blob: 6445d2cb132246b74e3a5e8fdf3c4e713af1b528 [file] [log] [blame]
Ron Mercerc4e84bd2008-09-18 11:56:28 -04001/*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8#include <linux/kernel.h>
9#include <linux/init.h>
10#include <linux/types.h>
11#include <linux/module.h>
12#include <linux/list.h>
13#include <linux/pci.h>
14#include <linux/dma-mapping.h>
15#include <linux/pagemap.h>
16#include <linux/sched.h>
17#include <linux/slab.h>
18#include <linux/dmapool.h>
19#include <linux/mempool.h>
20#include <linux/spinlock.h>
21#include <linux/kthread.h>
22#include <linux/interrupt.h>
23#include <linux/errno.h>
24#include <linux/ioport.h>
25#include <linux/in.h>
26#include <linux/ip.h>
27#include <linux/ipv6.h>
28#include <net/ipv6.h>
29#include <linux/tcp.h>
30#include <linux/udp.h>
31#include <linux/if_arp.h>
32#include <linux/if_ether.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/ethtool.h>
36#include <linux/skbuff.h>
37#include <linux/rtnetlink.h>
38#include <linux/if_vlan.h>
Ron Mercerc4e84bd2008-09-18 11:56:28 -040039#include <linux/delay.h>
40#include <linux/mm.h>
41#include <linux/vmalloc.h>
Kamalesh Babulalb7c6bfb2008-10-13 18:41:01 -070042#include <net/ip6_checksum.h>
Ron Mercerc4e84bd2008-09-18 11:56:28 -040043
44#include "qlge.h"
45
46char qlge_driver_name[] = DRV_NAME;
47const char qlge_driver_version[] = DRV_VERSION;
48
49MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50MODULE_DESCRIPTION(DRV_STRING " ");
51MODULE_LICENSE("GPL");
52MODULE_VERSION(DRV_VERSION);
53
54static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56/* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 NETIF_MSG_TX_QUEUED |
62 NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
63/* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66static int debug = 0x00007fff; /* defaults above */
67module_param(debug, int, 0);
68MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70#define MSIX_IRQ 0
71#define MSI_IRQ 1
72#define LEG_IRQ 2
73static int irq_type = MSIX_IRQ;
74module_param(irq_type, int, MSIX_IRQ);
75MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
79 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID1)},
80 /* required last entry */
81 {0,}
82};
83
84MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
85
86/* This hardware semaphore causes exclusive access to
87 * resources shared between the NIC driver, MPI firmware,
88 * FCOE firmware and the FC driver.
89 */
90static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
91{
92 u32 sem_bits = 0;
93
94 switch (sem_mask) {
95 case SEM_XGMAC0_MASK:
96 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
97 break;
98 case SEM_XGMAC1_MASK:
99 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
100 break;
101 case SEM_ICB_MASK:
102 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103 break;
104 case SEM_MAC_ADDR_MASK:
105 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
106 break;
107 case SEM_FLASH_MASK:
108 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
109 break;
110 case SEM_PROBE_MASK:
111 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112 break;
113 case SEM_RT_IDX_MASK:
114 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115 break;
116 case SEM_PROC_REG_MASK:
117 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
118 break;
119 default:
120 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
121 return -EINVAL;
122 }
123
124 ql_write32(qdev, SEM, sem_bits | sem_mask);
125 return !(ql_read32(qdev, SEM) & sem_bits);
126}
127
128int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
129{
130 unsigned int seconds = 3;
131 do {
132 if (!ql_sem_trylock(qdev, sem_mask))
133 return 0;
134 ssleep(1);
135 } while (--seconds);
136 return -ETIMEDOUT;
137}
138
139void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
140{
141 ql_write32(qdev, SEM, sem_mask);
142 ql_read32(qdev, SEM); /* flush */
143}
144
145/* This function waits for a specific bit to come ready
146 * in a given register. It is used mostly by the initialize
147 * process, but is also used in kernel thread API such as
148 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
149 */
150int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
151{
152 u32 temp;
153 int count = UDELAY_COUNT;
154
155 while (count) {
156 temp = ql_read32(qdev, reg);
157
158 /* check for errors */
159 if (temp & err_bit) {
160 QPRINTK(qdev, PROBE, ALERT,
161 "register 0x%.08x access error, value = 0x%.08x!.\n",
162 reg, temp);
163 return -EIO;
164 } else if (temp & bit)
165 return 0;
166 udelay(UDELAY_DELAY);
167 count--;
168 }
169 QPRINTK(qdev, PROBE, ALERT,
170 "Timed out waiting for reg %x to come ready.\n", reg);
171 return -ETIMEDOUT;
172}
173
174/* The CFG register is used to download TX and RX control blocks
175 * to the chip. This function waits for an operation to complete.
176 */
177static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
178{
179 int count = UDELAY_COUNT;
180 u32 temp;
181
182 while (count) {
183 temp = ql_read32(qdev, CFG);
184 if (temp & CFG_LE)
185 return -EIO;
186 if (!(temp & bit))
187 return 0;
188 udelay(UDELAY_DELAY);
189 count--;
190 }
191 return -ETIMEDOUT;
192}
193
194
195/* Used to issue init control blocks to hw. Maps control block,
196 * sets address, triggers download, waits for completion.
197 */
198int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
199 u16 q_id)
200{
201 u64 map;
202 int status = 0;
203 int direction;
204 u32 mask;
205 u32 value;
206
207 direction =
208 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
209 PCI_DMA_FROMDEVICE;
210
211 map = pci_map_single(qdev->pdev, ptr, size, direction);
212 if (pci_dma_mapping_error(qdev->pdev, map)) {
213 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
214 return -ENOMEM;
215 }
216
217 status = ql_wait_cfg(qdev, bit);
218 if (status) {
219 QPRINTK(qdev, IFUP, ERR,
220 "Timed out waiting for CFG to come ready.\n");
221 goto exit;
222 }
223
224 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
225 if (status)
226 goto exit;
227 ql_write32(qdev, ICB_L, (u32) map);
228 ql_write32(qdev, ICB_H, (u32) (map >> 32));
229 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
230
231 mask = CFG_Q_MASK | (bit << 16);
232 value = bit | (q_id << CFG_Q_SHIFT);
233 ql_write32(qdev, CFG, (mask | value));
234
235 /*
236 * Wait for the bit to clear after signaling hw.
237 */
238 status = ql_wait_cfg(qdev, bit);
239exit:
240 pci_unmap_single(qdev->pdev, map, size, direction);
241 return status;
242}
243
244/* Get a specific MAC address from the CAM. Used for debug and reg dump. */
245int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
246 u32 *value)
247{
248 u32 offset = 0;
249 int status;
250
251 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
252 if (status)
253 return status;
254 switch (type) {
255 case MAC_ADDR_TYPE_MULTI_MAC:
256 case MAC_ADDR_TYPE_CAM_MAC:
257 {
258 status =
259 ql_wait_reg_rdy(qdev,
260 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
261 if (status)
262 goto exit;
263 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
264 (index << MAC_ADDR_IDX_SHIFT) | /* index */
265 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
266 status =
267 ql_wait_reg_rdy(qdev,
268 MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
269 if (status)
270 goto exit;
271 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
272 status =
273 ql_wait_reg_rdy(qdev,
274 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
275 if (status)
276 goto exit;
277 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
278 (index << MAC_ADDR_IDX_SHIFT) | /* index */
279 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
280 status =
281 ql_wait_reg_rdy(qdev,
282 MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
283 if (status)
284 goto exit;
285 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
286 if (type == MAC_ADDR_TYPE_CAM_MAC) {
287 status =
288 ql_wait_reg_rdy(qdev,
289 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
290 if (status)
291 goto exit;
292 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293 (index << MAC_ADDR_IDX_SHIFT) | /* index */
294 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295 status =
296 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
297 MAC_ADDR_MR, MAC_ADDR_E);
298 if (status)
299 goto exit;
300 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301 }
302 break;
303 }
304 case MAC_ADDR_TYPE_VLAN:
305 case MAC_ADDR_TYPE_MULTI_FLTR:
306 default:
307 QPRINTK(qdev, IFUP, CRIT,
308 "Address type %d not yet supported.\n", type);
309 status = -EPERM;
310 }
311exit:
312 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
313 return status;
314}
315
316/* Set up a MAC, multicast or VLAN address for the
317 * inbound frame matching.
318 */
319static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
320 u16 index)
321{
322 u32 offset = 0;
323 int status = 0;
324
325 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
326 if (status)
327 return status;
328 switch (type) {
329 case MAC_ADDR_TYPE_MULTI_MAC:
330 case MAC_ADDR_TYPE_CAM_MAC:
331 {
332 u32 cam_output;
333 u32 upper = (addr[0] << 8) | addr[1];
334 u32 lower =
335 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
336 (addr[5]);
337
338 QPRINTK(qdev, IFUP, INFO,
Johannes Berg7c510e42008-10-27 17:47:26 -0700339 "Adding %s address %pM"
Ron Mercerc4e84bd2008-09-18 11:56:28 -0400340 " at index %d in the CAM.\n",
341 ((type ==
342 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
Johannes Berg7c510e42008-10-27 17:47:26 -0700343 "UNICAST"), addr, index);
Ron Mercerc4e84bd2008-09-18 11:56:28 -0400344
345 status =
346 ql_wait_reg_rdy(qdev,
347 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
348 if (status)
349 goto exit;
350 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
351 (index << MAC_ADDR_IDX_SHIFT) | /* index */
352 type); /* type */
353 ql_write32(qdev, MAC_ADDR_DATA, lower);
354 status =
355 ql_wait_reg_rdy(qdev,
356 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
357 if (status)
358 goto exit;
359 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
360 (index << MAC_ADDR_IDX_SHIFT) | /* index */
361 type); /* type */
362 ql_write32(qdev, MAC_ADDR_DATA, upper);
363 status =
364 ql_wait_reg_rdy(qdev,
365 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
366 if (status)
367 goto exit;
368 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
369 (index << MAC_ADDR_IDX_SHIFT) | /* index */
370 type); /* type */
371 /* This field should also include the queue id
372 and possibly the function id. Right now we hardcode
373 the route field to NIC core.
374 */
375 if (type == MAC_ADDR_TYPE_CAM_MAC) {
376 cam_output = (CAM_OUT_ROUTE_NIC |
377 (qdev->
378 func << CAM_OUT_FUNC_SHIFT) |
379 (qdev->
380 rss_ring_first_cq_id <<
381 CAM_OUT_CQ_ID_SHIFT));
382 if (qdev->vlgrp)
383 cam_output |= CAM_OUT_RV;
384 /* route to NIC core */
385 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
386 }
387 break;
388 }
389 case MAC_ADDR_TYPE_VLAN:
390 {
391 u32 enable_bit = *((u32 *) &addr[0]);
392 /* For VLAN, the addr actually holds a bit that
393 * either enables or disables the vlan id we are
394 * addressing. It's either MAC_ADDR_E on or off.
395 * That's bit-27 we're talking about.
396 */
397 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
398 (enable_bit ? "Adding" : "Removing"),
399 index, (enable_bit ? "to" : "from"));
400
401 status =
402 ql_wait_reg_rdy(qdev,
403 MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
404 if (status)
405 goto exit;
406 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
407 (index << MAC_ADDR_IDX_SHIFT) | /* index */
408 type | /* type */
409 enable_bit); /* enable/disable */
410 break;
411 }
412 case MAC_ADDR_TYPE_MULTI_FLTR:
413 default:
414 QPRINTK(qdev, IFUP, CRIT,
415 "Address type %d not yet supported.\n", type);
416 status = -EPERM;
417 }
418exit:
419 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
420 return status;
421}
422
423/* Get a specific frame routing value from the CAM.
424 * Used for debug and reg dump.
425 */
426int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
427{
428 int status = 0;
429
430 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
431 if (status)
432 goto exit;
433
434 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, RT_IDX_E);
435 if (status)
436 goto exit;
437
438 ql_write32(qdev, RT_IDX,
439 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
440 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, RT_IDX_E);
441 if (status)
442 goto exit;
443 *value = ql_read32(qdev, RT_DATA);
444exit:
445 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
446 return status;
447}
448
449/* The NIC function for this chip has 16 routing indexes. Each one can be used
450 * to route different frame types to various inbound queues. We send broadcast/
451 * multicast/error frames to the default queue for slow handling,
452 * and CAM hit/RSS frames to the fast handling queues.
453 */
454static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
455 int enable)
456{
457 int status;
458 u32 value = 0;
459
460 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
461 if (status)
462 return status;
463
464 QPRINTK(qdev, IFUP, DEBUG,
465 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
466 (enable ? "Adding" : "Removing"),
467 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
468 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
469 ((index ==
470 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
471 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
472 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
473 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
474 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
475 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
476 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
477 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
478 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
479 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
480 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
481 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
482 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
483 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
484 (enable ? "to" : "from"));
485
486 switch (mask) {
487 case RT_IDX_CAM_HIT:
488 {
489 value = RT_IDX_DST_CAM_Q | /* dest */
490 RT_IDX_TYPE_NICQ | /* type */
491 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
492 break;
493 }
494 case RT_IDX_VALID: /* Promiscuous Mode frames. */
495 {
496 value = RT_IDX_DST_DFLT_Q | /* dest */
497 RT_IDX_TYPE_NICQ | /* type */
498 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
499 break;
500 }
501 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
502 {
503 value = RT_IDX_DST_DFLT_Q | /* dest */
504 RT_IDX_TYPE_NICQ | /* type */
505 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
506 break;
507 }
508 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
509 {
510 value = RT_IDX_DST_DFLT_Q | /* dest */
511 RT_IDX_TYPE_NICQ | /* type */
512 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
513 break;
514 }
515 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
516 {
517 value = RT_IDX_DST_CAM_Q | /* dest */
518 RT_IDX_TYPE_NICQ | /* type */
519 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
520 break;
521 }
522 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
523 {
524 value = RT_IDX_DST_CAM_Q | /* dest */
525 RT_IDX_TYPE_NICQ | /* type */
526 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
527 break;
528 }
529 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
530 {
531 value = RT_IDX_DST_RSS | /* dest */
532 RT_IDX_TYPE_NICQ | /* type */
533 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
534 break;
535 }
536 case 0: /* Clear the E-bit on an entry. */
537 {
538 value = RT_IDX_DST_DFLT_Q | /* dest */
539 RT_IDX_TYPE_NICQ | /* type */
540 (index << RT_IDX_IDX_SHIFT);/* index */
541 break;
542 }
543 default:
544 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
545 mask);
546 status = -EPERM;
547 goto exit;
548 }
549
550 if (value) {
551 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
552 if (status)
553 goto exit;
554 value |= (enable ? RT_IDX_E : 0);
555 ql_write32(qdev, RT_IDX, value);
556 ql_write32(qdev, RT_DATA, enable ? mask : 0);
557 }
558exit:
559 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
560 return status;
561}
562
563static void ql_enable_interrupts(struct ql_adapter *qdev)
564{
565 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
566}
567
568static void ql_disable_interrupts(struct ql_adapter *qdev)
569{
570 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
571}
572
573/* If we're running with multiple MSI-X vectors then we enable on the fly.
574 * Otherwise, we may have multiple outstanding workers and don't want to
575 * enable until the last one finishes. In this case, the irq_cnt gets
576 * incremented everytime we queue a worker and decremented everytime
577 * a worker finishes. Once it hits zero we enable the interrupt.
578 */
Ron Mercerbb0d2152008-10-20 10:30:26 -0700579u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
Ron Mercerc4e84bd2008-09-18 11:56:28 -0400580{
Ron Mercerbb0d2152008-10-20 10:30:26 -0700581 u32 var = 0;
582 unsigned long hw_flags = 0;
583 struct intr_context *ctx = qdev->intr_context + intr;
584
585 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
586 /* Always enable if we're MSIX multi interrupts and
587 * it's not the default (zeroeth) interrupt.
588 */
Ron Mercerc4e84bd2008-09-18 11:56:28 -0400589 ql_write32(qdev, INTR_EN,
Ron Mercerbb0d2152008-10-20 10:30:26 -0700590 ctx->intr_en_mask);
591 var = ql_read32(qdev, STS);
592 return var;
Ron Mercerc4e84bd2008-09-18 11:56:28 -0400593 }
Ron Mercerbb0d2152008-10-20 10:30:26 -0700594
595 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
596 if (atomic_dec_and_test(&ctx->irq_cnt)) {
597 ql_write32(qdev, INTR_EN,
598 ctx->intr_en_mask);
599 var = ql_read32(qdev, STS);
600 }
601 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
602 return var;
Ron Mercerc4e84bd2008-09-18 11:56:28 -0400603}
604
605static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
606{
607 u32 var = 0;
Ron Mercerbb0d2152008-10-20 10:30:26 -0700608 unsigned long hw_flags;
609 struct intr_context *ctx;
Ron Mercerc4e84bd2008-09-18 11:56:28 -0400610
Ron Mercerbb0d2152008-10-20 10:30:26 -0700611 /* HW disables for us if we're MSIX multi interrupts and
612 * it's not the default (zeroeth) interrupt.
613 */
614 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
615 return 0;
616
617 ctx = qdev->intr_context + intr;
618 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
619 if (!atomic_read(&ctx->irq_cnt)) {
Ron Mercerc4e84bd2008-09-18 11:56:28 -0400620 ql_write32(qdev, INTR_EN,
Ron Mercerbb0d2152008-10-20 10:30:26 -0700621 ctx->intr_dis_mask);
Ron Mercerc4e84bd2008-09-18 11:56:28 -0400622 var = ql_read32(qdev, STS);
623 }
Ron Mercerbb0d2152008-10-20 10:30:26 -0700624 atomic_inc(&ctx->irq_cnt);
625 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
Ron Mercerc4e84bd2008-09-18 11:56:28 -0400626 return var;
627}
628
629static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
630{
631 int i;
632 for (i = 0; i < qdev->intr_count; i++) {
633 /* The enable call does a atomic_dec_and_test
634 * and enables only if the result is zero.
635 * So we precharge it here.
636 */
Ron Mercerbb0d2152008-10-20 10:30:26 -0700637 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
638 i == 0))
639 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
Ron Mercerc4e84bd2008-09-18 11:56:28 -0400640 ql_enable_completion_interrupt(qdev, i);
641 }
642
643}
644
645int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data)
646{
647 int status = 0;
648 /* wait for reg to come ready */
649 status = ql_wait_reg_rdy(qdev,
650 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
651 if (status)
652 goto exit;
653 /* set up for reg read */
654 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
655 /* wait for reg to come ready */
656 status = ql_wait_reg_rdy(qdev,
657 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
658 if (status)
659 goto exit;
660 /* get the data */
661 *data = ql_read32(qdev, FLASH_DATA);
662exit:
663 return status;
664}
665
666static int ql_get_flash_params(struct ql_adapter *qdev)
667{
668 int i;
669 int status;
670 u32 *p = (u32 *)&qdev->flash;
671
672 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
673 return -ETIMEDOUT;
674
675 for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
676 status = ql_read_flash_word(qdev, i, p);
677 if (status) {
678 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
679 goto exit;
680 }
681
682 }
683exit:
684 ql_sem_unlock(qdev, SEM_FLASH_MASK);
685 return status;
686}
687
688/* xgmac register are located behind the xgmac_addr and xgmac_data
689 * register pair. Each read/write requires us to wait for the ready
690 * bit before reading/writing the data.
691 */
692static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
693{
694 int status;
695 /* wait for reg to come ready */
696 status = ql_wait_reg_rdy(qdev,
697 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
698 if (status)
699 return status;
700 /* write the data to the data reg */
701 ql_write32(qdev, XGMAC_DATA, data);
702 /* trigger the write */
703 ql_write32(qdev, XGMAC_ADDR, reg);
704 return status;
705}
706
707/* xgmac register are located behind the xgmac_addr and xgmac_data
708 * register pair. Each read/write requires us to wait for the ready
709 * bit before reading/writing the data.
710 */
711int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
712{
713 int status = 0;
714 /* wait for reg to come ready */
715 status = ql_wait_reg_rdy(qdev,
716 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
717 if (status)
718 goto exit;
719 /* set up for reg read */
720 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
721 /* wait for reg to come ready */
722 status = ql_wait_reg_rdy(qdev,
723 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
724 if (status)
725 goto exit;
726 /* get the data */
727 *data = ql_read32(qdev, XGMAC_DATA);
728exit:
729 return status;
730}
731
732/* This is used for reading the 64-bit statistics regs. */
733int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
734{
735 int status = 0;
736 u32 hi = 0;
737 u32 lo = 0;
738
739 status = ql_read_xgmac_reg(qdev, reg, &lo);
740 if (status)
741 goto exit;
742
743 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
744 if (status)
745 goto exit;
746
747 *data = (u64) lo | ((u64) hi << 32);
748
749exit:
750 return status;
751}
752
753/* Take the MAC Core out of reset.
754 * Enable statistics counting.
755 * Take the transmitter/receiver out of reset.
756 * This functionality may be done in the MPI firmware at a
757 * later date.
758 */
759static int ql_port_initialize(struct ql_adapter *qdev)
760{
761 int status = 0;
762 u32 data;
763
764 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
765 /* Another function has the semaphore, so
766 * wait for the port init bit to come ready.
767 */
768 QPRINTK(qdev, LINK, INFO,
769 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
770 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
771 if (status) {
772 QPRINTK(qdev, LINK, CRIT,
773 "Port initialize timed out.\n");
774 }
775 return status;
776 }
777
778 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
779 /* Set the core reset. */
780 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
781 if (status)
782 goto end;
783 data |= GLOBAL_CFG_RESET;
784 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
785 if (status)
786 goto end;
787
788 /* Clear the core reset and turn on jumbo for receiver. */
789 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
790 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
791 data |= GLOBAL_CFG_TX_STAT_EN;
792 data |= GLOBAL_CFG_RX_STAT_EN;
793 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
794 if (status)
795 goto end;
796
797 /* Enable transmitter, and clear it's reset. */
798 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
799 if (status)
800 goto end;
801 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
802 data |= TX_CFG_EN; /* Enable the transmitter. */
803 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
804 if (status)
805 goto end;
806
807 /* Enable receiver and clear it's reset. */
808 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
809 if (status)
810 goto end;
811 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
812 data |= RX_CFG_EN; /* Enable the receiver. */
813 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
814 if (status)
815 goto end;
816
817 /* Turn on jumbo. */
818 status =
819 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
820 if (status)
821 goto end;
822 status =
823 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
824 if (status)
825 goto end;
826
827 /* Signal to the world that the port is enabled. */
828 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
829end:
830 ql_sem_unlock(qdev, qdev->xg_sem_mask);
831 return status;
832}
833
834/* Get the next large buffer. */
835struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
836{
837 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
838 rx_ring->lbq_curr_idx++;
839 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
840 rx_ring->lbq_curr_idx = 0;
841 rx_ring->lbq_free_cnt++;
842 return lbq_desc;
843}
844
845/* Get the next small buffer. */
846struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
847{
848 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
849 rx_ring->sbq_curr_idx++;
850 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
851 rx_ring->sbq_curr_idx = 0;
852 rx_ring->sbq_free_cnt++;
853 return sbq_desc;
854}
855
856/* Update an rx ring index. */
857static void ql_update_cq(struct rx_ring *rx_ring)
858{
859 rx_ring->cnsmr_idx++;
860 rx_ring->curr_entry++;
861 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
862 rx_ring->cnsmr_idx = 0;
863 rx_ring->curr_entry = rx_ring->cq_base;
864 }
865}
866
867static void ql_write_cq_idx(struct rx_ring *rx_ring)
868{
869 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
870}
871
872/* Process (refill) a large buffer queue. */
873static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
874{
875 int clean_idx = rx_ring->lbq_clean_idx;
876 struct bq_desc *lbq_desc;
877 struct bq_element *bq;
878 u64 map;
879 int i;
880
881 while (rx_ring->lbq_free_cnt > 16) {
882 for (i = 0; i < 16; i++) {
883 QPRINTK(qdev, RX_STATUS, DEBUG,
884 "lbq: try cleaning clean_idx = %d.\n",
885 clean_idx);
886 lbq_desc = &rx_ring->lbq[clean_idx];
887 bq = lbq_desc->bq;
888 if (lbq_desc->p.lbq_page == NULL) {
889 QPRINTK(qdev, RX_STATUS, DEBUG,
890 "lbq: getting new page for index %d.\n",
891 lbq_desc->index);
892 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
893 if (lbq_desc->p.lbq_page == NULL) {
894 QPRINTK(qdev, RX_STATUS, ERR,
895 "Couldn't get a page.\n");
896 return;
897 }
898 map = pci_map_page(qdev->pdev,
899 lbq_desc->p.lbq_page,
900 0, PAGE_SIZE,
901 PCI_DMA_FROMDEVICE);
902 if (pci_dma_mapping_error(qdev->pdev, map)) {
903 QPRINTK(qdev, RX_STATUS, ERR,
904 "PCI mapping failed.\n");
905 return;
906 }
907 pci_unmap_addr_set(lbq_desc, mapaddr, map);
908 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
909 bq->addr_lo = /*lbq_desc->addr_lo = */
910 cpu_to_le32(map);
911 bq->addr_hi = /*lbq_desc->addr_hi = */
912 cpu_to_le32(map >> 32);
913 }
914 clean_idx++;
915 if (clean_idx == rx_ring->lbq_len)
916 clean_idx = 0;
917 }
918
919 rx_ring->lbq_clean_idx = clean_idx;
920 rx_ring->lbq_prod_idx += 16;
921 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
922 rx_ring->lbq_prod_idx = 0;
923 QPRINTK(qdev, RX_STATUS, DEBUG,
924 "lbq: updating prod idx = %d.\n",
925 rx_ring->lbq_prod_idx);
926 ql_write_db_reg(rx_ring->lbq_prod_idx,
927 rx_ring->lbq_prod_idx_db_reg);
928 rx_ring->lbq_free_cnt -= 16;
929 }
930}
931
932/* Process (refill) a small buffer queue. */
933static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
934{
935 int clean_idx = rx_ring->sbq_clean_idx;
936 struct bq_desc *sbq_desc;
937 struct bq_element *bq;
938 u64 map;
939 int i;
940
941 while (rx_ring->sbq_free_cnt > 16) {
942 for (i = 0; i < 16; i++) {
943 sbq_desc = &rx_ring->sbq[clean_idx];
944 QPRINTK(qdev, RX_STATUS, DEBUG,
945 "sbq: try cleaning clean_idx = %d.\n",
946 clean_idx);
947 bq = sbq_desc->bq;
948 if (sbq_desc->p.skb == NULL) {
949 QPRINTK(qdev, RX_STATUS, DEBUG,
950 "sbq: getting new skb for index %d.\n",
951 sbq_desc->index);
952 sbq_desc->p.skb =
953 netdev_alloc_skb(qdev->ndev,
954 rx_ring->sbq_buf_size);
955 if (sbq_desc->p.skb == NULL) {
956 QPRINTK(qdev, PROBE, ERR,
957 "Couldn't get an skb.\n");
958 rx_ring->sbq_clean_idx = clean_idx;
959 return;
960 }
961 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
962 map = pci_map_single(qdev->pdev,
963 sbq_desc->p.skb->data,
964 rx_ring->sbq_buf_size /
965 2, PCI_DMA_FROMDEVICE);
966 pci_unmap_addr_set(sbq_desc, mapaddr, map);
967 pci_unmap_len_set(sbq_desc, maplen,
968 rx_ring->sbq_buf_size / 2);
969 bq->addr_lo = cpu_to_le32(map);
970 bq->addr_hi = cpu_to_le32(map >> 32);
971 }
972
973 clean_idx++;
974 if (clean_idx == rx_ring->sbq_len)
975 clean_idx = 0;
976 }
977 rx_ring->sbq_clean_idx = clean_idx;
978 rx_ring->sbq_prod_idx += 16;
979 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
980 rx_ring->sbq_prod_idx = 0;
981 QPRINTK(qdev, RX_STATUS, DEBUG,
982 "sbq: updating prod idx = %d.\n",
983 rx_ring->sbq_prod_idx);
984 ql_write_db_reg(rx_ring->sbq_prod_idx,
985 rx_ring->sbq_prod_idx_db_reg);
986
987 rx_ring->sbq_free_cnt -= 16;
988 }
989}
990
991static void ql_update_buffer_queues(struct ql_adapter *qdev,
992 struct rx_ring *rx_ring)
993{
994 ql_update_sbq(qdev, rx_ring);
995 ql_update_lbq(qdev, rx_ring);
996}
997
998/* Unmaps tx buffers. Can be called from send() if a pci mapping
999 * fails at some stage, or from the interrupt when a tx completes.
1000 */
1001static void ql_unmap_send(struct ql_adapter *qdev,
1002 struct tx_ring_desc *tx_ring_desc, int mapped)
1003{
1004 int i;
1005 for (i = 0; i < mapped; i++) {
1006 if (i == 0 || (i == 7 && mapped > 7)) {
1007 /*
1008 * Unmap the skb->data area, or the
1009 * external sglist (AKA the Outbound
1010 * Address List (OAL)).
1011 * If its the zeroeth element, then it's
1012 * the skb->data area. If it's the 7th
1013 * element and there is more than 6 frags,
1014 * then its an OAL.
1015 */
1016 if (i == 7) {
1017 QPRINTK(qdev, TX_DONE, DEBUG,
1018 "unmapping OAL area.\n");
1019 }
1020 pci_unmap_single(qdev->pdev,
1021 pci_unmap_addr(&tx_ring_desc->map[i],
1022 mapaddr),
1023 pci_unmap_len(&tx_ring_desc->map[i],
1024 maplen),
1025 PCI_DMA_TODEVICE);
1026 } else {
1027 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1028 i);
1029 pci_unmap_page(qdev->pdev,
1030 pci_unmap_addr(&tx_ring_desc->map[i],
1031 mapaddr),
1032 pci_unmap_len(&tx_ring_desc->map[i],
1033 maplen), PCI_DMA_TODEVICE);
1034 }
1035 }
1036
1037}
1038
1039/* Map the buffers for this transmit. This will return
1040 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1041 */
1042static int ql_map_send(struct ql_adapter *qdev,
1043 struct ob_mac_iocb_req *mac_iocb_ptr,
1044 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1045{
1046 int len = skb_headlen(skb);
1047 dma_addr_t map;
1048 int frag_idx, err, map_idx = 0;
1049 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1050 int frag_cnt = skb_shinfo(skb)->nr_frags;
1051
1052 if (frag_cnt) {
1053 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1054 }
1055 /*
1056 * Map the skb buffer first.
1057 */
1058 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1059
1060 err = pci_dma_mapping_error(qdev->pdev, map);
1061 if (err) {
1062 QPRINTK(qdev, TX_QUEUED, ERR,
1063 "PCI mapping failed with error: %d\n", err);
1064
1065 return NETDEV_TX_BUSY;
1066 }
1067
1068 tbd->len = cpu_to_le32(len);
1069 tbd->addr = cpu_to_le64(map);
1070 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1071 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1072 map_idx++;
1073
1074 /*
1075 * This loop fills the remainder of the 8 address descriptors
1076 * in the IOCB. If there are more than 7 fragments, then the
1077 * eighth address desc will point to an external list (OAL).
1078 * When this happens, the remainder of the frags will be stored
1079 * in this list.
1080 */
1081 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1082 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1083 tbd++;
1084 if (frag_idx == 6 && frag_cnt > 7) {
1085 /* Let's tack on an sglist.
1086 * Our control block will now
1087 * look like this:
1088 * iocb->seg[0] = skb->data
1089 * iocb->seg[1] = frag[0]
1090 * iocb->seg[2] = frag[1]
1091 * iocb->seg[3] = frag[2]
1092 * iocb->seg[4] = frag[3]
1093 * iocb->seg[5] = frag[4]
1094 * iocb->seg[6] = frag[5]
1095 * iocb->seg[7] = ptr to OAL (external sglist)
1096 * oal->seg[0] = frag[6]
1097 * oal->seg[1] = frag[7]
1098 * oal->seg[2] = frag[8]
1099 * oal->seg[3] = frag[9]
1100 * oal->seg[4] = frag[10]
1101 * etc...
1102 */
1103 /* Tack on the OAL in the eighth segment of IOCB. */
1104 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1105 sizeof(struct oal),
1106 PCI_DMA_TODEVICE);
1107 err = pci_dma_mapping_error(qdev->pdev, map);
1108 if (err) {
1109 QPRINTK(qdev, TX_QUEUED, ERR,
1110 "PCI mapping outbound address list with error: %d\n",
1111 err);
1112 goto map_error;
1113 }
1114
1115 tbd->addr = cpu_to_le64(map);
1116 /*
1117 * The length is the number of fragments
1118 * that remain to be mapped times the length
1119 * of our sglist (OAL).
1120 */
1121 tbd->len =
1122 cpu_to_le32((sizeof(struct tx_buf_desc) *
1123 (frag_cnt - frag_idx)) | TX_DESC_C);
1124 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1125 map);
1126 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1127 sizeof(struct oal));
1128 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1129 map_idx++;
1130 }
1131
1132 map =
1133 pci_map_page(qdev->pdev, frag->page,
1134 frag->page_offset, frag->size,
1135 PCI_DMA_TODEVICE);
1136
1137 err = pci_dma_mapping_error(qdev->pdev, map);
1138 if (err) {
1139 QPRINTK(qdev, TX_QUEUED, ERR,
1140 "PCI mapping frags failed with error: %d.\n",
1141 err);
1142 goto map_error;
1143 }
1144
1145 tbd->addr = cpu_to_le64(map);
1146 tbd->len = cpu_to_le32(frag->size);
1147 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1148 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1149 frag->size);
1150
1151 }
1152 /* Save the number of segments we've mapped. */
1153 tx_ring_desc->map_cnt = map_idx;
1154 /* Terminate the last segment. */
1155 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1156 return NETDEV_TX_OK;
1157
1158map_error:
1159 /*
1160 * If the first frag mapping failed, then i will be zero.
1161 * This causes the unmap of the skb->data area. Otherwise
1162 * we pass in the number of frags that mapped successfully
1163 * so they can be umapped.
1164 */
1165 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1166 return NETDEV_TX_BUSY;
1167}
1168
1169void ql_realign_skb(struct sk_buff *skb, int len)
1170{
1171 void *temp_addr = skb->data;
1172
1173 /* Undo the skb_reserve(skb,32) we did before
1174 * giving to hardware, and realign data on
1175 * a 2-byte boundary.
1176 */
1177 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1178 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1179 skb_copy_to_linear_data(skb, temp_addr,
1180 (unsigned int)len);
1181}
1182
1183/*
1184 * This function builds an skb for the given inbound
1185 * completion. It will be rewritten for readability in the near
1186 * future, but for not it works well.
1187 */
1188static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1189 struct rx_ring *rx_ring,
1190 struct ib_mac_iocb_rsp *ib_mac_rsp)
1191{
1192 struct bq_desc *lbq_desc;
1193 struct bq_desc *sbq_desc;
1194 struct sk_buff *skb = NULL;
1195 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1196 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1197
1198 /*
1199 * Handle the header buffer if present.
1200 */
1201 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1202 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1203 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1204 /*
1205 * Headers fit nicely into a small buffer.
1206 */
1207 sbq_desc = ql_get_curr_sbuf(rx_ring);
1208 pci_unmap_single(qdev->pdev,
1209 pci_unmap_addr(sbq_desc, mapaddr),
1210 pci_unmap_len(sbq_desc, maplen),
1211 PCI_DMA_FROMDEVICE);
1212 skb = sbq_desc->p.skb;
1213 ql_realign_skb(skb, hdr_len);
1214 skb_put(skb, hdr_len);
1215 sbq_desc->p.skb = NULL;
1216 }
1217
1218 /*
1219 * Handle the data buffer(s).
1220 */
1221 if (unlikely(!length)) { /* Is there data too? */
1222 QPRINTK(qdev, RX_STATUS, DEBUG,
1223 "No Data buffer in this packet.\n");
1224 return skb;
1225 }
1226
1227 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1228 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1229 QPRINTK(qdev, RX_STATUS, DEBUG,
1230 "Headers in small, data of %d bytes in small, combine them.\n", length);
1231 /*
1232 * Data is less than small buffer size so it's
1233 * stuffed in a small buffer.
1234 * For this case we append the data
1235 * from the "data" small buffer to the "header" small
1236 * buffer.
1237 */
1238 sbq_desc = ql_get_curr_sbuf(rx_ring);
1239 pci_dma_sync_single_for_cpu(qdev->pdev,
1240 pci_unmap_addr
1241 (sbq_desc, mapaddr),
1242 pci_unmap_len
1243 (sbq_desc, maplen),
1244 PCI_DMA_FROMDEVICE);
1245 memcpy(skb_put(skb, length),
1246 sbq_desc->p.skb->data, length);
1247 pci_dma_sync_single_for_device(qdev->pdev,
1248 pci_unmap_addr
1249 (sbq_desc,
1250 mapaddr),
1251 pci_unmap_len
1252 (sbq_desc,
1253 maplen),
1254 PCI_DMA_FROMDEVICE);
1255 } else {
1256 QPRINTK(qdev, RX_STATUS, DEBUG,
1257 "%d bytes in a single small buffer.\n", length);
1258 sbq_desc = ql_get_curr_sbuf(rx_ring);
1259 skb = sbq_desc->p.skb;
1260 ql_realign_skb(skb, length);
1261 skb_put(skb, length);
1262 pci_unmap_single(qdev->pdev,
1263 pci_unmap_addr(sbq_desc,
1264 mapaddr),
1265 pci_unmap_len(sbq_desc,
1266 maplen),
1267 PCI_DMA_FROMDEVICE);
1268 sbq_desc->p.skb = NULL;
1269 }
1270 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1271 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1272 QPRINTK(qdev, RX_STATUS, DEBUG,
1273 "Header in small, %d bytes in large. Chain large to small!\n", length);
1274 /*
1275 * The data is in a single large buffer. We
1276 * chain it to the header buffer's skb and let
1277 * it rip.
1278 */
1279 lbq_desc = ql_get_curr_lbuf(rx_ring);
1280 pci_unmap_page(qdev->pdev,
1281 pci_unmap_addr(lbq_desc,
1282 mapaddr),
1283 pci_unmap_len(lbq_desc, maplen),
1284 PCI_DMA_FROMDEVICE);
1285 QPRINTK(qdev, RX_STATUS, DEBUG,
1286 "Chaining page to skb.\n");
1287 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1288 0, length);
1289 skb->len += length;
1290 skb->data_len += length;
1291 skb->truesize += length;
1292 lbq_desc->p.lbq_page = NULL;
1293 } else {
1294 /*
1295 * The headers and data are in a single large buffer. We
1296 * copy it to a new skb and let it go. This can happen with
1297 * jumbo mtu on a non-TCP/UDP frame.
1298 */
1299 lbq_desc = ql_get_curr_lbuf(rx_ring);
1300 skb = netdev_alloc_skb(qdev->ndev, length);
1301 if (skb == NULL) {
1302 QPRINTK(qdev, PROBE, DEBUG,
1303 "No skb available, drop the packet.\n");
1304 return NULL;
1305 }
1306 skb_reserve(skb, NET_IP_ALIGN);
1307 QPRINTK(qdev, RX_STATUS, DEBUG,
1308 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1309 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1310 0, length);
1311 skb->len += length;
1312 skb->data_len += length;
1313 skb->truesize += length;
1314 length -= length;
1315 lbq_desc->p.lbq_page = NULL;
1316 __pskb_pull_tail(skb,
1317 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1318 VLAN_ETH_HLEN : ETH_HLEN);
1319 }
1320 } else {
1321 /*
1322 * The data is in a chain of large buffers
1323 * pointed to by a small buffer. We loop
1324 * thru and chain them to the our small header
1325 * buffer's skb.
1326 * frags: There are 18 max frags and our small
1327 * buffer will hold 32 of them. The thing is,
1328 * we'll use 3 max for our 9000 byte jumbo
1329 * frames. If the MTU goes up we could
1330 * eventually be in trouble.
1331 */
1332 int size, offset, i = 0;
1333 struct bq_element *bq, bq_array[8];
1334 sbq_desc = ql_get_curr_sbuf(rx_ring);
1335 pci_unmap_single(qdev->pdev,
1336 pci_unmap_addr(sbq_desc, mapaddr),
1337 pci_unmap_len(sbq_desc, maplen),
1338 PCI_DMA_FROMDEVICE);
1339 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1340 /*
1341 * This is an non TCP/UDP IP frame, so
1342 * the headers aren't split into a small
1343 * buffer. We have to use the small buffer
1344 * that contains our sg list as our skb to
1345 * send upstairs. Copy the sg list here to
1346 * a local buffer and use it to find the
1347 * pages to chain.
1348 */
1349 QPRINTK(qdev, RX_STATUS, DEBUG,
1350 "%d bytes of headers & data in chain of large.\n", length);
1351 skb = sbq_desc->p.skb;
1352 bq = &bq_array[0];
1353 memcpy(bq, skb->data, sizeof(bq_array));
1354 sbq_desc->p.skb = NULL;
1355 skb_reserve(skb, NET_IP_ALIGN);
1356 } else {
1357 QPRINTK(qdev, RX_STATUS, DEBUG,
1358 "Headers in small, %d bytes of data in chain of large.\n", length);
1359 bq = (struct bq_element *)sbq_desc->p.skb->data;
1360 }
1361 while (length > 0) {
1362 lbq_desc = ql_get_curr_lbuf(rx_ring);
1363 if ((bq->addr_lo & ~BQ_MASK) != lbq_desc->bq->addr_lo) {
1364 QPRINTK(qdev, RX_STATUS, ERR,
1365 "Panic!!! bad large buffer address, expected 0x%.08x, got 0x%.08x.\n",
1366 lbq_desc->bq->addr_lo, bq->addr_lo);
1367 return NULL;
1368 }
1369 pci_unmap_page(qdev->pdev,
1370 pci_unmap_addr(lbq_desc,
1371 mapaddr),
1372 pci_unmap_len(lbq_desc,
1373 maplen),
1374 PCI_DMA_FROMDEVICE);
1375 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1376 offset = 0;
1377
1378 QPRINTK(qdev, RX_STATUS, DEBUG,
1379 "Adding page %d to skb for %d bytes.\n",
1380 i, size);
1381 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1382 offset, size);
1383 skb->len += size;
1384 skb->data_len += size;
1385 skb->truesize += size;
1386 length -= size;
1387 lbq_desc->p.lbq_page = NULL;
1388 bq++;
1389 i++;
1390 }
1391 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1392 VLAN_ETH_HLEN : ETH_HLEN);
1393 }
1394 return skb;
1395}
1396
1397/* Process an inbound completion from an rx ring. */
1398static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1399 struct rx_ring *rx_ring,
1400 struct ib_mac_iocb_rsp *ib_mac_rsp)
1401{
1402 struct net_device *ndev = qdev->ndev;
1403 struct sk_buff *skb = NULL;
1404
1405 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1406
1407 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1408 if (unlikely(!skb)) {
1409 QPRINTK(qdev, RX_STATUS, DEBUG,
1410 "No skb available, drop packet.\n");
1411 return;
1412 }
1413
1414 prefetch(skb->data);
1415 skb->dev = ndev;
1416 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1417 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1418 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1419 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1420 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1421 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1422 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1423 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1424 }
1425 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1426 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1427 }
1428 if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
1429 QPRINTK(qdev, RX_STATUS, ERR,
1430 "Bad checksum for this %s packet.\n",
1431 ((ib_mac_rsp->
1432 flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
1433 skb->ip_summed = CHECKSUM_NONE;
1434 } else if (qdev->rx_csum &&
1435 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
1436 ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1437 !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
1438 QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
1439 skb->ip_summed = CHECKSUM_UNNECESSARY;
1440 }
1441 qdev->stats.rx_packets++;
1442 qdev->stats.rx_bytes += skb->len;
1443 skb->protocol = eth_type_trans(skb, ndev);
1444 if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
1445 QPRINTK(qdev, RX_STATUS, DEBUG,
1446 "Passing a VLAN packet upstream.\n");
1447 vlan_hwaccel_rx(skb, qdev->vlgrp,
1448 le16_to_cpu(ib_mac_rsp->vlan_id));
1449 } else {
1450 QPRINTK(qdev, RX_STATUS, DEBUG,
1451 "Passing a normal packet upstream.\n");
1452 netif_rx(skb);
1453 }
1454 ndev->last_rx = jiffies;
1455}
1456
1457/* Process an outbound completion from an rx ring. */
1458static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1459 struct ob_mac_iocb_rsp *mac_rsp)
1460{
1461 struct tx_ring *tx_ring;
1462 struct tx_ring_desc *tx_ring_desc;
1463
1464 QL_DUMP_OB_MAC_RSP(mac_rsp);
1465 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1466 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1467 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1468 qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
1469 qdev->stats.tx_packets++;
1470 dev_kfree_skb(tx_ring_desc->skb);
1471 tx_ring_desc->skb = NULL;
1472
1473 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1474 OB_MAC_IOCB_RSP_S |
1475 OB_MAC_IOCB_RSP_L |
1476 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1477 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1478 QPRINTK(qdev, TX_DONE, WARNING,
1479 "Total descriptor length did not match transfer length.\n");
1480 }
1481 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1482 QPRINTK(qdev, TX_DONE, WARNING,
1483 "Frame too short to be legal, not sent.\n");
1484 }
1485 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1486 QPRINTK(qdev, TX_DONE, WARNING,
1487 "Frame too long, but sent anyway.\n");
1488 }
1489 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1490 QPRINTK(qdev, TX_DONE, WARNING,
1491 "PCI backplane error. Frame not sent.\n");
1492 }
1493 }
1494 atomic_inc(&tx_ring->tx_count);
1495}
1496
1497/* Fire up a handler to reset the MPI processor. */
1498void ql_queue_fw_error(struct ql_adapter *qdev)
1499{
1500 netif_stop_queue(qdev->ndev);
1501 netif_carrier_off(qdev->ndev);
1502 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1503}
1504
1505void ql_queue_asic_error(struct ql_adapter *qdev)
1506{
1507 netif_stop_queue(qdev->ndev);
1508 netif_carrier_off(qdev->ndev);
1509 ql_disable_interrupts(qdev);
1510 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1511}
1512
1513static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1514 struct ib_ae_iocb_rsp *ib_ae_rsp)
1515{
1516 switch (ib_ae_rsp->event) {
1517 case MGMT_ERR_EVENT:
1518 QPRINTK(qdev, RX_ERR, ERR,
1519 "Management Processor Fatal Error.\n");
1520 ql_queue_fw_error(qdev);
1521 return;
1522
1523 case CAM_LOOKUP_ERR_EVENT:
1524 QPRINTK(qdev, LINK, ERR,
1525 "Multiple CAM hits lookup occurred.\n");
1526 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1527 ql_queue_asic_error(qdev);
1528 return;
1529
1530 case SOFT_ECC_ERROR_EVENT:
1531 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1532 ql_queue_asic_error(qdev);
1533 break;
1534
1535 case PCI_ERR_ANON_BUF_RD:
1536 QPRINTK(qdev, RX_ERR, ERR,
1537 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1538 ib_ae_rsp->q_id);
1539 ql_queue_asic_error(qdev);
1540 break;
1541
1542 default:
1543 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1544 ib_ae_rsp->event);
1545 ql_queue_asic_error(qdev);
1546 break;
1547 }
1548}
1549
1550static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1551{
1552 struct ql_adapter *qdev = rx_ring->qdev;
1553 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1554 struct ob_mac_iocb_rsp *net_rsp = NULL;
1555 int count = 0;
1556
1557 /* While there are entries in the completion queue. */
1558 while (prod != rx_ring->cnsmr_idx) {
1559
1560 QPRINTK(qdev, RX_STATUS, DEBUG,
1561 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1562 prod, rx_ring->cnsmr_idx);
1563
1564 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1565 rmb();
1566 switch (net_rsp->opcode) {
1567
1568 case OPCODE_OB_MAC_TSO_IOCB:
1569 case OPCODE_OB_MAC_IOCB:
1570 ql_process_mac_tx_intr(qdev, net_rsp);
1571 break;
1572 default:
1573 QPRINTK(qdev, RX_STATUS, DEBUG,
1574 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1575 net_rsp->opcode);
1576 }
1577 count++;
1578 ql_update_cq(rx_ring);
1579 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1580 }
1581 ql_write_cq_idx(rx_ring);
1582 if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
1583 struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1584 if (atomic_read(&tx_ring->queue_stopped) &&
1585 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1586 /*
1587 * The queue got stopped because the tx_ring was full.
1588 * Wake it up, because it's now at least 25% empty.
1589 */
1590 netif_wake_queue(qdev->ndev);
1591 }
1592
1593 return count;
1594}
1595
1596static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1597{
1598 struct ql_adapter *qdev = rx_ring->qdev;
1599 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1600 struct ql_net_rsp_iocb *net_rsp;
1601 int count = 0;
1602
1603 /* While there are entries in the completion queue. */
1604 while (prod != rx_ring->cnsmr_idx) {
1605
1606 QPRINTK(qdev, RX_STATUS, DEBUG,
1607 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1608 prod, rx_ring->cnsmr_idx);
1609
1610 net_rsp = rx_ring->curr_entry;
1611 rmb();
1612 switch (net_rsp->opcode) {
1613 case OPCODE_IB_MAC_IOCB:
1614 ql_process_mac_rx_intr(qdev, rx_ring,
1615 (struct ib_mac_iocb_rsp *)
1616 net_rsp);
1617 break;
1618
1619 case OPCODE_IB_AE_IOCB:
1620 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1621 net_rsp);
1622 break;
1623 default:
1624 {
1625 QPRINTK(qdev, RX_STATUS, DEBUG,
1626 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1627 net_rsp->opcode);
1628 }
1629 }
1630 count++;
1631 ql_update_cq(rx_ring);
1632 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1633 if (count == budget)
1634 break;
1635 }
1636 ql_update_buffer_queues(qdev, rx_ring);
1637 ql_write_cq_idx(rx_ring);
1638 return count;
1639}
1640
1641static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1642{
1643 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1644 struct ql_adapter *qdev = rx_ring->qdev;
1645 int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1646
1647 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1648 rx_ring->cq_id);
1649
1650 if (work_done < budget) {
1651 __netif_rx_complete(qdev->ndev, napi);
1652 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1653 }
1654 return work_done;
1655}
1656
1657static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1658{
1659 struct ql_adapter *qdev = netdev_priv(ndev);
1660
1661 qdev->vlgrp = grp;
1662 if (grp) {
1663 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1664 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1665 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1666 } else {
1667 QPRINTK(qdev, IFUP, DEBUG,
1668 "Turning off VLAN in NIC_RCV_CFG.\n");
1669 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1670 }
1671}
1672
1673static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1674{
1675 struct ql_adapter *qdev = netdev_priv(ndev);
1676 u32 enable_bit = MAC_ADDR_E;
1677
1678 spin_lock(&qdev->hw_lock);
1679 if (ql_set_mac_addr_reg
1680 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1681 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1682 }
1683 spin_unlock(&qdev->hw_lock);
1684}
1685
1686static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1687{
1688 struct ql_adapter *qdev = netdev_priv(ndev);
1689 u32 enable_bit = 0;
1690
1691 spin_lock(&qdev->hw_lock);
1692 if (ql_set_mac_addr_reg
1693 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1694 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1695 }
1696 spin_unlock(&qdev->hw_lock);
1697
1698}
1699
1700/* Worker thread to process a given rx_ring that is dedicated
1701 * to outbound completions.
1702 */
1703static void ql_tx_clean(struct work_struct *work)
1704{
1705 struct rx_ring *rx_ring =
1706 container_of(work, struct rx_ring, rx_work.work);
1707 ql_clean_outbound_rx_ring(rx_ring);
1708 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1709
1710}
1711
1712/* Worker thread to process a given rx_ring that is dedicated
1713 * to inbound completions.
1714 */
1715static void ql_rx_clean(struct work_struct *work)
1716{
1717 struct rx_ring *rx_ring =
1718 container_of(work, struct rx_ring, rx_work.work);
1719 ql_clean_inbound_rx_ring(rx_ring, 64);
1720 ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
1721}
1722
1723/* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
1724static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
1725{
1726 struct rx_ring *rx_ring = dev_id;
1727 queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
1728 &rx_ring->rx_work, 0);
1729 return IRQ_HANDLED;
1730}
1731
1732/* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1733static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1734{
1735 struct rx_ring *rx_ring = dev_id;
1736 struct ql_adapter *qdev = rx_ring->qdev;
1737 netif_rx_schedule(qdev->ndev, &rx_ring->napi);
1738 return IRQ_HANDLED;
1739}
1740
Ron Mercerc4e84bd2008-09-18 11:56:28 -04001741/* This handles a fatal error, MPI activity, and the default
1742 * rx_ring in an MSI-X multiple vector environment.
1743 * In MSI/Legacy environment it also process the rest of
1744 * the rx_rings.
1745 */
1746static irqreturn_t qlge_isr(int irq, void *dev_id)
1747{
1748 struct rx_ring *rx_ring = dev_id;
1749 struct ql_adapter *qdev = rx_ring->qdev;
1750 struct intr_context *intr_context = &qdev->intr_context[0];
1751 u32 var;
1752 int i;
1753 int work_done = 0;
1754
Ron Mercerbb0d2152008-10-20 10:30:26 -07001755 spin_lock(&qdev->hw_lock);
1756 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1757 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1758 spin_unlock(&qdev->hw_lock);
1759 return IRQ_NONE;
Ron Mercerc4e84bd2008-09-18 11:56:28 -04001760 }
Ron Mercerbb0d2152008-10-20 10:30:26 -07001761 spin_unlock(&qdev->hw_lock);
Ron Mercerc4e84bd2008-09-18 11:56:28 -04001762
Ron Mercerbb0d2152008-10-20 10:30:26 -07001763 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
Ron Mercerc4e84bd2008-09-18 11:56:28 -04001764
1765 /*
1766 * Check for fatal error.
1767 */
1768 if (var & STS_FE) {
1769 ql_queue_asic_error(qdev);
1770 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1771 var = ql_read32(qdev, ERR_STS);
1772 QPRINTK(qdev, INTR, ERR,
1773 "Resetting chip. Error Status Register = 0x%x\n", var);
1774 return IRQ_HANDLED;
1775 }
1776
1777 /*
1778 * Check MPI processor activity.
1779 */
1780 if (var & STS_PI) {
1781 /*
1782 * We've got an async event or mailbox completion.
1783 * Handle it and clear the source of the interrupt.
1784 */
1785 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
1786 ql_disable_completion_interrupt(qdev, intr_context->intr);
1787 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
1788 &qdev->mpi_work, 0);
1789 work_done++;
1790 }
1791
1792 /*
1793 * Check the default queue and wake handler if active.
1794 */
1795 rx_ring = &qdev->rx_ring[0];
1796 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
1797 QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
1798 ql_disable_completion_interrupt(qdev, intr_context->intr);
1799 queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
1800 &rx_ring->rx_work, 0);
1801 work_done++;
1802 }
1803
1804 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
1805 /*
1806 * Start the DPC for each active queue.
1807 */
1808 for (i = 1; i < qdev->rx_ring_count; i++) {
1809 rx_ring = &qdev->rx_ring[i];
1810 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1811 rx_ring->cnsmr_idx) {
1812 QPRINTK(qdev, INTR, INFO,
1813 "Waking handler for rx_ring[%d].\n", i);
1814 ql_disable_completion_interrupt(qdev,
1815 intr_context->
1816 intr);
1817 if (i < qdev->rss_ring_first_cq_id)
1818 queue_delayed_work_on(rx_ring->cpu,
1819 qdev->q_workqueue,
1820 &rx_ring->rx_work,
1821 0);
1822 else
1823 netif_rx_schedule(qdev->ndev,
1824 &rx_ring->napi);
1825 work_done++;
1826 }
1827 }
1828 }
Ron Mercerbb0d2152008-10-20 10:30:26 -07001829 ql_enable_completion_interrupt(qdev, intr_context->intr);
Ron Mercerc4e84bd2008-09-18 11:56:28 -04001830 return work_done ? IRQ_HANDLED : IRQ_NONE;
1831}
1832
1833static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1834{
1835
1836 if (skb_is_gso(skb)) {
1837 int err;
1838 if (skb_header_cloned(skb)) {
1839 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1840 if (err)
1841 return err;
1842 }
1843
1844 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1845 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
1846 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1847 mac_iocb_ptr->total_hdrs_len =
1848 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
1849 mac_iocb_ptr->net_trans_offset =
1850 cpu_to_le16(skb_network_offset(skb) |
1851 skb_transport_offset(skb)
1852 << OB_MAC_TRANSPORT_HDR_SHIFT);
1853 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
1854 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
1855 if (likely(skb->protocol == htons(ETH_P_IP))) {
1856 struct iphdr *iph = ip_hdr(skb);
1857 iph->check = 0;
1858 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1859 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1860 iph->daddr, 0,
1861 IPPROTO_TCP,
1862 0);
1863 } else if (skb->protocol == htons(ETH_P_IPV6)) {
1864 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
1865 tcp_hdr(skb)->check =
1866 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1867 &ipv6_hdr(skb)->daddr,
1868 0, IPPROTO_TCP, 0);
1869 }
1870 return 1;
1871 }
1872 return 0;
1873}
1874
1875static void ql_hw_csum_setup(struct sk_buff *skb,
1876 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
1877{
1878 int len;
1879 struct iphdr *iph = ip_hdr(skb);
1880 u16 *check;
1881 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
1882 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
1883 mac_iocb_ptr->net_trans_offset =
1884 cpu_to_le16(skb_network_offset(skb) |
1885 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
1886
1887 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
1888 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
1889 if (likely(iph->protocol == IPPROTO_TCP)) {
1890 check = &(tcp_hdr(skb)->check);
1891 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
1892 mac_iocb_ptr->total_hdrs_len =
1893 cpu_to_le16(skb_transport_offset(skb) +
1894 (tcp_hdr(skb)->doff << 2));
1895 } else {
1896 check = &(udp_hdr(skb)->check);
1897 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
1898 mac_iocb_ptr->total_hdrs_len =
1899 cpu_to_le16(skb_transport_offset(skb) +
1900 sizeof(struct udphdr));
1901 }
1902 *check = ~csum_tcpudp_magic(iph->saddr,
1903 iph->daddr, len, iph->protocol, 0);
1904}
1905
1906static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
1907{
1908 struct tx_ring_desc *tx_ring_desc;
1909 struct ob_mac_iocb_req *mac_iocb_ptr;
1910 struct ql_adapter *qdev = netdev_priv(ndev);
1911 int tso;
1912 struct tx_ring *tx_ring;
1913 u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
1914
1915 tx_ring = &qdev->tx_ring[tx_ring_idx];
1916
1917 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
1918 QPRINTK(qdev, TX_QUEUED, INFO,
1919 "%s: shutting down tx queue %d du to lack of resources.\n",
1920 __func__, tx_ring_idx);
1921 netif_stop_queue(ndev);
1922 atomic_inc(&tx_ring->queue_stopped);
1923 return NETDEV_TX_BUSY;
1924 }
1925 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
1926 mac_iocb_ptr = tx_ring_desc->queue_entry;
1927 memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
1928 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
1929 QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
1930 return NETDEV_TX_BUSY;
1931 }
1932
1933 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
1934 mac_iocb_ptr->tid = tx_ring_desc->index;
1935 /* We use the upper 32-bits to store the tx queue for this IO.
1936 * When we get the completion we can use it to establish the context.
1937 */
1938 mac_iocb_ptr->txq_idx = tx_ring_idx;
1939 tx_ring_desc->skb = skb;
1940
1941 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
1942
1943 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
1944 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
1945 vlan_tx_tag_get(skb));
1946 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
1947 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
1948 }
1949 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1950 if (tso < 0) {
1951 dev_kfree_skb_any(skb);
1952 return NETDEV_TX_OK;
1953 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
1954 ql_hw_csum_setup(skb,
1955 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
1956 }
1957 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
1958 tx_ring->prod_idx++;
1959 if (tx_ring->prod_idx == tx_ring->wq_len)
1960 tx_ring->prod_idx = 0;
1961 wmb();
1962
1963 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
1964 ndev->trans_start = jiffies;
1965 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
1966 tx_ring->prod_idx, skb->len);
1967
1968 atomic_dec(&tx_ring->tx_count);
1969 return NETDEV_TX_OK;
1970}
1971
1972static void ql_free_shadow_space(struct ql_adapter *qdev)
1973{
1974 if (qdev->rx_ring_shadow_reg_area) {
1975 pci_free_consistent(qdev->pdev,
1976 PAGE_SIZE,
1977 qdev->rx_ring_shadow_reg_area,
1978 qdev->rx_ring_shadow_reg_dma);
1979 qdev->rx_ring_shadow_reg_area = NULL;
1980 }
1981 if (qdev->tx_ring_shadow_reg_area) {
1982 pci_free_consistent(qdev->pdev,
1983 PAGE_SIZE,
1984 qdev->tx_ring_shadow_reg_area,
1985 qdev->tx_ring_shadow_reg_dma);
1986 qdev->tx_ring_shadow_reg_area = NULL;
1987 }
1988}
1989
1990static int ql_alloc_shadow_space(struct ql_adapter *qdev)
1991{
1992 qdev->rx_ring_shadow_reg_area =
1993 pci_alloc_consistent(qdev->pdev,
1994 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
1995 if (qdev->rx_ring_shadow_reg_area == NULL) {
1996 QPRINTK(qdev, IFUP, ERR,
1997 "Allocation of RX shadow space failed.\n");
1998 return -ENOMEM;
1999 }
2000 qdev->tx_ring_shadow_reg_area =
2001 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2002 &qdev->tx_ring_shadow_reg_dma);
2003 if (qdev->tx_ring_shadow_reg_area == NULL) {
2004 QPRINTK(qdev, IFUP, ERR,
2005 "Allocation of TX shadow space failed.\n");
2006 goto err_wqp_sh_area;
2007 }
2008 return 0;
2009
2010err_wqp_sh_area:
2011 pci_free_consistent(qdev->pdev,
2012 PAGE_SIZE,
2013 qdev->rx_ring_shadow_reg_area,
2014 qdev->rx_ring_shadow_reg_dma);
2015 return -ENOMEM;
2016}
2017
2018static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2019{
2020 struct tx_ring_desc *tx_ring_desc;
2021 int i;
2022 struct ob_mac_iocb_req *mac_iocb_ptr;
2023
2024 mac_iocb_ptr = tx_ring->wq_base;
2025 tx_ring_desc = tx_ring->q;
2026 for (i = 0; i < tx_ring->wq_len; i++) {
2027 tx_ring_desc->index = i;
2028 tx_ring_desc->skb = NULL;
2029 tx_ring_desc->queue_entry = mac_iocb_ptr;
2030 mac_iocb_ptr++;
2031 tx_ring_desc++;
2032 }
2033 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2034 atomic_set(&tx_ring->queue_stopped, 0);
2035}
2036
2037static void ql_free_tx_resources(struct ql_adapter *qdev,
2038 struct tx_ring *tx_ring)
2039{
2040 if (tx_ring->wq_base) {
2041 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2042 tx_ring->wq_base, tx_ring->wq_base_dma);
2043 tx_ring->wq_base = NULL;
2044 }
2045 kfree(tx_ring->q);
2046 tx_ring->q = NULL;
2047}
2048
2049static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2050 struct tx_ring *tx_ring)
2051{
2052 tx_ring->wq_base =
2053 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2054 &tx_ring->wq_base_dma);
2055
2056 if ((tx_ring->wq_base == NULL)
2057 || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
2058 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2059 return -ENOMEM;
2060 }
2061 tx_ring->q =
2062 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2063 if (tx_ring->q == NULL)
2064 goto err;
2065
2066 return 0;
2067err:
2068 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2069 tx_ring->wq_base, tx_ring->wq_base_dma);
2070 return -ENOMEM;
2071}
2072
2073void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2074{
2075 int i;
2076 struct bq_desc *lbq_desc;
2077
2078 for (i = 0; i < rx_ring->lbq_len; i++) {
2079 lbq_desc = &rx_ring->lbq[i];
2080 if (lbq_desc->p.lbq_page) {
2081 pci_unmap_page(qdev->pdev,
2082 pci_unmap_addr(lbq_desc, mapaddr),
2083 pci_unmap_len(lbq_desc, maplen),
2084 PCI_DMA_FROMDEVICE);
2085
2086 put_page(lbq_desc->p.lbq_page);
2087 lbq_desc->p.lbq_page = NULL;
2088 }
2089 lbq_desc->bq->addr_lo = 0;
2090 lbq_desc->bq->addr_hi = 0;
2091 }
2092}
2093
2094/*
2095 * Allocate and map a page for each element of the lbq.
2096 */
2097static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
2098 struct rx_ring *rx_ring)
2099{
2100 int i;
2101 struct bq_desc *lbq_desc;
2102 u64 map;
2103 struct bq_element *bq = rx_ring->lbq_base;
2104
2105 for (i = 0; i < rx_ring->lbq_len; i++) {
2106 lbq_desc = &rx_ring->lbq[i];
2107 memset(lbq_desc, 0, sizeof(lbq_desc));
2108 lbq_desc->bq = bq;
2109 lbq_desc->index = i;
2110 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
2111 if (unlikely(!lbq_desc->p.lbq_page)) {
2112 QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
2113 goto mem_error;
2114 } else {
2115 map = pci_map_page(qdev->pdev,
2116 lbq_desc->p.lbq_page,
2117 0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
2118 if (pci_dma_mapping_error(qdev->pdev, map)) {
2119 QPRINTK(qdev, IFUP, ERR,
2120 "PCI mapping failed.\n");
2121 goto mem_error;
2122 }
2123 pci_unmap_addr_set(lbq_desc, mapaddr, map);
2124 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
2125 bq->addr_lo = cpu_to_le32(map);
2126 bq->addr_hi = cpu_to_le32(map >> 32);
2127 }
2128 bq++;
2129 }
2130 return 0;
2131mem_error:
2132 ql_free_lbq_buffers(qdev, rx_ring);
2133 return -ENOMEM;
2134}
2135
2136void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2137{
2138 int i;
2139 struct bq_desc *sbq_desc;
2140
2141 for (i = 0; i < rx_ring->sbq_len; i++) {
2142 sbq_desc = &rx_ring->sbq[i];
2143 if (sbq_desc == NULL) {
2144 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2145 return;
2146 }
2147 if (sbq_desc->p.skb) {
2148 pci_unmap_single(qdev->pdev,
2149 pci_unmap_addr(sbq_desc, mapaddr),
2150 pci_unmap_len(sbq_desc, maplen),
2151 PCI_DMA_FROMDEVICE);
2152 dev_kfree_skb(sbq_desc->p.skb);
2153 sbq_desc->p.skb = NULL;
2154 }
2155 if (sbq_desc->bq == NULL) {
2156 QPRINTK(qdev, IFUP, ERR, "sbq_desc->bq %d is NULL.\n",
2157 i);
2158 return;
2159 }
2160 sbq_desc->bq->addr_lo = 0;
2161 sbq_desc->bq->addr_hi = 0;
2162 }
2163}
2164
2165/* Allocate and map an skb for each element of the sbq. */
2166static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
2167 struct rx_ring *rx_ring)
2168{
2169 int i;
2170 struct bq_desc *sbq_desc;
2171 struct sk_buff *skb;
2172 u64 map;
2173 struct bq_element *bq = rx_ring->sbq_base;
2174
2175 for (i = 0; i < rx_ring->sbq_len; i++) {
2176 sbq_desc = &rx_ring->sbq[i];
2177 memset(sbq_desc, 0, sizeof(sbq_desc));
2178 sbq_desc->index = i;
2179 sbq_desc->bq = bq;
2180 skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
2181 if (unlikely(!skb)) {
2182 /* Better luck next round */
2183 QPRINTK(qdev, IFUP, ERR,
2184 "small buff alloc failed for %d bytes at index %d.\n",
2185 rx_ring->sbq_buf_size, i);
2186 goto mem_err;
2187 }
2188 skb_reserve(skb, QLGE_SB_PAD);
2189 sbq_desc->p.skb = skb;
2190 /*
2191 * Map only half the buffer. Because the
2192 * other half may get some data copied to it
2193 * when the completion arrives.
2194 */
2195 map = pci_map_single(qdev->pdev,
2196 skb->data,
2197 rx_ring->sbq_buf_size / 2,
2198 PCI_DMA_FROMDEVICE);
2199 if (pci_dma_mapping_error(qdev->pdev, map)) {
2200 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
2201 goto mem_err;
2202 }
2203 pci_unmap_addr_set(sbq_desc, mapaddr, map);
2204 pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
2205 bq->addr_lo = /*sbq_desc->addr_lo = */
2206 cpu_to_le32(map);
2207 bq->addr_hi = /*sbq_desc->addr_hi = */
2208 cpu_to_le32(map >> 32);
2209 bq++;
2210 }
2211 return 0;
2212mem_err:
2213 ql_free_sbq_buffers(qdev, rx_ring);
2214 return -ENOMEM;
2215}
2216
2217static void ql_free_rx_resources(struct ql_adapter *qdev,
2218 struct rx_ring *rx_ring)
2219{
2220 if (rx_ring->sbq_len)
2221 ql_free_sbq_buffers(qdev, rx_ring);
2222 if (rx_ring->lbq_len)
2223 ql_free_lbq_buffers(qdev, rx_ring);
2224
2225 /* Free the small buffer queue. */
2226 if (rx_ring->sbq_base) {
2227 pci_free_consistent(qdev->pdev,
2228 rx_ring->sbq_size,
2229 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2230 rx_ring->sbq_base = NULL;
2231 }
2232
2233 /* Free the small buffer queue control blocks. */
2234 kfree(rx_ring->sbq);
2235 rx_ring->sbq = NULL;
2236
2237 /* Free the large buffer queue. */
2238 if (rx_ring->lbq_base) {
2239 pci_free_consistent(qdev->pdev,
2240 rx_ring->lbq_size,
2241 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2242 rx_ring->lbq_base = NULL;
2243 }
2244
2245 /* Free the large buffer queue control blocks. */
2246 kfree(rx_ring->lbq);
2247 rx_ring->lbq = NULL;
2248
2249 /* Free the rx queue. */
2250 if (rx_ring->cq_base) {
2251 pci_free_consistent(qdev->pdev,
2252 rx_ring->cq_size,
2253 rx_ring->cq_base, rx_ring->cq_base_dma);
2254 rx_ring->cq_base = NULL;
2255 }
2256}
2257
2258/* Allocate queues and buffers for this completions queue based
2259 * on the values in the parameter structure. */
2260static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2261 struct rx_ring *rx_ring)
2262{
2263
2264 /*
2265 * Allocate the completion queue for this rx_ring.
2266 */
2267 rx_ring->cq_base =
2268 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2269 &rx_ring->cq_base_dma);
2270
2271 if (rx_ring->cq_base == NULL) {
2272 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2273 return -ENOMEM;
2274 }
2275
2276 if (rx_ring->sbq_len) {
2277 /*
2278 * Allocate small buffer queue.
2279 */
2280 rx_ring->sbq_base =
2281 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2282 &rx_ring->sbq_base_dma);
2283
2284 if (rx_ring->sbq_base == NULL) {
2285 QPRINTK(qdev, IFUP, ERR,
2286 "Small buffer queue allocation failed.\n");
2287 goto err_mem;
2288 }
2289
2290 /*
2291 * Allocate small buffer queue control blocks.
2292 */
2293 rx_ring->sbq =
2294 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2295 GFP_KERNEL);
2296 if (rx_ring->sbq == NULL) {
2297 QPRINTK(qdev, IFUP, ERR,
2298 "Small buffer queue control block allocation failed.\n");
2299 goto err_mem;
2300 }
2301
2302 if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
2303 QPRINTK(qdev, IFUP, ERR,
2304 "Small buffer allocation failed.\n");
2305 goto err_mem;
2306 }
2307 }
2308
2309 if (rx_ring->lbq_len) {
2310 /*
2311 * Allocate large buffer queue.
2312 */
2313 rx_ring->lbq_base =
2314 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2315 &rx_ring->lbq_base_dma);
2316
2317 if (rx_ring->lbq_base == NULL) {
2318 QPRINTK(qdev, IFUP, ERR,
2319 "Large buffer queue allocation failed.\n");
2320 goto err_mem;
2321 }
2322 /*
2323 * Allocate large buffer queue control blocks.
2324 */
2325 rx_ring->lbq =
2326 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2327 GFP_KERNEL);
2328 if (rx_ring->lbq == NULL) {
2329 QPRINTK(qdev, IFUP, ERR,
2330 "Large buffer queue control block allocation failed.\n");
2331 goto err_mem;
2332 }
2333
2334 /*
2335 * Allocate the buffers.
2336 */
2337 if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
2338 QPRINTK(qdev, IFUP, ERR,
2339 "Large buffer allocation failed.\n");
2340 goto err_mem;
2341 }
2342 }
2343
2344 return 0;
2345
2346err_mem:
2347 ql_free_rx_resources(qdev, rx_ring);
2348 return -ENOMEM;
2349}
2350
2351static void ql_tx_ring_clean(struct ql_adapter *qdev)
2352{
2353 struct tx_ring *tx_ring;
2354 struct tx_ring_desc *tx_ring_desc;
2355 int i, j;
2356
2357 /*
2358 * Loop through all queues and free
2359 * any resources.
2360 */
2361 for (j = 0; j < qdev->tx_ring_count; j++) {
2362 tx_ring = &qdev->tx_ring[j];
2363 for (i = 0; i < tx_ring->wq_len; i++) {
2364 tx_ring_desc = &tx_ring->q[i];
2365 if (tx_ring_desc && tx_ring_desc->skb) {
2366 QPRINTK(qdev, IFDOWN, ERR,
2367 "Freeing lost SKB %p, from queue %d, index %d.\n",
2368 tx_ring_desc->skb, j,
2369 tx_ring_desc->index);
2370 ql_unmap_send(qdev, tx_ring_desc,
2371 tx_ring_desc->map_cnt);
2372 dev_kfree_skb(tx_ring_desc->skb);
2373 tx_ring_desc->skb = NULL;
2374 }
2375 }
2376 }
2377}
2378
2379static void ql_free_ring_cb(struct ql_adapter *qdev)
2380{
2381 kfree(qdev->ring_mem);
2382}
2383
2384static int ql_alloc_ring_cb(struct ql_adapter *qdev)
2385{
2386 /* Allocate space for tx/rx ring control blocks. */
2387 qdev->ring_mem_size =
2388 (qdev->tx_ring_count * sizeof(struct tx_ring)) +
2389 (qdev->rx_ring_count * sizeof(struct rx_ring));
2390 qdev->ring_mem = kmalloc(qdev->ring_mem_size, GFP_KERNEL);
2391 if (qdev->ring_mem == NULL) {
2392 return -ENOMEM;
2393 } else {
2394 qdev->rx_ring = qdev->ring_mem;
2395 qdev->tx_ring = qdev->ring_mem +
2396 (qdev->rx_ring_count * sizeof(struct rx_ring));
2397 }
2398 return 0;
2399}
2400
2401static void ql_free_mem_resources(struct ql_adapter *qdev)
2402{
2403 int i;
2404
2405 for (i = 0; i < qdev->tx_ring_count; i++)
2406 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2407 for (i = 0; i < qdev->rx_ring_count; i++)
2408 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2409 ql_free_shadow_space(qdev);
2410}
2411
2412static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2413{
2414 int i;
2415
2416 /* Allocate space for our shadow registers and such. */
2417 if (ql_alloc_shadow_space(qdev))
2418 return -ENOMEM;
2419
2420 for (i = 0; i < qdev->rx_ring_count; i++) {
2421 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2422 QPRINTK(qdev, IFUP, ERR,
2423 "RX resource allocation failed.\n");
2424 goto err_mem;
2425 }
2426 }
2427 /* Allocate tx queue resources */
2428 for (i = 0; i < qdev->tx_ring_count; i++) {
2429 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2430 QPRINTK(qdev, IFUP, ERR,
2431 "TX resource allocation failed.\n");
2432 goto err_mem;
2433 }
2434 }
2435 return 0;
2436
2437err_mem:
2438 ql_free_mem_resources(qdev);
2439 return -ENOMEM;
2440}
2441
2442/* Set up the rx ring control block and pass it to the chip.
2443 * The control block is defined as
2444 * "Completion Queue Initialization Control Block", or cqicb.
2445 */
2446static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2447{
2448 struct cqicb *cqicb = &rx_ring->cqicb;
2449 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2450 (rx_ring->cq_id * sizeof(u64) * 4);
2451 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2452 (rx_ring->cq_id * sizeof(u64) * 4);
2453 void __iomem *doorbell_area =
2454 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2455 int err = 0;
2456 u16 bq_len;
2457
2458 /* Set up the shadow registers for this ring. */
2459 rx_ring->prod_idx_sh_reg = shadow_reg;
2460 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2461 shadow_reg += sizeof(u64);
2462 shadow_reg_dma += sizeof(u64);
2463 rx_ring->lbq_base_indirect = shadow_reg;
2464 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2465 shadow_reg += sizeof(u64);
2466 shadow_reg_dma += sizeof(u64);
2467 rx_ring->sbq_base_indirect = shadow_reg;
2468 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2469
2470 /* PCI doorbell mem area + 0x00 for consumer index register */
2471 rx_ring->cnsmr_idx_db_reg = (u32 *) doorbell_area;
2472 rx_ring->cnsmr_idx = 0;
2473 rx_ring->curr_entry = rx_ring->cq_base;
2474
2475 /* PCI doorbell mem area + 0x04 for valid register */
2476 rx_ring->valid_db_reg = doorbell_area + 0x04;
2477
2478 /* PCI doorbell mem area + 0x18 for large buffer consumer */
2479 rx_ring->lbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x18);
2480
2481 /* PCI doorbell mem area + 0x1c */
2482 rx_ring->sbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x1c);
2483
2484 memset((void *)cqicb, 0, sizeof(struct cqicb));
2485 cqicb->msix_vect = rx_ring->irq;
2486
2487 cqicb->len = cpu_to_le16(rx_ring->cq_len | LEN_V | LEN_CPP_CONT);
2488
2489 cqicb->addr_lo = cpu_to_le32(rx_ring->cq_base_dma);
2490 cqicb->addr_hi = cpu_to_le32((u64) rx_ring->cq_base_dma >> 32);
2491
2492 cqicb->prod_idx_addr_lo = cpu_to_le32(rx_ring->prod_idx_sh_reg_dma);
2493 cqicb->prod_idx_addr_hi =
2494 cpu_to_le32((u64) rx_ring->prod_idx_sh_reg_dma >> 32);
2495
2496 /*
2497 * Set up the control block load flags.
2498 */
2499 cqicb->flags = FLAGS_LC | /* Load queue base address */
2500 FLAGS_LV | /* Load MSI-X vector */
2501 FLAGS_LI; /* Load irq delay values */
2502 if (rx_ring->lbq_len) {
2503 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2504 *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
2505 cqicb->lbq_addr_lo =
2506 cpu_to_le32(rx_ring->lbq_base_indirect_dma);
2507 cqicb->lbq_addr_hi =
2508 cpu_to_le32((u64) rx_ring->lbq_base_indirect_dma >> 32);
2509 cqicb->lbq_buf_size = cpu_to_le32(rx_ring->lbq_buf_size);
2510 bq_len = (u16) rx_ring->lbq_len;
2511 cqicb->lbq_len = cpu_to_le16(bq_len);
2512 rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
2513 rx_ring->lbq_curr_idx = 0;
2514 rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
2515 rx_ring->lbq_free_cnt = 16;
2516 }
2517 if (rx_ring->sbq_len) {
2518 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2519 *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
2520 cqicb->sbq_addr_lo =
2521 cpu_to_le32(rx_ring->sbq_base_indirect_dma);
2522 cqicb->sbq_addr_hi =
2523 cpu_to_le32((u64) rx_ring->sbq_base_indirect_dma >> 32);
2524 cqicb->sbq_buf_size =
2525 cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
2526 bq_len = (u16) rx_ring->sbq_len;
2527 cqicb->sbq_len = cpu_to_le16(bq_len);
2528 rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
2529 rx_ring->sbq_curr_idx = 0;
2530 rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
2531 rx_ring->sbq_free_cnt = 16;
2532 }
2533 switch (rx_ring->type) {
2534 case TX_Q:
2535 /* If there's only one interrupt, then we use
2536 * worker threads to process the outbound
2537 * completion handling rx_rings. We do this so
2538 * they can be run on multiple CPUs. There is
2539 * room to play with this more where we would only
2540 * run in a worker if there are more than x number
2541 * of outbound completions on the queue and more
2542 * than one queue active. Some threshold that
2543 * would indicate a benefit in spite of the cost
2544 * of a context switch.
2545 * If there's more than one interrupt, then the
2546 * outbound completions are processed in the ISR.
2547 */
2548 if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
2549 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2550 else {
2551 /* With all debug warnings on we see a WARN_ON message
2552 * when we free the skb in the interrupt context.
2553 */
2554 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
2555 }
2556 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2557 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2558 break;
2559 case DEFAULT_Q:
2560 INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
2561 cqicb->irq_delay = 0;
2562 cqicb->pkt_delay = 0;
2563 break;
2564 case RX_Q:
2565 /* Inbound completion handling rx_rings run in
2566 * separate NAPI contexts.
2567 */
2568 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2569 64);
2570 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2571 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2572 break;
2573 default:
2574 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2575 rx_ring->type);
2576 }
2577 QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
2578 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2579 CFG_LCQ, rx_ring->cq_id);
2580 if (err) {
2581 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2582 return err;
2583 }
2584 QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
2585 /*
2586 * Advance the producer index for the buffer queues.
2587 */
2588 wmb();
2589 if (rx_ring->lbq_len)
2590 ql_write_db_reg(rx_ring->lbq_prod_idx,
2591 rx_ring->lbq_prod_idx_db_reg);
2592 if (rx_ring->sbq_len)
2593 ql_write_db_reg(rx_ring->sbq_prod_idx,
2594 rx_ring->sbq_prod_idx_db_reg);
2595 return err;
2596}
2597
2598static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2599{
2600 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2601 void __iomem *doorbell_area =
2602 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2603 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2604 (tx_ring->wq_id * sizeof(u64));
2605 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2606 (tx_ring->wq_id * sizeof(u64));
2607 int err = 0;
2608
2609 /*
2610 * Assign doorbell registers for this tx_ring.
2611 */
2612 /* TX PCI doorbell mem area for tx producer index */
2613 tx_ring->prod_idx_db_reg = (u32 *) doorbell_area;
2614 tx_ring->prod_idx = 0;
2615 /* TX PCI doorbell mem area + 0x04 */
2616 tx_ring->valid_db_reg = doorbell_area + 0x04;
2617
2618 /*
2619 * Assign shadow registers for this tx_ring.
2620 */
2621 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2622 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2623
2624 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2625 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2626 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2627 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2628 wqicb->rid = 0;
2629 wqicb->addr_lo = cpu_to_le32(tx_ring->wq_base_dma);
2630 wqicb->addr_hi = cpu_to_le32((u64) tx_ring->wq_base_dma >> 32);
2631
2632 wqicb->cnsmr_idx_addr_lo = cpu_to_le32(tx_ring->cnsmr_idx_sh_reg_dma);
2633 wqicb->cnsmr_idx_addr_hi =
2634 cpu_to_le32((u64) tx_ring->cnsmr_idx_sh_reg_dma >> 32);
2635
2636 ql_init_tx_ring(qdev, tx_ring);
2637
2638 err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
2639 (u16) tx_ring->wq_id);
2640 if (err) {
2641 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2642 return err;
2643 }
2644 QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
2645 return err;
2646}
2647
2648static void ql_disable_msix(struct ql_adapter *qdev)
2649{
2650 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2651 pci_disable_msix(qdev->pdev);
2652 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2653 kfree(qdev->msi_x_entry);
2654 qdev->msi_x_entry = NULL;
2655 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2656 pci_disable_msi(qdev->pdev);
2657 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2658 }
2659}
2660
2661static void ql_enable_msix(struct ql_adapter *qdev)
2662{
2663 int i;
2664
2665 qdev->intr_count = 1;
2666 /* Get the MSIX vectors. */
2667 if (irq_type == MSIX_IRQ) {
2668 /* Try to alloc space for the msix struct,
2669 * if it fails then go to MSI/legacy.
2670 */
2671 qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
2672 sizeof(struct msix_entry),
2673 GFP_KERNEL);
2674 if (!qdev->msi_x_entry) {
2675 irq_type = MSI_IRQ;
2676 goto msi;
2677 }
2678
2679 for (i = 0; i < qdev->rx_ring_count; i++)
2680 qdev->msi_x_entry[i].entry = i;
2681
2682 if (!pci_enable_msix
2683 (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
2684 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2685 qdev->intr_count = qdev->rx_ring_count;
2686 QPRINTK(qdev, IFUP, INFO,
2687 "MSI-X Enabled, got %d vectors.\n",
2688 qdev->intr_count);
2689 return;
2690 } else {
2691 kfree(qdev->msi_x_entry);
2692 qdev->msi_x_entry = NULL;
2693 QPRINTK(qdev, IFUP, WARNING,
2694 "MSI-X Enable failed, trying MSI.\n");
2695 irq_type = MSI_IRQ;
2696 }
2697 }
2698msi:
2699 if (irq_type == MSI_IRQ) {
2700 if (!pci_enable_msi(qdev->pdev)) {
2701 set_bit(QL_MSI_ENABLED, &qdev->flags);
2702 QPRINTK(qdev, IFUP, INFO,
2703 "Running with MSI interrupts.\n");
2704 return;
2705 }
2706 }
2707 irq_type = LEG_IRQ;
Ron Mercerc4e84bd2008-09-18 11:56:28 -04002708 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2709}
2710
2711/*
2712 * Here we build the intr_context structures based on
2713 * our rx_ring count and intr vector count.
2714 * The intr_context structure is used to hook each vector
2715 * to possibly different handlers.
2716 */
2717static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2718{
2719 int i = 0;
2720 struct intr_context *intr_context = &qdev->intr_context[0];
2721
2722 ql_enable_msix(qdev);
2723
2724 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2725 /* Each rx_ring has it's
2726 * own intr_context since we have separate
2727 * vectors for each queue.
2728 * This only true when MSI-X is enabled.
2729 */
2730 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2731 qdev->rx_ring[i].irq = i;
2732 intr_context->intr = i;
2733 intr_context->qdev = qdev;
2734 /*
2735 * We set up each vectors enable/disable/read bits so
2736 * there's no bit/mask calculations in the critical path.
2737 */
2738 intr_context->intr_en_mask =
2739 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2740 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2741 | i;
2742 intr_context->intr_dis_mask =
2743 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2744 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2745 INTR_EN_IHD | i;
2746 intr_context->intr_read_mask =
2747 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2748 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2749 i;
2750
2751 if (i == 0) {
2752 /*
2753 * Default queue handles bcast/mcast plus
2754 * async events. Needs buffers.
2755 */
2756 intr_context->handler = qlge_isr;
2757 sprintf(intr_context->name, "%s-default-queue",
2758 qdev->ndev->name);
2759 } else if (i < qdev->rss_ring_first_cq_id) {
2760 /*
2761 * Outbound queue is for outbound completions only.
2762 */
2763 intr_context->handler = qlge_msix_tx_isr;
2764 sprintf(intr_context->name, "%s-txq-%d",
2765 qdev->ndev->name, i);
2766 } else {
2767 /*
2768 * Inbound queues handle unicast frames only.
2769 */
2770 intr_context->handler = qlge_msix_rx_isr;
2771 sprintf(intr_context->name, "%s-rxq-%d",
2772 qdev->ndev->name, i);
2773 }
2774 }
2775 } else {
2776 /*
2777 * All rx_rings use the same intr_context since
2778 * there is only one vector.
2779 */
2780 intr_context->intr = 0;
2781 intr_context->qdev = qdev;
2782 /*
2783 * We set up each vectors enable/disable/read bits so
2784 * there's no bit/mask calculations in the critical path.
2785 */
2786 intr_context->intr_en_mask =
2787 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2788 intr_context->intr_dis_mask =
2789 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2790 INTR_EN_TYPE_DISABLE;
2791 intr_context->intr_read_mask =
2792 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2793 /*
2794 * Single interrupt means one handler for all rings.
2795 */
2796 intr_context->handler = qlge_isr;
2797 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2798 for (i = 0; i < qdev->rx_ring_count; i++)
2799 qdev->rx_ring[i].irq = 0;
2800 }
2801}
2802
2803static void ql_free_irq(struct ql_adapter *qdev)
2804{
2805 int i;
2806 struct intr_context *intr_context = &qdev->intr_context[0];
2807
2808 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2809 if (intr_context->hooked) {
2810 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2811 free_irq(qdev->msi_x_entry[i].vector,
2812 &qdev->rx_ring[i]);
2813 QPRINTK(qdev, IFDOWN, ERR,
2814 "freeing msix interrupt %d.\n", i);
2815 } else {
2816 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
2817 QPRINTK(qdev, IFDOWN, ERR,
2818 "freeing msi interrupt %d.\n", i);
2819 }
2820 }
2821 }
2822 ql_disable_msix(qdev);
2823}
2824
2825static int ql_request_irq(struct ql_adapter *qdev)
2826{
2827 int i;
2828 int status = 0;
2829 struct pci_dev *pdev = qdev->pdev;
2830 struct intr_context *intr_context = &qdev->intr_context[0];
2831
2832 ql_resolve_queues_to_irqs(qdev);
2833
2834 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2835 atomic_set(&intr_context->irq_cnt, 0);
2836 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2837 status = request_irq(qdev->msi_x_entry[i].vector,
2838 intr_context->handler,
2839 0,
2840 intr_context->name,
2841 &qdev->rx_ring[i]);
2842 if (status) {
2843 QPRINTK(qdev, IFUP, ERR,
2844 "Failed request for MSIX interrupt %d.\n",
2845 i);
2846 goto err_irq;
2847 } else {
2848 QPRINTK(qdev, IFUP, INFO,
2849 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2850 i,
2851 qdev->rx_ring[i].type ==
2852 DEFAULT_Q ? "DEFAULT_Q" : "",
2853 qdev->rx_ring[i].type ==
2854 TX_Q ? "TX_Q" : "",
2855 qdev->rx_ring[i].type ==
2856 RX_Q ? "RX_Q" : "", intr_context->name);
2857 }
2858 } else {
2859 QPRINTK(qdev, IFUP, DEBUG,
2860 "trying msi or legacy interrupts.\n");
2861 QPRINTK(qdev, IFUP, DEBUG,
2862 "%s: irq = %d.\n", __func__, pdev->irq);
2863 QPRINTK(qdev, IFUP, DEBUG,
2864 "%s: context->name = %s.\n", __func__,
2865 intr_context->name);
2866 QPRINTK(qdev, IFUP, DEBUG,
2867 "%s: dev_id = 0x%p.\n", __func__,
2868 &qdev->rx_ring[0]);
2869 status =
2870 request_irq(pdev->irq, qlge_isr,
2871 test_bit(QL_MSI_ENABLED,
2872 &qdev->
2873 flags) ? 0 : IRQF_SHARED,
2874 intr_context->name, &qdev->rx_ring[0]);
2875 if (status)
2876 goto err_irq;
2877
2878 QPRINTK(qdev, IFUP, ERR,
2879 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
2880 i,
2881 qdev->rx_ring[0].type ==
2882 DEFAULT_Q ? "DEFAULT_Q" : "",
2883 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
2884 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
2885 intr_context->name);
2886 }
2887 intr_context->hooked = 1;
2888 }
2889 return status;
2890err_irq:
2891 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
2892 ql_free_irq(qdev);
2893 return status;
2894}
2895
2896static int ql_start_rss(struct ql_adapter *qdev)
2897{
2898 struct ricb *ricb = &qdev->ricb;
2899 int status = 0;
2900 int i;
2901 u8 *hash_id = (u8 *) ricb->hash_cq_id;
2902
2903 memset((void *)ricb, 0, sizeof(ricb));
2904
2905 ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
2906 ricb->flags =
2907 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
2908 RSS_RT6);
2909 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
2910
2911 /*
2912 * Fill out the Indirection Table.
2913 */
2914 for (i = 0; i < 32; i++)
2915 hash_id[i] = i & 1;
2916
2917 /*
2918 * Random values for the IPv6 and IPv4 Hash Keys.
2919 */
2920 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
2921 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
2922
2923 QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
2924
2925 status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
2926 if (status) {
2927 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
2928 return status;
2929 }
2930 QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
2931 return status;
2932}
2933
2934/* Initialize the frame-to-queue routing. */
2935static int ql_route_initialize(struct ql_adapter *qdev)
2936{
2937 int status = 0;
2938 int i;
2939
2940 /* Clear all the entries in the routing table. */
2941 for (i = 0; i < 16; i++) {
2942 status = ql_set_routing_reg(qdev, i, 0, 0);
2943 if (status) {
2944 QPRINTK(qdev, IFUP, ERR,
2945 "Failed to init routing register for CAM packets.\n");
2946 return status;
2947 }
2948 }
2949
2950 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
2951 if (status) {
2952 QPRINTK(qdev, IFUP, ERR,
2953 "Failed to init routing register for error packets.\n");
2954 return status;
2955 }
2956 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
2957 if (status) {
2958 QPRINTK(qdev, IFUP, ERR,
2959 "Failed to init routing register for broadcast packets.\n");
2960 return status;
2961 }
2962 /* If we have more than one inbound queue, then turn on RSS in the
2963 * routing block.
2964 */
2965 if (qdev->rss_ring_count > 1) {
2966 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
2967 RT_IDX_RSS_MATCH, 1);
2968 if (status) {
2969 QPRINTK(qdev, IFUP, ERR,
2970 "Failed to init routing register for MATCH RSS packets.\n");
2971 return status;
2972 }
2973 }
2974
2975 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
2976 RT_IDX_CAM_HIT, 1);
2977 if (status) {
2978 QPRINTK(qdev, IFUP, ERR,
2979 "Failed to init routing register for CAM packets.\n");
2980 return status;
2981 }
2982 return status;
2983}
2984
2985static int ql_adapter_initialize(struct ql_adapter *qdev)
2986{
2987 u32 value, mask;
2988 int i;
2989 int status = 0;
2990
2991 /*
2992 * Set up the System register to halt on errors.
2993 */
2994 value = SYS_EFE | SYS_FAE;
2995 mask = value << 16;
2996 ql_write32(qdev, SYS, mask | value);
2997
2998 /* Set the default queue. */
2999 value = NIC_RCV_CFG_DFQ;
3000 mask = NIC_RCV_CFG_DFQ_MASK;
3001 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3002
3003 /* Set the MPI interrupt to enabled. */
3004 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3005
3006 /* Enable the function, set pagesize, enable error checking. */
3007 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3008 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3009
3010 /* Set/clear header splitting. */
3011 mask = FSC_VM_PAGESIZE_MASK |
3012 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3013 ql_write32(qdev, FSC, mask | value);
3014
3015 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3016 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3017
3018 /* Start up the rx queues. */
3019 for (i = 0; i < qdev->rx_ring_count; i++) {
3020 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3021 if (status) {
3022 QPRINTK(qdev, IFUP, ERR,
3023 "Failed to start rx ring[%d].\n", i);
3024 return status;
3025 }
3026 }
3027
3028 /* If there is more than one inbound completion queue
3029 * then download a RICB to configure RSS.
3030 */
3031 if (qdev->rss_ring_count > 1) {
3032 status = ql_start_rss(qdev);
3033 if (status) {
3034 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3035 return status;
3036 }
3037 }
3038
3039 /* Start up the tx queues. */
3040 for (i = 0; i < qdev->tx_ring_count; i++) {
3041 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3042 if (status) {
3043 QPRINTK(qdev, IFUP, ERR,
3044 "Failed to start tx ring[%d].\n", i);
3045 return status;
3046 }
3047 }
3048
3049 status = ql_port_initialize(qdev);
3050 if (status) {
3051 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3052 return status;
3053 }
3054
3055 status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
3056 MAC_ADDR_TYPE_CAM_MAC, qdev->func);
3057 if (status) {
3058 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3059 return status;
3060 }
3061
3062 status = ql_route_initialize(qdev);
3063 if (status) {
3064 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3065 return status;
3066 }
3067
3068 /* Start NAPI for the RSS queues. */
3069 for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
3070 QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
3071 i);
3072 napi_enable(&qdev->rx_ring[i].napi);
3073 }
3074
3075 return status;
3076}
3077
3078/* Issue soft reset to chip. */
3079static int ql_adapter_reset(struct ql_adapter *qdev)
3080{
3081 u32 value;
3082 int max_wait_time;
3083 int status = 0;
3084 int resetCnt = 0;
3085
3086#define MAX_RESET_CNT 1
3087issueReset:
3088 resetCnt++;
3089 QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
3090 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3091 /* Wait for reset to complete. */
3092 max_wait_time = 3;
3093 QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
3094 max_wait_time);
3095 do {
3096 value = ql_read32(qdev, RST_FO);
3097 if ((value & RST_FO_FR) == 0)
3098 break;
3099
3100 ssleep(1);
3101 } while ((--max_wait_time));
3102 if (value & RST_FO_FR) {
3103 QPRINTK(qdev, IFDOWN, ERR,
3104 "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
3105 if (resetCnt < MAX_RESET_CNT)
3106 goto issueReset;
3107 }
3108 if (max_wait_time == 0) {
3109 status = -ETIMEDOUT;
3110 QPRINTK(qdev, IFDOWN, ERR,
3111 "ETIMEOUT!!! errored out of resetting the chip!\n");
3112 }
3113
3114 return status;
3115}
3116
3117static void ql_display_dev_info(struct net_device *ndev)
3118{
3119 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3120
3121 QPRINTK(qdev, PROBE, INFO,
3122 "Function #%d, NIC Roll %d, NIC Rev = %d, "
3123 "XG Roll = %d, XG Rev = %d.\n",
3124 qdev->func,
3125 qdev->chip_rev_id & 0x0000000f,
3126 qdev->chip_rev_id >> 4 & 0x0000000f,
3127 qdev->chip_rev_id >> 8 & 0x0000000f,
3128 qdev->chip_rev_id >> 12 & 0x0000000f);
Johannes Berg7c510e42008-10-27 17:47:26 -07003129 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
Ron Mercerc4e84bd2008-09-18 11:56:28 -04003130}
3131
3132static int ql_adapter_down(struct ql_adapter *qdev)
3133{
3134 struct net_device *ndev = qdev->ndev;
3135 int i, status = 0;
3136 struct rx_ring *rx_ring;
3137
3138 netif_stop_queue(ndev);
3139 netif_carrier_off(ndev);
3140
3141 cancel_delayed_work_sync(&qdev->asic_reset_work);
3142 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3143 cancel_delayed_work_sync(&qdev->mpi_work);
3144
3145 /* The default queue at index 0 is always processed in
3146 * a workqueue.
3147 */
3148 cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
3149
3150 /* The rest of the rx_rings are processed in
3151 * a workqueue only if it's a single interrupt
3152 * environment (MSI/Legacy).
3153 */
3154 for (i = 1; i > qdev->rx_ring_count; i++) {
3155 rx_ring = &qdev->rx_ring[i];
3156 /* Only the RSS rings use NAPI on multi irq
3157 * environment. Outbound completion processing
3158 * is done in interrupt context.
3159 */
3160 if (i >= qdev->rss_ring_first_cq_id) {
3161 napi_disable(&rx_ring->napi);
3162 } else {
3163 cancel_delayed_work_sync(&rx_ring->rx_work);
3164 }
3165 }
3166
3167 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3168
3169 ql_disable_interrupts(qdev);
3170
3171 ql_tx_ring_clean(qdev);
3172
3173 spin_lock(&qdev->hw_lock);
3174 status = ql_adapter_reset(qdev);
3175 if (status)
3176 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3177 qdev->func);
3178 spin_unlock(&qdev->hw_lock);
3179 return status;
3180}
3181
3182static int ql_adapter_up(struct ql_adapter *qdev)
3183{
3184 int err = 0;
3185
3186 spin_lock(&qdev->hw_lock);
3187 err = ql_adapter_initialize(qdev);
3188 if (err) {
3189 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3190 spin_unlock(&qdev->hw_lock);
3191 goto err_init;
3192 }
3193 spin_unlock(&qdev->hw_lock);
3194 set_bit(QL_ADAPTER_UP, &qdev->flags);
3195 ql_enable_interrupts(qdev);
3196 ql_enable_all_completion_interrupts(qdev);
3197 if ((ql_read32(qdev, STS) & qdev->port_init)) {
3198 netif_carrier_on(qdev->ndev);
3199 netif_start_queue(qdev->ndev);
3200 }
3201
3202 return 0;
3203err_init:
3204 ql_adapter_reset(qdev);
3205 return err;
3206}
3207
3208static int ql_cycle_adapter(struct ql_adapter *qdev)
3209{
3210 int status;
3211
3212 status = ql_adapter_down(qdev);
3213 if (status)
3214 goto error;
3215
3216 status = ql_adapter_up(qdev);
3217 if (status)
3218 goto error;
3219
3220 return status;
3221error:
3222 QPRINTK(qdev, IFUP, ALERT,
3223 "Driver up/down cycle failed, closing device\n");
3224 rtnl_lock();
3225 dev_close(qdev->ndev);
3226 rtnl_unlock();
3227 return status;
3228}
3229
3230static void ql_release_adapter_resources(struct ql_adapter *qdev)
3231{
3232 ql_free_mem_resources(qdev);
3233 ql_free_irq(qdev);
3234}
3235
3236static int ql_get_adapter_resources(struct ql_adapter *qdev)
3237{
3238 int status = 0;
3239
3240 if (ql_alloc_mem_resources(qdev)) {
3241 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3242 return -ENOMEM;
3243 }
3244 status = ql_request_irq(qdev);
3245 if (status)
3246 goto err_irq;
3247 return status;
3248err_irq:
3249 ql_free_mem_resources(qdev);
3250 return status;
3251}
3252
3253static int qlge_close(struct net_device *ndev)
3254{
3255 struct ql_adapter *qdev = netdev_priv(ndev);
3256
3257 /*
3258 * Wait for device to recover from a reset.
3259 * (Rarely happens, but possible.)
3260 */
3261 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3262 msleep(1);
3263 ql_adapter_down(qdev);
3264 ql_release_adapter_resources(qdev);
3265 ql_free_ring_cb(qdev);
3266 return 0;
3267}
3268
3269static int ql_configure_rings(struct ql_adapter *qdev)
3270{
3271 int i;
3272 struct rx_ring *rx_ring;
3273 struct tx_ring *tx_ring;
3274 int cpu_cnt = num_online_cpus();
3275
3276 /*
3277 * For each processor present we allocate one
3278 * rx_ring for outbound completions, and one
3279 * rx_ring for inbound completions. Plus there is
3280 * always the one default queue. For the CPU
3281 * counts we end up with the following rx_rings:
3282 * rx_ring count =
3283 * one default queue +
3284 * (CPU count * outbound completion rx_ring) +
3285 * (CPU count * inbound (RSS) completion rx_ring)
3286 * To keep it simple we limit the total number of
3287 * queues to < 32, so we truncate CPU to 8.
3288 * This limitation can be removed when requested.
3289 */
3290
3291 if (cpu_cnt > 8)
3292 cpu_cnt = 8;
3293
3294 /*
3295 * rx_ring[0] is always the default queue.
3296 */
3297 /* Allocate outbound completion ring for each CPU. */
3298 qdev->tx_ring_count = cpu_cnt;
3299 /* Allocate inbound completion (RSS) ring for each CPU. */
3300 qdev->rss_ring_count = cpu_cnt;
3301 /* cq_id for the first inbound ring handler. */
3302 qdev->rss_ring_first_cq_id = cpu_cnt + 1;
3303 /*
3304 * qdev->rx_ring_count:
3305 * Total number of rx_rings. This includes the one
3306 * default queue, a number of outbound completion
3307 * handler rx_rings, and the number of inbound
3308 * completion handler rx_rings.
3309 */
3310 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
3311
3312 if (ql_alloc_ring_cb(qdev))
3313 return -ENOMEM;
3314
3315 for (i = 0; i < qdev->tx_ring_count; i++) {
3316 tx_ring = &qdev->tx_ring[i];
3317 memset((void *)tx_ring, 0, sizeof(tx_ring));
3318 tx_ring->qdev = qdev;
3319 tx_ring->wq_id = i;
3320 tx_ring->wq_len = qdev->tx_ring_size;
3321 tx_ring->wq_size =
3322 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3323
3324 /*
3325 * The completion queue ID for the tx rings start
3326 * immediately after the default Q ID, which is zero.
3327 */
3328 tx_ring->cq_id = i + 1;
3329 }
3330
3331 for (i = 0; i < qdev->rx_ring_count; i++) {
3332 rx_ring = &qdev->rx_ring[i];
3333 memset((void *)rx_ring, 0, sizeof(rx_ring));
3334 rx_ring->qdev = qdev;
3335 rx_ring->cq_id = i;
3336 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3337 if (i == 0) { /* Default queue at index 0. */
3338 /*
3339 * Default queue handles bcast/mcast plus
3340 * async events. Needs buffers.
3341 */
3342 rx_ring->cq_len = qdev->rx_ring_size;
3343 rx_ring->cq_size =
3344 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3345 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3346 rx_ring->lbq_size =
3347 rx_ring->lbq_len * sizeof(struct bq_element);
3348 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3349 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3350 rx_ring->sbq_size =
3351 rx_ring->sbq_len * sizeof(struct bq_element);
3352 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3353 rx_ring->type = DEFAULT_Q;
3354 } else if (i < qdev->rss_ring_first_cq_id) {
3355 /*
3356 * Outbound queue handles outbound completions only.
3357 */
3358 /* outbound cq is same size as tx_ring it services. */
3359 rx_ring->cq_len = qdev->tx_ring_size;
3360 rx_ring->cq_size =
3361 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3362 rx_ring->lbq_len = 0;
3363 rx_ring->lbq_size = 0;
3364 rx_ring->lbq_buf_size = 0;
3365 rx_ring->sbq_len = 0;
3366 rx_ring->sbq_size = 0;
3367 rx_ring->sbq_buf_size = 0;
3368 rx_ring->type = TX_Q;
3369 } else { /* Inbound completions (RSS) queues */
3370 /*
3371 * Inbound queues handle unicast frames only.
3372 */
3373 rx_ring->cq_len = qdev->rx_ring_size;
3374 rx_ring->cq_size =
3375 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3376 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3377 rx_ring->lbq_size =
3378 rx_ring->lbq_len * sizeof(struct bq_element);
3379 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3380 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3381 rx_ring->sbq_size =
3382 rx_ring->sbq_len * sizeof(struct bq_element);
3383 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3384 rx_ring->type = RX_Q;
3385 }
3386 }
3387 return 0;
3388}
3389
3390static int qlge_open(struct net_device *ndev)
3391{
3392 int err = 0;
3393 struct ql_adapter *qdev = netdev_priv(ndev);
3394
3395 err = ql_configure_rings(qdev);
3396 if (err)
3397 return err;
3398
3399 err = ql_get_adapter_resources(qdev);
3400 if (err)
3401 goto error_up;
3402
3403 err = ql_adapter_up(qdev);
3404 if (err)
3405 goto error_up;
3406
3407 return err;
3408
3409error_up:
3410 ql_release_adapter_resources(qdev);
3411 ql_free_ring_cb(qdev);
3412 return err;
3413}
3414
3415static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3416{
3417 struct ql_adapter *qdev = netdev_priv(ndev);
3418
3419 if (ndev->mtu == 1500 && new_mtu == 9000) {
3420 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3421 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3422 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3423 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3424 (ndev->mtu == 9000 && new_mtu == 9000)) {
3425 return 0;
3426 } else
3427 return -EINVAL;
3428 ndev->mtu = new_mtu;
3429 return 0;
3430}
3431
3432static struct net_device_stats *qlge_get_stats(struct net_device
3433 *ndev)
3434{
3435 struct ql_adapter *qdev = netdev_priv(ndev);
3436 return &qdev->stats;
3437}
3438
3439static void qlge_set_multicast_list(struct net_device *ndev)
3440{
3441 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3442 struct dev_mc_list *mc_ptr;
3443 int i;
3444
3445 spin_lock(&qdev->hw_lock);
3446 /*
3447 * Set or clear promiscuous mode if a
3448 * transition is taking place.
3449 */
3450 if (ndev->flags & IFF_PROMISC) {
3451 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3452 if (ql_set_routing_reg
3453 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3454 QPRINTK(qdev, HW, ERR,
3455 "Failed to set promiscous mode.\n");
3456 } else {
3457 set_bit(QL_PROMISCUOUS, &qdev->flags);
3458 }
3459 }
3460 } else {
3461 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3462 if (ql_set_routing_reg
3463 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3464 QPRINTK(qdev, HW, ERR,
3465 "Failed to clear promiscous mode.\n");
3466 } else {
3467 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3468 }
3469 }
3470 }
3471
3472 /*
3473 * Set or clear all multicast mode if a
3474 * transition is taking place.
3475 */
3476 if ((ndev->flags & IFF_ALLMULTI) ||
3477 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3478 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3479 if (ql_set_routing_reg
3480 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3481 QPRINTK(qdev, HW, ERR,
3482 "Failed to set all-multi mode.\n");
3483 } else {
3484 set_bit(QL_ALLMULTI, &qdev->flags);
3485 }
3486 }
3487 } else {
3488 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3489 if (ql_set_routing_reg
3490 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3491 QPRINTK(qdev, HW, ERR,
3492 "Failed to clear all-multi mode.\n");
3493 } else {
3494 clear_bit(QL_ALLMULTI, &qdev->flags);
3495 }
3496 }
3497 }
3498
3499 if (ndev->mc_count) {
3500 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3501 i++, mc_ptr = mc_ptr->next)
3502 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3503 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3504 QPRINTK(qdev, HW, ERR,
3505 "Failed to loadmulticast address.\n");
3506 goto exit;
3507 }
3508 if (ql_set_routing_reg
3509 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3510 QPRINTK(qdev, HW, ERR,
3511 "Failed to set multicast match mode.\n");
3512 } else {
3513 set_bit(QL_ALLMULTI, &qdev->flags);
3514 }
3515 }
3516exit:
3517 spin_unlock(&qdev->hw_lock);
3518}
3519
3520static int qlge_set_mac_address(struct net_device *ndev, void *p)
3521{
3522 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3523 struct sockaddr *addr = p;
3524
3525 if (netif_running(ndev))
3526 return -EBUSY;
3527
3528 if (!is_valid_ether_addr(addr->sa_data))
3529 return -EADDRNOTAVAIL;
3530 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3531
3532 spin_lock(&qdev->hw_lock);
3533 if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3534 MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
3535 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3536 return -1;
3537 }
3538 spin_unlock(&qdev->hw_lock);
3539
3540 return 0;
3541}
3542
3543static void qlge_tx_timeout(struct net_device *ndev)
3544{
3545 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3546 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
3547}
3548
3549static void ql_asic_reset_work(struct work_struct *work)
3550{
3551 struct ql_adapter *qdev =
3552 container_of(work, struct ql_adapter, asic_reset_work.work);
3553 ql_cycle_adapter(qdev);
3554}
3555
3556static void ql_get_board_info(struct ql_adapter *qdev)
3557{
3558 qdev->func =
3559 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3560 if (qdev->func) {
3561 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3562 qdev->port_link_up = STS_PL1;
3563 qdev->port_init = STS_PI1;
3564 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3565 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3566 } else {
3567 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3568 qdev->port_link_up = STS_PL0;
3569 qdev->port_init = STS_PI0;
3570 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3571 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3572 }
3573 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3574}
3575
3576static void ql_release_all(struct pci_dev *pdev)
3577{
3578 struct net_device *ndev = pci_get_drvdata(pdev);
3579 struct ql_adapter *qdev = netdev_priv(ndev);
3580
3581 if (qdev->workqueue) {
3582 destroy_workqueue(qdev->workqueue);
3583 qdev->workqueue = NULL;
3584 }
3585 if (qdev->q_workqueue) {
3586 destroy_workqueue(qdev->q_workqueue);
3587 qdev->q_workqueue = NULL;
3588 }
3589 if (qdev->reg_base)
3590 iounmap((void *)qdev->reg_base);
3591 if (qdev->doorbell_area)
3592 iounmap(qdev->doorbell_area);
3593 pci_release_regions(pdev);
3594 pci_set_drvdata(pdev, NULL);
3595}
3596
3597static int __devinit ql_init_device(struct pci_dev *pdev,
3598 struct net_device *ndev, int cards_found)
3599{
3600 struct ql_adapter *qdev = netdev_priv(ndev);
3601 int pos, err = 0;
3602 u16 val16;
3603
3604 memset((void *)qdev, 0, sizeof(qdev));
3605 err = pci_enable_device(pdev);
3606 if (err) {
3607 dev_err(&pdev->dev, "PCI device enable failed.\n");
3608 return err;
3609 }
3610
3611 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3612 if (pos <= 0) {
3613 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3614 "aborting.\n");
3615 goto err_out;
3616 } else {
3617 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3618 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3619 val16 |= (PCI_EXP_DEVCTL_CERE |
3620 PCI_EXP_DEVCTL_NFERE |
3621 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3622 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3623 }
3624
3625 err = pci_request_regions(pdev, DRV_NAME);
3626 if (err) {
3627 dev_err(&pdev->dev, "PCI region request failed.\n");
3628 goto err_out;
3629 }
3630
3631 pci_set_master(pdev);
3632 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3633 set_bit(QL_DMA64, &qdev->flags);
3634 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
3635 } else {
3636 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3637 if (!err)
3638 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
3639 }
3640
3641 if (err) {
3642 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3643 goto err_out;
3644 }
3645
3646 pci_set_drvdata(pdev, ndev);
3647 qdev->reg_base =
3648 ioremap_nocache(pci_resource_start(pdev, 1),
3649 pci_resource_len(pdev, 1));
3650 if (!qdev->reg_base) {
3651 dev_err(&pdev->dev, "Register mapping failed.\n");
3652 err = -ENOMEM;
3653 goto err_out;
3654 }
3655
3656 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3657 qdev->doorbell_area =
3658 ioremap_nocache(pci_resource_start(pdev, 3),
3659 pci_resource_len(pdev, 3));
3660 if (!qdev->doorbell_area) {
3661 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3662 err = -ENOMEM;
3663 goto err_out;
3664 }
3665
3666 ql_get_board_info(qdev);
3667 qdev->ndev = ndev;
3668 qdev->pdev = pdev;
3669 qdev->msg_enable = netif_msg_init(debug, default_msg);
3670 spin_lock_init(&qdev->hw_lock);
3671 spin_lock_init(&qdev->stats_lock);
3672
3673 /* make sure the EEPROM is good */
3674 err = ql_get_flash_params(qdev);
3675 if (err) {
3676 dev_err(&pdev->dev, "Invalid FLASH.\n");
3677 goto err_out;
3678 }
3679
3680 if (!is_valid_ether_addr(qdev->flash.mac_addr))
3681 goto err_out;
3682
3683 memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
3684 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3685
3686 /* Set up the default ring sizes. */
3687 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3688 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3689
3690 /* Set up the coalescing parameters. */
3691 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3692 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3693 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3694 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3695
3696 /*
3697 * Set up the operating parameters.
3698 */
3699 qdev->rx_csum = 1;
3700
3701 qdev->q_workqueue = create_workqueue(ndev->name);
3702 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3703 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3704 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3705 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3706
3707 if (!cards_found) {
3708 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3709 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3710 DRV_NAME, DRV_VERSION);
3711 }
3712 return 0;
3713err_out:
3714 ql_release_all(pdev);
3715 pci_disable_device(pdev);
3716 return err;
3717}
3718
3719static int __devinit qlge_probe(struct pci_dev *pdev,
3720 const struct pci_device_id *pci_entry)
3721{
3722 struct net_device *ndev = NULL;
3723 struct ql_adapter *qdev = NULL;
3724 static int cards_found = 0;
3725 int err = 0;
3726
3727 ndev = alloc_etherdev(sizeof(struct ql_adapter));
3728 if (!ndev)
3729 return -ENOMEM;
3730
3731 err = ql_init_device(pdev, ndev, cards_found);
3732 if (err < 0) {
3733 free_netdev(ndev);
3734 return err;
3735 }
3736
3737 qdev = netdev_priv(ndev);
3738 SET_NETDEV_DEV(ndev, &pdev->dev);
3739 ndev->features = (0
3740 | NETIF_F_IP_CSUM
3741 | NETIF_F_SG
3742 | NETIF_F_TSO
3743 | NETIF_F_TSO6
3744 | NETIF_F_TSO_ECN
3745 | NETIF_F_HW_VLAN_TX
3746 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3747
3748 if (test_bit(QL_DMA64, &qdev->flags))
3749 ndev->features |= NETIF_F_HIGHDMA;
3750
3751 /*
3752 * Set up net_device structure.
3753 */
3754 ndev->tx_queue_len = qdev->tx_ring_size;
3755 ndev->irq = pdev->irq;
3756 ndev->open = qlge_open;
3757 ndev->stop = qlge_close;
3758 ndev->hard_start_xmit = qlge_send;
3759 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
3760 ndev->change_mtu = qlge_change_mtu;
3761 ndev->get_stats = qlge_get_stats;
3762 ndev->set_multicast_list = qlge_set_multicast_list;
3763 ndev->set_mac_address = qlge_set_mac_address;
3764 ndev->tx_timeout = qlge_tx_timeout;
3765 ndev->watchdog_timeo = 10 * HZ;
3766 ndev->vlan_rx_register = ql_vlan_rx_register;
3767 ndev->vlan_rx_add_vid = ql_vlan_rx_add_vid;
3768 ndev->vlan_rx_kill_vid = ql_vlan_rx_kill_vid;
3769 err = register_netdev(ndev);
3770 if (err) {
3771 dev_err(&pdev->dev, "net device registration failed.\n");
3772 ql_release_all(pdev);
3773 pci_disable_device(pdev);
3774 return err;
3775 }
3776 netif_carrier_off(ndev);
3777 netif_stop_queue(ndev);
3778 ql_display_dev_info(ndev);
3779 cards_found++;
3780 return 0;
3781}
3782
3783static void __devexit qlge_remove(struct pci_dev *pdev)
3784{
3785 struct net_device *ndev = pci_get_drvdata(pdev);
3786 unregister_netdev(ndev);
3787 ql_release_all(pdev);
3788 pci_disable_device(pdev);
3789 free_netdev(ndev);
3790}
3791
3792/*
3793 * This callback is called by the PCI subsystem whenever
3794 * a PCI bus error is detected.
3795 */
3796static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
3797 enum pci_channel_state state)
3798{
3799 struct net_device *ndev = pci_get_drvdata(pdev);
3800 struct ql_adapter *qdev = netdev_priv(ndev);
3801
3802 if (netif_running(ndev))
3803 ql_adapter_down(qdev);
3804
3805 pci_disable_device(pdev);
3806
3807 /* Request a slot reset. */
3808 return PCI_ERS_RESULT_NEED_RESET;
3809}
3810
3811/*
3812 * This callback is called after the PCI buss has been reset.
3813 * Basically, this tries to restart the card from scratch.
3814 * This is a shortened version of the device probe/discovery code,
3815 * it resembles the first-half of the () routine.
3816 */
3817static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
3818{
3819 struct net_device *ndev = pci_get_drvdata(pdev);
3820 struct ql_adapter *qdev = netdev_priv(ndev);
3821
3822 if (pci_enable_device(pdev)) {
3823 QPRINTK(qdev, IFUP, ERR,
3824 "Cannot re-enable PCI device after reset.\n");
3825 return PCI_ERS_RESULT_DISCONNECT;
3826 }
3827
3828 pci_set_master(pdev);
3829
3830 netif_carrier_off(ndev);
3831 netif_stop_queue(ndev);
3832 ql_adapter_reset(qdev);
3833
3834 /* Make sure the EEPROM is good */
3835 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3836
3837 if (!is_valid_ether_addr(ndev->perm_addr)) {
3838 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
3839 return PCI_ERS_RESULT_DISCONNECT;
3840 }
3841
3842 return PCI_ERS_RESULT_RECOVERED;
3843}
3844
3845static void qlge_io_resume(struct pci_dev *pdev)
3846{
3847 struct net_device *ndev = pci_get_drvdata(pdev);
3848 struct ql_adapter *qdev = netdev_priv(ndev);
3849
3850 pci_set_master(pdev);
3851
3852 if (netif_running(ndev)) {
3853 if (ql_adapter_up(qdev)) {
3854 QPRINTK(qdev, IFUP, ERR,
3855 "Device initialization failed after reset.\n");
3856 return;
3857 }
3858 }
3859
3860 netif_device_attach(ndev);
3861}
3862
3863static struct pci_error_handlers qlge_err_handler = {
3864 .error_detected = qlge_io_error_detected,
3865 .slot_reset = qlge_io_slot_reset,
3866 .resume = qlge_io_resume,
3867};
3868
3869static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
3870{
3871 struct net_device *ndev = pci_get_drvdata(pdev);
3872 struct ql_adapter *qdev = netdev_priv(ndev);
3873 int err;
3874
3875 netif_device_detach(ndev);
3876
3877 if (netif_running(ndev)) {
3878 err = ql_adapter_down(qdev);
3879 if (!err)
3880 return err;
3881 }
3882
3883 err = pci_save_state(pdev);
3884 if (err)
3885 return err;
3886
3887 pci_disable_device(pdev);
3888
3889 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3890
3891 return 0;
3892}
3893
David S. Miller04da2cf2008-09-19 16:14:24 -07003894#ifdef CONFIG_PM
Ron Mercerc4e84bd2008-09-18 11:56:28 -04003895static int qlge_resume(struct pci_dev *pdev)
3896{
3897 struct net_device *ndev = pci_get_drvdata(pdev);
3898 struct ql_adapter *qdev = netdev_priv(ndev);
3899 int err;
3900
3901 pci_set_power_state(pdev, PCI_D0);
3902 pci_restore_state(pdev);
3903 err = pci_enable_device(pdev);
3904 if (err) {
3905 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
3906 return err;
3907 }
3908 pci_set_master(pdev);
3909
3910 pci_enable_wake(pdev, PCI_D3hot, 0);
3911 pci_enable_wake(pdev, PCI_D3cold, 0);
3912
3913 if (netif_running(ndev)) {
3914 err = ql_adapter_up(qdev);
3915 if (err)
3916 return err;
3917 }
3918
3919 netif_device_attach(ndev);
3920
3921 return 0;
3922}
David S. Miller04da2cf2008-09-19 16:14:24 -07003923#endif /* CONFIG_PM */
Ron Mercerc4e84bd2008-09-18 11:56:28 -04003924
3925static void qlge_shutdown(struct pci_dev *pdev)
3926{
3927 qlge_suspend(pdev, PMSG_SUSPEND);
3928}
3929
3930static struct pci_driver qlge_driver = {
3931 .name = DRV_NAME,
3932 .id_table = qlge_pci_tbl,
3933 .probe = qlge_probe,
3934 .remove = __devexit_p(qlge_remove),
3935#ifdef CONFIG_PM
3936 .suspend = qlge_suspend,
3937 .resume = qlge_resume,
3938#endif
3939 .shutdown = qlge_shutdown,
3940 .err_handler = &qlge_err_handler
3941};
3942
3943static int __init qlge_init_module(void)
3944{
3945 return pci_register_driver(&qlge_driver);
3946}
3947
3948static void __exit qlge_exit(void)
3949{
3950 pci_unregister_driver(&qlge_driver);
3951}
3952
3953module_init(qlge_init_module);
3954module_exit(qlge_exit);