 buffer_info->skb = skb;
425 skb = new_skb;
426 }
427 /* else just continue with the old one */
428 }
429 /* end copybreak code */
430 skb_put(skb, length);
431
432 /* Receive Checksum Offload */
433 e1000_rx_checksum(adapter,
434 (u32)(status) |
435 ((u32)(rx_desc->errors) << 24),
436 le16_to_cpu(rx_desc->csum), skb);
437
438 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
439
440next_desc:
441 rx_desc->status = 0;
442
443 /* return some buffers to hardware, one at a time is too slow */
444 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
445 adapter->alloc_rx_buf(adapter, cleaned_count);
446 cleaned_count = 0;
447 }
448
449 /* use prefetched values */
450 rx_desc = next_rxd;
451 buffer_info = next_buffer;
452 }
453 rx_ring->next_to_clean = i;
454
455 cleaned_count = e1000_desc_unused(rx_ring);
456 if (cleaned_count)
457 adapter->alloc_rx_buf(adapter, cleaned_count);
458
459 adapter->total_rx_packets += total_rx_packets;
460 adapter->total_rx_bytes += total_rx_bytes;
Auke Kok41988692007-11-13 20:48:36 -0800461 adapter->net_stats.rx_packets += total_rx_packets;
462 adapter->net_stats.rx_bytes += total_rx_bytes;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700463 return cleaned;
464}
465
Auke Kokbc7f75f2007-09-17 12:30:59 -0700466static void e1000_put_txbuf(struct e1000_adapter *adapter,
467 struct e1000_buffer *buffer_info)
468{
469 if (buffer_info->dma) {
470 pci_unmap_page(adapter->pdev, buffer_info->dma,
471 buffer_info->length, PCI_DMA_TODEVICE);
472 buffer_info->dma = 0;
473 }
474 if (buffer_info->skb) {
475 dev_kfree_skb_any(buffer_info->skb);
476 buffer_info->skb = NULL;
477 }
478}
479
480static void e1000_print_tx_hang(struct e1000_adapter *adapter)
481{
482 struct e1000_ring *tx_ring = adapter->tx_ring;
483 unsigned int i = tx_ring->next_to_clean;
484 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
485 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
486 struct net_device *netdev = adapter->netdev;
487
488 /* detected Tx unit hang */
489 ndev_err(netdev,
490 "Detected Tx Unit Hang:\n"
491 " TDH <%x>\n"
492 " TDT <%x>\n"
493 " next_to_use <%x>\n"
494 " next_to_clean <%x>\n"
495 "buffer_info[next_to_clean]:\n"
496 " time_stamp <%lx>\n"
497 " next_to_watch <%x>\n"
498 " jiffies <%lx>\n"
499 " next_to_watch.status <%x>\n",
500 readl(adapter->hw.hw_addr + tx_ring->head),
501 readl(adapter->hw.hw_addr + tx_ring->tail),
502 tx_ring->next_to_use,
503 tx_ring->next_to_clean,
504 tx_ring->buffer_info[eop].time_stamp,
505 eop,
506 jiffies,
507 eop_desc->upper.fields.status);
508}
509
510/**
511 * e1000_clean_tx_irq - Reclaim resources after transmit completes
512 * @adapter: board private structure
513 *
514 * the return value indicates whether actual cleaning was done, there
515 * is no guarantee that everything was cleaned
516 **/
517static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
518{
519 struct net_device *netdev = adapter->netdev;
520 struct e1000_hw *hw = &adapter->hw;
521 struct e1000_ring *tx_ring = adapter->tx_ring;
522 struct e1000_tx_desc *tx_desc, *eop_desc;
523 struct e1000_buffer *buffer_info;
524 unsigned int i, eop;
525 unsigned int count = 0;
526 bool cleaned = 0;
527 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
528
529 i = tx_ring->next_to_clean;
530 eop = tx_ring->buffer_info[i].next_to_watch;
531 eop_desc = E1000_TX_DESC(*tx_ring, eop);
532
533 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
534 for (cleaned = 0; !cleaned; ) {
535 tx_desc = E1000_TX_DESC(*tx_ring, i);
536 buffer_info = &tx_ring->buffer_info[i];
537 cleaned = (i == eop);
538
539 if (cleaned) {
540 struct sk_buff *skb = buffer_info->skb;
541 unsigned int segs, bytecount;
542 segs = skb_shinfo(skb)->gso_segs ?: 1;
543 /* multiply data chunks by size of headers */
544 bytecount = ((segs - 1) * skb_headlen(skb)) +
545 skb->len;
546 total_tx_packets += segs;
547 total_tx_bytes += bytecount;
548 }
549
550 e1000_put_txbuf(adapter, buffer_info);
551 tx_desc->upper.data = 0;
552
553 i++;
554 if (i == tx_ring->count)
555 i = 0;
556 }
557
558 eop = tx_ring->buffer_info[i].next_to_watch;
559 eop_desc = E1000_TX_DESC(*tx_ring, eop);
560#define E1000_TX_WEIGHT 64
561 /* weight of a sort for tx, to avoid endless transmit cleanup */
562 if (count++ == E1000_TX_WEIGHT)
563 break;
564 }
565
566 tx_ring->next_to_clean = i;
567
568#define TX_WAKE_THRESHOLD 32
569 if (cleaned && netif_carrier_ok(netdev) &&
570 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
571 /* Make sure that anybody stopping the queue after this
572 * sees the new next_to_clean.
573 */
574 smp_mb();
575
576 if (netif_queue_stopped(netdev) &&
577 !(test_bit(__E1000_DOWN, &adapter->state))) {
578 netif_wake_queue(netdev);
579 ++adapter->restart_queue;
580 }
581 }
582
583 if (adapter->detect_tx_hung) {
584 /* Detect a transmit hang in hardware, this serializes the
585 * check with the clearing of time_stamp and movement of i */
586 adapter->detect_tx_hung = 0;
587 if (tx_ring->buffer_info[eop].dma &&
588 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
589 + (adapter->tx_timeout_factor * HZ))
590 && !(er32(STATUS) &
591 E1000_STATUS_TXOFF)) {
592 e1000_print_tx_hang(adapter);
593 netif_stop_queue(netdev);
594 }
595 }
596 adapter->total_tx_bytes += total_tx_bytes;
597 adapter->total_tx_packets += total_tx_packets;
Auke Kok41988692007-11-13 20:48:36 -0800598 adapter->net_stats.tx_packets += total_tx_packets;
599 adapter->net_stats.tx_bytes += total_tx_bytes;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700600 return cleaned;
601}
602
603/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700604 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
605 * @adapter: board private structure
606 *
607 * the return value indicates whether actual cleaning was done, there
608 * is no guarantee that everything was cleaned
609 **/
610static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
611 int *work_done, int work_to_do)
612{
613 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
614 struct net_device *netdev = adapter->netdev;
615 struct pci_dev *pdev = adapter->pdev;
616 struct e1000_ring *rx_ring = adapter->rx_ring;
617 struct e1000_buffer *buffer_info, *next_buffer;
618 struct e1000_ps_page *ps_page;
619 struct sk_buff *skb;
620 unsigned int i, j;
621 u32 length, staterr;
622 int cleaned_count = 0;
623 bool cleaned = 0;
624 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
625
626 i = rx_ring->next_to_clean;
627 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
628 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
629 buffer_info = &rx_ring->buffer_info[i];
630
631 while (staterr & E1000_RXD_STAT_DD) {
632 if (*work_done >= work_to_do)
633 break;
634 (*work_done)++;
635 skb = buffer_info->skb;
636
637 /* in the packet split case this is header only */
638 prefetch(skb->data - NET_IP_ALIGN);
639
640 i++;
641 if (i == rx_ring->count)
642 i = 0;
643 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
644 prefetch(next_rxd);
645
646 next_buffer = &rx_ring->buffer_info[i];
647
648 cleaned = 1;
649 cleaned_count++;
650 pci_unmap_single(pdev, buffer_info->dma,
651 adapter->rx_ps_bsize0,
652 PCI_DMA_FROMDEVICE);
653 buffer_info->dma = 0;
654
655 if (!(staterr & E1000_RXD_STAT_EOP)) {
656 ndev_dbg(netdev, "%s: Packet Split buffers didn't pick "
657 "up the full packet\n", netdev->name);
658 dev_kfree_skb_irq(skb);
659 goto next_desc;
660 }
661
662 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
663 dev_kfree_skb_irq(skb);
664 goto next_desc;
665 }
666
667 length = le16_to_cpu(rx_desc->wb.middle.length0);
668
669 if (!length) {
670 ndev_dbg(netdev, "%s: Last part of the packet spanning"
671 " multiple descriptors\n", netdev->name);
672 dev_kfree_skb_irq(skb);
673 goto next_desc;
674 }
675
676 /* Good Receive */
677 skb_put(skb, length);
678
679 {
680 /* this looks ugly, but it seems compiler issues make it
681 more efficient than reusing j */
682 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
683
684 /* page alloc/put takes too long and effects small packet
685 * throughput, so unsplit small packets and save the alloc/put*/
686 if (l1 && (l1 <= copybreak) &&
687 ((length + l1) <= adapter->rx_ps_bsize0)) {
688 u8 *vaddr;
689
Auke Kok47f44e42007-10-25 13:57:44 -0700690 ps_page = &buffer_info->ps_pages[0];
Auke Kokbc7f75f2007-09-17 12:30:59 -0700691
692 /* there is no documentation about how to call
693 * kmap_atomic, so we can't hold the mapping
694 * very long */
695 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
696 PAGE_SIZE, PCI_DMA_FROMDEVICE);
697 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
698 memcpy(skb_tail_pointer(skb), vaddr, l1);
699 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
700 pci_dma_sync_single_for_device(pdev, ps_page->dma,
701 PAGE_SIZE, PCI_DMA_FROMDEVICE);
Auke Kok140a7482007-10-25 13:57:58 -0700702
Auke Kokbc7f75f2007-09-17 12:30:59 -0700703 skb_put(skb, l1);
704 goto copydone;
705 } /* if */
706 }
707
708 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
709 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
710 if (!length)
711 break;
712
Auke Kok47f44e42007-10-25 13:57:44 -0700713 ps_page = &buffer_info->ps_pages[j];
Auke Kokbc7f75f2007-09-17 12:30:59 -0700714 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
715 PCI_DMA_FROMDEVICE);
716 ps_page->dma = 0;
717 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
718 ps_page->page = NULL;
719 skb->len += length;
720 skb->data_len += length;
721 skb->truesize += length;
722 }
723
Auke Kokbc7f75f2007-09-17 12:30:59 -0700724copydone:
725 total_rx_bytes += skb->len;
726 total_rx_packets++;
727
728 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
729 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
730
731 if (rx_desc->wb.upper.header_status &
732 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
733 adapter->rx_hdr_split++;
734
735 e1000_receive_skb(adapter, netdev, skb,
736 staterr, rx_desc->wb.middle.vlan);
737
738next_desc:
739 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
740 buffer_info->skb = NULL;
741
742 /* return some buffers to hardware, one at a time is too slow */
743 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
744 adapter->alloc_rx_buf(adapter, cleaned_count);
745 cleaned_count = 0;
746 }
747
748 /* use prefetched values */
749 rx_desc = next_rxd;
750 buffer_info = next_buffer;
751
752 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
753 }
754 rx_ring->next_to_clean = i;
755
756 cleaned_count = e1000_desc_unused(rx_ring);
757 if (cleaned_count)
758 adapter->alloc_rx_buf(adapter, cleaned_count);
759
760 adapter->total_rx_packets += total_rx_packets;
761 adapter->total_rx_bytes += total_rx_bytes;
Auke Kok41988692007-11-13 20:48:36 -0800762 adapter->net_stats.rx_packets += total_rx_packets;
763 adapter->net_stats.rx_bytes += total_rx_bytes;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700764 return cleaned;
765}
766
767/**
768 * e1000_clean_rx_ring - Free Rx Buffers per Queue
769 * @adapter: board private structure
770 **/
771static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
772{
773 struct e1000_ring *rx_ring = adapter->rx_ring;
774 struct e1000_buffer *buffer_info;
775 struct e1000_ps_page *ps_page;
776 struct pci_dev *pdev = adapter->pdev;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700777 unsigned int i, j;
778
779 /* Free all the Rx ring sk_buffs */
780 for (i = 0; i < rx_ring->count; i++) {
781 buffer_info = &rx_ring->buffer_info[i];
782 if (buffer_info->dma) {
783 if (adapter->clean_rx == e1000_clean_rx_irq)
784 pci_unmap_single(pdev, buffer_info->dma,
785 adapter->rx_buffer_len,
786 PCI_DMA_FROMDEVICE);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700787 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
788 pci_unmap_single(pdev, buffer_info->dma,
789 adapter->rx_ps_bsize0,
790 PCI_DMA_FROMDEVICE);
791 buffer_info->dma = 0;
792 }
793
Auke Kokbc7f75f2007-09-17 12:30:59 -0700794 if (buffer_info->skb) {
795 dev_kfree_skb(buffer_info->skb);
796 buffer_info->skb = NULL;
797 }
798
799 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
Auke Kok47f44e42007-10-25 13:57:44 -0700800 ps_page = &buffer_info->ps_pages[j];
Auke Kokbc7f75f2007-09-17 12:30:59 -0700801 if (!ps_page->page)
802 break;
803 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
804 PCI_DMA_FROMDEVICE);
805 ps_page->dma = 0;
806 put_page(ps_page->page);
807 ps_page->page = NULL;
808 }
809 }
810
811 /* there also may be some cached data from a chained receive */
812 if (rx_ring->rx_skb_top) {
813 dev_kfree_skb(rx_ring->rx_skb_top);
814 rx_ring->rx_skb_top = NULL;
815 }
816
Auke Kokbc7f75f2007-09-17 12:30:59 -0700817 /* Zero out the descriptor ring */
818 memset(rx_ring->desc, 0, rx_ring->size);
819
820 rx_ring->next_to_clean = 0;
821 rx_ring->next_to_use = 0;
822
823 writel(0, adapter->hw.hw_addr + rx_ring->head);
824 writel(0, adapter->hw.hw_addr + rx_ring->tail);
825}
826
827/**
828 * e1000_intr_msi - Interrupt Handler
829 * @irq: interrupt number
830 * @data: pointer to a network interface device structure
831 **/
832static irqreturn_t e1000_intr_msi(int irq, void *data)
833{
834 struct net_device *netdev = data;
835 struct e1000_adapter *adapter = netdev_priv(netdev);
836 struct e1000_hw *hw = &adapter->hw;
837 u32 icr = er32(ICR);
838
Jesse Brandeburg74ef9c32008-03-21 11:06:52 -0700839 /* read ICR disables interrupts using IAM */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700840
841 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
842 hw->mac.get_link_status = 1;
843 /* ICH8 workaround-- Call gig speed drop workaround on cable
844 * disconnect (LSC) before accessing any PHY registers */
845 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
846 (!(er32(STATUS) & E1000_STATUS_LU)))
847 e1000e_gig_downshift_workaround_ich8lan(hw);
848
849 /* 80003ES2LAN workaround-- For packet buffer work-around on
850 * link down event; disable receives here in the ISR and reset
851 * adapter in watchdog */
852 if (netif_carrier_ok(netdev) &&
853 adapter->flags & FLAG_RX_NEEDS_RESTART) {
854 /* disable receives */
855 u32 rctl = er32(RCTL);
856 ew32(RCTL, rctl & ~E1000_RCTL_EN);
857 }
858 /* guard against interrupt when we're going down */
859 if (!test_bit(__E1000_DOWN, &adapter->state))
860 mod_timer(&adapter->watchdog_timer, jiffies + 1);
861 }
862
863 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
864 adapter->total_tx_bytes = 0;
865 adapter->total_tx_packets = 0;
866 adapter->total_rx_bytes = 0;
867 adapter->total_rx_packets = 0;
868 __netif_rx_schedule(netdev, &adapter->napi);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700869 }
870
871 return IRQ_HANDLED;
872}
873
874/**
875 * e1000_intr - Interrupt Handler
876 * @irq: interrupt number
877 * @data: pointer to a network interface device structure
878 **/
879static irqreturn_t e1000_intr(int irq, void *data)
880{
881 struct net_device *netdev = data;
882 struct e1000_adapter *adapter = netdev_priv(netdev);
883 struct e1000_hw *hw = &adapter->hw;
884
885 u32 rctl, icr = er32(ICR);
886 if (!icr)
887 return IRQ_NONE; /* Not our interrupt */
888
889 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
890 * not set, then the adapter didn't send an interrupt */
891 if (!(icr & E1000_ICR_INT_ASSERTED))
892 return IRQ_NONE;
893
Jesse Brandeburg74ef9c32008-03-21 11:06:52 -0700894 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
895 * need for the IMC write */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700896
897 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
898 hw->mac.get_link_status = 1;
899 /* ICH8 workaround-- Call gig speed drop workaround on cable
900 * disconnect (LSC) before accessing any PHY registers */
901 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
902 (!(er32(STATUS) & E1000_STATUS_LU)))
903 e1000e_gig_downshift_workaround_ich8lan(hw);
904
905 /* 80003ES2LAN workaround--
906 * For packet buffer work-around on link down event;
907 * disable receives here in the ISR and
908 * reset adapter in watchdog
909 */
910 if (netif_carrier_ok(netdev) &&
911 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
912 /* disable receives */
913 rctl = er32(RCTL);
914 ew32(RCTL, rctl & ~E1000_RCTL_EN);
915 }
916 /* guard against interrupt when we're going down */
917 if (!test_bit(__E1000_DOWN, &adapter->state))
918 mod_timer(&adapter->watchdog_timer, jiffies + 1);
919 }
920
921 if (netif_rx_schedule_prep(netdev, &adapter->napi)) {
922 adapter->total_tx_bytes = 0;
923 adapter->total_tx_packets = 0;
924 adapter->total_rx_bytes = 0;
925 adapter->total_rx_packets = 0;
926 __netif_rx_schedule(netdev, &adapter->napi);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700927 }
928
929 return IRQ_HANDLED;
930}
931
932static int e1000_request_irq(struct e1000_adapter *adapter)
933{
934 struct net_device *netdev = adapter->netdev;
Al Viroa39fe742007-12-11 19:50:34 +0000935 irq_handler_t handler = e1000_intr;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700936 int irq_flags = IRQF_SHARED;
937 int err;
938
Andy Gospodarek9b71c5e2008-02-01 08:21:44 -0800939 if (!pci_enable_msi(adapter->pdev)) {
Auke Kokbc7f75f2007-09-17 12:30:59 -0700940 adapter->flags |= FLAG_MSI_ENABLED;
Al Viroa39fe742007-12-11 19:50:34 +0000941 handler = e1000_intr_msi;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700942 irq_flags = 0;
943 }
944
945 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
946 netdev);
947 if (err) {
Andy Gospodarek9b71c5e2008-02-01 08:21:44 -0800948 ndev_err(netdev,
949 "Unable to allocate %s interrupt (return: %d)\n",
950 adapter->flags & FLAG_MSI_ENABLED ? "MSI":"INTx",
951 err);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700952 if (adapter->flags & FLAG_MSI_ENABLED)
953 pci_disable_msi(adapter->pdev);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700954 }
955
956 return err;
957}
958
959static void e1000_free_irq(struct e1000_adapter *adapter)
960{
961 struct net_device *netdev = adapter->netdev;
962
963 free_irq(adapter->pdev->irq, netdev);
964 if (adapter->flags & FLAG_MSI_ENABLED) {
965 pci_disable_msi(adapter->pdev);
966 adapter->flags &= ~FLAG_MSI_ENABLED;
967 }
968}
969
970/**
971 * e1000_irq_disable - Mask off interrupt generation on the NIC
972 **/
973static void e1000_irq_disable(struct e1000_adapter *adapter)
974{
975 struct e1000_hw *hw = &adapter->hw;
976
Auke Kokbc7f75f2007-09-17 12:30:59 -0700977 ew32(IMC, ~0);
978 e1e_flush();
979 synchronize_irq(adapter->pdev->irq);
980}
981
982/**
983 * e1000_irq_enable - Enable default interrupt generation settings
984 **/
985static void e1000_irq_enable(struct e1000_adapter *adapter)
986{
987 struct e1000_hw *hw = &adapter->hw;
988
Jesse Brandeburg74ef9c32008-03-21 11:06:52 -0700989 ew32(IMS, IMS_ENABLE_MASK);
990 e1e_flush();
Auke Kokbc7f75f2007-09-17 12:30:59 -0700991}
992
993/**
994 * e1000_get_hw_control - get control of the h/w from f/w
995 * @adapter: address of board private structure
996 *
Auke Kok489815c2008-02-21 15:11:07 -0800997 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700998 * For ASF and Pass Through versions of f/w this means that
999 * the driver is loaded. For AMT version (only with 82573)
1000 * of the f/w this means that the network i/f is open.
1001 **/
1002static void e1000_get_hw_control(struct e1000_adapter *adapter)
1003{
1004 struct e1000_hw *hw = &adapter->hw;
1005 u32 ctrl_ext;
1006 u32 swsm;
1007
1008 /* Let firmware know the driver has taken over */
1009 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1010 swsm = er32(SWSM);
1011 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1012 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1013 ctrl_ext = er32(CTRL_EXT);
1014 ew32(CTRL_EXT,
1015 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1016 }
1017}
1018
1019/**
1020 * e1000_release_hw_control - release control of the h/w to f/w
1021 * @adapter: address of board private structure
1022 *
Auke Kok489815c2008-02-21 15:11:07 -08001023 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
Auke Kokbc7f75f2007-09-17 12:30:59 -07001024 * For ASF and Pass Through versions of f/w this means that the
1025 * driver is no longer loaded. For AMT version (only with 82573) i
1026 * of the f/w this means that the network i/f is closed.
1027 *
1028 **/
1029static void e1000_release_hw_control(struct e1000_adapter *adapter)
1030{
1031 struct e1000_hw *hw = &adapter->hw;
1032 u32 ctrl_ext;
1033 u32 swsm;
1034
1035 /* Let firmware taken over control of h/w */
1036 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1037 swsm = er32(SWSM);
1038 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1039 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1040 ctrl_ext = er32(CTRL_EXT);
1041 ew32(CTRL_EXT,
1042 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1043 }
1044}
1045
Auke Kokbc7f75f2007-09-17 12:30:59 -07001046/**
1047 * @e1000_alloc_ring - allocate memory for a ring structure
1048 **/
1049static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1050 struct e1000_ring *ring)
1051{
1052 struct pci_dev *pdev = adapter->pdev;
1053
1054 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1055 GFP_KERNEL);
1056 if (!ring->desc)
1057 return -ENOMEM;
1058
1059 return 0;
1060}
1061
1062/**
1063 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1064 * @adapter: board private structure
1065 *
1066 * Return 0 on success, negative on failure
1067 **/
1068int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1069{
1070 struct e1000_ring *tx_ring = adapter->tx_ring;
1071 int err = -ENOMEM, size;
1072
1073 size = sizeof(struct e1000_buffer) * tx_ring->count;
1074 tx_ring->buffer_info = vmalloc(size);
1075 if (!tx_ring->buffer_info)
1076 goto err;
1077 memset(tx_ring->buffer_info, 0, size);
1078
1079 /* round up to nearest 4K */
1080 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1081 tx_ring->size = ALIGN(tx_ring->size, 4096);
1082
1083 err = e1000_alloc_ring_dma(adapter, tx_ring);
1084 if (err)
1085 goto err;
1086
1087 tx_ring->next_to_use = 0;
1088 tx_ring->next_to_clean = 0;
1089 spin_lock_init(&adapter->tx_queue_lock);
1090
1091 return 0;
1092err:
1093 vfree(tx_ring->buffer_info);
1094 ndev_err(adapter->netdev,
1095 "Unable to allocate memory for the transmit descriptor ring\n");
1096 return err;
1097}
1098
1099/**
1100 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1101 * @adapter: board private structure
1102 *
1103 * Returns 0 on success, negative on failure
1104 **/
1105int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1106{
1107 struct e1000_ring *rx_ring = adapter->rx_ring;
Auke Kok47f44e42007-10-25 13:57:44 -07001108 struct e1000_buffer *buffer_info;
1109 int i, size, desc_len, err = -ENOMEM;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001110
1111 size = sizeof(struct e1000_buffer) * rx_ring->count;
1112 rx_ring->buffer_info = vmalloc(size);
1113 if (!rx_ring->buffer_info)
1114 goto err;
1115 memset(rx_ring->buffer_info, 0, size);
1116
Auke Kok47f44e42007-10-25 13:57:44 -07001117 for (i = 0; i < rx_ring->count; i++) {
1118 buffer_info = &rx_ring->buffer_info[i];
1119 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1120 sizeof(struct e1000_ps_page),
1121 GFP_KERNEL);
1122 if (!buffer_info->ps_pages)
1123 goto err_pages;
1124 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07001125
1126 desc_len = sizeof(union e1000_rx_desc_packet_split);
1127
1128 /* Round up to nearest 4K */
1129 rx_ring->size = rx_ring->count * desc_len;
1130 rx_ring->size = ALIGN(rx_ring->size, 4096);
1131
1132 err = e1000_alloc_ring_dma(adapter, rx_ring);
1133 if (err)
Auke Kok47f44e42007-10-25 13:57:44 -07001134 goto err_pages;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001135
1136 rx_ring->next_to_clean = 0;
1137 rx_ring->next_to_use = 0;
1138 rx_ring->rx_skb_top = NULL;
1139
1140 return 0;
Auke Kok47f44e42007-10-25 13:57:44 -07001141
1142err_pages:
1143 for (i = 0; i < rx_ring->count; i++) {
1144 buffer_info = &rx_ring->buffer_info[i];
1145 kfree(buffer_info->ps_pages);
1146 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07001147err:
1148 vfree(rx_ring->buffer_info);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001149 ndev_err(adapter->netdev,
1150 "Unable to allocate memory for the transmit descriptor ring\n");
1151 return err;
1152}
1153
1154/**
1155 * e1000_clean_tx_ring - Free Tx Buffers
1156 * @adapter: board private structure
1157 **/
1158static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1159{
1160 struct e1000_ring *tx_ring = adapter->tx_ring;
1161 struct e1000_buffer *buffer_info;
1162 unsigned long size;
1163 unsigned int i;
1164
1165 for (i = 0; i < tx_ring->count; i++) {
1166 buffer_info = &tx_ring->buffer_info[i];
1167 e1000_put_txbuf(adapter, buffer_info);
1168 }
1169
1170 size = sizeof(struct e1000_buffer) * tx_ring->count;
1171 memset(tx_ring->buffer_info, 0, size);
1172
1173 memset(tx_ring->desc, 0, tx_ring->size);
1174
1175 tx_ring->next_to_use = 0;
1176 tx_ring->next_to_clean = 0;
1177
1178 writel(0, adapter->hw.hw_addr + tx_ring->head);
1179 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1180}
1181
1182/**
1183 * e1000e_free_tx_resources - Free Tx Resources per Queue
1184 * @adapter: board private structure
1185 *
1186 * Free all transmit software resources
1187 **/
1188void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1189{
1190 struct pci_dev *pdev = adapter->pdev;
1191 struct e1000_ring *tx_ring = adapter->tx_ring;
1192
1193 e1000_clean_tx_ring(adapter);
1194
1195 vfree(tx_ring->buffer_info);
1196 tx_ring->buffer_info = NULL;
1197
1198 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1199 tx_ring->dma);
1200 tx_ring->desc = NULL;
1201}
1202
1203/**
1204 * e1000e_free_rx_resources - Free Rx Resources
1205 * @adapter: board private structure
1206 *
1207 * Free all receive software resources
1208 **/
1209
1210void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1211{
1212 struct pci_dev *pdev = adapter->pdev;
1213 struct e1000_ring *rx_ring = adapter->rx_ring;
Auke Kok47f44e42007-10-25 13:57:44 -07001214 int i;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001215
1216 e1000_clean_rx_ring(adapter);
1217
Auke Kok47f44e42007-10-25 13:57:44 -07001218 for (i = 0; i < rx_ring->count; i++) {
1219 kfree(rx_ring->buffer_info[i].ps_pages);
1220 }
1221
Auke Kokbc7f75f2007-09-17 12:30:59 -07001222 vfree(rx_ring->buffer_info);
1223 rx_ring->buffer_info = NULL;
1224
Auke Kokbc7f75f2007-09-17 12:30:59 -07001225 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1226 rx_ring->dma);
1227 rx_ring->desc = NULL;
1228}
1229
1230/**
1231 * e1000_update_itr - update the dynamic ITR value based on statistics
Auke Kok489815c2008-02-21 15:11:07 -08001232 * @adapter: pointer to adapter
1233 * @itr_setting: current adapter->itr
1234 * @packets: the number of packets during this measurement interval
1235 * @bytes: the number of bytes during this measurement interval
1236 *
Auke Kokbc7f75f2007-09-17 12:30:59 -07001237 * Stores a new ITR value based on packets and byte
1238 * counts during the last interrupt. The advantage of per interrupt
1239 * computation is faster updates and more accurate ITR for the current
1240 * traffic pattern. Constants in this function were computed
1241 * based on theoretical maximum wire speed and thresholds were set based
1242 * on testing data as well as attempting to minimize response time
1243 * while increasing bulk throughput.
1244 * this functionality is controlled by the InterruptThrottleRate module
1245 * parameter (see e1000_param.c)
Auke Kokbc7f75f2007-09-17 12:30:59 -07001246 **/
1247static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1248 u16 itr_setting, int packets,
1249 int bytes)
1250{
1251 unsigned int retval = itr_setting;
1252
1253 if (packets == 0)
1254 goto update_itr_done;
1255
1256 switch (itr_setting) {
1257 case lowest_latency:
1258 /* handle TSO and jumbo frames */
1259 if (bytes/packets > 8000)
1260 retval = bulk_latency;
1261 else if ((packets < 5) && (bytes > 512)) {
1262 retval = low_latency;
1263 }
1264 break;
1265 case low_latency: /* 50 usec aka 20000 ints/s */
1266 if (bytes > 10000) {
1267 /* this if handles the TSO accounting */
1268 if (bytes/packets > 8000) {
1269 retval = bulk_latency;
1270 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1271 retval = bulk_latency;
1272 } else if ((packets > 35)) {
1273 retval = lowest_latency;
1274 }
1275 } else if (bytes/packets > 2000) {
1276 retval = bulk_latency;
1277 } else if (packets <= 2 && bytes < 512) {
1278 retval = lowest_latency;
1279 }
1280 break;
1281 case bulk_latency: /* 250 usec aka 4000 ints/s */
1282 if (bytes > 25000) {
1283 if (packets > 35) {
1284 retval = low_latency;
1285 }
1286 } else if (bytes < 6000) {
1287 retval = low_latency;
1288 }
1289 break;
1290 }
1291
1292update_itr_done:
1293 return retval;
1294}
1295
1296static void e1000_set_itr(struct e1000_adapter *adapter)
1297{
1298 struct e1000_hw *hw = &adapter->hw;
1299 u16 current_itr;
1300 u32 new_itr = adapter->itr;
1301
1302 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1303 if (adapter->link_speed != SPEED_1000) {
1304 current_itr = 0;
1305 new_itr = 4000;
1306 goto set_itr_now;
1307 }
1308
1309 adapter->tx_itr = e1000_update_itr(adapter,
1310 adapter->tx_itr,
1311 adapter->total_tx_packets,
1312 adapter->total_tx_bytes);
1313 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1314 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1315 adapter->tx_itr = low_latency;
1316
1317 adapter->rx_itr = e1000_update_itr(adapter,
1318 adapter->rx_itr,
1319 adapter->total_rx_packets,
1320 adapter->total_rx_bytes);
1321 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1322 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1323 adapter->rx_itr = low_latency;
1324
1325 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1326
1327 switch (current_itr) {
1328 /* counts and packets in update_itr are dependent on these numbers */
1329 case lowest_latency:
1330 new_itr = 70000;
1331 break;
1332 case low_latency:
1333 new_itr = 20000; /* aka hwitr = ~200 */
1334 break;
1335 case bulk_latency:
1336 new_itr = 4000;
1337 break;
1338 default:
1339 break;
1340 }
1341
1342set_itr_now:
1343 if (new_itr != adapter->itr) {
1344 /* this attempts to bias the interrupt rate towards Bulk
1345 * by adding intermediate steps when interrupt rate is
1346 * increasing */
1347 new_itr = new_itr > adapter->itr ?
1348 min(adapter->itr + (new_itr >> 2), new_itr) :
1349 new_itr;
1350 adapter->itr = new_itr;
1351 ew32(ITR, 1000000000 / (new_itr * 256));
1352 }
1353}
1354
1355/**
1356 * e1000_clean - NAPI Rx polling callback
1357 * @adapter: board private structure
Auke Kok489815c2008-02-21 15:11:07 -08001358 * @budget: amount of packets driver is allowed to process this poll
Auke Kokbc7f75f2007-09-17 12:30:59 -07001359 **/
1360static int e1000_clean(struct napi_struct *napi, int budget)
1361{
1362 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
1363 struct net_device *poll_dev = adapter->netdev;
David S. Millerd2c7ddd2008-01-15 22:43:24 -08001364 int tx_cleaned = 0, work_done = 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001365
1366 /* Must NOT use netdev_priv macro here. */
1367 adapter = poll_dev->priv;
1368
Auke Kokbc7f75f2007-09-17 12:30:59 -07001369 /* e1000_clean is called per-cpu. This lock protects
1370 * tx_ring from being cleaned by multiple cpus
1371 * simultaneously. A failure obtaining the lock means
1372 * tx_ring is currently being cleaned anyway. */
1373 if (spin_trylock(&adapter->tx_queue_lock)) {
David S. Millerd2c7ddd2008-01-15 22:43:24 -08001374 tx_cleaned = e1000_clean_tx_irq(adapter);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001375 spin_unlock(&adapter->tx_queue_lock);
1376 }
1377
1378 adapter->clean_rx(adapter, &work_done, budget);
1379
David S. Millerd2c7ddd2008-01-15 22:43:24 -08001380 if (tx_cleaned)
1381 work_done = budget;
1382
David S. Miller53e52c72008-01-07 21:06:12 -08001383 /* If budget not fully consumed, exit the polling mode */
1384 if (work_done < budget) {
Auke Kokbc7f75f2007-09-17 12:30:59 -07001385 if (adapter->itr_setting & 3)
1386 e1000_set_itr(adapter);
1387 netif_rx_complete(poll_dev, napi);
1388 e1000_irq_enable(adapter);
1389 }
1390
1391 return work_done;
1392}
1393
1394static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1395{
1396 struct e1000_adapter *adapter = netdev_priv(netdev);
1397 struct e1000_hw *hw = &adapter->hw;
1398 u32 vfta, index;
1399
1400 /* don't update vlan cookie if already programmed */
1401 if ((adapter->hw.mng_cookie.status &
1402 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1403 (vid == adapter->mng_vlan_id))
1404 return;
1405 /* add VID to filter table */
1406 index = (vid >> 5) & 0x7F;
1407 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1408 vfta |= (1 << (vid & 0x1F));
1409 e1000e_write_vfta(hw, index, vfta);
1410}
1411
1412static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1413{
1414 struct e1000_adapter *adapter = netdev_priv(netdev);
1415 struct e1000_hw *hw = &adapter->hw;
1416 u32 vfta, index;
1417
Jesse Brandeburg74ef9c32008-03-21 11:06:52 -07001418 if (!test_bit(__E1000_DOWN, &adapter->state))
1419 e1000_irq_disable(adapter);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001420 vlan_group_set_device(adapter->vlgrp, vid, NULL);
Jesse Brandeburg74ef9c32008-03-21 11:06:52 -07001421
1422 if (!test_bit(__E1000_DOWN, &adapter->state))
1423 e1000_irq_enable(adapter);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001424
1425 if ((adapter->hw.mng_cookie.status &
1426 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1427 (vid == adapter->mng_vlan_id)) {
1428 /* release control to f/w */
1429 e1000_release_hw_control(adapter);
1430 return;
1431 }
1432
1433 /* remove VID from filter table */
1434 index = (vid >> 5) & 0x7F;
1435 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
1436 vfta &= ~(1 << (vid & 0x1F));
1437 e1000e_write_vfta(hw, index, vfta);
1438}
1439
1440static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
1441{
1442 struct net_device *netdev = adapter->netdev;
1443 u16 vid = adapter->hw.mng_cookie.vlan_id;
1444 u16 old_vid = adapter->mng_vlan_id;
1445
1446 if (!adapter->vlgrp)
1447 return;
1448
1449 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
1450 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1451 if (adapter->hw.mng_cookie.status &
1452 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1453 e1000_vlan_rx_add_vid(netdev, vid);
1454 adapter->mng_vlan_id = vid;
1455 }
1456
1457 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
1458 (vid != old_vid) &&
1459 !vlan_group_get_device(adapter->vlgrp, old_vid))
1460 e1000_vlan_rx_kill_vid(netdev, old_vid);
1461 } else {
1462 adapter->mng_vlan_id = vid;
1463 }
1464}
1465
1466
1467static void e1000_vlan_rx_register(struct net_device *netdev,
1468 struct vlan_group *grp)
1469{
1470 struct e1000_adapter *adapter = netdev_priv(netdev);
1471 struct e1000_hw *hw = &adapter->hw;
1472 u32 ctrl, rctl;
1473
Jesse Brandeburg74ef9c32008-03-21 11:06:52 -07001474 if (!test_bit(__E1000_DOWN, &adapter->state))
1475 e1000_irq_disable(adapter);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001476 adapter->vlgrp = grp;
1477
1478 if (grp) {
1479 /* enable VLAN tag insert/strip */
1480 ctrl = er32(CTRL);
1481 ctrl |= E1000_CTRL_VME;
1482 ew32(CTRL, ctrl);
1483
1484 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1485 /* enable VLAN receive filtering */
1486 rctl = er32(RCTL);
1487 rctl |= E1000_RCTL_VFE;
1488 rctl &= ~E1000_RCTL_CFIEN;
1489 ew32(RCTL, rctl);
1490 e1000_update_mng_vlan(adapter);
1491 }
1492 } else {
1493 /* disable VLAN tag insert/strip */
1494 ctrl = er32(CTRL);
1495 ctrl &= ~E1000_CTRL_VME;
1496 ew32(CTRL, ctrl);
1497
1498 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
1499 /* disable VLAN filtering */
1500 rctl = er32(RCTL);
1501 rctl &= ~E1000_RCTL_VFE;
1502 ew32(RCTL, rctl);
1503 if (adapter->mng_vlan_id !=
1504 (u16)E1000_MNG_VLAN_NONE) {
1505 e1000_vlan_rx_kill_vid(netdev,
1506 adapter->mng_vlan_id);
1507 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1508 }
1509 }
1510 }
1511
Jesse Brandeburg74ef9c32008-03-21 11:06:52 -07001512 if (!test_bit(__E1000_DOWN, &adapter->state))
1513 e1000_irq_enable(adapter);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001514}
1515
1516static void e1000_restore_vlan(struct e1000_adapter *adapter)
1517{
1518 u16 vid;
1519
1520 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1521
1522 if (!adapter->vlgrp)
1523 return;
1524
1525 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1526 if (!vlan_group_get_device(adapter->vlgrp, vid))
1527 continue;
1528 e1000_vlan_rx_add_vid(adapter->netdev, vid);
1529 }
1530}
1531
1532static void e1000_init_manageability(struct e1000_adapter *adapter)
1533{
1534 struct e1000_hw *hw = &adapter->hw;
1535 u32 manc, manc2h;
1536
1537 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
1538 return;
1539
1540 manc = er32(MANC);
1541
Auke Kokbc7f75f2007-09-17 12:30:59 -07001542 /* enable receiving management packets to the host. this will probably
1543 * generate destination unreachable messages from the host OS, but
1544 * the packets will be handled on SMBUS */
1545 manc |= E1000_MANC_EN_MNG2HOST;
1546 manc2h = er32(MANC2H);
1547#define E1000_MNG2HOST_PORT_623 (1 << 5)
1548#define E1000_MNG2HOST_PORT_664 (1 << 6)
1549 manc2h |= E1000_MNG2HOST_PORT_623;
1550 manc2h |= E1000_MNG2HOST_PORT_664;
1551 ew32(MANC2H, manc2h);
1552 ew32(MANC, manc);
1553}
1554
1555/**
1556 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1557 * @adapter: board private structure
1558 *
1559 * Configure the Tx unit of the MAC after a reset.
1560 **/
1561static void e1000_configure_tx(struct e1000_adapter *adapter)
1562{
1563 struct e1000_hw *hw = &adapter->hw;
1564 struct e1000_ring *tx_ring = adapter->tx_ring;
1565 u64 tdba;
1566 u32 tdlen, tctl, tipg, tarc;
1567 u32 ipgr1, ipgr2;
1568
1569 /* Setup the HW Tx Head and Tail descriptor pointers */
1570 tdba = tx_ring->dma;
1571 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
1572 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
1573 ew32(TDBAH, (tdba >> 32));
1574 ew32(TDLEN, tdlen);
1575 ew32(TDH, 0);
1576 ew32(TDT, 0);
1577 tx_ring->head = E1000_TDH;
1578 tx_ring->tail = E1000_TDT;
1579
1580 /* Set the default values for the Tx Inter Packet Gap timer */
1581 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
1582 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
1583 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
1584
1585 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
1586 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
1587
1588 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1589 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1590 ew32(TIPG, tipg);
1591
1592 /* Set the Tx Interrupt Delay register */
1593 ew32(TIDV, adapter->tx_int_delay);
1594 /* tx irq moderation */
1595 ew32(TADV, adapter->tx_abs_int_delay);
1596
1597 /* Program the Transmit Control Register */
1598 tctl = er32(TCTL);
1599 tctl &= ~E1000_TCTL_CT;
1600 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1601 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1602
1603 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
1604 tarc = er32(TARC0);
1605 /* set the speed mode bit, we'll clear it if we're not at
1606 * gigabit link later */
1607#define SPEED_MODE_BIT (1 << 21)
1608 tarc |= SPEED_MODE_BIT;
1609 ew32(TARC0, tarc);
1610 }
1611
1612 /* errata: program both queues to unweighted RR */
1613 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
1614 tarc = er32(TARC0);
1615 tarc |= 1;
1616 ew32(TARC0, tarc);
1617 tarc = er32(TARC1);
1618 tarc |= 1;
1619 ew32(TARC1, tarc);
1620 }
1621
1622 e1000e_config_collision_dist(hw);
1623
1624 /* Setup Transmit Descriptor Settings for eop descriptor */
1625 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1626
1627 /* only set IDE if we are delaying interrupts using the timers */
1628 if (adapter->tx_int_delay)
1629 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1630
1631 /* enable Report Status bit */
1632 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1633
1634 ew32(TCTL, tctl);
1635
1636 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1637}
1638
1639/**
1640 * e1000_setup_rctl - configure the receive control registers
1641 * @adapter: Board private structure
1642 **/
1643#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1644 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1645static void e1000_setup_rctl(struct e1000_adapter *adapter)
1646{
1647 struct e1000_hw *hw = &adapter->hw;
1648 u32 rctl, rfctl;
1649 u32 psrctl = 0;
1650 u32 pages = 0;
1651
1652 /* Program MC offset vector base */
1653 rctl = er32(RCTL);
1654 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1655 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1656 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1657 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1658
1659 /* Do not Store bad packets */
1660 rctl &= ~E1000_RCTL_SBP;
1661
1662 /* Enable Long Packet receive */
1663 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1664 rctl &= ~E1000_RCTL_LPE;
1665 else
1666 rctl |= E1000_RCTL_LPE;
1667
Auke Kok5918bd82008-02-12 15:20:24 -08001668 /* Enable hardware CRC frame stripping */
1669 rctl |= E1000_RCTL_SECRC;
1670
Auke Kokbc7f75f2007-09-17 12:30:59 -07001671 /* Setup buffer sizes */
1672 rctl &= ~E1000_RCTL_SZ_4096;
1673 rctl |= E1000_RCTL_BSEX;
1674 switch (adapter->rx_buffer_len) {
1675 case 256:
1676 rctl |= E1000_RCTL_SZ_256;
1677 rctl &= ~E1000_RCTL_BSEX;
1678 break;
1679 case 512:
1680 rctl |= E1000_RCTL_SZ_512;
1681 rctl &= ~E1000_RCTL_BSEX;
1682 break;
1683 case 1024:
1684 rctl |= E1000_RCTL_SZ_1024;
1685 rctl &= ~E1000_RCTL_BSEX;
1686 break;
1687 case 2048:
1688 default:
1689 rctl |= E1000_RCTL_SZ_2048;
1690 rctl &= ~E1000_RCTL_BSEX;
1691 break;
1692 case 4096:
1693 rctl |= E1000_RCTL_SZ_4096;
1694 break;
1695 case 8192:
1696 rctl |= E1000_RCTL_SZ_8192;
1697 break;
1698 case 16384:
1699 rctl |= E1000_RCTL_SZ_16384;
1700 break;
1701 }
1702
1703 /*
1704 * 82571 and greater support packet-split where the protocol
1705 * header is placed in skb->data and the packet data is
1706 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1707 * In the case of a non-split, skb->data is linearly filled,
1708 * followed by the page buffers. Therefore, skb->data is
1709 * sized to hold the largest protocol header.
1710 *
1711 * allocations using alloc_page take too long for regular MTU
1712 * so only enable packet split for jumbo frames
1713 *
1714 * Using pages when the page size is greater than 16k wastes
1715 * a lot of memory, since we allocate 3 pages at all times
1716 * per packet.
1717 */
1718 adapter->rx_ps_pages = 0;
1719 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1720 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
1721 adapter->rx_ps_pages = pages;
1722
1723 if (adapter->rx_ps_pages) {
1724 /* Configure extra packet-split registers */
1725 rfctl = er32(RFCTL);
1726 rfctl |= E1000_RFCTL_EXTEN;
1727 /* disable packet split support for IPv6 extension headers,
1728 * because some malformed IPv6 headers can hang the RX */
1729 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1730 E1000_RFCTL_NEW_IPV6_EXT_DIS);
1731
1732 ew32(RFCTL, rfctl);
1733
Auke Kok140a7482007-10-25 13:57:58 -07001734 /* Enable Packet split descriptors */
1735 rctl |= E1000_RCTL_DTYP_PS;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001736
1737 psrctl |= adapter->rx_ps_bsize0 >>
1738 E1000_PSRCTL_BSIZE0_SHIFT;
1739
1740 switch (adapter->rx_ps_pages) {
1741 case 3:
1742 psrctl |= PAGE_SIZE <<
1743 E1000_PSRCTL_BSIZE3_SHIFT;
1744 case 2:
1745 psrctl |= PAGE_SIZE <<
1746 E1000_PSRCTL_BSIZE2_SHIFT;
1747 case 1:
1748 psrctl |= PAGE_SIZE >>
1749 E1000_PSRCTL_BSIZE1_SHIFT;
1750 break;
1751 }
1752
1753 ew32(PSRCTL, psrctl);
1754 }
1755
1756 ew32(RCTL, rctl);
1757}
1758
1759/**
1760 * e1000_configure_rx - Configure Receive Unit after Reset
1761 * @adapter: board private structure
1762 *
1763 * Configure the Rx unit of the MAC after a reset.
1764 **/
1765static void e1000_configure_rx(struct e1000_adapter *adapter)
1766{
1767 struct e1000_hw *hw = &adapter->hw;
1768 struct e1000_ring *rx_ring = adapter->rx_ring;
1769 u64 rdba;
1770 u32 rdlen, rctl, rxcsum, ctrl_ext;
1771
1772 if (adapter->rx_ps_pages) {
1773 /* this is a 32 byte descriptor */
1774 rdlen = rx_ring->count *
1775 sizeof(union e1000_rx_desc_packet_split);
1776 adapter->clean_rx = e1000_clean_rx_irq_ps;
1777 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001778 } else {
1779 rdlen = rx_ring->count *
1780 sizeof(struct e1000_rx_desc);
1781 adapter->clean_rx = e1000_clean_rx_irq;
1782 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1783 }
1784
1785 /* disable receives while setting up the descriptors */
1786 rctl = er32(RCTL);
1787 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1788 e1e_flush();
1789 msleep(10);
1790
1791 /* set the Receive Delay Timer Register */
1792 ew32(RDTR, adapter->rx_int_delay);
1793
1794 /* irq moderation */
1795 ew32(RADV, adapter->rx_abs_int_delay);
1796 if (adapter->itr_setting != 0)
1797 ew32(ITR,
1798 1000000000 / (adapter->itr * 256));
1799
1800 ctrl_ext = er32(CTRL_EXT);
1801 /* Reset delay timers after every interrupt */
1802 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1803 /* Auto-Mask interrupts upon ICR access */
1804 ctrl_ext |= E1000_CTRL_EXT_IAME;
1805 ew32(IAM, 0xffffffff);
1806 ew32(CTRL_EXT, ctrl_ext);
1807 e1e_flush();
1808
1809 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1810 * the Base and Length of the Rx Descriptor Ring */
1811 rdba = rx_ring->dma;
1812 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
1813 ew32(RDBAH, (rdba >> 32));
1814 ew32(RDLEN, rdlen);
1815 ew32(RDH, 0);
1816 ew32(RDT, 0);
1817 rx_ring->head = E1000_RDH;
1818 rx_ring->tail = E1000_RDT;
1819
1820 /* Enable Receive Checksum Offload for TCP and UDP */
1821 rxcsum = er32(RXCSUM);
1822 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
1823 rxcsum |= E1000_RXCSUM_TUOFL;
1824
1825 /* IPv4 payload checksum for UDP fragments must be
1826 * used in conjunction with packet-split. */
1827 if (adapter->rx_ps_pages)
1828 rxcsum |= E1000_RXCSUM_IPPCSE;
1829 } else {
1830 rxcsum &= ~E1000_RXCSUM_TUOFL;
1831 /* no need to clear IPPCSE as it defaults to 0 */
1832 }
1833 ew32(RXCSUM, rxcsum);
1834
1835 /* Enable early receives on supported devices, only takes effect when
1836 * packet size is equal or larger than the specified value (in 8 byte
1837 * units), e.g. using jumbo frames when setting to E1000_ERT_2048 */
1838 if ((adapter->flags & FLAG_HAS_ERT) &&
1839 (adapter->netdev->mtu > ETH_DATA_LEN))
1840 ew32(ERT, E1000_ERT_2048);
1841
1842 /* Enable Receives */
1843 ew32(RCTL, rctl);
1844}
1845
1846/**
1847 * e1000_mc_addr_list_update - Update Multicast addresses
1848 * @hw: pointer to the HW structure
1849 * @mc_addr_list: array of multicast addresses to program
1850 * @mc_addr_count: number of multicast addresses to program
1851 * @rar_used_count: the first RAR register free to program
1852 * @rar_count: total number of supported Receive Address Registers
1853 *
1854 * Updates the Receive Address Registers and Multicast Table Array.
1855 * The caller must have a packed mc_addr_list of multicast addresses.
1856 * The parameter rar_count will usually be hw->mac.rar_entry_count
1857 * unless there are workarounds that change this. Currently no func pointer
1858 * exists and all implementations are handled in the generic version of this
1859 * function.
1860 **/
1861static void e1000_mc_addr_list_update(struct e1000_hw *hw, u8 *mc_addr_list,
1862 u32 mc_addr_count, u32 rar_used_count,
1863 u32 rar_count)
1864{
1865 hw->mac.ops.mc_addr_list_update(hw, mc_addr_list, mc_addr_count,
1866 rar_used_count, rar_count);
1867}
1868
1869/**
1870 * e1000_set_multi - Multicast and Promiscuous mode set
1871 * @netdev: network interface device structure
1872 *
1873 * The set_multi entry point is called whenever the multicast address
1874 * list or the network interface flags are updated. This routine is
1875 * responsible for configuring the hardware for proper multicast,
1876 * promiscuous mode, and all-multi behavior.
1877 **/
1878static void e1000_set_multi(struct net_device *netdev)
1879{
1880 struct e1000_adapter *adapter = netdev_priv(netdev);
1881 struct e1000_hw *hw = &adapter->hw;
1882 struct e1000_mac_info *mac = &hw->mac;
1883 struct dev_mc_list *mc_ptr;
1884 u8 *mta_list;
1885 u32 rctl;
1886 int i;
1887
1888 /* Check for Promiscuous and All Multicast modes */
1889
1890 rctl = er32(RCTL);
1891
1892 if (netdev->flags & IFF_PROMISC) {
1893 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1894 } else if (netdev->flags & IFF_ALLMULTI) {
1895 rctl |= E1000_RCTL_MPE;
1896 rctl &= ~E1000_RCTL_UPE;
1897 } else {
1898 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
1899 }
1900
1901 ew32(RCTL, rctl);
1902
1903 if (netdev->mc_count) {
1904 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
1905 if (!mta_list)
1906 return;
1907
1908 /* prepare a packed array of only addresses. */
1909 mc_ptr = netdev->mc_list;
1910
1911 for (i = 0; i < netdev->mc_count; i++) {
1912 if (!mc_ptr)
1913 break;
1914 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
1915 ETH_ALEN);
1916 mc_ptr = mc_ptr->next;
1917 }
1918
1919 e1000_mc_addr_list_update(hw, mta_list, i, 1,
1920 mac->rar_entry_count);
1921 kfree(mta_list);
1922 } else {
1923 /*
1924 * if we're called from probe, we might not have
1925 * anything to do here, so clear out the list
1926 */
1927 e1000_mc_addr_list_update(hw, NULL, 0, 1,
1928 mac->rar_entry_count);
1929 }
1930}
1931
1932/**
1933 * e1000_configure - configure the hardware for RX and TX
1934 * @adapter: private board structure
1935 **/
1936static void e1000_configure(struct e1000_adapter *adapter)
1937{
1938 e1000_set_multi(adapter->netdev);
1939
1940 e1000_restore_vlan(adapter);
1941 e1000_init_manageability(adapter);
1942
1943 e1000_configure_tx(adapter);
1944 e1000_setup_rctl(adapter);
1945 e1000_configure_rx(adapter);
1946 adapter->alloc_rx_buf(adapter,
1947 e1000_desc_unused(adapter->rx_ring));
1948}
1949
1950/**
1951 * e1000e_power_up_phy - restore link in case the phy was powered down
1952 * @adapter: address of board private structure
1953 *
1954 * The phy may be powered down to save power and turn off link when the
1955 * driver is unloaded and wake on lan is not enabled (among others)
1956 * *** this routine MUST be followed by a call to e1000e_reset ***
1957 **/
1958void e1000e_power_up_phy(struct e1000_adapter *adapter)
1959{
1960 u16 mii_reg = 0;
1961
1962 /* Just clear the power down bit to wake the phy back up */
1963 if (adapter->hw.media_type == e1000_media_type_copper) {
1964 /* according to the manual, the phy will retain its
1965 * settings across a power-down/up cycle */
1966 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
1967 mii_reg &= ~MII_CR_POWER_DOWN;
1968 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
1969 }
1970
1971 adapter->hw.mac.ops.setup_link(&adapter->hw);
1972}
1973
1974/**
1975 * e1000_power_down_phy - Power down the PHY
1976 *
1977 * Power down the PHY so no link is implied when interface is down
1978 * The PHY cannot be powered down is management or WoL is active
1979 */
1980static void e1000_power_down_phy(struct e1000_adapter *adapter)
1981{
1982 struct e1000_hw *hw = &adapter->hw;
1983 u16 mii_reg;
1984
1985 /* WoL is enabled */
Auke Kok23b66e22008-02-11 09:25:51 -08001986 if (adapter->wol)
Auke Kokbc7f75f2007-09-17 12:30:59 -07001987 return;
1988
1989 /* non-copper PHY? */
1990 if (adapter->hw.media_type != e1000_media_type_copper)
1991 return;
1992
1993 /* reset is blocked because of a SoL/IDER session */
1994 if (e1000e_check_mng_mode(hw) ||
1995 e1000_check_reset_block(hw))
1996 return;
1997
Auke Kok489815c2008-02-21 15:11:07 -08001998 /* manageability (AMT) is enabled */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001999 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2000 return;
2001
2002 /* power down the PHY */
2003 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2004 mii_reg |= MII_CR_POWER_DOWN;
2005 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2006 mdelay(1);
2007}
2008
2009/**
2010 * e1000e_reset - bring the hardware into a known good state
2011 *
2012 * This function boots the hardware and enables some settings that
2013 * require a configuration cycle of the hardware - those cannot be
2014 * set/changed during runtime. After reset the device needs to be
2015 * properly configured for rx, tx etc.
2016 */
2017void e1000e_reset(struct e1000_adapter *adapter)
2018{
2019 struct e1000_mac_info *mac = &adapter->hw.mac;
2020 struct e1000_hw *hw = &adapter->hw;
2021 u32 tx_space, min_tx_space, min_rx_space;
Auke Kokdf762462007-10-25 13:57:53 -07002022 u32 pba;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002023 u16 hwm;
2024
Auke Kokdf762462007-10-25 13:57:53 -07002025 ew32(PBA, adapter->pba);
2026
Auke Kokbc7f75f2007-09-17 12:30:59 -07002027 if (mac->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN ) {
2028 /* To maintain wire speed transmits, the Tx FIFO should be
2029 * large enough to accommodate two full transmit packets,
2030 * rounded up to the next 1KB and expressed in KB. Likewise,
2031 * the Rx FIFO should be large enough to accommodate at least
2032 * one full receive packet and is similarly rounded up and
2033 * expressed in KB. */
Auke Kokdf762462007-10-25 13:57:53 -07002034 pba = er32(PBA);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002035 /* upper 16 bits has Tx packet buffer allocation size in KB */
Auke Kokdf762462007-10-25 13:57:53 -07002036 tx_space = pba >> 16;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002037 /* lower 16 bits has Rx packet buffer allocation size in KB */
Auke Kokdf762462007-10-25 13:57:53 -07002038 pba &= 0xffff;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002039 /* the tx fifo also stores 16 bytes of information about the tx
2040 * but don't include ethernet FCS because hardware appends it */
2041 min_tx_space = (mac->max_frame_size +
2042 sizeof(struct e1000_tx_desc) -
2043 ETH_FCS_LEN) * 2;
2044 min_tx_space = ALIGN(min_tx_space, 1024);
2045 min_tx_space >>= 10;
2046 /* software strips receive CRC, so leave room for it */
2047 min_rx_space = mac->max_frame_size;
2048 min_rx_space = ALIGN(min_rx_space, 1024);
2049 min_rx_space >>= 10;
2050
2051 /* If current Tx allocation is less than the min Tx FIFO size,
2052 * and the min Tx FIFO size is less than the current Rx FIFO
2053 * allocation, take space away from current Rx allocation */
Auke Kokdf762462007-10-25 13:57:53 -07002054 if ((tx_space < min_tx_space) &&
2055 ((min_tx_space - tx_space) < pba)) {
2056 pba -= min_tx_space - tx_space;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002057
2058 /* if short on rx space, rx wins and must trump tx
2059 * adjustment or use Early Receive if available */
Auke Kokdf762462007-10-25 13:57:53 -07002060 if ((pba < min_rx_space) &&
Auke Kokbc7f75f2007-09-17 12:30:59 -07002061 (!(adapter->flags & FLAG_HAS_ERT)))
2062 /* ERT enabled in e1000_configure_rx */
Auke Kokdf762462007-10-25 13:57:53 -07002063 pba = min_rx_space;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002064 }
Auke Kokdf762462007-10-25 13:57:53 -07002065
2066 ew32(PBA, pba);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002067 }
2068
Auke Kokbc7f75f2007-09-17 12:30:59 -07002069
2070 /* flow control settings */
2071 /* The high water mark must be low enough to fit one full frame
2072 * (or the size used for early receive) above it in the Rx FIFO.
2073 * Set it to the lower of:
2074 * - 90% of the Rx FIFO size, and
2075 * - the full Rx FIFO size minus the early receive size (for parts
2076 * with ERT support assuming ERT set to E1000_ERT_2048), or
2077 * - the full Rx FIFO size minus one full frame */
2078 if (adapter->flags & FLAG_HAS_ERT)
2079 hwm = min(((adapter->pba << 10) * 9 / 10),
2080 ((adapter->pba << 10) - (E1000_ERT_2048 << 3)));
2081 else
2082 hwm = min(((adapter->pba << 10) * 9 / 10),
2083 ((adapter->pba << 10) - mac->max_frame_size));
2084
2085 mac->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
2086 mac->fc_low_water = mac->fc_high_water - 8;
2087
2088 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2089 mac->fc_pause_time = 0xFFFF;
2090 else
2091 mac->fc_pause_time = E1000_FC_PAUSE_TIME;
2092 mac->fc = mac->original_fc;
2093
2094 /* Allow time for pending master requests to run */
2095 mac->ops.reset_hw(hw);
2096 ew32(WUC, 0);
2097
2098 if (mac->ops.init_hw(hw))
2099 ndev_err(adapter->netdev, "Hardware Error\n");
2100
2101 e1000_update_mng_vlan(adapter);
2102
2103 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2104 ew32(VET, ETH_P_8021Q);
2105
2106 e1000e_reset_adaptive(hw);
2107 e1000_get_phy_info(hw);
2108
2109 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2110 u16 phy_data = 0;
2111 /* speed up time to link by disabling smart power down, ignore
2112 * the return value of this function because there is nothing
2113 * different we would do if it failed */
2114 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2115 phy_data &= ~IGP02E1000_PM_SPD;
2116 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2117 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002118}
2119
2120int e1000e_up(struct e1000_adapter *adapter)
2121{
2122 struct e1000_hw *hw = &adapter->hw;
2123
2124 /* hardware has been reset, we need to reload some things */
2125 e1000_configure(adapter);
2126
2127 clear_bit(__E1000_DOWN, &adapter->state);
2128
2129 napi_enable(&adapter->napi);
2130 e1000_irq_enable(adapter);
2131
2132 /* fire a link change interrupt to start the watchdog */
2133 ew32(ICS, E1000_ICS_LSC);
2134 return 0;
2135}
2136
2137void e1000e_down(struct e1000_adapter *adapter)
2138{
2139 struct net_device *netdev = adapter->netdev;
2140 struct e1000_hw *hw = &adapter->hw;
2141 u32 tctl, rctl;
2142
2143 /* signal that we're down so the interrupt handler does not
2144 * reschedule our watchdog timer */
2145 set_bit(__E1000_DOWN, &adapter->state);
2146
2147 /* disable receives in the hardware */
2148 rctl = er32(RCTL);
2149 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2150 /* flush and sleep below */
2151
2152 netif_stop_queue(netdev);
2153
2154 /* disable transmits in the hardware */
2155 tctl = er32(TCTL);
2156 tctl &= ~E1000_TCTL_EN;
2157 ew32(TCTL, tctl);
2158 /* flush both disables and wait for them to finish */
2159 e1e_flush();
2160 msleep(10);
2161
2162 napi_disable(&adapter->napi);
2163 e1000_irq_disable(adapter);
2164
2165 del_timer_sync(&adapter->watchdog_timer);
2166 del_timer_sync(&adapter->phy_info_timer);
2167
2168 netdev->tx_queue_len = adapter->tx_queue_len;
2169 netif_carrier_off(netdev);
2170 adapter->link_speed = 0;
2171 adapter->link_duplex = 0;
2172
2173 e1000e_reset(adapter);
2174 e1000_clean_tx_ring(adapter);
2175 e1000_clean_rx_ring(adapter);
2176
2177 /*
2178 * TODO: for power management, we could drop the link and
2179 * pci_disable_device here.
2180 */
2181}
2182
2183void e1000e_reinit_locked(struct e1000_adapter *adapter)
2184{
2185 might_sleep();
2186 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2187 msleep(1);
2188 e1000e_down(adapter);
2189 e1000e_up(adapter);
2190 clear_bit(__E1000_RESETTING, &adapter->state);
2191}
2192
2193/**
2194 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2195 * @adapter: board private structure to initialize
2196 *
2197 * e1000_sw_init initializes the Adapter private data structure.
2198 * Fields are initialized based on PCI device information and
2199 * OS network device settings (MTU size).
2200 **/
2201static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2202{
2203 struct e1000_hw *hw = &adapter->hw;
2204 struct net_device *netdev = adapter->netdev;
2205
2206 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2207 adapter->rx_ps_bsize0 = 128;
2208 hw->mac.max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2209 hw->mac.min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2210
2211 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2212 if (!adapter->tx_ring)
2213 goto err;
2214
2215 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2216 if (!adapter->rx_ring)
2217 goto err;
2218
2219 spin_lock_init(&adapter->tx_queue_lock);
2220
2221 /* Explicitly disable IRQ since the NIC can be in any state. */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002222 e1000_irq_disable(adapter);
2223
2224 spin_lock_init(&adapter->stats_lock);
2225
2226 set_bit(__E1000_DOWN, &adapter->state);
2227 return 0;
2228
2229err:
2230 ndev_err(netdev, "Unable to allocate memory for queues\n");
2231 kfree(adapter->rx_ring);
2232 kfree(adapter->tx_ring);
2233 return -ENOMEM;
2234}
2235
2236/**
2237 * e1000_open - Called when a network interface is made active
2238 * @netdev: network interface device structure
2239 *
2240 * Returns 0 on success, negative value on failure
2241 *
2242 * The open entry point is called when a network interface is made
2243 * active by the system (IFF_UP). At this point all resources needed
2244 * for transmit and receive operations are allocated, the interrupt
2245 * handler is registered with the OS, the watchdog timer is started,
2246 * and the stack is notified that the interface is ready.
2247 **/
2248static int e1000_open(struct net_device *netdev)
2249{
2250 struct e1000_adapter *adapter = netdev_priv(netdev);
2251 struct e1000_hw *hw = &adapter->hw;
2252 int err;
2253
2254 /* disallow open during test */
2255 if (test_bit(__E1000_TESTING, &adapter->state))
2256 return -EBUSY;
2257
2258 /* allocate transmit descriptors */
2259 err = e1000e_setup_tx_resources(adapter);
2260 if (err)
2261 goto err_setup_tx;
2262
2263 /* allocate receive descriptors */
2264 err = e1000e_setup_rx_resources(adapter);
2265 if (err)
2266 goto err_setup_rx;
2267
2268 e1000e_power_up_phy(adapter);
2269
2270 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2271 if ((adapter->hw.mng_cookie.status &
2272 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
2273 e1000_update_mng_vlan(adapter);
2274
2275 /* If AMT is enabled, let the firmware know that the network
2276 * interface is now open */
2277 if ((adapter->flags & FLAG_HAS_AMT) &&
2278 e1000e_check_mng_mode(&adapter->hw))
2279 e1000_get_hw_control(adapter);
2280
2281 /* before we allocate an interrupt, we must be ready to handle it.
2282 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2283 * as soon as we call pci_request_irq, so we have to setup our
2284 * clean_rx handler before we do so. */
2285 e1000_configure(adapter);
2286
2287 err = e1000_request_irq(adapter);
2288 if (err)
2289 goto err_req_irq;
2290
2291 /* From here on the code is the same as e1000e_up() */
2292 clear_bit(__E1000_DOWN, &adapter->state);
2293
2294 napi_enable(&adapter->napi);
2295
2296 e1000_irq_enable(adapter);
2297
2298 /* fire a link status change interrupt to start the watchdog */
2299 ew32(ICS, E1000_ICS_LSC);
2300
2301 return 0;
2302
2303err_req_irq:
2304 e1000_release_hw_control(adapter);
2305 e1000_power_down_phy(adapter);
2306 e1000e_free_rx_resources(adapter);
2307err_setup_rx:
2308 e1000e_free_tx_resources(adapter);
2309err_setup_tx:
2310 e1000e_reset(adapter);
2311
2312 return err;
2313}
2314
2315/**
2316 * e1000_close - Disables a network interface
2317 * @netdev: network interface device structure
2318 *
2319 * Returns 0, this is not allowed to fail
2320 *
2321 * The close entry point is called when an interface is de-activated
2322 * by the OS. The hardware is still under the drivers control, but
2323 * needs to be disabled. A global MAC reset is issued to stop the
2324 * hardware, and all transmit and receive resources are freed.
2325 **/
2326static int e1000_close(struct net_device *netdev)
2327{
2328 struct e1000_adapter *adapter = netdev_priv(netdev);
2329
2330 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
2331 e1000e_down(adapter);
2332 e1000_power_down_phy(adapter);
2333 e1000_free_irq(adapter);
2334
2335 e1000e_free_tx_resources(adapter);
2336 e1000e_free_rx_resources(adapter);
2337
2338 /* kill manageability vlan ID if supported, but not if a vlan with
2339 * the same ID is registered on the host OS (let 8021q kill it) */
2340 if ((adapter->hw.mng_cookie.status &
2341 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2342 !(adapter->vlgrp &&
2343 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
2344 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2345
2346 /* If AMT is enabled, let the firmware know that the network
2347 * interface is now closed */
2348 if ((adapter->flags & FLAG_HAS_AMT) &&
2349 e1000e_check_mng_mode(&adapter->hw))
2350 e1000_release_hw_control(adapter);
2351
2352 return 0;
2353}
2354/**
2355 * e1000_set_mac - Change the Ethernet Address of the NIC
2356 * @netdev: network interface device structure
2357 * @p: pointer to an address structure
2358 *
2359 * Returns 0 on success, negative on failure
2360 **/
2361static int e1000_set_mac(struct net_device *netdev, void *p)
2362{
2363 struct e1000_adapter *adapter = netdev_priv(netdev);
2364 struct sockaddr *addr = p;
2365
2366 if (!is_valid_ether_addr(addr->sa_data))
2367 return -EADDRNOTAVAIL;
2368
2369 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2370 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
2371
2372 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
2373
2374 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
2375 /* activate the work around */
2376 e1000e_set_laa_state_82571(&adapter->hw, 1);
2377
2378 /* Hold a copy of the LAA in RAR[14] This is done so that
2379 * between the time RAR[0] gets clobbered and the time it
2380 * gets fixed (in e1000_watchdog), the actual LAA is in one
2381 * of the RARs and no incoming packets directed to this port
2382 * are dropped. Eventually the LAA will be in RAR[0] and
2383 * RAR[14] */
2384 e1000e_rar_set(&adapter->hw,
2385 adapter->hw.mac.addr,
2386 adapter->hw.mac.rar_entry_count - 1);
2387 }
2388
2389 return 0;
2390}
2391
2392/* Need to wait a few seconds after link up to get diagnostic information from
2393 * the phy */
2394static void e1000_update_phy_info(unsigned long data)
2395{
2396 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2397 e1000_get_phy_info(&adapter->hw);
2398}
2399
2400/**
2401 * e1000e_update_stats - Update the board statistics counters
2402 * @adapter: board private structure
2403 **/
2404void e1000e_update_stats(struct e1000_adapter *adapter)
2405{
2406 struct e1000_hw *hw = &adapter->hw;
2407 struct pci_dev *pdev = adapter->pdev;
2408 unsigned long irq_flags;
2409 u16 phy_tmp;
2410
2411#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
2412
2413 /*
2414 * Prevent stats update while adapter is being reset, or if the pci
2415 * connection is down.
2416 */
2417 if (adapter->link_speed == 0)
2418 return;
2419 if (pci_channel_offline(pdev))
2420 return;
2421
2422 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
2423
2424 /* these counters are modified from e1000_adjust_tbi_stats,
2425 * called from the interrupt context, so they must only
2426 * be written while holding adapter->stats_lock
2427 */
2428
2429 adapter->stats.crcerrs += er32(CRCERRS);
2430 adapter->stats.gprc += er32(GPRC);
2431 adapter->stats.gorcl += er32(GORCL);
2432 adapter->stats.gorch += er32(GORCH);
2433 adapter->stats.bprc += er32(BPRC);
2434 adapter->stats.mprc += er32(MPRC);
2435 adapter->stats.roc += er32(ROC);
2436
2437 if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2438 adapter->stats.prc64 += er32(PRC64);
2439 adapter->stats.prc127 += er32(PRC127);
2440 adapter->stats.prc255 += er32(PRC255);
2441 adapter->stats.prc511 += er32(PRC511);
2442 adapter->stats.prc1023 += er32(PRC1023);
2443 adapter->stats.prc1522 += er32(PRC1522);
2444 adapter->stats.symerrs += er32(SYMERRS);
2445 adapter->stats.sec += er32(SEC);
2446 }
2447
2448 adapter->stats.mpc += er32(MPC);
2449 adapter->stats.scc += er32(SCC);
2450 adapter->stats.ecol += er32(ECOL);
2451 adapter->stats.mcc += er32(MCC);
2452 adapter->stats.latecol += er32(LATECOL);
2453 adapter->stats.dc += er32(DC);
2454 adapter->stats.rlec += er32(RLEC);
2455 adapter->stats.xonrxc += er32(XONRXC);
2456 adapter->stats.xontxc += er32(XONTXC);
2457 adapter->stats.xoffrxc += er32(XOFFRXC);
2458 adapter->stats.xofftxc += er32(XOFFTXC);
2459 adapter->stats.fcruc += er32(FCRUC);
2460 adapter->stats.gptc += er32(GPTC);
2461 adapter->stats.gotcl += er32(GOTCL);
2462 adapter->stats.gotch += er32(GOTCH);
2463 adapter->stats.rnbc += er32(RNBC);
2464 adapter->stats.ruc += er32(RUC);
2465 adapter->stats.rfc += er32(RFC);
2466 adapter->stats.rjc += er32(RJC);
2467 adapter->stats.torl += er32(TORL);
2468 adapter->stats.torh += er32(TORH);
2469 adapter->stats.totl += er32(TOTL);
2470 adapter->stats.toth += er32(TOTH);
2471 adapter->stats.tpr += er32(TPR);
2472
2473 if (adapter->flags & FLAG_HAS_STATS_PTC_PRC) {
2474 adapter->stats.ptc64 += er32(PTC64);
2475 adapter->stats.ptc127 += er32(PTC127);
2476 adapter->stats.ptc255 += er32(PTC255);
2477 adapter->stats.ptc511 += er32(PTC511);
2478 adapter->stats.ptc1023 += er32(PTC1023);
2479 adapter->stats.ptc1522 += er32(PTC1522);
2480 }
2481
2482 adapter->stats.mptc += er32(MPTC);
2483 adapter->stats.bptc += er32(BPTC);
2484
2485 /* used for adaptive IFS */
2486
2487 hw->mac.tx_packet_delta = er32(TPT);
2488 adapter->stats.tpt += hw->mac.tx_packet_delta;
2489 hw->mac.collision_delta = er32(COLC);
2490 adapter->stats.colc += hw->mac.collision_delta;
2491
2492 adapter->stats.algnerrc += er32(ALGNERRC);
2493 adapter->stats.rxerrc += er32(RXERRC);
2494 adapter->stats.tncrs += er32(TNCRS);
2495 adapter->stats.cexterr += er32(CEXTERR);
2496 adapter->stats.tsctc += er32(TSCTC);
2497 adapter->stats.tsctfc += er32(TSCTFC);
2498
2499 adapter->stats.iac += er32(IAC);
2500
2501 if (adapter->flags & FLAG_HAS_STATS_ICR_ICT) {
2502 adapter->stats.icrxoc += er32(ICRXOC);
2503 adapter->stats.icrxptc += er32(ICRXPTC);
2504 adapter->stats.icrxatc += er32(ICRXATC);
2505 adapter->stats.ictxptc += er32(ICTXPTC);
2506 adapter->stats.ictxatc += er32(ICTXATC);
2507 adapter->stats.ictxqec += er32(ICTXQEC);
2508 adapter->stats.ictxqmtc += er32(ICTXQMTC);
2509 adapter->stats.icrxdmtc += er32(ICRXDMTC);
2510 }
2511
2512 /* Fill out the OS statistics structure */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002513 adapter->net_stats.multicast = adapter->stats.mprc;
2514 adapter->net_stats.collisions = adapter->stats.colc;
2515
2516 /* Rx Errors */
2517
2518 /* RLEC on some newer hardware can be incorrect so build
2519 * our own version based on RUC and ROC */
2520 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
2521 adapter->stats.crcerrs + adapter->stats.algnerrc +
2522 adapter->stats.ruc + adapter->stats.roc +
2523 adapter->stats.cexterr;
2524 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
2525 adapter->stats.roc;
2526 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
2527 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
2528 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
2529
2530 /* Tx Errors */
2531 adapter->net_stats.tx_errors = adapter->stats.ecol +
2532 adapter->stats.latecol;
2533 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
2534 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
2535 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
2536
2537 /* Tx Dropped needs to be maintained elsewhere */
2538
2539 /* Phy Stats */
2540 if (hw->media_type == e1000_media_type_copper) {
2541 if ((adapter->link_speed == SPEED_1000) &&
2542 (!e1e_rphy(hw, PHY_1000T_STATUS, &phy_tmp))) {
2543 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
2544 adapter->phy_stats.idle_errors += phy_tmp;
2545 }
2546 }
2547
2548 /* Management Stats */
2549 adapter->stats.mgptc += er32(MGTPTC);
2550 adapter->stats.mgprc += er32(MGTPRC);
2551 adapter->stats.mgpdc += er32(MGTPDC);
2552
2553 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
2554}
2555
2556static void e1000_print_link_info(struct e1000_adapter *adapter)
2557{
2558 struct net_device *netdev = adapter->netdev;
2559 struct e1000_hw *hw = &adapter->hw;
2560 u32 ctrl = er32(CTRL);
2561
2562 ndev_info(netdev,
2563 "Link is Up %d Mbps %s, Flow Control: %s\n",
2564 adapter->link_speed,
2565 (adapter->link_duplex == FULL_DUPLEX) ?
2566 "Full Duplex" : "Half Duplex",
2567 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
2568 "RX/TX" :
2569 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
2570 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
2571}
2572
2573/**
2574 * e1000_watchdog - Timer Call-back
2575 * @data: pointer to adapter cast into an unsigned long
2576 **/
2577static void e1000_watchdog(unsigned long data)
2578{
2579 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2580
2581 /* Do the rest outside of interrupt context */
2582 schedule_work(&adapter->watchdog_task);
2583
2584 /* TODO: make this use queue_delayed_work() */
2585}
2586
2587static void e1000_watchdog_task(struct work_struct *work)
2588{
2589 struct e1000_adapter *adapter = container_of(work,
2590 struct e1000_adapter, watchdog_task);
2591
2592 struct net_device *netdev = adapter->netdev;
2593 struct e1000_mac_info *mac = &adapter->hw.mac;
2594 struct e1000_ring *tx_ring = adapter->tx_ring;
2595 struct e1000_hw *hw = &adapter->hw;
2596 u32 link, tctl;
2597 s32 ret_val;
2598 int tx_pending = 0;
2599
2600 if ((netif_carrier_ok(netdev)) &&
2601 (er32(STATUS) & E1000_STATUS_LU))
2602 goto link_up;
2603
2604 ret_val = mac->ops.check_for_link(hw);
2605 if ((ret_val == E1000_ERR_PHY) &&
2606 (adapter->hw.phy.type == e1000_phy_igp_3) &&
2607 (er32(CTRL) &
2608 E1000_PHY_CTRL_GBE_DISABLE)) {
2609 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
2610 ndev_info(netdev,
2611 "Gigabit has been disabled, downgrading speed\n");
2612 }
2613
2614 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
2615 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
2616 e1000_update_mng_vlan(adapter);
2617
2618 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2619 !(er32(TXCW) & E1000_TXCW_ANE))
2620 link = adapter->hw.mac.serdes_has_link;
2621 else
2622 link = er32(STATUS) & E1000_STATUS_LU;
2623
2624 if (link) {
2625 if (!netif_carrier_ok(netdev)) {
2626 bool txb2b = 1;
2627 mac->ops.get_link_up_info(&adapter->hw,
2628 &adapter->link_speed,
2629 &adapter->link_duplex);
2630 e1000_print_link_info(adapter);
2631 /* tweak tx_queue_len according to speed/duplex
2632 * and adjust the timeout factor */
2633 netdev->tx_queue_len = adapter->tx_queue_len;
2634 adapter->tx_timeout_factor = 1;
2635 switch (adapter->link_speed) {
2636 case SPEED_10:
2637 txb2b = 0;
2638 netdev->tx_queue_len = 10;
2639 adapter->tx_timeout_factor = 14;
2640 break;
2641 case SPEED_100:
2642 txb2b = 0;
2643 netdev->tx_queue_len = 100;
2644 /* maybe add some timeout factor ? */
2645 break;
2646 }
2647
2648 /* workaround: re-program speed mode bit after
2649 * link-up event */
2650 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
2651 !txb2b) {
2652 u32 tarc0;
2653 tarc0 = er32(TARC0);
2654 tarc0 &= ~SPEED_MODE_BIT;
2655 ew32(TARC0, tarc0);
2656 }
2657
2658 /* disable TSO for pcie and 10/100 speeds, to avoid
2659 * some hardware issues */
2660 if (!(adapter->flags & FLAG_TSO_FORCE)) {
2661 switch (adapter->link_speed) {
2662 case SPEED_10:
2663 case SPEED_100:
2664 ndev_info(netdev,
2665 "10/100 speed: disabling TSO\n");
2666 netdev->features &= ~NETIF_F_TSO;
2667 netdev->features &= ~NETIF_F_TSO6;
2668 break;
2669 case SPEED_1000:
2670 netdev->features |= NETIF_F_TSO;
2671 netdev->features |= NETIF_F_TSO6;
2672 break;
2673 default:
2674 /* oops */
2675 break;
2676 }
2677 }
2678
2679 /* enable transmits in the hardware, need to do this
2680 * after setting TARC0 */
2681 tctl = er32(TCTL);
2682 tctl |= E1000_TCTL_EN;
2683 ew32(TCTL, tctl);
2684
2685 netif_carrier_on(netdev);
2686 netif_wake_queue(netdev);
2687
2688 if (!test_bit(__E1000_DOWN, &adapter->state))
2689 mod_timer(&adapter->phy_info_timer,
2690 round_jiffies(jiffies + 2 * HZ));
2691 } else {
2692 /* make sure the receive unit is started */
2693 if (adapter->flags & FLAG_RX_NEEDS_RESTART) {
2694 u32 rctl = er32(RCTL);
2695 ew32(RCTL, rctl |
2696 E1000_RCTL_EN);
2697 }
2698 }
2699 } else {
2700 if (netif_carrier_ok(netdev)) {
2701 adapter->link_speed = 0;
2702 adapter->link_duplex = 0;
2703 ndev_info(netdev, "Link is Down\n");
2704 netif_carrier_off(netdev);
2705 netif_stop_queue(netdev);
2706 if (!test_bit(__E1000_DOWN, &adapter->state))
2707 mod_timer(&adapter->phy_info_timer,
2708 round_jiffies(jiffies + 2 * HZ));
2709
2710 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
2711 schedule_work(&adapter->reset_task);
2712 }
2713 }
2714
2715link_up:
2716 e1000e_update_stats(adapter);
2717
2718 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2719 adapter->tpt_old = adapter->stats.tpt;
2720 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
2721 adapter->colc_old = adapter->stats.colc;
2722
2723 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2724 adapter->gorcl_old = adapter->stats.gorcl;
2725 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2726 adapter->gotcl_old = adapter->stats.gotcl;
2727
2728 e1000e_update_adaptive(&adapter->hw);
2729
2730 if (!netif_carrier_ok(netdev)) {
2731 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
2732 tx_ring->count);
2733 if (tx_pending) {
2734 /* We've lost link, so the controller stops DMA,
2735 * but we've got queued Tx work that's never going
2736 * to get done, so reset controller to flush Tx.
2737 * (Do the reset outside of interrupt context). */
2738 adapter->tx_timeout_count++;
2739 schedule_work(&adapter->reset_task);
2740 }
2741 }
2742
2743 /* Cause software interrupt to ensure rx ring is cleaned */
2744 ew32(ICS, E1000_ICS_RXDMT0);
2745
2746 /* Force detection of hung controller every watchdog period */
2747 adapter->detect_tx_hung = 1;
2748
2749 /* With 82571 controllers, LAA may be overwritten due to controller
2750 * reset from the other port. Set the appropriate LAA in RAR[0] */
2751 if (e1000e_get_laa_state_82571(hw))
2752 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
2753
2754 /* Reset the timer */
2755 if (!test_bit(__E1000_DOWN, &adapter->state))
2756 mod_timer(&adapter->watchdog_timer,
2757 round_jiffies(jiffies + 2 * HZ));
2758}
2759
2760#define E1000_TX_FLAGS_CSUM 0x00000001
2761#define E1000_TX_FLAGS_VLAN 0x00000002
2762#define E1000_TX_FLAGS_TSO 0x00000004
2763#define E1000_TX_FLAGS_IPV4 0x00000008
2764#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2765#define E1000_TX_FLAGS_VLAN_SHIFT 16
2766
2767static int e1000_tso(struct e1000_adapter *adapter,
2768 struct sk_buff *skb)
2769{
2770 struct e1000_ring *tx_ring = adapter->tx_ring;
2771 struct e1000_context_desc *context_desc;
2772 struct e1000_buffer *buffer_info;
2773 unsigned int i;
2774 u32 cmd_length = 0;
2775 u16 ipcse = 0, tucse, mss;
2776 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2777 int err;
2778
2779 if (skb_is_gso(skb)) {
2780 if (skb_header_cloned(skb)) {
2781 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2782 if (err)
2783 return err;
2784 }
2785
2786 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2787 mss = skb_shinfo(skb)->gso_size;
2788 if (skb->protocol == htons(ETH_P_IP)) {
2789 struct iphdr *iph = ip_hdr(skb);
2790 iph->tot_len = 0;
2791 iph->check = 0;
2792 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2793 iph->daddr, 0,
2794 IPPROTO_TCP,
2795 0);
2796 cmd_length = E1000_TXD_CMD_IP;
2797 ipcse = skb_transport_offset(skb) - 1;
2798 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
2799 ipv6_hdr(skb)->payload_len = 0;
2800 tcp_hdr(skb)->check =
2801 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2802 &ipv6_hdr(skb)->daddr,
2803 0, IPPROTO_TCP, 0);
2804 ipcse = 0;
2805 }
2806 ipcss = skb_network_offset(skb);
2807 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2808 tucss = skb_transport_offset(skb);
2809 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2810 tucse = 0;
2811
2812 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2813 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2814
2815 i = tx_ring->next_to_use;
2816 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2817 buffer_info = &tx_ring->buffer_info[i];
2818
2819 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2820 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2821 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2822 context_desc->upper_setup.tcp_fields.tucss = tucss;
2823 context_desc->upper_setup.tcp_fields.tucso = tucso;
2824 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2825 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2826 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2827 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2828
2829 buffer_info->time_stamp = jiffies;
2830 buffer_info->next_to_watch = i;
2831
2832 i++;
2833 if (i == tx_ring->count)
2834 i = 0;
2835 tx_ring->next_to_use = i;
2836
2837 return 1;
2838 }
2839
2840 return 0;
2841}
2842
2843static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
2844{
2845 struct e1000_ring *tx_ring = adapter->tx_ring;
2846 struct e1000_context_desc *context_desc;
2847 struct e1000_buffer *buffer_info;
2848 unsigned int i;
2849 u8 css;
2850
2851 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2852 css = skb_transport_offset(skb);
2853
2854 i = tx_ring->next_to_use;
2855 buffer_info = &tx_ring->buffer_info[i];
2856 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2857
2858 context_desc->lower_setup.ip_config = 0;
2859 context_desc->upper_setup.tcp_fields.tucss = css;
2860 context_desc->upper_setup.tcp_fields.tucso =
2861 css + skb->csum_offset;
2862 context_desc->upper_setup.tcp_fields.tucse = 0;
2863 context_desc->tcp_seg_setup.data = 0;
2864 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2865
2866 buffer_info->time_stamp = jiffies;
2867 buffer_info->next_to_watch = i;
2868
2869 i++;
2870 if (i == tx_ring->count)
2871 i = 0;
2872 tx_ring->next_to_use = i;
2873
2874 return 1;
2875 }
2876
2877 return 0;
2878}
2879
2880#define E1000_MAX_PER_TXD 8192
2881#define E1000_MAX_TXD_PWR 12
2882
2883static int e1000_tx_map(struct e1000_adapter *adapter,
2884 struct sk_buff *skb, unsigned int first,
2885 unsigned int max_per_txd, unsigned int nr_frags,
2886 unsigned int mss)
2887{
2888 struct e1000_ring *tx_ring = adapter->tx_ring;
2889 struct e1000_buffer *buffer_info;
2890 unsigned int len = skb->len - skb->data_len;
2891 unsigned int offset = 0, size, count = 0, i;
2892 unsigned int f;
2893
2894 i = tx_ring->next_to_use;
2895
2896 while (len) {
2897 buffer_info = &tx_ring->buffer_info[i];
2898 size = min(len, max_per_txd);
2899
2900 /* Workaround for premature desc write-backs
2901 * in TSO mode. Append 4-byte sentinel desc */
2902 if (mss && !nr_frags && size == len && size > 8)
2903 size -= 4;
2904
2905 buffer_info->length = size;
2906 /* set time_stamp *before* dma to help avoid a possible race */
2907 buffer_info->time_stamp = jiffies;
2908 buffer_info->dma =
2909 pci_map_single(adapter->pdev,
2910 skb->data + offset,
2911 size,
2912 PCI_DMA_TODEVICE);
2913 if (pci_dma_mapping_error(buffer_info->dma)) {
2914 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2915 adapter->tx_dma_failed++;
2916 return -1;
2917 }
2918 buffer_info->next_to_watch = i;
2919
2920 len -= size;
2921 offset += size;
2922 count++;
2923 i++;
2924 if (i == tx_ring->count)
2925 i = 0;
2926 }
2927
2928 for (f = 0; f < nr_frags; f++) {
2929 struct skb_frag_struct *frag;
2930
2931 frag = &skb_shinfo(skb)->frags[f];
2932 len = frag->size;
2933 offset = frag->page_offset;
2934
2935 while (len) {
2936 buffer_info = &tx_ring->buffer_info[i];
2937 size = min(len, max_per_txd);
2938 /* Workaround for premature desc write-backs
2939 * in TSO mode. Append 4-byte sentinel desc */
2940 if (mss && f == (nr_frags-1) && size == len && size > 8)
2941 size -= 4;
2942
2943 buffer_info->length = size;
2944 buffer_info->time_stamp = jiffies;
2945 buffer_info->dma =
2946 pci_map_page(adapter->pdev,
2947 frag->page,
2948 offset,
2949 size,
2950 PCI_DMA_TODEVICE);
2951 if (pci_dma_mapping_error(buffer_info->dma)) {
2952 dev_err(&adapter->pdev->dev,
2953 "TX DMA page map failed\n");
2954 adapter->tx_dma_failed++;
2955 return -1;
2956 }
2957
2958 buffer_info->next_to_watch = i;
2959
2960 len -= size;
2961 offset += size;
2962 count++;
2963
2964 i++;
2965 if (i == tx_ring->count)
2966 i = 0;
2967 }
2968 }
2969
2970 if (i == 0)
2971 i = tx_ring->count - 1;
2972 else
2973 i--;
2974
2975 tx_ring->buffer_info[i].skb = skb;
2976 tx_ring->buffer_info[first].next_to_watch = i;
2977
2978 return count;
2979}
2980
2981static void e1000_tx_queue(struct e1000_adapter *adapter,
2982 int tx_flags, int count)
2983{
2984 struct e1000_ring *tx_ring = adapter->tx_ring;
2985 struct e1000_tx_desc *tx_desc = NULL;
2986 struct e1000_buffer *buffer_info;
2987 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2988 unsigned int i;
2989
2990 if (tx_flags & E1000_TX_FLAGS_TSO) {
2991 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2992 E1000_TXD_CMD_TSE;
2993 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2994
2995 if (tx_flags & E1000_TX_FLAGS_IPV4)
2996 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2997 }
2998
2999 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3000 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3001 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3002 }
3003
3004 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3005 txd_lower |= E1000_TXD_CMD_VLE;
3006 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3007 }
3008
3009 i = tx_ring->next_to_use;
3010
3011 while (count--) {
3012 buffer_info = &tx_ring->buffer_info[i];
3013 tx_desc = E1000_TX_DESC(*tx_ring, i);
3014 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3015 tx_desc->lower.data =
3016 cpu_to_le32(txd_lower | buffer_info->length);
3017 tx_desc->upper.data = cpu_to_le32(txd_upper);
3018
3019 i++;
3020 if (i == tx_ring->count)
3021 i = 0;
3022 }
3023
3024 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3025
3026 /* Force memory writes to complete before letting h/w
3027 * know there are new descriptors to fetch. (Only
3028 * applicable for weak-ordered memory model archs,
3029 * such as IA-64). */
3030 wmb();
3031
3032 tx_ring->next_to_use = i;
3033 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3034 /* we need this if more than one processor can write to our tail
3035 * at a time, it synchronizes IO on IA64/Altix systems */
3036 mmiowb();
3037}
3038
3039#define MINIMUM_DHCP_PACKET_SIZE 282
3040static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3041 struct sk_buff *skb)
3042{
3043 struct e1000_hw *hw = &adapter->hw;
3044 u16 length, offset;
3045
3046 if (vlan_tx_tag_present(skb)) {
3047 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3048 && (adapter->hw.mng_cookie.status &
3049 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
3050 return 0;
3051 }
3052
3053 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
3054 return 0;
3055
3056 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
3057 return 0;
3058
3059 {
3060 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
3061 struct udphdr *udp;
3062
3063 if (ip->protocol != IPPROTO_UDP)
3064 return 0;
3065
3066 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
3067 if (ntohs(udp->dest) != 67)
3068 return 0;
3069
3070 offset = (u8 *)udp + 8 - skb->data;
3071 length = skb->len - offset;
3072 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
3073 }
3074
3075 return 0;
3076}
3077
3078static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3079{
3080 struct e1000_adapter *adapter = netdev_priv(netdev);
3081
3082 netif_stop_queue(netdev);
3083 /* Herbert's original patch had:
3084 * smp_mb__after_netif_stop_queue();
3085 * but since that doesn't exist yet, just open code it. */
3086 smp_mb();
3087
3088 /* We need to check again in a case another CPU has just
3089 * made room available. */
3090 if (e1000_desc_unused(adapter->tx_ring) < size)
3091 return -EBUSY;
3092
3093 /* A reprieve! */
3094 netif_start_queue(netdev);
3095 ++adapter->restart_queue;
3096 return 0;
3097}
3098
3099static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
3100{
3101 struct e1000_adapter *adapter = netdev_priv(netdev);
3102
3103 if (e1000_desc_unused(adapter->tx_ring) >= size)
3104 return 0;
3105 return __e1000_maybe_stop_tx(netdev, size);
3106}
3107
3108#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3109static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3110{
3111 struct e1000_adapter *adapter = netdev_priv(netdev);
3112 struct e1000_ring *tx_ring = adapter->tx_ring;
3113 unsigned int first;
3114 unsigned int max_per_txd = E1000_MAX_PER_TXD;
3115 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3116 unsigned int tx_flags = 0;
Auke Kok4e6c7092007-10-05 14:15:23 -07003117 unsigned int len = skb->len - skb->data_len;
Auke Kokbc7f75f2007-09-17 12:30:59 -07003118 unsigned long irq_flags;
Auke Kok4e6c7092007-10-05 14:15:23 -07003119 unsigned int nr_frags;
3120 unsigned int mss;
Auke Kokbc7f75f2007-09-17 12:30:59 -07003121 int count = 0;
3122 int tso;
3123 unsigned int f;
Auke Kokbc7f75f2007-09-17 12:30:59 -07003124
3125 if (test_bit(__E1000_DOWN, &adapter->state)) {
3126 dev_kfree_skb_any(skb);
3127 return NETDEV_TX_OK;
3128 }
3129
3130 if (skb->len <= 0) {
3131 dev_kfree_skb_any(skb);
3132 return NETDEV_TX_OK;
3133 }
3134
3135 mss = skb_shinfo(skb)->gso_size;
3136 /* The controller does a simple calculation to
3137 * make sure there is enough room in the FIFO before
3138 * initiating the DMA for each buffer. The calc is:
3139 * 4 = ceil(buffer len/mss). To make sure we don't
3140 * overrun the FIFO, adjust the max buffer len if mss
3141 * drops. */
3142 if (mss) {
3143 u8 hdr_len;
3144 max_per_txd = min(mss << 2, max_per_txd);
3145 max_txd_pwr = fls(max_per_txd) - 1;
3146
3147 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3148 * points to just header, pull a few bytes of payload from
3149 * frags into skb->data */
3150 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
Auke Kok4e6c7092007-10-05 14:15:23 -07003151 if (skb->data_len && (hdr_len == len)) {
Auke Kokbc7f75f2007-09-17 12:30:59 -07003152 unsigned int pull_size;
3153
3154 pull_size = min((unsigned int)4, skb->data_len);
3155 if (!__pskb_pull_tail(skb, pull_size)) {
3156 ndev_err(netdev,
3157 "__pskb_pull_tail failed.\n");
3158 dev_kfree_skb_any(skb);
3159 return NETDEV_TX_OK;
3160 }
3161 len = skb->len - skb->data_len;
3162 }
3163 }
3164
3165 /* reserve a descriptor for the offload context */
3166 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3167 count++;
3168 count++;
3169
3170 count += TXD_USE_COUNT(len, max_txd_pwr);
3171
3172 nr_frags = skb_shinfo(skb)->nr_frags;
3173 for (f = 0; f < nr_frags; f++)
3174 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3175 max_txd_pwr);
3176
3177 if (adapter->hw.mac.tx_pkt_filtering)
3178 e1000_transfer_dhcp_info(adapter, skb);
3179
3180 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
3181 /* Collision - tell upper layer to requeue */
3182 return NETDEV_TX_LOCKED;
3183
3184 /* need: count + 2 desc gap to keep tail from touching
3185 * head, otherwise try next time */
3186 if (e1000_maybe_stop_tx(netdev, count + 2)) {
3187 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3188 return NETDEV_TX_BUSY;
3189 }
3190
3191 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3192 tx_flags |= E1000_TX_FLAGS_VLAN;
3193 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3194 }
3195
3196 first = tx_ring->next_to_use;
3197
3198 tso = e1000_tso(adapter, skb);
3199 if (tso < 0) {
3200 dev_kfree_skb_any(skb);
3201 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3202 return NETDEV_TX_OK;
3203 }
3204
3205 if (tso)
3206 tx_flags |= E1000_TX_FLAGS_TSO;
3207 else if (e1000_tx_csum(adapter, skb))
3208 tx_flags |= E1000_TX_FLAGS_CSUM;
3209
3210 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3211 * 82571 hardware supports TSO capabilities for IPv6 as well...
3212 * no longer assume, we must. */
3213 if (skb->protocol == htons(ETH_P_IP))
3214 tx_flags |= E1000_TX_FLAGS_IPV4;
3215
3216 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
3217 if (count < 0) {
3218 /* handle pci_map_single() error in e1000_tx_map */
3219 dev_kfree_skb_any(skb);
3220 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
Krishna Kumar7b5dfe12007-09-21 09:41:15 -07003221 return NETDEV_TX_OK;
Auke Kokbc7f75f2007-09-17 12:30:59 -07003222 }
3223
3224 e1000_tx_queue(adapter, tx_flags, count);
3225
3226 netdev->trans_start = jiffies;
3227
3228 /* Make sure there is space in the ring for the next send. */
3229 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
3230
3231 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
3232 return NETDEV_TX_OK;
3233}
3234
3235/**
3236 * e1000_tx_timeout - Respond to a Tx Hang
3237 * @netdev: network interface device structure
3238 **/
3239static void e1000_tx_timeout(struct net_device *netdev)
3240{
3241 struct e1000_adapter *adapter = netdev_priv(netdev);
3242
3243 /* Do the reset outside of interrupt context */
3244 adapter->tx_timeout_count++;
3245 schedule_work(&adapter->reset_task);
3246}
3247
3248static void e1000_reset_task(struct work_struct *work)
3249{
3250 struct e1000_adapter *adapter;
3251 adapter = container_of(work, struct e1000_adapter, reset_task);
3252
3253 e1000e_reinit_locked(adapter);
3254}
3255
3256/**
3257 * e1000_get_stats - Get System Network Statistics
3258 * @netdev: network interface device structure
3259 *
3260 * Returns the address of the device statistics structure.
3261 * The statistics are actually updated from the timer callback.
3262 **/
3263static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3264{
3265 struct e1000_adapter *adapter = netdev_priv(netdev);
3266
3267 /* only return the current stats */
3268 return &adapter->net_stats;
3269}
3270
3271/**
3272 * e1000_change_mtu - Change the Maximum Transfer Unit
3273 * @netdev: network interface device structure
3274 * @new_mtu: new value for maximum frame size
3275 *
3276 * Returns 0 on success, negative on failure
3277 **/
3278static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3279{
3280 struct e1000_adapter *adapter = netdev_priv(netdev);
3281 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3282
3283 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3284 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3285 ndev_err(netdev, "Invalid MTU setting\n");
3286 return -EINVAL;
3287 }
3288
3289 /* Jumbo frame size limits */
3290 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
3291 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
3292 ndev_err(netdev, "Jumbo Frames not supported.\n");
3293 return -EINVAL;
3294 }
3295 if (adapter->hw.phy.type == e1000_phy_ife) {
3296 ndev_err(netdev, "Jumbo Frames not supported.\n");
3297 return -EINVAL;
3298 }
3299 }
3300
3301#define MAX_STD_JUMBO_FRAME_SIZE 9234
3302 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3303 ndev_err(netdev, "MTU > 9216 not supported.\n");
3304 return -EINVAL;
3305 }
3306
3307 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3308 msleep(1);
3309 /* e1000e_down has a dependency on max_frame_size */
3310 adapter->hw.mac.max_frame_size = max_frame;
3311 if (netif_running(netdev))
3312 e1000e_down(adapter);
3313
3314 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3315 * means we reserve 2 more, this pushes us to allocate from the next
3316 * larger slab size.
Auke Kokf920c182007-10-25 13:58:03 -07003317 * i.e. RXBUFFER_2048 --> size-4096 slab */
Auke Kokbc7f75f2007-09-17 12:30:59 -07003318
3319 if (max_frame <= 256)
3320 adapter->rx_buffer_len = 256;
3321 else if (max_frame <= 512)
3322 adapter->rx_buffer_len = 512;
3323 else if (max_frame <= 1024)
3324 adapter->rx_buffer_len = 1024;
3325 else if (max_frame <= 2048)
3326 adapter->rx_buffer_len = 2048;
3327 else
3328 adapter->rx_buffer_len = 4096;
3329
3330 /* adjust allocation if LPE protects us, and we aren't using SBP */
3331 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3332 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
3333 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
3334 + ETH_FCS_LEN ;
3335
3336 ndev_info(netdev, "changing MTU from %d to %d\n",
3337 netdev->mtu, new_mtu);
3338 netdev->mtu = new_mtu;
3339
3340 if (netif_running(netdev))
3341 e1000e_up(adapter);
3342 else
3343 e1000e_reset(adapter);
3344
3345 clear_bit(__E1000_RESETTING, &adapter->state);
3346
3347 return 0;
3348}
3349
3350static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
3351 int cmd)
3352{
3353 struct e1000_adapter *adapter = netdev_priv(netdev);
3354 struct mii_ioctl_data *data = if_mii(ifr);
3355 unsigned long irq_flags;
3356
3357 if (adapter->hw.media_type != e1000_media_type_copper)
3358 return -EOPNOTSUPP;
3359
3360 switch (cmd) {
3361 case SIOCGMIIPHY:
3362 data->phy_id = adapter->hw.phy.addr;
3363 break;
3364 case SIOCGMIIREG:
3365 if (!capable(CAP_NET_ADMIN))
3366 return -EPERM;
3367 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
3368 if (e1e_rphy(&adapter->hw, data->reg_num & 0x1F,
3369 &data->val_out)) {
3370 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3371 return -EIO;
3372 }
3373 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
3374 break;
3375 case SIOCSMIIREG:
3376 default:
3377 return -EOPNOTSUPP;
3378 }
3379 return 0;
3380}
3381
3382static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
3383{
3384 switch (cmd) {
3385 case SIOCGMIIPHY:
3386 case SIOCGMIIREG:
3387 case SIOCSMIIREG:
3388 return e1000_mii_ioctl(netdev, ifr, cmd);
3389 default:
3390 return -EOPNOTSUPP;
3391 }
3392}
3393
3394static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
3395{
3396 struct net_device *netdev = pci_get_drvdata(pdev);
3397 struct e1000_adapter *adapter = netdev_priv(netdev);
3398 struct e1000_hw *hw = &adapter->hw;
3399 u32 ctrl, ctrl_ext, rctl, status;
3400 u32 wufc = adapter->wol;
3401 int retval = 0;
3402
3403 netif_device_detach(netdev);
3404
3405 if (netif_running(netdev)) {
3406 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3407 e1000e_down(adapter);
3408 e1000_free_irq(adapter);
3409 }
3410
3411 retval = pci_save_state(pdev);
3412 if (retval)
3413 return retval;
3414
3415 status = er32(STATUS);
3416 if (status & E1000_STATUS_LU)
3417 wufc &= ~E1000_WUFC_LNKC;
3418
3419 if (wufc) {
3420 e1000_setup_rctl(adapter);
3421 e1000_set_multi(netdev);
3422
3423 /* turn on all-multi mode if wake on multicast is enabled */
3424 if (wufc & E1000_WUFC_MC) {
3425 rctl = er32(RCTL);
3426 rctl |= E1000_RCTL_MPE;
3427 ew32(RCTL, rctl);
3428 }
3429
3430 ctrl = er32(CTRL);
3431 /* advertise wake from D3Cold */
3432 #define E1000_CTRL_ADVD3WUC 0x00100000
3433 /* phy power management enable */
3434 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
3435 ctrl |= E1000_CTRL_ADVD3WUC |
3436 E1000_CTRL_EN_PHY_PWR_MGMT;
3437 ew32(CTRL, ctrl);
3438
3439 if (adapter->hw.media_type == e1000_media_type_fiber ||
3440 adapter->hw.media_type == e1000_media_type_internal_serdes) {
3441 /* keep the laser running in D3 */
3442 ctrl_ext = er32(CTRL_EXT);
3443 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
3444 ew32(CTRL_EXT, ctrl_ext);
3445 }
3446
3447 /* Allow time for pending master requests to run */
3448 e1000e_disable_pcie_master(&adapter->hw);
3449
3450 ew32(WUC, E1000_WUC_PME_EN);
3451 ew32(WUFC, wufc);
3452 pci_enable_wake(pdev, PCI_D3hot, 1);
3453 pci_enable_wake(pdev, PCI_D3cold, 1);
3454 } else {
3455 ew32(WUC, 0);
3456 ew32(WUFC, 0);
3457 pci_enable_wake(pdev, PCI_D3hot, 0);
3458 pci_enable_wake(pdev, PCI_D3cold, 0);
3459 }
3460
Auke Kokbc7f75f2007-09-17 12:30:59 -07003461 /* make sure adapter isn't asleep if manageability is enabled */
3462 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
3463 pci_enable_wake(pdev, PCI_D3hot, 1);
3464 pci_enable_wake(pdev, PCI_D3cold, 1);
3465 }
3466
3467 if (adapter->hw.phy.type == e1000_phy_igp_3)
3468 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
3469
3470 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3471 * would have already happened in close and is redundant. */
3472 e1000_release_hw_control(adapter);
3473
3474 pci_disable_device(pdev);
3475
3476 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3477
3478 return 0;
3479}
3480
Auke Kok1eae4eb2007-10-31 15:22:00 -07003481static void e1000e_disable_l1aspm(struct pci_dev *pdev)
3482{
3483 int pos;
Auke Kok1eae4eb2007-10-31 15:22:00 -07003484 u16 val;
3485
3486 /*
3487 * 82573 workaround - disable L1 ASPM on mobile chipsets
3488 *
3489 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
3490 * resulting in lost data or garbage information on the pci-e link
3491 * level. This could result in (false) bad EEPROM checksum errors,
3492 * long ping times (up to 2s) or even a system freeze/hang.
3493 *
3494 * Unfortunately this feature saves about 1W power consumption when
3495 * active.
3496 */
3497 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
Auke Kok1eae4eb2007-10-31 15:22:00 -07003498 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
3499 if (val & 0x2) {
3500 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
3501 val &= ~0x2;
3502 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
3503 }
3504}
3505
Auke Kokbc7f75f2007-09-17 12:30:59 -07003506#ifdef CONFIG_PM
3507static int e1000_resume(struct pci_dev *pdev)
3508{
3509 struct net_device *netdev = pci_get_drvdata(pdev);
3510 struct e1000_adapter *adapter = netdev_priv(netdev);
3511 struct e1000_hw *hw = &adapter->hw;
3512 u32 err;
3513
3514 pci_set_power_state(pdev, PCI_D0);
3515 pci_restore_state(pdev);
Auke Kok1eae4eb2007-10-31 15:22:00 -07003516 e1000e_disable_l1aspm(pdev);
Auke Kokbc7f75f2007-09-17 12:30:59 -07003517 err = pci_enable_device(pdev);
3518 if (err) {
3519 dev_err(&pdev->dev,
3520 "Cannot enable PCI device from suspend\n");
3521 return err;
3522 }
3523
3524 pci_set_master(pdev);
3525
3526 pci_enable_wake(pdev, PCI_D3hot, 0);
3527 pci_enable_wake(pdev, PCI_D3cold, 0);
3528
3529 if (netif_running(netdev)) {
3530 err = e1000_request_irq(adapter);
3531 if (err)
3532 return err;
3533 }
3534
3535 e1000e_power_up_phy(adapter);
3536 e1000e_reset(adapter);
3537 ew32(WUS, ~0);
3538
3539 e1000_init_manageability(adapter);
3540
3541 if (netif_running(netdev))
3542 e1000e_up(adapter);
3543
3544 netif_device_attach(netdev);
3545
3546 /* If the controller has AMT, do not set DRV_LOAD until the interface
3547 * is up. For all other cases, let the f/w know that the h/w is now
3548 * under the control of the driver. */
3549 if (!(adapter->flags & FLAG_HAS_AMT) || !e1000e_check_mng_mode(&adapter->hw))
3550 e1000_get_hw_control(adapter);
3551
3552 return 0;
3553}
3554#endif
3555
3556static void e1000_shutdown(struct pci_dev *pdev)
3557{
3558 e1000_suspend(pdev, PMSG_SUSPEND);
3559}
3560
3561#ifdef CONFIG_NET_POLL_CONTROLLER
3562/*
3563 * Polling 'interrupt' - used by things like netconsole to send skbs
3564 * without having to re-enable interrupts. It's not called while
3565 * the interrupt routine is executing.
3566 */
3567static void e1000_netpoll(struct net_device *netdev)
3568{
3569 struct e1000_adapter *adapter = netdev_priv(netdev);
3570
3571 disable_irq(adapter->pdev->irq);
3572 e1000_intr(adapter->pdev->irq, netdev);
3573
3574 e1000_clean_tx_irq(adapter);
3575
3576 enable_irq(adapter->pdev->irq);
3577}
3578#endif
3579
3580/**
3581 * e1000_io_error_detected - called when PCI error is detected
3582 * @pdev: Pointer to PCI device
3583 * @state: The current pci connection state
3584 *
3585 * This function is called after a PCI bus error affecting
3586 * this device has been detected.
3587 */
3588static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
3589 pci_channel_state_t state)
3590{
3591 struct net_device *netdev = pci_get_drvdata(pdev);
3592 struct e1000_adapter *adapter = netdev_priv(netdev);
3593
3594 netif_device_detach(netdev);
3595
3596 if (netif_running(netdev))
3597 e1000e_down(adapter);
3598 pci_disable_device(pdev);
3599
3600 /* Request a slot slot reset. */
3601 return PCI_ERS_RESULT_NEED_RESET;
3602}
3603
3604/**
3605 * e1000_io_slot_reset - called after the pci bus has been reset.
3606 * @pdev: Pointer to PCI device
3607 *
3608 * Restart the card from scratch, as if from a cold-boot. Implementation
3609 * resembles the first-half of the e1000_resume routine.
3610 */
3611static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
3612{
3613 struct net_device *netdev = pci_get_drvdata(pdev);
3614 struct e1000_adapter *adapter = netdev_priv(netdev);
3615 struct e1000_hw *hw = &adapter->hw;
3616
Auke Kok1eae4eb2007-10-31 15:22:00 -07003617 e1000e_disable_l1aspm(pdev);
Auke Kokbc7f75f2007-09-17 12:30:59 -07003618 if (pci_enable_device(pdev)) {
3619 dev_err(&pdev->dev,
3620 "Cannot re-enable PCI device after reset.\n");
3621 return PCI_ERS_RESULT_DISCONNECT;
3622 }
3623 pci_set_master(pdev);
3624
3625 pci_enable_wake(pdev, PCI_D3hot, 0);
3626 pci_enable_wake(pdev, PCI_D3cold, 0);
3627
3628 e1000e_reset(adapter);
3629 ew32(WUS, ~0);
3630
3631 return PCI_ERS_RESULT_RECOVERED;
3632}
3633
3634/**
3635 * e1000_io_resume - called when traffic can start flowing again.
3636 * @pdev: Pointer to PCI device
3637 *
3638 * This callback is called when the error recovery driver tells us that
3639 * its OK to resume normal operation. Implementation resembles the
3640 * second-half of the e1000_resume routine.
3641 */
3642static void e1000_io_resume(struct pci_dev *pdev)
3643{
3644 struct net_device *netdev = pci_get_drvdata(pdev);
3645 struct e1000_adapter *adapter = netdev_priv(netdev);
3646
3647 e1000_init_manageability(adapter);
3648
3649 if (netif_running(netdev)) {
3650 if (e1000e_up(adapter)) {
3651 dev_err(&pdev->dev,
3652 "can't bring device back up after reset\n");
3653 return;
3654 }
3655 }
3656
3657 netif_device_attach(netdev);
3658
3659 /* If the controller has AMT, do not set DRV_LOAD until the interface
3660 * is up. For all other cases, let the f/w know that the h/w is now
3661 * under the control of the driver. */
3662 if (!(adapter->flags & FLAG_HAS_AMT) ||
3663 !e1000e_check_mng_mode(&adapter->hw))
3664 e1000_get_hw_control(adapter);
3665
3666}
3667
3668static void e1000_print_device_info(struct e1000_adapter *adapter)
3669{
3670 struct e1000_hw *hw = &adapter->hw;
3671 struct net_device *netdev = adapter->netdev;
3672 u32 part_num;
3673
3674 /* print bus type/speed/width info */
3675 ndev_info(netdev, "(PCI Express:2.5GB/s:%s) "
3676 "%02x:%02x:%02x:%02x:%02x:%02x\n",
3677 /* bus width */
3678 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
3679 "Width x1"),
3680 /* MAC address */
3681 netdev->dev_addr[0], netdev->dev_addr[1],
3682 netdev->dev_addr[2], netdev->dev_addr[3],
3683 netdev->dev_addr[4], netdev->dev_addr[5]);
3684 ndev_info(netdev, "Intel(R) PRO/%s Network Connection\n",
3685 (hw->phy.type == e1000_phy_ife)
3686 ? "10/100" : "1000");
3687 e1000e_read_part_num(hw, &part_num);
3688 ndev_info(netdev, "MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
3689 hw->mac.type, hw->phy.type,
3690 (part_num >> 8), (part_num & 0xff));
3691}
3692
3693/**
3694 * e1000_probe - Device Initialization Routine
3695 * @pdev: PCI device information struct
3696 * @ent: entry in e1000_pci_tbl
3697 *
3698 * Returns 0 on success, negative on failure
3699 *
3700 * e1000_probe initializes an adapter identified by a pci_dev structure.
3701 * The OS initialization, configuring of the adapter private structure,
3702 * and a hardware reset occur.
3703 **/
3704static int __devinit e1000_probe(struct pci_dev *pdev,
3705 const struct pci_device_id *ent)
3706{
3707 struct net_device *netdev;
3708 struct e1000_adapter *adapter;
3709 struct e1000_hw *hw;
3710 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
3711 unsigned long mmio_start, mmio_len;
3712 unsigned long flash_start, flash_len;
3713
3714 static int cards_found;
3715 int i, err, pci_using_dac;
3716 u16 eeprom_data = 0;
3717 u16 eeprom_apme_mask = E1000_EEPROM_APME;
3718
Auke Kok1eae4eb2007-10-31 15:22:00 -07003719 e1000e_disable_l1aspm(pdev);
Auke Kokbc7f75f2007-09-17 12:30:59 -07003720 err = pci_enable_device(pdev);
3721 if (err)
3722 return err;
3723
3724 pci_using_dac = 0;
3725 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
3726 if (!err) {
3727 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3728 if (!err)
3729 pci_using_dac = 1;
3730 } else {
3731 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3732 if (err) {
3733 err = pci_set_consistent_dma_mask(pdev,
3734 DMA_32BIT_MASK);
3735 if (err) {
3736 dev_err(&pdev->dev, "No usable DMA "
3737 "configuration, aborting\n");
3738 goto err_dma;
3739 }
3740 }
3741 }
3742
3743 err = pci_request_regions(pdev, e1000e_driver_name);
3744 if (err)
3745 goto err_pci_reg;
3746
3747 pci_set_master(pdev);
3748
3749 err = -ENOMEM;
3750 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
3751 if (!netdev)
3752 goto err_alloc_etherdev;
3753
Auke Kokbc7f75f2007-09-17 12:30:59 -07003754 SET_NETDEV_DEV(netdev, &pdev->dev);
3755
3756 pci_set_drvdata(pdev, netdev);
3757 adapter = netdev_priv(netdev);
3758 hw = &adapter->hw;
3759 adapter->netdev = netdev;
3760 adapter->pdev = pdev;
3761 adapter->ei = ei;
3762 adapter->pba = ei->pba;
3763 adapter->flags = ei->flags;
3764 adapter->hw.adapter = adapter;
3765 adapter->hw.mac.type = ei->mac;
3766 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
3767
3768 mmio_start = pci_resource_start(pdev, 0);
3769 mmio_len = pci_resource_len(pdev, 0);
3770
3771 err = -EIO;
3772 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
3773 if (!adapter->hw.hw_addr)
3774 goto err_ioremap;
3775
3776 if ((adapter->flags & FLAG_HAS_FLASH) &&
3777 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
3778 flash_start = pci_resource_start(pdev, 1);
3779 flash_len = pci_resource_len(pdev, 1);
3780 adapter->hw.flash_address = ioremap(flash_start, flash_len);
3781 if (!adapter->hw.flash_address)
3782 goto err_flashmap;
3783 }
3784
3785 /* construct the net_device struct */
3786 netdev->open = &e1000_open;
3787 netdev->stop = &e1000_close;
3788 netdev->hard_start_xmit = &e1000_xmit_frame;
3789 netdev->get_stats = &e1000_get_stats;
3790 netdev->set_multicast_list = &e1000_set_multi;
3791 netdev->set_mac_address = &e1000_set_mac;
3792 netdev->change_mtu = &e1000_change_mtu;
3793 netdev->do_ioctl = &e1000_ioctl;
3794 e1000e_set_ethtool_ops(netdev);
3795 netdev->tx_timeout = &e1000_tx_timeout;
3796 netdev->watchdog_timeo = 5 * HZ;
3797 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
3798 netdev->vlan_rx_register = e1000_vlan_rx_register;
3799 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
3800 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
3801#ifdef CONFIG_NET_POLL_CONTROLLER
3802 netdev->poll_controller = e1000_netpoll;
3803#endif
3804 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3805
3806 netdev->mem_start = mmio_start;
3807 netdev->mem_end = mmio_start + mmio_len;
3808
3809 adapter->bd_number = cards_found++;
3810
3811 /* setup adapter struct */
3812 err = e1000_sw_init(adapter);
3813 if (err)
3814 goto err_sw_init;
3815
3816 err = -EIO;
3817
3818 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3819 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3820 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3821
3822 err = ei->get_invariants(adapter);
3823 if (err)
3824 goto err_hw_init;
3825
3826 hw->mac.ops.get_bus_info(&adapter->hw);
3827
3828 adapter->hw.phy.wait_for_link = 0;
3829
3830 /* Copper options */
3831 if (adapter->hw.media_type == e1000_media_type_copper) {
3832 adapter->hw.phy.mdix = AUTO_ALL_MODES;
3833 adapter->hw.phy.disable_polarity_correction = 0;
3834 adapter->hw.phy.ms_type = e1000_ms_hw_default;
3835 }
3836
3837 if (e1000_check_reset_block(&adapter->hw))
3838 ndev_info(netdev,
3839 "PHY reset is blocked due to SOL/IDER session.\n");
3840
3841 netdev->features = NETIF_F_SG |
3842 NETIF_F_HW_CSUM |
3843 NETIF_F_HW_VLAN_TX |
3844 NETIF_F_HW_VLAN_RX;
3845
3846 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
3847 netdev->features |= NETIF_F_HW_VLAN_FILTER;
3848
3849 netdev->features |= NETIF_F_TSO;
3850 netdev->features |= NETIF_F_TSO6;
3851
3852 if (pci_using_dac)
3853 netdev->features |= NETIF_F_HIGHDMA;
3854
3855 /* We should not be using LLTX anymore, but we are still TX faster with
3856 * it. */
3857 netdev->features |= NETIF_F_LLTX;
3858
3859 if (e1000e_enable_mng_pass_thru(&adapter->hw))
3860 adapter->flags |= FLAG_MNG_PT_ENABLED;
3861
3862 /* before reading the NVM, reset the controller to
3863 * put the device in a known good starting state */
3864 adapter->hw.mac.ops.reset_hw(&adapter->hw);
3865
3866 /*
3867 * systems with ASPM and others may see the checksum fail on the first
3868 * attempt. Let's give it a few tries
3869 */
3870 for (i = 0;; i++) {
3871 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
3872 break;
3873 if (i == 2) {
3874 ndev_err(netdev, "The NVM Checksum Is Not Valid\n");
3875 err = -EIO;
3876 goto err_eeprom;
3877 }
3878 }
3879
3880 /* copy the MAC address out of the NVM */
3881 if (e1000e_read_mac_addr(&adapter->hw))
3882 ndev_err(netdev, "NVM Read Error while reading MAC address\n");
3883
3884 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3885 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3886
3887 if (!is_valid_ether_addr(netdev->perm_addr)) {
3888 ndev_err(netdev, "Invalid MAC Address: "
3889 "%02x:%02x:%02x:%02x:%02x:%02x\n",
3890 netdev->perm_addr[0], netdev->perm_addr[1],
3891 netdev->perm_addr[2], netdev->perm_addr[3],
3892 netdev->perm_addr[4], netdev->perm_addr[5]);
3893 err = -EIO;
3894 goto err_eeprom;
3895 }
3896
3897 init_timer(&adapter->watchdog_timer);
3898 adapter->watchdog_timer.function = &e1000_watchdog;
3899 adapter->watchdog_timer.data = (unsigned long) adapter;
3900
3901 init_timer(&adapter->phy_info_timer);
3902 adapter->phy_info_timer.function = &e1000_update_phy_info;
3903 adapter->phy_info_timer.data = (unsigned long) adapter;
3904
3905 INIT_WORK(&adapter->reset_task, e1000_reset_task);
3906 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
3907
3908 e1000e_check_options(adapter);
3909
3910 /* Initialize link parameters. User can change them with ethtool */
3911 adapter->hw.mac.autoneg = 1;
Auke Kok309af402007-10-05 15:22:02 -07003912 adapter->fc_autoneg = 1;
Auke Kokbc7f75f2007-09-17 12:30:59 -07003913 adapter->hw.mac.original_fc = e1000_fc_default;
3914 adapter->hw.mac.fc = e1000_fc_default;
3915 adapter->hw.phy.autoneg_advertised = 0x2f;
3916
3917 /* ring size defaults */
3918 adapter->rx_ring->count = 256;
3919 adapter->tx_ring->count = 256;
3920
3921 /*
3922 * Initial Wake on LAN setting - If APM wake is enabled in
3923 * the EEPROM, enable the ACPI Magic Packet filter
3924 */
3925 if (adapter->flags & FLAG_APME_IN_WUC) {
3926 /* APME bit in EEPROM is mapped to WUC.APME */
3927 eeprom_data = er32(WUC);
3928 eeprom_apme_mask = E1000_WUC_APME;
3929 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
3930 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
3931 (adapter->hw.bus.func == 1))
3932 e1000_read_nvm(&adapter->hw,
3933 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3934 else
3935 e1000_read_nvm(&adapter->hw,
3936 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
3937 }
3938
3939 /* fetch WoL from EEPROM */
3940 if (eeprom_data & eeprom_apme_mask)
3941 adapter->eeprom_wol |= E1000_WUFC_MAG;
3942
3943 /*
3944 * now that we have the eeprom settings, apply the special cases
3945 * where the eeprom may be wrong or the board simply won't support
3946 * wake on lan on a particular port
3947 */
3948 if (!(adapter->flags & FLAG_HAS_WOL))
3949 adapter->eeprom_wol = 0;
3950
3951 /* initialize the wol settings based on the eeprom settings */
3952 adapter->wol = adapter->eeprom_wol;
3953
3954 /* reset the hardware with the new settings */
3955 e1000e_reset(adapter);
3956
3957 /* If the controller has AMT, do not set DRV_LOAD until the interface
3958 * is up. For all other cases, let the f/w know that the h/w is now
3959 * under the control of the driver. */
3960 if (!(adapter->flags & FLAG_HAS_AMT) ||
3961 !e1000e_check_mng_mode(&adapter->hw))
3962 e1000_get_hw_control(adapter);
3963
3964 /* tell the stack to leave us alone until e1000_open() is called */
3965 netif_carrier_off(netdev);
3966 netif_stop_queue(netdev);
3967
3968 strcpy(netdev->name, "eth%d");
3969 err = register_netdev(netdev);
3970 if (err)
3971 goto err_register;
3972
3973 e1000_print_device_info(adapter);
3974
3975 return 0;
3976
3977err_register:
3978err_hw_init:
3979 e1000_release_hw_control(adapter);
3980err_eeprom:
3981 if (!e1000_check_reset_block(&adapter->hw))
3982 e1000_phy_hw_reset(&adapter->hw);
3983
3984 if (adapter->hw.flash_address)
3985 iounmap(adapter->hw.flash_address);
3986
3987err_flashmap:
3988 kfree(adapter->tx_ring);
3989 kfree(adapter->rx_ring);
3990err_sw_init:
3991 iounmap(adapter->hw.hw_addr);
3992err_ioremap:
3993 free_netdev(netdev);
3994err_alloc_etherdev:
3995 pci_release_regions(pdev);
3996err_pci_reg:
3997err_dma:
3998 pci_disable_device(pdev);
3999 return err;
4000}
4001
4002/**
4003 * e1000_remove - Device Removal Routine
4004 * @pdev: PCI device information struct
4005 *
4006 * e1000_remove is called by the PCI subsystem to alert the driver
4007 * that it should release a PCI device. The could be caused by a
4008 * Hot-Plug event, or because the driver is going to be removed from
4009 * memory.
4010 **/
4011static void __devexit e1000_remove(struct pci_dev *pdev)
4012{
4013 struct net_device *netdev = pci_get_drvdata(pdev);
4014 struct e1000_adapter *adapter = netdev_priv(netdev);
4015
4016 /* flush_scheduled work may reschedule our watchdog task, so
4017 * explicitly disable watchdog tasks from being rescheduled */
4018 set_bit(__E1000_DOWN, &adapter->state);
4019 del_timer_sync(&adapter->watchdog_timer);
4020 del_timer_sync(&adapter->phy_info_timer);
4021
4022 flush_scheduled_work();
4023
Auke Kokbc7f75f2007-09-17 12:30:59 -07004024 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4025 * would have already happened in close and is redundant. */
4026 e1000_release_hw_control(adapter);
4027
4028 unregister_netdev(netdev);
4029
4030 if (!e1000_check_reset_block(&adapter->hw))
4031 e1000_phy_hw_reset(&adapter->hw);
4032
4033 kfree(adapter->tx_ring);
4034 kfree(adapter->rx_ring);
4035
4036 iounmap(adapter->hw.hw_addr);
4037 if (adapter->hw.flash_address)
4038 iounmap(adapter->hw.flash_address);
4039 pci_release_regions(pdev);
4040
4041 free_netdev(netdev);
4042
4043 pci_disable_device(pdev);
4044}
4045
4046/* PCI Error Recovery (ERS) */
4047static struct pci_error_handlers e1000_err_handler = {
4048 .error_detected = e1000_io_error_detected,
4049 .slot_reset = e1000_io_slot_reset,
4050 .resume = e1000_io_resume,
4051};
4052
4053static struct pci_device_id e1000_pci_tbl[] = {
Auke Kokbc7f75f2007-09-17 12:30:59 -07004054 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
4055 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
4056 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
4057 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
4058 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
4059 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
Auke Kok040babf2007-10-31 15:22:05 -07004060 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
4061 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
4062 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
Auke Kokbc7f75f2007-09-17 12:30:59 -07004063 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
4064 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
4065 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
4066 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
4067 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
4068 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
4069 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
4070 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
4071 board_80003es2lan },
4072 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
4073 board_80003es2lan },
4074 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
4075 board_80003es2lan },
4076 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
4077 board_80003es2lan },
4078 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
4079 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
4080 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
4081 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
4082 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
4083 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
4084 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
Auke Kokbc7f75f2007-09-17 12:30:59 -07004085 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
4086 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
4087 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
4088 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
4089 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
4090
4091 { } /* terminate list */
4092};
4093MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
4094
4095/* PCI Device API Driver */
4096static struct pci_driver e1000_driver = {
4097 .name = e1000e_driver_name,
4098 .id_table = e1000_pci_tbl,
4099 .probe = e1000_probe,
4100 .remove = __devexit_p(e1000_remove),
4101#ifdef CONFIG_PM
4102 /* Power Managment Hooks */
4103 .suspend = e1000_suspend,
4104 .resume = e1000_resume,
4105#endif
4106 .shutdown = e1000_shutdown,
4107 .err_handler = &e1000_err_handler
4108};
4109
4110/**
4111 * e1000_init_module - Driver Registration Routine
4112 *
4113 * e1000_init_module is the first routine called when the driver is
4114 * loaded. All it does is register with the PCI subsystem.
4115 **/
4116static int __init e1000_init_module(void)
4117{
4118 int ret;
4119 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
4120 e1000e_driver_name, e1000e_driver_version);
4121 printk(KERN_INFO "%s: Copyright (c) 1999-2007 Intel Corporation.\n",
4122 e1000e_driver_name);
4123 ret = pci_register_driver(&e1000_driver);
4124
4125 return ret;
4126}
4127module_init(e1000_init_module);
4128
4129/**
4130 * e1000_exit_module - Driver Exit Cleanup Routine
4131 *
4132 * e1000_exit_module is called just before the driver is removed
4133 * from memory.
4134 **/
4135static void __exit e1000_exit_module(void)
4136{
4137 pci_unregister_driver(&e1000_driver);
4138}
4139module_exit(e1000_exit_module);
4140
4141
4142MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
4143MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
4144MODULE_LICENSE("GPL");
4145MODULE_VERSION(DRV_VERSION);
4146
4147/* e1000_main.c */