blob: d56c7473144a6cd974a253b16033ad447081b3f9 [file] [log] [blame]
Auke Kokbc7f75f2007-09-17 12:30:59 -07001/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
Bruce Allanad680762008-03-28 09:15:03 -07004 Copyright(c) 1999 - 2008 Intel Corporation.
Auke Kokbc7f75f2007-09-17 12:30:59 -07005
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
Bruce Allan16059272008-11-21 16:51:06 -080030 * 82562G 10/100 Network Connection
Auke Kokbc7f75f2007-09-17 12:30:59 -070031 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
Bruce Allan97ac8ca2008-04-29 09:16:05 -070042 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
Bruce Allan16059272008-11-21 16:51:06 -080044 * 82567V Gigabit Network Connection
Bruce Allan97ac8ca2008-04-29 09:16:05 -070045 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
Bruce Allanf4187b52008-08-26 18:36:50 -070048 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
Bruce Allan2f15f9d2008-08-26 18:36:36 -070050 * 82567LM-4 Gigabit Network Connection
Bruce Allana4f58f52009-06-02 11:29:18 +000051 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
Auke Kokbc7f75f2007-09-17 12:30:59 -070055 */
56
57#include <linux/netdevice.h>
58#include <linux/ethtool.h>
59#include <linux/delay.h>
60#include <linux/pci.h>
61
62#include "e1000.h"
63
64#define ICH_FLASH_GFPREG 0x0000
65#define ICH_FLASH_HSFSTS 0x0004
66#define ICH_FLASH_HSFCTL 0x0006
67#define ICH_FLASH_FADDR 0x0008
68#define ICH_FLASH_FDATA0 0x0010
Bruce Allan4a770352008-10-01 17:18:35 -070069#define ICH_FLASH_PR0 0x0074
Auke Kokbc7f75f2007-09-17 12:30:59 -070070
71#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
72#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
73#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
74#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
75#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
76
77#define ICH_CYCLE_READ 0
78#define ICH_CYCLE_WRITE 2
79#define ICH_CYCLE_ERASE 3
80
81#define FLASH_GFPREG_BASE_MASK 0x1FFF
82#define FLASH_SECTOR_ADDR_SHIFT 12
83
84#define ICH_FLASH_SEG_SIZE_256 256
85#define ICH_FLASH_SEG_SIZE_4K 4096
86#define ICH_FLASH_SEG_SIZE_8K 8192
87#define ICH_FLASH_SEG_SIZE_64K 65536
88
89
90#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
91
92#define E1000_ICH_MNG_IAMT_MODE 0x2
93
94#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
95 (ID_LED_DEF1_OFF2 << 8) | \
96 (ID_LED_DEF1_ON2 << 4) | \
97 (ID_LED_DEF1_DEF2))
98
99#define E1000_ICH_NVM_SIG_WORD 0x13
100#define E1000_ICH_NVM_SIG_MASK 0xC000
Bruce Allane2434552008-11-21 17:02:41 -0800101#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
102#define E1000_ICH_NVM_SIG_VALUE 0x80
Auke Kokbc7f75f2007-09-17 12:30:59 -0700103
104#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
105
106#define E1000_FEXTNVM_SW_CONFIG 1
107#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
108
109#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
110
111#define E1000_ICH_RAR_ENTRIES 7
112
113#define PHY_PAGE_SHIFT 5
114#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
115 ((reg) & MAX_PHY_REG_ADDRESS))
116#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
117#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
118
119#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
120#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
121#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
122
Bruce Allana4f58f52009-06-02 11:29:18 +0000123#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
124
Auke Kokbc7f75f2007-09-17 12:30:59 -0700125/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
126/* Offset 04h HSFSTS */
127union ich8_hws_flash_status {
128 struct ich8_hsfsts {
129 u16 flcdone :1; /* bit 0 Flash Cycle Done */
130 u16 flcerr :1; /* bit 1 Flash Cycle Error */
131 u16 dael :1; /* bit 2 Direct Access error Log */
132 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
133 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
134 u16 reserved1 :2; /* bit 13:6 Reserved */
135 u16 reserved2 :6; /* bit 13:6 Reserved */
136 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
137 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
138 } hsf_status;
139 u16 regval;
140};
141
142/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
143/* Offset 06h FLCTL */
144union ich8_hws_flash_ctrl {
145 struct ich8_hsflctl {
146 u16 flcgo :1; /* 0 Flash Cycle Go */
147 u16 flcycle :2; /* 2:1 Flash Cycle */
148 u16 reserved :5; /* 7:3 Reserved */
149 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
150 u16 flockdn :6; /* 15:10 Reserved */
151 } hsf_ctrl;
152 u16 regval;
153};
154
155/* ICH Flash Region Access Permissions */
156union ich8_hws_flash_regacc {
157 struct ich8_flracc {
158 u32 grra :8; /* 0:7 GbE region Read Access */
159 u32 grwa :8; /* 8:15 GbE region Write Access */
160 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
161 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
162 } hsf_flregacc;
163 u16 regval;
164};
165
Bruce Allan4a770352008-10-01 17:18:35 -0700166/* ICH Flash Protected Region */
167union ich8_flash_protected_range {
168 struct ich8_pr {
169 u32 base:13; /* 0:12 Protected Range Base */
170 u32 reserved1:2; /* 13:14 Reserved */
171 u32 rpe:1; /* 15 Read Protection Enable */
172 u32 limit:13; /* 16:28 Protected Range Limit */
173 u32 reserved2:2; /* 29:30 Reserved */
174 u32 wpe:1; /* 31 Write Protection Enable */
175 } range;
176 u32 regval;
177};
178
Auke Kokbc7f75f2007-09-17 12:30:59 -0700179static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
180static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
181static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
182static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
183static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
184static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
185 u32 offset, u8 byte);
Bruce Allanf4187b52008-08-26 18:36:50 -0700186static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
187 u8 *data);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700188static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
189 u16 *data);
190static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
191 u8 size, u16 *data);
192static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
193static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
Bruce Allanf4187b52008-08-26 18:36:50 -0700194static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
Bruce Allana4f58f52009-06-02 11:29:18 +0000195static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
196static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
197static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
198static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
199static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
200static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
201static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
202static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700203
204static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
205{
206 return readw(hw->flash_address + reg);
207}
208
209static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
210{
211 return readl(hw->flash_address + reg);
212}
213
214static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
215{
216 writew(val, hw->flash_address + reg);
217}
218
219static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
220{
221 writel(val, hw->flash_address + reg);
222}
223
224#define er16flash(reg) __er16flash(hw, (reg))
225#define er32flash(reg) __er32flash(hw, (reg))
226#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
227#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
228
229/**
Bruce Allana4f58f52009-06-02 11:29:18 +0000230 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
231 * @hw: pointer to the HW structure
232 *
233 * Initialize family-specific PHY parameters and function pointers.
234 **/
235static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
236{
237 struct e1000_phy_info *phy = &hw->phy;
238 s32 ret_val = 0;
239
240 phy->addr = 1;
241 phy->reset_delay_us = 100;
242
243 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
244 phy->ops.read_phy_reg = e1000_read_phy_reg_hv;
245 phy->ops.write_phy_reg = e1000_write_phy_reg_hv;
246 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
247
248 phy->id = e1000_phy_unknown;
249 e1000e_get_phy_id(hw);
250 phy->type = e1000e_get_phy_type_from_id(phy->id);
251
252 if (phy->type == e1000_phy_82577) {
253 phy->ops.check_polarity = e1000_check_polarity_82577;
254 phy->ops.force_speed_duplex =
255 e1000_phy_force_speed_duplex_82577;
256 phy->ops.get_cable_length = e1000_get_cable_length_82577;
257 phy->ops.get_phy_info = e1000_get_phy_info_82577;
258 phy->ops.commit_phy = e1000e_phy_sw_reset;
259 }
260
261 return ret_val;
262}
263
264/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700265 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
266 * @hw: pointer to the HW structure
267 *
268 * Initialize family-specific PHY parameters and function pointers.
269 **/
270static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
271{
272 struct e1000_phy_info *phy = &hw->phy;
273 s32 ret_val;
274 u16 i = 0;
275
276 phy->addr = 1;
277 phy->reset_delay_us = 100;
278
Bruce Allan97ac8ca2008-04-29 09:16:05 -0700279 /*
280 * We may need to do this twice - once for IGP and if that fails,
281 * we'll set BM func pointers and try again
282 */
283 ret_val = e1000e_determine_phy_address(hw);
284 if (ret_val) {
285 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
286 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
287 ret_val = e1000e_determine_phy_address(hw);
288 if (ret_val)
289 return ret_val;
290 }
291
Auke Kokbc7f75f2007-09-17 12:30:59 -0700292 phy->id = 0;
293 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
294 (i++ < 100)) {
295 msleep(1);
296 ret_val = e1000e_get_phy_id(hw);
297 if (ret_val)
298 return ret_val;
299 }
300
301 /* Verify phy id */
302 switch (phy->id) {
303 case IGP03E1000_E_PHY_ID:
304 phy->type = e1000_phy_igp_3;
305 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
306 break;
307 case IFE_E_PHY_ID:
308 case IFE_PLUS_E_PHY_ID:
309 case IFE_C_E_PHY_ID:
310 phy->type = e1000_phy_ife;
311 phy->autoneg_mask = E1000_ALL_NOT_GIG;
312 break;
Bruce Allan97ac8ca2008-04-29 09:16:05 -0700313 case BME1000_E_PHY_ID:
314 phy->type = e1000_phy_bm;
315 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
316 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
317 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
318 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
319 break;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700320 default:
321 return -E1000_ERR_PHY;
322 break;
323 }
324
Bruce Allana4f58f52009-06-02 11:29:18 +0000325 phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
326
Auke Kokbc7f75f2007-09-17 12:30:59 -0700327 return 0;
328}
329
330/**
331 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
332 * @hw: pointer to the HW structure
333 *
334 * Initialize family-specific NVM parameters and function
335 * pointers.
336 **/
337static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
338{
339 struct e1000_nvm_info *nvm = &hw->nvm;
340 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
Bruce Allan28c91952009-07-01 13:28:32 +0000341 union ich8_hws_flash_status hsfsts;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700342 u32 gfpreg;
343 u32 sector_base_addr;
344 u32 sector_end_addr;
345 u16 i;
346
Bruce Allanad680762008-03-28 09:15:03 -0700347 /* Can't read flash registers if the register set isn't mapped. */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700348 if (!hw->flash_address) {
349 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
350 return -E1000_ERR_CONFIG;
351 }
352
353 nvm->type = e1000_nvm_flash_sw;
354
355 gfpreg = er32flash(ICH_FLASH_GFPREG);
356
Bruce Allanad680762008-03-28 09:15:03 -0700357 /*
358 * sector_X_addr is a "sector"-aligned address (4096 bytes)
Auke Kokbc7f75f2007-09-17 12:30:59 -0700359 * Add 1 to sector_end_addr since this sector is included in
Bruce Allanad680762008-03-28 09:15:03 -0700360 * the overall size.
361 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700362 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
363 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
364
365 /* flash_base_addr is byte-aligned */
366 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
367
Bruce Allanad680762008-03-28 09:15:03 -0700368 /*
369 * find total size of the NVM, then cut in half since the total
370 * size represents two separate NVM banks.
371 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700372 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
373 << FLASH_SECTOR_ADDR_SHIFT;
374 nvm->flash_bank_size /= 2;
375 /* Adjust to word count */
376 nvm->flash_bank_size /= sizeof(u16);
377
Bruce Allan28c91952009-07-01 13:28:32 +0000378 /*
379 * Make sure the flash bank size does not overwrite the 4k
380 * sector ranges. We may have 64k allotted to us but we only care
381 * about the first 2 4k sectors. Therefore, if we have anything less
382 * than 64k set in the HSFSTS register, we will reduce the bank size
383 * down to 4k and let the rest remain unused. If berasesz == 3, then
384 * we are working in 64k mode. Otherwise we are not.
385 */
386 if (nvm->flash_bank_size > E1000_ICH8_SHADOW_RAM_WORDS) {
387 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
388 if (hsfsts.hsf_status.berasesz != 3)
389 nvm->flash_bank_size = E1000_ICH8_SHADOW_RAM_WORDS;
390 }
391
Auke Kokbc7f75f2007-09-17 12:30:59 -0700392 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
393
394 /* Clear shadow ram */
395 for (i = 0; i < nvm->word_size; i++) {
396 dev_spec->shadow_ram[i].modified = 0;
397 dev_spec->shadow_ram[i].value = 0xFFFF;
398 }
399
400 return 0;
401}
402
403/**
404 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
405 * @hw: pointer to the HW structure
406 *
407 * Initialize family-specific MAC parameters and function
408 * pointers.
409 **/
410static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
411{
412 struct e1000_hw *hw = &adapter->hw;
413 struct e1000_mac_info *mac = &hw->mac;
414
415 /* Set media type function pointer */
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700416 hw->phy.media_type = e1000_media_type_copper;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700417
418 /* Set mta register count */
419 mac->mta_reg_count = 32;
420 /* Set rar entry count */
421 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
422 if (mac->type == e1000_ich8lan)
423 mac->rar_entry_count--;
424 /* Set if manageability features are enabled. */
425 mac->arc_subsystem_valid = 1;
426
Bruce Allana4f58f52009-06-02 11:29:18 +0000427 /* LED operations */
428 switch (mac->type) {
429 case e1000_ich8lan:
430 case e1000_ich9lan:
431 case e1000_ich10lan:
432 /* ID LED init */
433 mac->ops.id_led_init = e1000e_id_led_init;
434 /* setup LED */
435 mac->ops.setup_led = e1000e_setup_led_generic;
436 /* cleanup LED */
437 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
438 /* turn on/off LED */
439 mac->ops.led_on = e1000_led_on_ich8lan;
440 mac->ops.led_off = e1000_led_off_ich8lan;
441 break;
442 case e1000_pchlan:
443 /* ID LED init */
444 mac->ops.id_led_init = e1000_id_led_init_pchlan;
445 /* setup LED */
446 mac->ops.setup_led = e1000_setup_led_pchlan;
447 /* cleanup LED */
448 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
449 /* turn on/off LED */
450 mac->ops.led_on = e1000_led_on_pchlan;
451 mac->ops.led_off = e1000_led_off_pchlan;
452 break;
453 default:
454 break;
455 }
456
Auke Kokbc7f75f2007-09-17 12:30:59 -0700457 /* Enable PCS Lock-loss workaround for ICH8 */
458 if (mac->type == e1000_ich8lan)
459 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
460
461 return 0;
462}
463
Bruce Allan7d3cabb2009-07-01 13:29:08 +0000464/**
465 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
466 * @hw: pointer to the HW structure
467 *
468 * Checks to see of the link status of the hardware has changed. If a
469 * change in link status has been detected, then we read the PHY registers
470 * to get the current speed/duplex if link exists.
471 **/
472static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
473{
474 struct e1000_mac_info *mac = &hw->mac;
475 s32 ret_val;
476 bool link;
477
478 /*
479 * We only want to go out to the PHY registers to see if Auto-Neg
480 * has completed and/or if our link status has changed. The
481 * get_link_status flag is set upon receiving a Link Status
482 * Change or Rx Sequence Error interrupt.
483 */
484 if (!mac->get_link_status) {
485 ret_val = 0;
486 goto out;
487 }
488
489 if (hw->mac.type == e1000_pchlan) {
490 ret_val = e1000e_write_kmrn_reg(hw,
491 E1000_KMRNCTRLSTA_K1_CONFIG,
492 E1000_KMRNCTRLSTA_K1_ENABLE);
493 if (ret_val)
494 goto out;
495 }
496
497 /*
498 * First we want to see if the MII Status Register reports
499 * link. If so, then we want to get the current speed/duplex
500 * of the PHY.
501 */
502 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
503 if (ret_val)
504 goto out;
505
506 if (!link)
507 goto out; /* No link detected */
508
509 mac->get_link_status = false;
510
511 if (hw->phy.type == e1000_phy_82578) {
512 ret_val = e1000_link_stall_workaround_hv(hw);
513 if (ret_val)
514 goto out;
515 }
516
517 /*
518 * Check if there was DownShift, must be checked
519 * immediately after link-up
520 */
521 e1000e_check_downshift(hw);
522
523 /*
524 * If we are forcing speed/duplex, then we simply return since
525 * we have already determined whether we have link or not.
526 */
527 if (!mac->autoneg) {
528 ret_val = -E1000_ERR_CONFIG;
529 goto out;
530 }
531
532 /*
533 * Auto-Neg is enabled. Auto Speed Detection takes care
534 * of MAC speed/duplex configuration. So we only need to
535 * configure Collision Distance in the MAC.
536 */
537 e1000e_config_collision_dist(hw);
538
539 /*
540 * Configure Flow Control now that Auto-Neg has completed.
541 * First, we need to restore the desired flow control
542 * settings because we may have had to re-autoneg with a
543 * different link partner.
544 */
545 ret_val = e1000e_config_fc_after_link_up(hw);
546 if (ret_val)
547 hw_dbg(hw, "Error configuring flow control\n");
548
549out:
550 return ret_val;
551}
552
Jeff Kirsher69e3fd82008-04-02 13:48:18 -0700553static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
Auke Kokbc7f75f2007-09-17 12:30:59 -0700554{
555 struct e1000_hw *hw = &adapter->hw;
556 s32 rc;
557
558 rc = e1000_init_mac_params_ich8lan(adapter);
559 if (rc)
560 return rc;
561
562 rc = e1000_init_nvm_params_ich8lan(hw);
563 if (rc)
564 return rc;
565
Bruce Allana4f58f52009-06-02 11:29:18 +0000566 if (hw->mac.type == e1000_pchlan)
567 rc = e1000_init_phy_params_pchlan(hw);
568 else
569 rc = e1000_init_phy_params_ich8lan(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700570 if (rc)
571 return rc;
572
Bruce Allan2adc55c2009-06-02 11:28:58 +0000573 if (adapter->hw.phy.type == e1000_phy_ife) {
574 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
575 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
576 }
577
Auke Kokbc7f75f2007-09-17 12:30:59 -0700578 if ((adapter->hw.mac.type == e1000_ich8lan) &&
579 (adapter->hw.phy.type == e1000_phy_igp_3))
580 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
581
582 return 0;
583}
584
Thomas Gleixner717d4382008-10-02 16:33:40 -0700585static DEFINE_MUTEX(nvm_mutex);
Thomas Gleixner717d4382008-10-02 16:33:40 -0700586
Auke Kokbc7f75f2007-09-17 12:30:59 -0700587/**
588 * e1000_acquire_swflag_ich8lan - Acquire software control flag
589 * @hw: pointer to the HW structure
590 *
591 * Acquires the software control flag for performing NVM and PHY
592 * operations. This is a function pointer entry point only called by
593 * read/write routines for the PHY and NVM parts.
594 **/
595static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
596{
597 u32 extcnf_ctrl;
598 u32 timeout = PHY_CFG_TIMEOUT;
599
Linus Torvalds95b866d2008-10-03 09:18:17 -0700600 might_sleep();
Thomas Gleixner717d4382008-10-02 16:33:40 -0700601
dave graham0a834a32009-02-14 23:46:10 -0800602 mutex_lock(&nvm_mutex);
Thomas Gleixner717d4382008-10-02 16:33:40 -0700603
Auke Kokbc7f75f2007-09-17 12:30:59 -0700604 while (timeout) {
605 extcnf_ctrl = er32(EXTCNF_CTRL);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700606
Bruce Allana4f58f52009-06-02 11:29:18 +0000607 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) {
608 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
609 ew32(EXTCNF_CTRL, extcnf_ctrl);
610
611 extcnf_ctrl = er32(EXTCNF_CTRL);
612 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
613 break;
614 }
Auke Kokbc7f75f2007-09-17 12:30:59 -0700615 mdelay(1);
616 timeout--;
617 }
618
619 if (!timeout) {
620 hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
Bruce Allan2e2e8d52008-09-23 15:46:38 -0700621 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
622 ew32(EXTCNF_CTRL, extcnf_ctrl);
Thomas Gleixner717d4382008-10-02 16:33:40 -0700623 mutex_unlock(&nvm_mutex);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700624 return -E1000_ERR_CONFIG;
625 }
626
627 return 0;
628}
629
630/**
631 * e1000_release_swflag_ich8lan - Release software control flag
632 * @hw: pointer to the HW structure
633 *
634 * Releases the software control flag for performing NVM and PHY operations.
635 * This is a function pointer entry point only called by read/write
636 * routines for the PHY and NVM parts.
637 **/
638static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
639{
640 u32 extcnf_ctrl;
641
642 extcnf_ctrl = er32(EXTCNF_CTRL);
643 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
644 ew32(EXTCNF_CTRL, extcnf_ctrl);
Thomas Gleixner717d4382008-10-02 16:33:40 -0700645
Thomas Gleixner717d4382008-10-02 16:33:40 -0700646 mutex_unlock(&nvm_mutex);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700647}
648
649/**
Bruce Allan4662e822008-08-26 18:37:06 -0700650 * e1000_check_mng_mode_ich8lan - Checks management mode
651 * @hw: pointer to the HW structure
652 *
653 * This checks if the adapter has manageability enabled.
654 * This is a function pointer entry point only called by read/write
655 * routines for the PHY and NVM parts.
656 **/
657static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
658{
659 u32 fwsm = er32(FWSM);
660
661 return (fwsm & E1000_FWSM_MODE_MASK) ==
662 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
663}
664
665/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700666 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
667 * @hw: pointer to the HW structure
668 *
669 * Checks if firmware is blocking the reset of the PHY.
670 * This is a function pointer entry point only called by
671 * reset routines.
672 **/
673static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
674{
675 u32 fwsm;
676
677 fwsm = er32(FWSM);
678
679 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
680}
681
682/**
683 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
684 * @hw: pointer to the HW structure
685 *
686 * Forces the speed and duplex settings of the PHY.
687 * This is a function pointer entry point only called by
688 * PHY setup routines.
689 **/
690static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
691{
692 struct e1000_phy_info *phy = &hw->phy;
693 s32 ret_val;
694 u16 data;
695 bool link;
696
697 if (phy->type != e1000_phy_ife) {
698 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
699 return ret_val;
700 }
701
702 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
703 if (ret_val)
704 return ret_val;
705
706 e1000e_phy_force_speed_duplex_setup(hw, &data);
707
708 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
709 if (ret_val)
710 return ret_val;
711
712 /* Disable MDI-X support for 10/100 */
713 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
714 if (ret_val)
715 return ret_val;
716
717 data &= ~IFE_PMC_AUTO_MDIX;
718 data &= ~IFE_PMC_FORCE_MDIX;
719
720 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
721 if (ret_val)
722 return ret_val;
723
724 hw_dbg(hw, "IFE PMC: %X\n", data);
725
726 udelay(1);
727
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700728 if (phy->autoneg_wait_to_complete) {
Auke Kokbc7f75f2007-09-17 12:30:59 -0700729 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
730
731 ret_val = e1000e_phy_has_link_generic(hw,
732 PHY_FORCE_LIMIT,
733 100000,
734 &link);
735 if (ret_val)
736 return ret_val;
737
738 if (!link)
739 hw_dbg(hw, "Link taking longer than expected.\n");
740
741 /* Try once more */
742 ret_val = e1000e_phy_has_link_generic(hw,
743 PHY_FORCE_LIMIT,
744 100000,
745 &link);
746 if (ret_val)
747 return ret_val;
748 }
749
750 return 0;
751}
752
753/**
Bruce Allana4f58f52009-06-02 11:29:18 +0000754 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
755 * done after every PHY reset.
756 **/
757static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
758{
759 s32 ret_val = 0;
760
761 if (hw->mac.type != e1000_pchlan)
762 return ret_val;
763
764 if (((hw->phy.type == e1000_phy_82577) &&
765 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
766 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
767 /* Disable generation of early preamble */
768 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
769 if (ret_val)
770 return ret_val;
771
772 /* Preamble tuning for SSC */
773 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
774 if (ret_val)
775 return ret_val;
776 }
777
778 if (hw->phy.type == e1000_phy_82578) {
779 /*
780 * Return registers to default by doing a soft reset then
781 * writing 0x3140 to the control register.
782 */
783 if (hw->phy.revision < 2) {
784 e1000e_phy_sw_reset(hw);
785 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
786 }
787 }
788
789 /* Select page 0 */
790 ret_val = hw->phy.ops.acquire_phy(hw);
791 if (ret_val)
792 return ret_val;
793 hw->phy.addr = 1;
794 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
795 hw->phy.ops.release_phy(hw);
796
797 return ret_val;
798}
799
800/**
Bruce Allanfc0c7762009-07-01 13:27:55 +0000801 * e1000_lan_init_done_ich8lan - Check for PHY config completion
802 * @hw: pointer to the HW structure
803 *
804 * Check the appropriate indication the MAC has finished configuring the
805 * PHY after a software reset.
806 **/
807static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
808{
809 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
810
811 /* Wait for basic configuration completes before proceeding */
812 do {
813 data = er32(STATUS);
814 data &= E1000_STATUS_LAN_INIT_DONE;
815 udelay(100);
816 } while ((!data) && --loop);
817
818 /*
819 * If basic configuration is incomplete before the above loop
820 * count reaches 0, loading the configuration from NVM will
821 * leave the PHY in a bad state possibly resulting in no link.
822 */
823 if (loop == 0)
824 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
825
826 /* Clear the Init Done bit for the next init event */
827 data = er32(STATUS);
828 data &= ~E1000_STATUS_LAN_INIT_DONE;
829 ew32(STATUS, data);
830}
831
832/**
Auke Kokbc7f75f2007-09-17 12:30:59 -0700833 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
834 * @hw: pointer to the HW structure
835 *
836 * Resets the PHY
837 * This is a function pointer entry point called by drivers
838 * or other shared routines.
839 **/
840static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
841{
842 struct e1000_phy_info *phy = &hw->phy;
843 u32 i;
844 u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
845 s32 ret_val;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700846 u16 word_addr, reg_data, reg_addr, phy_page = 0;
847
848 ret_val = e1000e_phy_hw_reset_generic(hw);
849 if (ret_val)
850 return ret_val;
851
Bruce Allanfc0c7762009-07-01 13:27:55 +0000852 /* Allow time for h/w to get to a quiescent state after reset */
853 mdelay(10);
854
Bruce Allana4f58f52009-06-02 11:29:18 +0000855 if (hw->mac.type == e1000_pchlan) {
856 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
857 if (ret_val)
858 return ret_val;
859 }
860
Bruce Allanad680762008-03-28 09:15:03 -0700861 /*
862 * Initialize the PHY from the NVM on ICH platforms. This
Auke Kokbc7f75f2007-09-17 12:30:59 -0700863 * is needed due to an issue where the NVM configuration is
864 * not properly autoloaded after power transitions.
865 * Therefore, after each PHY reset, we will load the
866 * configuration data out of the NVM manually.
867 */
868 if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
869 struct e1000_adapter *adapter = hw->adapter;
870
871 /* Check if SW needs configure the PHY */
872 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
873 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
874 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
875 else
876 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
877
878 data = er32(FEXTNVM);
879 if (!(data & sw_cfg_mask))
880 return 0;
881
Bruce Allanfc0c7762009-07-01 13:27:55 +0000882 /* Wait for basic configuration completes before proceeding */
883 e1000_lan_init_done_ich8lan(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700884
Bruce Allanad680762008-03-28 09:15:03 -0700885 /*
886 * Make sure HW does not configure LCD from PHY
887 * extended configuration before SW configuration
888 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700889 data = er32(EXTCNF_CTRL);
890 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
891 return 0;
892
893 cnf_size = er32(EXTCNF_SIZE);
894 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
895 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
896 if (!cnf_size)
897 return 0;
898
899 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
900 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
901
Bruce Allanad680762008-03-28 09:15:03 -0700902 /* Configure LCD from extended configuration region. */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700903
904 /* cnf_base_addr is in DWORD */
905 word_addr = (u16)(cnf_base_addr << 1);
906
907 for (i = 0; i < cnf_size; i++) {
908 ret_val = e1000_read_nvm(hw,
909 (word_addr + i * 2),
910 1,
911 &reg_data);
912 if (ret_val)
913 return ret_val;
914
915 ret_val = e1000_read_nvm(hw,
916 (word_addr + i * 2 + 1),
917 1,
918 &reg_addr);
919 if (ret_val)
920 return ret_val;
921
922 /* Save off the PHY page for future writes. */
923 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
924 phy_page = reg_data;
925 continue;
926 }
927
928 reg_addr |= phy_page;
929
930 ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
931 if (ret_val)
932 return ret_val;
933 }
934 }
935
936 return 0;
937}
938
939/**
940 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
941 * @hw: pointer to the HW structure
942 *
943 * Populates "phy" structure with various feature states.
944 * This function is only called by other family-specific
945 * routines.
946 **/
947static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
948{
949 struct e1000_phy_info *phy = &hw->phy;
950 s32 ret_val;
951 u16 data;
952 bool link;
953
954 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
955 if (ret_val)
956 return ret_val;
957
958 if (!link) {
959 hw_dbg(hw, "Phy info is only valid if link is up\n");
960 return -E1000_ERR_CONFIG;
961 }
962
963 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
964 if (ret_val)
965 return ret_val;
966 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
967
968 if (phy->polarity_correction) {
Bruce Allana4f58f52009-06-02 11:29:18 +0000969 ret_val = phy->ops.check_polarity(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700970 if (ret_val)
971 return ret_val;
972 } else {
973 /* Polarity is forced */
974 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
975 ? e1000_rev_polarity_reversed
976 : e1000_rev_polarity_normal;
977 }
978
979 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
980 if (ret_val)
981 return ret_val;
982
983 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
984
985 /* The following parameters are undefined for 10/100 operation. */
986 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
987 phy->local_rx = e1000_1000t_rx_status_undefined;
988 phy->remote_rx = e1000_1000t_rx_status_undefined;
989
990 return 0;
991}
992
993/**
994 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
995 * @hw: pointer to the HW structure
996 *
997 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
998 * This is a function pointer entry point called by drivers
999 * or other shared routines.
1000 **/
1001static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
1002{
1003 switch (hw->phy.type) {
1004 case e1000_phy_ife:
1005 return e1000_get_phy_info_ife_ich8lan(hw);
1006 break;
1007 case e1000_phy_igp_3:
Bruce Allan97ac8ca2008-04-29 09:16:05 -07001008 case e1000_phy_bm:
Bruce Allana4f58f52009-06-02 11:29:18 +00001009 case e1000_phy_82578:
1010 case e1000_phy_82577:
Auke Kokbc7f75f2007-09-17 12:30:59 -07001011 return e1000e_get_phy_info_igp(hw);
1012 break;
1013 default:
1014 break;
1015 }
1016
1017 return -E1000_ERR_PHY_TYPE;
1018}
1019
1020/**
1021 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
1022 * @hw: pointer to the HW structure
1023 *
Auke Kok489815c2008-02-21 15:11:07 -08001024 * Polarity is determined on the polarity reversal feature being enabled.
Auke Kokbc7f75f2007-09-17 12:30:59 -07001025 * This function is only called by other family-specific
1026 * routines.
1027 **/
1028static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
1029{
1030 struct e1000_phy_info *phy = &hw->phy;
1031 s32 ret_val;
1032 u16 phy_data, offset, mask;
1033
Bruce Allanad680762008-03-28 09:15:03 -07001034 /*
1035 * Polarity is determined based on the reversal feature being enabled.
Auke Kokbc7f75f2007-09-17 12:30:59 -07001036 */
1037 if (phy->polarity_correction) {
1038 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1039 mask = IFE_PESC_POLARITY_REVERSED;
1040 } else {
1041 offset = IFE_PHY_SPECIAL_CONTROL;
1042 mask = IFE_PSC_FORCE_POLARITY;
1043 }
1044
1045 ret_val = e1e_rphy(hw, offset, &phy_data);
1046
1047 if (!ret_val)
1048 phy->cable_polarity = (phy_data & mask)
1049 ? e1000_rev_polarity_reversed
1050 : e1000_rev_polarity_normal;
1051
1052 return ret_val;
1053}
1054
1055/**
1056 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1057 * @hw: pointer to the HW structure
1058 * @active: TRUE to enable LPLU, FALSE to disable
1059 *
1060 * Sets the LPLU D0 state according to the active flag. When
1061 * activating LPLU this function also disables smart speed
1062 * and vice versa. LPLU will not be activated unless the
1063 * device autonegotiation advertisement meets standards of
1064 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1065 * This is a function pointer entry point only called by
1066 * PHY setup routines.
1067 **/
1068static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1069{
1070 struct e1000_phy_info *phy = &hw->phy;
1071 u32 phy_ctrl;
1072 s32 ret_val = 0;
1073 u16 data;
1074
Bruce Allan97ac8ca2008-04-29 09:16:05 -07001075 if (phy->type == e1000_phy_ife)
Auke Kokbc7f75f2007-09-17 12:30:59 -07001076 return ret_val;
1077
1078 phy_ctrl = er32(PHY_CTRL);
1079
1080 if (active) {
1081 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1082 ew32(PHY_CTRL, phy_ctrl);
1083
Bruce Allan60f12922009-07-01 13:28:14 +00001084 if (phy->type != e1000_phy_igp_3)
1085 return 0;
1086
Bruce Allanad680762008-03-28 09:15:03 -07001087 /*
1088 * Call gig speed drop workaround on LPLU before accessing
1089 * any PHY registers
1090 */
Bruce Allan60f12922009-07-01 13:28:14 +00001091 if (hw->mac.type == e1000_ich8lan)
Auke Kokbc7f75f2007-09-17 12:30:59 -07001092 e1000e_gig_downshift_workaround_ich8lan(hw);
1093
1094 /* When LPLU is enabled, we should disable SmartSpeed */
1095 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1096 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1097 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1098 if (ret_val)
1099 return ret_val;
1100 } else {
1101 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1102 ew32(PHY_CTRL, phy_ctrl);
1103
Bruce Allan60f12922009-07-01 13:28:14 +00001104 if (phy->type != e1000_phy_igp_3)
1105 return 0;
1106
Bruce Allanad680762008-03-28 09:15:03 -07001107 /*
1108 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
Auke Kokbc7f75f2007-09-17 12:30:59 -07001109 * during Dx states where the power conservation is most
1110 * important. During driver activity we should enable
Bruce Allanad680762008-03-28 09:15:03 -07001111 * SmartSpeed, so performance is maintained.
1112 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001113 if (phy->smart_speed == e1000_smart_speed_on) {
1114 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -07001115 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001116 if (ret_val)
1117 return ret_val;
1118
1119 data |= IGP01E1000_PSCFR_SMART_SPEED;
1120 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -07001121 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001122 if (ret_val)
1123 return ret_val;
1124 } else if (phy->smart_speed == e1000_smart_speed_off) {
1125 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -07001126 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001127 if (ret_val)
1128 return ret_val;
1129
1130 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1131 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
Bruce Allanad680762008-03-28 09:15:03 -07001132 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001133 if (ret_val)
1134 return ret_val;
1135 }
1136 }
1137
1138 return 0;
1139}
1140
1141/**
1142 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1143 * @hw: pointer to the HW structure
1144 * @active: TRUE to enable LPLU, FALSE to disable
1145 *
1146 * Sets the LPLU D3 state according to the active flag. When
1147 * activating LPLU this function also disables smart speed
1148 * and vice versa. LPLU will not be activated unless the
1149 * device autonegotiation advertisement meets standards of
1150 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1151 * This is a function pointer entry point only called by
1152 * PHY setup routines.
1153 **/
1154static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1155{
1156 struct e1000_phy_info *phy = &hw->phy;
1157 u32 phy_ctrl;
1158 s32 ret_val;
1159 u16 data;
1160
1161 phy_ctrl = er32(PHY_CTRL);
1162
1163 if (!active) {
1164 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1165 ew32(PHY_CTRL, phy_ctrl);
Bruce Allan60f12922009-07-01 13:28:14 +00001166
1167 if (phy->type != e1000_phy_igp_3)
1168 return 0;
1169
Bruce Allanad680762008-03-28 09:15:03 -07001170 /*
1171 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
Auke Kokbc7f75f2007-09-17 12:30:59 -07001172 * during Dx states where the power conservation is most
1173 * important. During driver activity we should enable
Bruce Allanad680762008-03-28 09:15:03 -07001174 * SmartSpeed, so performance is maintained.
1175 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001176 if (phy->smart_speed == e1000_smart_speed_on) {
Bruce Allanad680762008-03-28 09:15:03 -07001177 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1178 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001179 if (ret_val)
1180 return ret_val;
1181
1182 data |= IGP01E1000_PSCFR_SMART_SPEED;
Bruce Allanad680762008-03-28 09:15:03 -07001183 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1184 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001185 if (ret_val)
1186 return ret_val;
1187 } else if (phy->smart_speed == e1000_smart_speed_off) {
Bruce Allanad680762008-03-28 09:15:03 -07001188 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1189 &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001190 if (ret_val)
1191 return ret_val;
1192
1193 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
Bruce Allanad680762008-03-28 09:15:03 -07001194 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1195 data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001196 if (ret_val)
1197 return ret_val;
1198 }
1199 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1200 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1201 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1202 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1203 ew32(PHY_CTRL, phy_ctrl);
1204
Bruce Allan60f12922009-07-01 13:28:14 +00001205 if (phy->type != e1000_phy_igp_3)
1206 return 0;
1207
Bruce Allanad680762008-03-28 09:15:03 -07001208 /*
1209 * Call gig speed drop workaround on LPLU before accessing
1210 * any PHY registers
1211 */
Bruce Allan60f12922009-07-01 13:28:14 +00001212 if (hw->mac.type == e1000_ich8lan)
Auke Kokbc7f75f2007-09-17 12:30:59 -07001213 e1000e_gig_downshift_workaround_ich8lan(hw);
1214
1215 /* When LPLU is enabled, we should disable SmartSpeed */
Bruce Allanad680762008-03-28 09:15:03 -07001216 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001217 if (ret_val)
1218 return ret_val;
1219
1220 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
Bruce Allanad680762008-03-28 09:15:03 -07001221 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001222 }
1223
1224 return 0;
1225}
1226
1227/**
Bruce Allanf4187b52008-08-26 18:36:50 -07001228 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1229 * @hw: pointer to the HW structure
1230 * @bank: pointer to the variable that returns the active bank
1231 *
1232 * Reads signature byte from the NVM using the flash access registers.
Bruce Allane2434552008-11-21 17:02:41 -08001233 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
Bruce Allanf4187b52008-08-26 18:36:50 -07001234 **/
1235static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1236{
Bruce Allane2434552008-11-21 17:02:41 -08001237 u32 eecd;
Bruce Allanf4187b52008-08-26 18:36:50 -07001238 struct e1000_nvm_info *nvm = &hw->nvm;
Bruce Allanf4187b52008-08-26 18:36:50 -07001239 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1240 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
Bruce Allane2434552008-11-21 17:02:41 -08001241 u8 sig_byte = 0;
1242 s32 ret_val = 0;
Bruce Allanf4187b52008-08-26 18:36:50 -07001243
Bruce Allane2434552008-11-21 17:02:41 -08001244 switch (hw->mac.type) {
1245 case e1000_ich8lan:
1246 case e1000_ich9lan:
1247 eecd = er32(EECD);
1248 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1249 E1000_EECD_SEC1VAL_VALID_MASK) {
1250 if (eecd & E1000_EECD_SEC1VAL)
Bruce Allanf4187b52008-08-26 18:36:50 -07001251 *bank = 1;
Bruce Allane2434552008-11-21 17:02:41 -08001252 else
1253 *bank = 0;
1254
1255 return 0;
Bruce Allanf4187b52008-08-26 18:36:50 -07001256 }
Bruce Allane2434552008-11-21 17:02:41 -08001257 hw_dbg(hw, "Unable to determine valid NVM bank via EEC - "
1258 "reading flash signature\n");
1259 /* fall-thru */
1260 default:
1261 /* set bank to 0 in case flash read fails */
1262 *bank = 0;
1263
1264 /* Check bank 0 */
1265 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1266 &sig_byte);
1267 if (ret_val)
1268 return ret_val;
1269 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1270 E1000_ICH_NVM_SIG_VALUE) {
1271 *bank = 0;
1272 return 0;
1273 }
1274
1275 /* Check bank 1 */
1276 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1277 bank1_offset,
1278 &sig_byte);
1279 if (ret_val)
1280 return ret_val;
1281 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1282 E1000_ICH_NVM_SIG_VALUE) {
1283 *bank = 1;
1284 return 0;
1285 }
1286
1287 hw_dbg(hw, "ERROR: No valid NVM bank present\n");
1288 return -E1000_ERR_NVM;
Bruce Allanf4187b52008-08-26 18:36:50 -07001289 }
1290
1291 return 0;
1292}
1293
1294/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001295 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1296 * @hw: pointer to the HW structure
1297 * @offset: The offset (in bytes) of the word(s) to read.
1298 * @words: Size of data to read in words
1299 * @data: Pointer to the word(s) to read at offset.
1300 *
1301 * Reads a word(s) from the NVM using the flash access registers.
1302 **/
1303static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1304 u16 *data)
1305{
1306 struct e1000_nvm_info *nvm = &hw->nvm;
1307 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1308 u32 act_offset;
1309 s32 ret_val;
Bruce Allanf4187b52008-08-26 18:36:50 -07001310 u32 bank = 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001311 u16 i, word;
1312
1313 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1314 (words == 0)) {
1315 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1316 return -E1000_ERR_NVM;
1317 }
1318
1319 ret_val = e1000_acquire_swflag_ich8lan(hw);
1320 if (ret_val)
Bruce Allane2434552008-11-21 17:02:41 -08001321 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001322
Bruce Allanf4187b52008-08-26 18:36:50 -07001323 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1324 if (ret_val)
Bruce Allane2434552008-11-21 17:02:41 -08001325 goto release;
Bruce Allanf4187b52008-08-26 18:36:50 -07001326
1327 act_offset = (bank) ? nvm->flash_bank_size : 0;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001328 act_offset += offset;
1329
1330 for (i = 0; i < words; i++) {
1331 if ((dev_spec->shadow_ram) &&
1332 (dev_spec->shadow_ram[offset+i].modified)) {
1333 data[i] = dev_spec->shadow_ram[offset+i].value;
1334 } else {
1335 ret_val = e1000_read_flash_word_ich8lan(hw,
1336 act_offset + i,
1337 &word);
1338 if (ret_val)
1339 break;
1340 data[i] = word;
1341 }
1342 }
1343
Bruce Allane2434552008-11-21 17:02:41 -08001344release:
Auke Kokbc7f75f2007-09-17 12:30:59 -07001345 e1000_release_swflag_ich8lan(hw);
1346
Bruce Allane2434552008-11-21 17:02:41 -08001347out:
1348 if (ret_val)
1349 hw_dbg(hw, "NVM read error: %d\n", ret_val);
1350
Auke Kokbc7f75f2007-09-17 12:30:59 -07001351 return ret_val;
1352}
1353
1354/**
1355 * e1000_flash_cycle_init_ich8lan - Initialize flash
1356 * @hw: pointer to the HW structure
1357 *
1358 * This function does initial flash setup so that a new read/write/erase cycle
1359 * can be started.
1360 **/
1361static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1362{
1363 union ich8_hws_flash_status hsfsts;
1364 s32 ret_val = -E1000_ERR_NVM;
1365 s32 i = 0;
1366
1367 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1368
1369 /* Check if the flash descriptor is valid */
1370 if (hsfsts.hsf_status.fldesvalid == 0) {
1371 hw_dbg(hw, "Flash descriptor invalid. "
1372 "SW Sequencing must be used.");
1373 return -E1000_ERR_NVM;
1374 }
1375
1376 /* Clear FCERR and DAEL in hw status by writing 1 */
1377 hsfsts.hsf_status.flcerr = 1;
1378 hsfsts.hsf_status.dael = 1;
1379
1380 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1381
Bruce Allanad680762008-03-28 09:15:03 -07001382 /*
1383 * Either we should have a hardware SPI cycle in progress
Auke Kokbc7f75f2007-09-17 12:30:59 -07001384 * bit to check against, in order to start a new cycle or
1385 * FDONE bit should be changed in the hardware so that it
Auke Kok489815c2008-02-21 15:11:07 -08001386 * is 1 after hardware reset, which can then be used as an
Auke Kokbc7f75f2007-09-17 12:30:59 -07001387 * indication whether a cycle is in progress or has been
1388 * completed.
1389 */
1390
1391 if (hsfsts.hsf_status.flcinprog == 0) {
Bruce Allanad680762008-03-28 09:15:03 -07001392 /*
1393 * There is no cycle running at present,
1394 * so we can start a cycle
1395 * Begin by setting Flash Cycle Done.
1396 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001397 hsfsts.hsf_status.flcdone = 1;
1398 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1399 ret_val = 0;
1400 } else {
Bruce Allanad680762008-03-28 09:15:03 -07001401 /*
1402 * otherwise poll for sometime so the current
1403 * cycle has a chance to end before giving up.
1404 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001405 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1406 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1407 if (hsfsts.hsf_status.flcinprog == 0) {
1408 ret_val = 0;
1409 break;
1410 }
1411 udelay(1);
1412 }
1413 if (ret_val == 0) {
Bruce Allanad680762008-03-28 09:15:03 -07001414 /*
1415 * Successful in waiting for previous cycle to timeout,
1416 * now set the Flash Cycle Done.
1417 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001418 hsfsts.hsf_status.flcdone = 1;
1419 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1420 } else {
1421 hw_dbg(hw, "Flash controller busy, cannot get access");
1422 }
1423 }
1424
1425 return ret_val;
1426}
1427
1428/**
1429 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1430 * @hw: pointer to the HW structure
1431 * @timeout: maximum time to wait for completion
1432 *
1433 * This function starts a flash cycle and waits for its completion.
1434 **/
1435static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1436{
1437 union ich8_hws_flash_ctrl hsflctl;
1438 union ich8_hws_flash_status hsfsts;
1439 s32 ret_val = -E1000_ERR_NVM;
1440 u32 i = 0;
1441
1442 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1443 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1444 hsflctl.hsf_ctrl.flcgo = 1;
1445 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1446
1447 /* wait till FDONE bit is set to 1 */
1448 do {
1449 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1450 if (hsfsts.hsf_status.flcdone == 1)
1451 break;
1452 udelay(1);
1453 } while (i++ < timeout);
1454
1455 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1456 return 0;
1457
1458 return ret_val;
1459}
1460
1461/**
1462 * e1000_read_flash_word_ich8lan - Read word from flash
1463 * @hw: pointer to the HW structure
1464 * @offset: offset to data location
1465 * @data: pointer to the location for storing the data
1466 *
1467 * Reads the flash word at offset into data. Offset is converted
1468 * to bytes before read.
1469 **/
1470static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1471 u16 *data)
1472{
1473 /* Must convert offset into bytes. */
1474 offset <<= 1;
1475
1476 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1477}
1478
1479/**
Bruce Allanf4187b52008-08-26 18:36:50 -07001480 * e1000_read_flash_byte_ich8lan - Read byte from flash
1481 * @hw: pointer to the HW structure
1482 * @offset: The offset of the byte to read.
1483 * @data: Pointer to a byte to store the value read.
1484 *
1485 * Reads a single byte from the NVM using the flash access registers.
1486 **/
1487static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1488 u8 *data)
1489{
1490 s32 ret_val;
1491 u16 word = 0;
1492
1493 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1494 if (ret_val)
1495 return ret_val;
1496
1497 *data = (u8)word;
1498
1499 return 0;
1500}
1501
1502/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001503 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1504 * @hw: pointer to the HW structure
1505 * @offset: The offset (in bytes) of the byte or word to read.
1506 * @size: Size of data to read, 1=byte 2=word
1507 * @data: Pointer to the word to store the value read.
1508 *
1509 * Reads a byte or word from the NVM using the flash access registers.
1510 **/
1511static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1512 u8 size, u16 *data)
1513{
1514 union ich8_hws_flash_status hsfsts;
1515 union ich8_hws_flash_ctrl hsflctl;
1516 u32 flash_linear_addr;
1517 u32 flash_data = 0;
1518 s32 ret_val = -E1000_ERR_NVM;
1519 u8 count = 0;
1520
1521 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1522 return -E1000_ERR_NVM;
1523
1524 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1525 hw->nvm.flash_base_addr;
1526
1527 do {
1528 udelay(1);
1529 /* Steps */
1530 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1531 if (ret_val != 0)
1532 break;
1533
1534 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1535 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1536 hsflctl.hsf_ctrl.fldbcount = size - 1;
1537 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1538 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1539
1540 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1541
1542 ret_val = e1000_flash_cycle_ich8lan(hw,
1543 ICH_FLASH_READ_COMMAND_TIMEOUT);
1544
Bruce Allanad680762008-03-28 09:15:03 -07001545 /*
1546 * Check if FCERR is set to 1, if set to 1, clear it
Auke Kokbc7f75f2007-09-17 12:30:59 -07001547 * and try the whole sequence a few more times, else
1548 * read in (shift in) the Flash Data0, the order is
Bruce Allanad680762008-03-28 09:15:03 -07001549 * least significant byte first msb to lsb
1550 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001551 if (ret_val == 0) {
1552 flash_data = er32flash(ICH_FLASH_FDATA0);
1553 if (size == 1) {
1554 *data = (u8)(flash_data & 0x000000FF);
1555 } else if (size == 2) {
1556 *data = (u16)(flash_data & 0x0000FFFF);
1557 }
1558 break;
1559 } else {
Bruce Allanad680762008-03-28 09:15:03 -07001560 /*
1561 * If we've gotten here, then things are probably
Auke Kokbc7f75f2007-09-17 12:30:59 -07001562 * completely hosed, but if the error condition is
1563 * detected, it won't hurt to give it another try...
1564 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1565 */
1566 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1567 if (hsfsts.hsf_status.flcerr == 1) {
1568 /* Repeat for some time before giving up. */
1569 continue;
1570 } else if (hsfsts.hsf_status.flcdone == 0) {
1571 hw_dbg(hw, "Timeout error - flash cycle "
1572 "did not complete.");
1573 break;
1574 }
1575 }
1576 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1577
1578 return ret_val;
1579}
1580
1581/**
1582 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1583 * @hw: pointer to the HW structure
1584 * @offset: The offset (in bytes) of the word(s) to write.
1585 * @words: Size of data to write in words
1586 * @data: Pointer to the word(s) to write at offset.
1587 *
1588 * Writes a byte or word to the NVM using the flash access registers.
1589 **/
1590static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1591 u16 *data)
1592{
1593 struct e1000_nvm_info *nvm = &hw->nvm;
1594 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1595 s32 ret_val;
1596 u16 i;
1597
1598 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1599 (words == 0)) {
1600 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1601 return -E1000_ERR_NVM;
1602 }
1603
1604 ret_val = e1000_acquire_swflag_ich8lan(hw);
1605 if (ret_val)
1606 return ret_val;
1607
1608 for (i = 0; i < words; i++) {
1609 dev_spec->shadow_ram[offset+i].modified = 1;
1610 dev_spec->shadow_ram[offset+i].value = data[i];
1611 }
1612
1613 e1000_release_swflag_ich8lan(hw);
1614
1615 return 0;
1616}
1617
1618/**
1619 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1620 * @hw: pointer to the HW structure
1621 *
1622 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1623 * which writes the checksum to the shadow ram. The changes in the shadow
1624 * ram are then committed to the EEPROM by processing each bank at a time
1625 * checking for the modified bit and writing only the pending changes.
Auke Kok489815c2008-02-21 15:11:07 -08001626 * After a successful commit, the shadow ram is cleared and is ready for
Auke Kokbc7f75f2007-09-17 12:30:59 -07001627 * future writes.
1628 **/
1629static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1630{
1631 struct e1000_nvm_info *nvm = &hw->nvm;
1632 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
Bruce Allanf4187b52008-08-26 18:36:50 -07001633 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001634 s32 ret_val;
1635 u16 data;
1636
1637 ret_val = e1000e_update_nvm_checksum_generic(hw);
1638 if (ret_val)
Bruce Allane2434552008-11-21 17:02:41 -08001639 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001640
1641 if (nvm->type != e1000_nvm_flash_sw)
Bruce Allane2434552008-11-21 17:02:41 -08001642 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001643
1644 ret_val = e1000_acquire_swflag_ich8lan(hw);
1645 if (ret_val)
Bruce Allane2434552008-11-21 17:02:41 -08001646 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001647
Bruce Allanad680762008-03-28 09:15:03 -07001648 /*
1649 * We're writing to the opposite bank so if we're on bank 1,
Auke Kokbc7f75f2007-09-17 12:30:59 -07001650 * write to bank 0 etc. We also need to erase the segment that
Bruce Allanad680762008-03-28 09:15:03 -07001651 * is going to be written
1652 */
Bruce Allanf4187b52008-08-26 18:36:50 -07001653 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
Bruce Allane2434552008-11-21 17:02:41 -08001654 if (ret_val) {
1655 e1000_release_swflag_ich8lan(hw);
1656 goto out;
1657 }
Bruce Allanf4187b52008-08-26 18:36:50 -07001658
1659 if (bank == 0) {
Auke Kokbc7f75f2007-09-17 12:30:59 -07001660 new_bank_offset = nvm->flash_bank_size;
1661 old_bank_offset = 0;
Bruce Allane2434552008-11-21 17:02:41 -08001662 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1663 if (ret_val) {
1664 e1000_release_swflag_ich8lan(hw);
1665 goto out;
1666 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07001667 } else {
1668 old_bank_offset = nvm->flash_bank_size;
1669 new_bank_offset = 0;
Bruce Allane2434552008-11-21 17:02:41 -08001670 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1671 if (ret_val) {
1672 e1000_release_swflag_ich8lan(hw);
1673 goto out;
1674 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07001675 }
1676
1677 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
Bruce Allanad680762008-03-28 09:15:03 -07001678 /*
1679 * Determine whether to write the value stored
Auke Kokbc7f75f2007-09-17 12:30:59 -07001680 * in the other NVM bank or a modified value stored
Bruce Allanad680762008-03-28 09:15:03 -07001681 * in the shadow RAM
1682 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001683 if (dev_spec->shadow_ram[i].modified) {
1684 data = dev_spec->shadow_ram[i].value;
1685 } else {
Bruce Allane2434552008-11-21 17:02:41 -08001686 ret_val = e1000_read_flash_word_ich8lan(hw, i +
1687 old_bank_offset,
1688 &data);
1689 if (ret_val)
1690 break;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001691 }
1692
Bruce Allanad680762008-03-28 09:15:03 -07001693 /*
1694 * If the word is 0x13, then make sure the signature bits
Auke Kokbc7f75f2007-09-17 12:30:59 -07001695 * (15:14) are 11b until the commit has completed.
1696 * This will allow us to write 10b which indicates the
1697 * signature is valid. We want to do this after the write
1698 * has completed so that we don't mark the segment valid
Bruce Allanad680762008-03-28 09:15:03 -07001699 * while the write is still in progress
1700 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001701 if (i == E1000_ICH_NVM_SIG_WORD)
1702 data |= E1000_ICH_NVM_SIG_MASK;
1703
1704 /* Convert offset to bytes. */
1705 act_offset = (i + new_bank_offset) << 1;
1706
1707 udelay(100);
1708 /* Write the bytes to the new bank. */
1709 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1710 act_offset,
1711 (u8)data);
1712 if (ret_val)
1713 break;
1714
1715 udelay(100);
1716 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1717 act_offset + 1,
1718 (u8)(data >> 8));
1719 if (ret_val)
1720 break;
1721 }
1722
Bruce Allanad680762008-03-28 09:15:03 -07001723 /*
1724 * Don't bother writing the segment valid bits if sector
1725 * programming failed.
1726 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001727 if (ret_val) {
Bruce Allan4a770352008-10-01 17:18:35 -07001728 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001729 hw_dbg(hw, "Flash commit failed.\n");
1730 e1000_release_swflag_ich8lan(hw);
Bruce Allane2434552008-11-21 17:02:41 -08001731 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001732 }
1733
Bruce Allanad680762008-03-28 09:15:03 -07001734 /*
1735 * Finally validate the new segment by setting bit 15:14
Auke Kokbc7f75f2007-09-17 12:30:59 -07001736 * to 10b in word 0x13 , this can be done without an
1737 * erase as well since these bits are 11 to start with
Bruce Allanad680762008-03-28 09:15:03 -07001738 * and we need to change bit 14 to 0b
1739 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001740 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
Bruce Allane2434552008-11-21 17:02:41 -08001741 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1742 if (ret_val) {
1743 e1000_release_swflag_ich8lan(hw);
1744 goto out;
1745 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07001746 data &= 0xBFFF;
1747 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1748 act_offset * 2 + 1,
1749 (u8)(data >> 8));
1750 if (ret_val) {
1751 e1000_release_swflag_ich8lan(hw);
Bruce Allane2434552008-11-21 17:02:41 -08001752 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001753 }
1754
Bruce Allanad680762008-03-28 09:15:03 -07001755 /*
1756 * And invalidate the previously valid segment by setting
Auke Kokbc7f75f2007-09-17 12:30:59 -07001757 * its signature word (0x13) high_byte to 0b. This can be
1758 * done without an erase because flash erase sets all bits
Bruce Allanad680762008-03-28 09:15:03 -07001759 * to 1's. We can write 1's to 0's without an erase
1760 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001761 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1762 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1763 if (ret_val) {
1764 e1000_release_swflag_ich8lan(hw);
Bruce Allane2434552008-11-21 17:02:41 -08001765 goto out;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001766 }
1767
1768 /* Great! Everything worked, we can now clear the cached entries. */
1769 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1770 dev_spec->shadow_ram[i].modified = 0;
1771 dev_spec->shadow_ram[i].value = 0xFFFF;
1772 }
1773
1774 e1000_release_swflag_ich8lan(hw);
1775
Bruce Allanad680762008-03-28 09:15:03 -07001776 /*
1777 * Reload the EEPROM, or else modifications will not appear
Auke Kokbc7f75f2007-09-17 12:30:59 -07001778 * until after the next adapter reset.
1779 */
1780 e1000e_reload_nvm(hw);
1781 msleep(10);
1782
Bruce Allane2434552008-11-21 17:02:41 -08001783out:
1784 if (ret_val)
1785 hw_dbg(hw, "NVM update error: %d\n", ret_val);
1786
Auke Kokbc7f75f2007-09-17 12:30:59 -07001787 return ret_val;
1788}
1789
1790/**
1791 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1792 * @hw: pointer to the HW structure
1793 *
1794 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1795 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1796 * calculated, in which case we need to calculate the checksum and set bit 6.
1797 **/
1798static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1799{
1800 s32 ret_val;
1801 u16 data;
1802
Bruce Allanad680762008-03-28 09:15:03 -07001803 /*
1804 * Read 0x19 and check bit 6. If this bit is 0, the checksum
Auke Kokbc7f75f2007-09-17 12:30:59 -07001805 * needs to be fixed. This bit is an indication that the NVM
1806 * was prepared by OEM software and did not calculate the
1807 * checksum...a likely scenario.
1808 */
1809 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1810 if (ret_val)
1811 return ret_val;
1812
1813 if ((data & 0x40) == 0) {
1814 data |= 0x40;
1815 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1816 if (ret_val)
1817 return ret_val;
1818 ret_val = e1000e_update_nvm_checksum(hw);
1819 if (ret_val)
1820 return ret_val;
1821 }
1822
1823 return e1000e_validate_nvm_checksum_generic(hw);
1824}
1825
1826/**
Bruce Allan4a770352008-10-01 17:18:35 -07001827 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1828 * @hw: pointer to the HW structure
1829 *
1830 * To prevent malicious write/erase of the NVM, set it to be read-only
1831 * so that the hardware ignores all write/erase cycles of the NVM via
1832 * the flash control registers. The shadow-ram copy of the NVM will
1833 * still be updated, however any updates to this copy will not stick
1834 * across driver reloads.
1835 **/
1836void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
1837{
1838 union ich8_flash_protected_range pr0;
1839 union ich8_hws_flash_status hsfsts;
1840 u32 gfpreg;
1841 s32 ret_val;
1842
1843 ret_val = e1000_acquire_swflag_ich8lan(hw);
1844 if (ret_val)
1845 return;
1846
1847 gfpreg = er32flash(ICH_FLASH_GFPREG);
1848
1849 /* Write-protect GbE Sector of NVM */
1850 pr0.regval = er32flash(ICH_FLASH_PR0);
1851 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
1852 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
1853 pr0.range.wpe = true;
1854 ew32flash(ICH_FLASH_PR0, pr0.regval);
1855
1856 /*
1857 * Lock down a subset of GbE Flash Control Registers, e.g.
1858 * PR0 to prevent the write-protection from being lifted.
1859 * Once FLOCKDN is set, the registers protected by it cannot
1860 * be written until FLOCKDN is cleared by a hardware reset.
1861 */
1862 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1863 hsfsts.hsf_status.flockdn = true;
1864 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1865
1866 e1000_release_swflag_ich8lan(hw);
1867}
1868
1869/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001870 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1871 * @hw: pointer to the HW structure
1872 * @offset: The offset (in bytes) of the byte/word to read.
1873 * @size: Size of data to read, 1=byte 2=word
1874 * @data: The byte(s) to write to the NVM.
1875 *
1876 * Writes one/two bytes to the NVM using the flash access registers.
1877 **/
1878static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1879 u8 size, u16 data)
1880{
1881 union ich8_hws_flash_status hsfsts;
1882 union ich8_hws_flash_ctrl hsflctl;
1883 u32 flash_linear_addr;
1884 u32 flash_data = 0;
1885 s32 ret_val;
1886 u8 count = 0;
1887
1888 if (size < 1 || size > 2 || data > size * 0xff ||
1889 offset > ICH_FLASH_LINEAR_ADDR_MASK)
1890 return -E1000_ERR_NVM;
1891
1892 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1893 hw->nvm.flash_base_addr;
1894
1895 do {
1896 udelay(1);
1897 /* Steps */
1898 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1899 if (ret_val)
1900 break;
1901
1902 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1903 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1904 hsflctl.hsf_ctrl.fldbcount = size -1;
1905 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1906 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1907
1908 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1909
1910 if (size == 1)
1911 flash_data = (u32)data & 0x00FF;
1912 else
1913 flash_data = (u32)data;
1914
1915 ew32flash(ICH_FLASH_FDATA0, flash_data);
1916
Bruce Allanad680762008-03-28 09:15:03 -07001917 /*
1918 * check if FCERR is set to 1 , if set to 1, clear it
1919 * and try the whole sequence a few more times else done
1920 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001921 ret_val = e1000_flash_cycle_ich8lan(hw,
1922 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1923 if (!ret_val)
1924 break;
1925
Bruce Allanad680762008-03-28 09:15:03 -07001926 /*
1927 * If we're here, then things are most likely
Auke Kokbc7f75f2007-09-17 12:30:59 -07001928 * completely hosed, but if the error condition
1929 * is detected, it won't hurt to give it another
1930 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1931 */
1932 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1933 if (hsfsts.hsf_status.flcerr == 1)
1934 /* Repeat for some time before giving up. */
1935 continue;
1936 if (hsfsts.hsf_status.flcdone == 0) {
1937 hw_dbg(hw, "Timeout error - flash cycle "
1938 "did not complete.");
1939 break;
1940 }
1941 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1942
1943 return ret_val;
1944}
1945
1946/**
1947 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1948 * @hw: pointer to the HW structure
1949 * @offset: The index of the byte to read.
1950 * @data: The byte to write to the NVM.
1951 *
1952 * Writes a single byte to the NVM using the flash access registers.
1953 **/
1954static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1955 u8 data)
1956{
1957 u16 word = (u16)data;
1958
1959 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1960}
1961
1962/**
1963 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1964 * @hw: pointer to the HW structure
1965 * @offset: The offset of the byte to write.
1966 * @byte: The byte to write to the NVM.
1967 *
1968 * Writes a single byte to the NVM using the flash access registers.
1969 * Goes through a retry algorithm before giving up.
1970 **/
1971static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1972 u32 offset, u8 byte)
1973{
1974 s32 ret_val;
1975 u16 program_retries;
1976
1977 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1978 if (!ret_val)
1979 return ret_val;
1980
1981 for (program_retries = 0; program_retries < 100; program_retries++) {
1982 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
1983 udelay(100);
1984 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1985 if (!ret_val)
1986 break;
1987 }
1988 if (program_retries == 100)
1989 return -E1000_ERR_NVM;
1990
1991 return 0;
1992}
1993
1994/**
1995 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1996 * @hw: pointer to the HW structure
1997 * @bank: 0 for first bank, 1 for second bank, etc.
1998 *
1999 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2000 * bank N is 4096 * N + flash_reg_addr.
2001 **/
2002static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2003{
2004 struct e1000_nvm_info *nvm = &hw->nvm;
2005 union ich8_hws_flash_status hsfsts;
2006 union ich8_hws_flash_ctrl hsflctl;
2007 u32 flash_linear_addr;
2008 /* bank size is in 16bit words - adjust to bytes */
2009 u32 flash_bank_size = nvm->flash_bank_size * 2;
2010 s32 ret_val;
2011 s32 count = 0;
2012 s32 iteration;
2013 s32 sector_size;
2014 s32 j;
2015
2016 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2017
Bruce Allanad680762008-03-28 09:15:03 -07002018 /*
2019 * Determine HW Sector size: Read BERASE bits of hw flash status
2020 * register
2021 * 00: The Hw sector is 256 bytes, hence we need to erase 16
Auke Kokbc7f75f2007-09-17 12:30:59 -07002022 * consecutive sectors. The start index for the nth Hw sector
2023 * can be calculated as = bank * 4096 + n * 256
2024 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2025 * The start index for the nth Hw sector can be calculated
2026 * as = bank * 4096
2027 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2028 * (ich9 only, otherwise error condition)
2029 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2030 */
2031 switch (hsfsts.hsf_status.berasesz) {
2032 case 0:
2033 /* Hw sector size 256 */
2034 sector_size = ICH_FLASH_SEG_SIZE_256;
2035 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2036 break;
2037 case 1:
2038 sector_size = ICH_FLASH_SEG_SIZE_4K;
Bruce Allan28c91952009-07-01 13:28:32 +00002039 iteration = 1;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002040 break;
2041 case 2:
2042 if (hw->mac.type == e1000_ich9lan) {
2043 sector_size = ICH_FLASH_SEG_SIZE_8K;
2044 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
2045 } else {
2046 return -E1000_ERR_NVM;
2047 }
2048 break;
2049 case 3:
2050 sector_size = ICH_FLASH_SEG_SIZE_64K;
Bruce Allan28c91952009-07-01 13:28:32 +00002051 iteration = 1;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002052 break;
2053 default:
2054 return -E1000_ERR_NVM;
2055 }
2056
2057 /* Start with the base address, then add the sector offset. */
2058 flash_linear_addr = hw->nvm.flash_base_addr;
2059 flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
2060
2061 for (j = 0; j < iteration ; j++) {
2062 do {
2063 /* Steps */
2064 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2065 if (ret_val)
2066 return ret_val;
2067
Bruce Allanad680762008-03-28 09:15:03 -07002068 /*
2069 * Write a value 11 (block Erase) in Flash
2070 * Cycle field in hw flash control
2071 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002072 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2073 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2074 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2075
Bruce Allanad680762008-03-28 09:15:03 -07002076 /*
2077 * Write the last 24 bits of an index within the
Auke Kokbc7f75f2007-09-17 12:30:59 -07002078 * block into Flash Linear address field in Flash
2079 * Address.
2080 */
2081 flash_linear_addr += (j * sector_size);
2082 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2083
2084 ret_val = e1000_flash_cycle_ich8lan(hw,
2085 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2086 if (ret_val == 0)
2087 break;
2088
Bruce Allanad680762008-03-28 09:15:03 -07002089 /*
2090 * Check if FCERR is set to 1. If 1,
Auke Kokbc7f75f2007-09-17 12:30:59 -07002091 * clear it and try the whole sequence
Bruce Allanad680762008-03-28 09:15:03 -07002092 * a few more times else Done
2093 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002094 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2095 if (hsfsts.hsf_status.flcerr == 1)
Bruce Allanad680762008-03-28 09:15:03 -07002096 /* repeat for some time before giving up */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002097 continue;
2098 else if (hsfsts.hsf_status.flcdone == 0)
2099 return ret_val;
2100 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2101 }
2102
2103 return 0;
2104}
2105
2106/**
2107 * e1000_valid_led_default_ich8lan - Set the default LED settings
2108 * @hw: pointer to the HW structure
2109 * @data: Pointer to the LED settings
2110 *
2111 * Reads the LED default settings from the NVM to data. If the NVM LED
2112 * settings is all 0's or F's, set the LED default to a valid LED default
2113 * setting.
2114 **/
2115static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2116{
2117 s32 ret_val;
2118
2119 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2120 if (ret_val) {
2121 hw_dbg(hw, "NVM Read Error\n");
2122 return ret_val;
2123 }
2124
2125 if (*data == ID_LED_RESERVED_0000 ||
2126 *data == ID_LED_RESERVED_FFFF)
2127 *data = ID_LED_DEFAULT_ICH8LAN;
2128
2129 return 0;
2130}
2131
2132/**
Bruce Allana4f58f52009-06-02 11:29:18 +00002133 * e1000_id_led_init_pchlan - store LED configurations
2134 * @hw: pointer to the HW structure
2135 *
2136 * PCH does not control LEDs via the LEDCTL register, rather it uses
2137 * the PHY LED configuration register.
2138 *
2139 * PCH also does not have an "always on" or "always off" mode which
2140 * complicates the ID feature. Instead of using the "on" mode to indicate
2141 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2142 * use "link_up" mode. The LEDs will still ID on request if there is no
2143 * link based on logic in e1000_led_[on|off]_pchlan().
2144 **/
2145static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2146{
2147 struct e1000_mac_info *mac = &hw->mac;
2148 s32 ret_val;
2149 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2150 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2151 u16 data, i, temp, shift;
2152
2153 /* Get default ID LED modes */
2154 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2155 if (ret_val)
2156 goto out;
2157
2158 mac->ledctl_default = er32(LEDCTL);
2159 mac->ledctl_mode1 = mac->ledctl_default;
2160 mac->ledctl_mode2 = mac->ledctl_default;
2161
2162 for (i = 0; i < 4; i++) {
2163 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2164 shift = (i * 5);
2165 switch (temp) {
2166 case ID_LED_ON1_DEF2:
2167 case ID_LED_ON1_ON2:
2168 case ID_LED_ON1_OFF2:
2169 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2170 mac->ledctl_mode1 |= (ledctl_on << shift);
2171 break;
2172 case ID_LED_OFF1_DEF2:
2173 case ID_LED_OFF1_ON2:
2174 case ID_LED_OFF1_OFF2:
2175 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2176 mac->ledctl_mode1 |= (ledctl_off << shift);
2177 break;
2178 default:
2179 /* Do nothing */
2180 break;
2181 }
2182 switch (temp) {
2183 case ID_LED_DEF1_ON2:
2184 case ID_LED_ON1_ON2:
2185 case ID_LED_OFF1_ON2:
2186 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2187 mac->ledctl_mode2 |= (ledctl_on << shift);
2188 break;
2189 case ID_LED_DEF1_OFF2:
2190 case ID_LED_ON1_OFF2:
2191 case ID_LED_OFF1_OFF2:
2192 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2193 mac->ledctl_mode2 |= (ledctl_off << shift);
2194 break;
2195 default:
2196 /* Do nothing */
2197 break;
2198 }
2199 }
2200
2201out:
2202 return ret_val;
2203}
2204
2205/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07002206 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2207 * @hw: pointer to the HW structure
2208 *
2209 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2210 * register, so the the bus width is hard coded.
2211 **/
2212static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2213{
2214 struct e1000_bus_info *bus = &hw->bus;
2215 s32 ret_val;
2216
2217 ret_val = e1000e_get_bus_info_pcie(hw);
2218
Bruce Allanad680762008-03-28 09:15:03 -07002219 /*
2220 * ICH devices are "PCI Express"-ish. They have
Auke Kokbc7f75f2007-09-17 12:30:59 -07002221 * a configuration space, but do not contain
2222 * PCI Express Capability registers, so bus width
2223 * must be hardcoded.
2224 */
2225 if (bus->width == e1000_bus_width_unknown)
2226 bus->width = e1000_bus_width_pcie_x1;
2227
2228 return ret_val;
2229}
2230
2231/**
2232 * e1000_reset_hw_ich8lan - Reset the hardware
2233 * @hw: pointer to the HW structure
2234 *
2235 * Does a full reset of the hardware which includes a reset of the PHY and
2236 * MAC.
2237 **/
2238static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2239{
2240 u32 ctrl, icr, kab;
2241 s32 ret_val;
2242
Bruce Allanad680762008-03-28 09:15:03 -07002243 /*
2244 * Prevent the PCI-E bus from sticking if there is no TLP connection
Auke Kokbc7f75f2007-09-17 12:30:59 -07002245 * on the last TLP read/write transaction when MAC is reset.
2246 */
2247 ret_val = e1000e_disable_pcie_master(hw);
2248 if (ret_val) {
2249 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
2250 }
2251
2252 hw_dbg(hw, "Masking off all interrupts\n");
2253 ew32(IMC, 0xffffffff);
2254
Bruce Allanad680762008-03-28 09:15:03 -07002255 /*
2256 * Disable the Transmit and Receive units. Then delay to allow
Auke Kokbc7f75f2007-09-17 12:30:59 -07002257 * any pending transactions to complete before we hit the MAC
2258 * with the global reset.
2259 */
2260 ew32(RCTL, 0);
2261 ew32(TCTL, E1000_TCTL_PSP);
2262 e1e_flush();
2263
2264 msleep(10);
2265
2266 /* Workaround for ICH8 bit corruption issue in FIFO memory */
2267 if (hw->mac.type == e1000_ich8lan) {
2268 /* Set Tx and Rx buffer allocation to 8k apiece. */
2269 ew32(PBA, E1000_PBA_8K);
2270 /* Set Packet Buffer Size to 16k. */
2271 ew32(PBS, E1000_PBS_16K);
2272 }
2273
2274 ctrl = er32(CTRL);
2275
2276 if (!e1000_check_reset_block(hw)) {
Bruce Allanfc0c7762009-07-01 13:27:55 +00002277 /* Clear PHY Reset Asserted bit */
2278 if (hw->mac.type >= e1000_pchlan) {
2279 u32 status = er32(STATUS);
2280 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2281 }
2282
Bruce Allanad680762008-03-28 09:15:03 -07002283 /*
2284 * PHY HW reset requires MAC CORE reset at the same
Auke Kokbc7f75f2007-09-17 12:30:59 -07002285 * time to make sure the interface between MAC and the
2286 * external PHY is reset.
2287 */
2288 ctrl |= E1000_CTRL_PHY_RST;
2289 }
2290 ret_val = e1000_acquire_swflag_ich8lan(hw);
Jeff Kirsher30bb0e02008-12-11 21:28:11 -08002291 /* Whether or not the swflag was acquired, we need to reset the part */
Bruce Allan0285c8d2008-11-21 16:59:54 -08002292 hw_dbg(hw, "Issuing a global reset to ich8lan\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07002293 ew32(CTRL, (ctrl | E1000_CTRL_RST));
2294 msleep(20);
2295
Bruce Allanfc0c7762009-07-01 13:27:55 +00002296 if (!ret_val)
Jeff Kirsher30bb0e02008-12-11 21:28:11 -08002297 e1000_release_swflag_ich8lan(hw);
Jesse Brandeburg37f40232008-10-02 16:33:20 -07002298
Bruce Allanfc0c7762009-07-01 13:27:55 +00002299 if (ctrl & E1000_CTRL_PHY_RST)
2300 ret_val = hw->phy.ops.get_cfg_done(hw);
2301
2302 if (hw->mac.type >= e1000_ich10lan) {
2303 e1000_lan_init_done_ich8lan(hw);
2304 } else {
2305 ret_val = e1000e_get_auto_rd_done(hw);
2306 if (ret_val) {
2307 /*
2308 * When auto config read does not complete, do not
2309 * return with an error. This can happen in situations
2310 * where there is no eeprom and prevents getting link.
2311 */
2312 hw_dbg(hw, "Auto Read Done did not complete\n");
2313 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002314 }
2315
Bruce Allan7d3cabb2009-07-01 13:29:08 +00002316 /*
2317 * For PCH, this write will make sure that any noise
2318 * will be detected as a CRC error and be dropped rather than show up
2319 * as a bad packet to the DMA engine.
2320 */
2321 if (hw->mac.type == e1000_pchlan)
2322 ew32(CRC_OFFSET, 0x65656565);
2323
Auke Kokbc7f75f2007-09-17 12:30:59 -07002324 ew32(IMC, 0xffffffff);
2325 icr = er32(ICR);
2326
2327 kab = er32(KABGTXD);
2328 kab |= E1000_KABGTXD_BGSQLBIAS;
2329 ew32(KABGTXD, kab);
2330
Bruce Allana4f58f52009-06-02 11:29:18 +00002331 if (hw->mac.type == e1000_pchlan)
2332 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2333
Auke Kokbc7f75f2007-09-17 12:30:59 -07002334 return ret_val;
2335}
2336
2337/**
2338 * e1000_init_hw_ich8lan - Initialize the hardware
2339 * @hw: pointer to the HW structure
2340 *
2341 * Prepares the hardware for transmit and receive by doing the following:
2342 * - initialize hardware bits
2343 * - initialize LED identification
2344 * - setup receive address registers
2345 * - setup flow control
Auke Kok489815c2008-02-21 15:11:07 -08002346 * - setup transmit descriptors
Auke Kokbc7f75f2007-09-17 12:30:59 -07002347 * - clear statistics
2348 **/
2349static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2350{
2351 struct e1000_mac_info *mac = &hw->mac;
2352 u32 ctrl_ext, txdctl, snoop;
2353 s32 ret_val;
2354 u16 i;
2355
2356 e1000_initialize_hw_bits_ich8lan(hw);
2357
2358 /* Initialize identification LED */
Bruce Allana4f58f52009-06-02 11:29:18 +00002359 ret_val = mac->ops.id_led_init(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002360 if (ret_val) {
2361 hw_dbg(hw, "Error initializing identification LED\n");
2362 return ret_val;
2363 }
2364
2365 /* Setup the receive address. */
2366 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2367
2368 /* Zero out the Multicast HASH table */
2369 hw_dbg(hw, "Zeroing the MTA\n");
2370 for (i = 0; i < mac->mta_reg_count; i++)
2371 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2372
Bruce Allanfc0c7762009-07-01 13:27:55 +00002373 /*
2374 * The 82578 Rx buffer will stall if wakeup is enabled in host and
2375 * the ME. Reading the BM_WUC register will clear the host wakeup bit.
2376 * Reset the phy after disabling host wakeup to reset the Rx buffer.
2377 */
2378 if (hw->phy.type == e1000_phy_82578) {
2379 hw->phy.ops.read_phy_reg(hw, BM_WUC, &i);
2380 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2381 if (ret_val)
2382 return ret_val;
2383 }
2384
Auke Kokbc7f75f2007-09-17 12:30:59 -07002385 /* Setup link and flow control */
2386 ret_val = e1000_setup_link_ich8lan(hw);
2387
2388 /* Set the transmit descriptor write-back policy for both queues */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002389 txdctl = er32(TXDCTL(0));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002390 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2391 E1000_TXDCTL_FULL_TX_DESC_WB;
2392 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2393 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002394 ew32(TXDCTL(0), txdctl);
2395 txdctl = er32(TXDCTL(1));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002396 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2397 E1000_TXDCTL_FULL_TX_DESC_WB;
2398 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2399 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002400 ew32(TXDCTL(1), txdctl);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002401
Bruce Allanad680762008-03-28 09:15:03 -07002402 /*
2403 * ICH8 has opposite polarity of no_snoop bits.
2404 * By default, we should use snoop behavior.
2405 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002406 if (mac->type == e1000_ich8lan)
2407 snoop = PCIE_ICH8_SNOOP_ALL;
2408 else
2409 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2410 e1000e_set_pcie_no_snoop(hw, snoop);
2411
2412 ctrl_ext = er32(CTRL_EXT);
2413 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2414 ew32(CTRL_EXT, ctrl_ext);
2415
Bruce Allanad680762008-03-28 09:15:03 -07002416 /*
2417 * Clear all of the statistics registers (clear on read). It is
Auke Kokbc7f75f2007-09-17 12:30:59 -07002418 * important that we do this after we have tried to establish link
2419 * because the symbol error count will increment wildly if there
2420 * is no link.
2421 */
2422 e1000_clear_hw_cntrs_ich8lan(hw);
2423
2424 return 0;
2425}
2426/**
2427 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2428 * @hw: pointer to the HW structure
2429 *
2430 * Sets/Clears required hardware bits necessary for correctly setting up the
2431 * hardware for transmit and receive.
2432 **/
2433static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2434{
2435 u32 reg;
2436
2437 /* Extended Device Control */
2438 reg = er32(CTRL_EXT);
2439 reg |= (1 << 22);
Bruce Allana4f58f52009-06-02 11:29:18 +00002440 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2441 if (hw->mac.type >= e1000_pchlan)
2442 reg |= E1000_CTRL_EXT_PHYPDEN;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002443 ew32(CTRL_EXT, reg);
2444
2445 /* Transmit Descriptor Control 0 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002446 reg = er32(TXDCTL(0));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002447 reg |= (1 << 22);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002448 ew32(TXDCTL(0), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002449
2450 /* Transmit Descriptor Control 1 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002451 reg = er32(TXDCTL(1));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002452 reg |= (1 << 22);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002453 ew32(TXDCTL(1), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002454
2455 /* Transmit Arbitration Control 0 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002456 reg = er32(TARC(0));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002457 if (hw->mac.type == e1000_ich8lan)
2458 reg |= (1 << 28) | (1 << 29);
2459 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002460 ew32(TARC(0), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002461
2462 /* Transmit Arbitration Control 1 */
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002463 reg = er32(TARC(1));
Auke Kokbc7f75f2007-09-17 12:30:59 -07002464 if (er32(TCTL) & E1000_TCTL_MULR)
2465 reg &= ~(1 << 28);
2466 else
2467 reg |= (1 << 28);
2468 reg |= (1 << 24) | (1 << 26) | (1 << 30);
Jeff Kirshere9ec2c02008-04-02 13:48:13 -07002469 ew32(TARC(1), reg);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002470
2471 /* Device Status */
2472 if (hw->mac.type == e1000_ich8lan) {
2473 reg = er32(STATUS);
2474 reg &= ~(1 << 31);
2475 ew32(STATUS, reg);
2476 }
2477}
2478
2479/**
2480 * e1000_setup_link_ich8lan - Setup flow control and link settings
2481 * @hw: pointer to the HW structure
2482 *
2483 * Determines which flow control settings to use, then configures flow
2484 * control. Calls the appropriate media-specific link configuration
2485 * function. Assuming the adapter has a valid link partner, a valid link
2486 * should be established. Assumes the hardware has previously been reset
2487 * and the transmitter and receiver are not enabled.
2488 **/
2489static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2490{
Auke Kokbc7f75f2007-09-17 12:30:59 -07002491 s32 ret_val;
2492
2493 if (e1000_check_reset_block(hw))
2494 return 0;
2495
Bruce Allanad680762008-03-28 09:15:03 -07002496 /*
2497 * ICH parts do not have a word in the NVM to determine
Auke Kokbc7f75f2007-09-17 12:30:59 -07002498 * the default flow control setting, so we explicitly
2499 * set it to full.
2500 */
Bruce Allan37289d92009-06-02 11:29:37 +00002501 if (hw->fc.requested_mode == e1000_fc_default) {
2502 /* Workaround h/w hang when Tx flow control enabled */
2503 if (hw->mac.type == e1000_pchlan)
2504 hw->fc.requested_mode = e1000_fc_rx_pause;
2505 else
2506 hw->fc.requested_mode = e1000_fc_full;
2507 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002508
Bruce Allan5c48ef3e22008-11-21 16:57:36 -08002509 /*
2510 * Save off the requested flow control mode for use later. Depending
2511 * on the link partner's capabilities, we may or may not use this mode.
2512 */
2513 hw->fc.current_mode = hw->fc.requested_mode;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002514
Bruce Allan5c48ef3e22008-11-21 16:57:36 -08002515 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n",
2516 hw->fc.current_mode);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002517
2518 /* Continue to configure the copper link. */
2519 ret_val = e1000_setup_copper_link_ich8lan(hw);
2520 if (ret_val)
2521 return ret_val;
2522
Jeff Kirsher318a94d2008-03-28 09:15:16 -07002523 ew32(FCTTV, hw->fc.pause_time);
Bruce Allana4f58f52009-06-02 11:29:18 +00002524 if ((hw->phy.type == e1000_phy_82578) ||
2525 (hw->phy.type == e1000_phy_82577)) {
2526 ret_val = hw->phy.ops.write_phy_reg(hw,
2527 PHY_REG(BM_PORT_CTRL_PAGE, 27),
2528 hw->fc.pause_time);
2529 if (ret_val)
2530 return ret_val;
2531 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002532
2533 return e1000e_set_fc_watermarks(hw);
2534}
2535
2536/**
2537 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2538 * @hw: pointer to the HW structure
2539 *
2540 * Configures the kumeran interface to the PHY to wait the appropriate time
2541 * when polling the PHY, then call the generic setup_copper_link to finish
2542 * configuring the copper link.
2543 **/
2544static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2545{
2546 u32 ctrl;
2547 s32 ret_val;
2548 u16 reg_data;
2549
2550 ctrl = er32(CTRL);
2551 ctrl |= E1000_CTRL_SLU;
2552 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2553 ew32(CTRL, ctrl);
2554
Bruce Allanad680762008-03-28 09:15:03 -07002555 /*
2556 * Set the mac to wait the maximum time between each iteration
Auke Kokbc7f75f2007-09-17 12:30:59 -07002557 * and increase the max iterations when polling the phy;
Bruce Allanad680762008-03-28 09:15:03 -07002558 * this fixes erroneous timeouts at 10Mbps.
2559 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002560 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2561 if (ret_val)
2562 return ret_val;
2563 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2564 if (ret_val)
2565 return ret_val;
2566 reg_data |= 0x3F;
2567 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2568 if (ret_val)
2569 return ret_val;
2570
Bruce Allana4f58f52009-06-02 11:29:18 +00002571 switch (hw->phy.type) {
2572 case e1000_phy_igp_3:
Auke Kokbc7f75f2007-09-17 12:30:59 -07002573 ret_val = e1000e_copper_link_setup_igp(hw);
2574 if (ret_val)
2575 return ret_val;
Bruce Allana4f58f52009-06-02 11:29:18 +00002576 break;
2577 case e1000_phy_bm:
2578 case e1000_phy_82578:
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002579 ret_val = e1000e_copper_link_setup_m88(hw);
2580 if (ret_val)
2581 return ret_val;
Bruce Allana4f58f52009-06-02 11:29:18 +00002582 break;
2583 case e1000_phy_82577:
2584 ret_val = e1000_copper_link_setup_82577(hw);
2585 if (ret_val)
2586 return ret_val;
2587 break;
2588 case e1000_phy_ife:
2589 ret_val = hw->phy.ops.read_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2590 &reg_data);
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002591 if (ret_val)
2592 return ret_val;
2593
2594 reg_data &= ~IFE_PMC_AUTO_MDIX;
2595
2596 switch (hw->phy.mdix) {
2597 case 1:
2598 reg_data &= ~IFE_PMC_FORCE_MDIX;
2599 break;
2600 case 2:
2601 reg_data |= IFE_PMC_FORCE_MDIX;
2602 break;
2603 case 0:
2604 default:
2605 reg_data |= IFE_PMC_AUTO_MDIX;
2606 break;
2607 }
Bruce Allana4f58f52009-06-02 11:29:18 +00002608 ret_val = hw->phy.ops.write_phy_reg(hw, IFE_PHY_MDIX_CONTROL,
2609 reg_data);
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002610 if (ret_val)
2611 return ret_val;
Bruce Allana4f58f52009-06-02 11:29:18 +00002612 break;
2613 default:
2614 break;
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002615 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002616 return e1000e_setup_copper_link(hw);
2617}
2618
2619/**
2620 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2621 * @hw: pointer to the HW structure
2622 * @speed: pointer to store current link speed
2623 * @duplex: pointer to store the current link duplex
2624 *
Bruce Allanad680762008-03-28 09:15:03 -07002625 * Calls the generic get_speed_and_duplex to retrieve the current link
Auke Kokbc7f75f2007-09-17 12:30:59 -07002626 * information and then calls the Kumeran lock loss workaround for links at
2627 * gigabit speeds.
2628 **/
2629static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2630 u16 *duplex)
2631{
2632 s32 ret_val;
2633
2634 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2635 if (ret_val)
2636 return ret_val;
2637
Bruce Allan7d3cabb2009-07-01 13:29:08 +00002638 if ((hw->mac.type == e1000_pchlan) && (*speed == SPEED_1000)) {
2639 ret_val = e1000e_write_kmrn_reg(hw,
2640 E1000_KMRNCTRLSTA_K1_CONFIG,
2641 E1000_KMRNCTRLSTA_K1_DISABLE);
2642 if (ret_val)
2643 return ret_val;
2644 }
2645
Auke Kokbc7f75f2007-09-17 12:30:59 -07002646 if ((hw->mac.type == e1000_ich8lan) &&
2647 (hw->phy.type == e1000_phy_igp_3) &&
2648 (*speed == SPEED_1000)) {
2649 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2650 }
2651
2652 return ret_val;
2653}
2654
2655/**
2656 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2657 * @hw: pointer to the HW structure
2658 *
2659 * Work-around for 82566 Kumeran PCS lock loss:
2660 * On link status change (i.e. PCI reset, speed change) and link is up and
2661 * speed is gigabit-
2662 * 0) if workaround is optionally disabled do nothing
2663 * 1) wait 1ms for Kumeran link to come up
2664 * 2) check Kumeran Diagnostic register PCS lock loss bit
2665 * 3) if not set the link is locked (all is good), otherwise...
2666 * 4) reset the PHY
2667 * 5) repeat up to 10 times
2668 * Note: this is only called for IGP3 copper when speed is 1gb.
2669 **/
2670static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2671{
2672 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2673 u32 phy_ctrl;
2674 s32 ret_val;
2675 u16 i, data;
2676 bool link;
2677
2678 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2679 return 0;
2680
Bruce Allanad680762008-03-28 09:15:03 -07002681 /*
2682 * Make sure link is up before proceeding. If not just return.
Auke Kokbc7f75f2007-09-17 12:30:59 -07002683 * Attempting this while link is negotiating fouled up link
Bruce Allanad680762008-03-28 09:15:03 -07002684 * stability
2685 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002686 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2687 if (!link)
2688 return 0;
2689
2690 for (i = 0; i < 10; i++) {
2691 /* read once to clear */
2692 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2693 if (ret_val)
2694 return ret_val;
2695 /* and again to get new status */
2696 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2697 if (ret_val)
2698 return ret_val;
2699
2700 /* check for PCS lock */
2701 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2702 return 0;
2703
2704 /* Issue PHY reset */
2705 e1000_phy_hw_reset(hw);
2706 mdelay(5);
2707 }
2708 /* Disable GigE link negotiation */
2709 phy_ctrl = er32(PHY_CTRL);
2710 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2711 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2712 ew32(PHY_CTRL, phy_ctrl);
2713
Bruce Allanad680762008-03-28 09:15:03 -07002714 /*
2715 * Call gig speed drop workaround on Gig disable before accessing
2716 * any PHY registers
2717 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002718 e1000e_gig_downshift_workaround_ich8lan(hw);
2719
2720 /* unable to acquire PCS lock */
2721 return -E1000_ERR_PHY;
2722}
2723
2724/**
Bruce Allanad680762008-03-28 09:15:03 -07002725 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
Auke Kokbc7f75f2007-09-17 12:30:59 -07002726 * @hw: pointer to the HW structure
Auke Kok489815c2008-02-21 15:11:07 -08002727 * @state: boolean value used to set the current Kumeran workaround state
Auke Kokbc7f75f2007-09-17 12:30:59 -07002728 *
2729 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2730 * /disabled - FALSE).
2731 **/
2732void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2733 bool state)
2734{
2735 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2736
2737 if (hw->mac.type != e1000_ich8lan) {
2738 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2739 return;
2740 }
2741
2742 dev_spec->kmrn_lock_loss_workaround_enabled = state;
2743}
2744
2745/**
2746 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2747 * @hw: pointer to the HW structure
2748 *
2749 * Workaround for 82566 power-down on D3 entry:
2750 * 1) disable gigabit link
2751 * 2) write VR power-down enable
2752 * 3) read it back
2753 * Continue if successful, else issue LCD reset and repeat
2754 **/
2755void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2756{
2757 u32 reg;
2758 u16 data;
2759 u8 retry = 0;
2760
2761 if (hw->phy.type != e1000_phy_igp_3)
2762 return;
2763
2764 /* Try the workaround twice (if needed) */
2765 do {
2766 /* Disable link */
2767 reg = er32(PHY_CTRL);
2768 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2769 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2770 ew32(PHY_CTRL, reg);
2771
Bruce Allanad680762008-03-28 09:15:03 -07002772 /*
2773 * Call gig speed drop workaround on Gig disable before
2774 * accessing any PHY registers
2775 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002776 if (hw->mac.type == e1000_ich8lan)
2777 e1000e_gig_downshift_workaround_ich8lan(hw);
2778
2779 /* Write VR power-down enable */
2780 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2781 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2782 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2783
2784 /* Read it back and test */
2785 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2786 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2787 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2788 break;
2789
2790 /* Issue PHY reset and repeat at most one more time */
2791 reg = er32(CTRL);
2792 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2793 retry++;
2794 } while (retry);
2795}
2796
2797/**
2798 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2799 * @hw: pointer to the HW structure
2800 *
2801 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
Auke Kok489815c2008-02-21 15:11:07 -08002802 * LPLU, Gig disable, MDIC PHY reset):
Auke Kokbc7f75f2007-09-17 12:30:59 -07002803 * 1) Set Kumeran Near-end loopback
2804 * 2) Clear Kumeran Near-end loopback
2805 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2806 **/
2807void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2808{
2809 s32 ret_val;
2810 u16 reg_data;
2811
2812 if ((hw->mac.type != e1000_ich8lan) ||
2813 (hw->phy.type != e1000_phy_igp_3))
2814 return;
2815
2816 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2817 &reg_data);
2818 if (ret_val)
2819 return;
2820 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2821 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2822 reg_data);
2823 if (ret_val)
2824 return;
2825 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2826 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2827 reg_data);
2828}
2829
2830/**
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002831 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2832 * @hw: pointer to the HW structure
2833 *
2834 * During S0 to Sx transition, it is possible the link remains at gig
2835 * instead of negotiating to a lower speed. Before going to Sx, set
2836 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2837 * to a lower speed.
2838 *
Bruce Allana4f58f52009-06-02 11:29:18 +00002839 * Should only be called for applicable parts.
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002840 **/
2841void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2842{
2843 u32 phy_ctrl;
2844
Bruce Allana4f58f52009-06-02 11:29:18 +00002845 switch (hw->mac.type) {
2846 case e1000_ich9lan:
2847 case e1000_ich10lan:
2848 case e1000_pchlan:
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002849 phy_ctrl = er32(PHY_CTRL);
2850 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2851 E1000_PHY_CTRL_GBE_DISABLE;
2852 ew32(PHY_CTRL, phy_ctrl);
Bruce Allana4f58f52009-06-02 11:29:18 +00002853
2854 /* Workaround SWFLAG unexpectedly set during S0->Sx */
2855 if (hw->mac.type == e1000_pchlan)
2856 udelay(500);
2857 default:
2858 break;
Bruce Allan97ac8ca2008-04-29 09:16:05 -07002859 }
2860
2861 return;
2862}
2863
2864/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07002865 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2866 * @hw: pointer to the HW structure
2867 *
2868 * Return the LED back to the default configuration.
2869 **/
2870static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2871{
2872 if (hw->phy.type == e1000_phy_ife)
2873 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2874
2875 ew32(LEDCTL, hw->mac.ledctl_default);
2876 return 0;
2877}
2878
2879/**
Auke Kok489815c2008-02-21 15:11:07 -08002880 * e1000_led_on_ich8lan - Turn LEDs on
Auke Kokbc7f75f2007-09-17 12:30:59 -07002881 * @hw: pointer to the HW structure
2882 *
Auke Kok489815c2008-02-21 15:11:07 -08002883 * Turn on the LEDs.
Auke Kokbc7f75f2007-09-17 12:30:59 -07002884 **/
2885static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2886{
2887 if (hw->phy.type == e1000_phy_ife)
2888 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2889 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2890
2891 ew32(LEDCTL, hw->mac.ledctl_mode2);
2892 return 0;
2893}
2894
2895/**
Auke Kok489815c2008-02-21 15:11:07 -08002896 * e1000_led_off_ich8lan - Turn LEDs off
Auke Kokbc7f75f2007-09-17 12:30:59 -07002897 * @hw: pointer to the HW structure
2898 *
Auke Kok489815c2008-02-21 15:11:07 -08002899 * Turn off the LEDs.
Auke Kokbc7f75f2007-09-17 12:30:59 -07002900 **/
2901static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2902{
2903 if (hw->phy.type == e1000_phy_ife)
2904 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2905 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2906
2907 ew32(LEDCTL, hw->mac.ledctl_mode1);
2908 return 0;
2909}
2910
2911/**
Bruce Allana4f58f52009-06-02 11:29:18 +00002912 * e1000_setup_led_pchlan - Configures SW controllable LED
2913 * @hw: pointer to the HW structure
2914 *
2915 * This prepares the SW controllable LED for use.
2916 **/
2917static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
2918{
2919 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
2920 (u16)hw->mac.ledctl_mode1);
2921}
2922
2923/**
2924 * e1000_cleanup_led_pchlan - Restore the default LED operation
2925 * @hw: pointer to the HW structure
2926 *
2927 * Return the LED back to the default configuration.
2928 **/
2929static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
2930{
2931 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG,
2932 (u16)hw->mac.ledctl_default);
2933}
2934
2935/**
2936 * e1000_led_on_pchlan - Turn LEDs on
2937 * @hw: pointer to the HW structure
2938 *
2939 * Turn on the LEDs.
2940 **/
2941static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
2942{
2943 u16 data = (u16)hw->mac.ledctl_mode2;
2944 u32 i, led;
2945
2946 /*
2947 * If no link, then turn LED on by setting the invert bit
2948 * for each LED that's mode is "link_up" in ledctl_mode2.
2949 */
2950 if (!(er32(STATUS) & E1000_STATUS_LU)) {
2951 for (i = 0; i < 3; i++) {
2952 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
2953 if ((led & E1000_PHY_LED0_MODE_MASK) !=
2954 E1000_LEDCTL_MODE_LINK_UP)
2955 continue;
2956 if (led & E1000_PHY_LED0_IVRT)
2957 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
2958 else
2959 data |= (E1000_PHY_LED0_IVRT << (i * 5));
2960 }
2961 }
2962
2963 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
2964}
2965
2966/**
2967 * e1000_led_off_pchlan - Turn LEDs off
2968 * @hw: pointer to the HW structure
2969 *
2970 * Turn off the LEDs.
2971 **/
2972static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
2973{
2974 u16 data = (u16)hw->mac.ledctl_mode1;
2975 u32 i, led;
2976
2977 /*
2978 * If no link, then turn LED off by clearing the invert bit
2979 * for each LED that's mode is "link_up" in ledctl_mode1.
2980 */
2981 if (!(er32(STATUS) & E1000_STATUS_LU)) {
2982 for (i = 0; i < 3; i++) {
2983 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
2984 if ((led & E1000_PHY_LED0_MODE_MASK) !=
2985 E1000_LEDCTL_MODE_LINK_UP)
2986 continue;
2987 if (led & E1000_PHY_LED0_IVRT)
2988 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
2989 else
2990 data |= (E1000_PHY_LED0_IVRT << (i * 5));
2991 }
2992 }
2993
2994 return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data);
2995}
2996
2997/**
Bruce Allanf4187b52008-08-26 18:36:50 -07002998 * e1000_get_cfg_done_ich8lan - Read config done bit
2999 * @hw: pointer to the HW structure
3000 *
3001 * Read the management control register for the config done bit for
3002 * completion status. NOTE: silicon which is EEPROM-less will fail trying
3003 * to read the config done bit, so an error is *ONLY* logged and returns
Bruce Allana4f58f52009-06-02 11:29:18 +00003004 * 0. If we were to return with error, EEPROM-less silicon
Bruce Allanf4187b52008-08-26 18:36:50 -07003005 * would not be able to be reset or change link.
3006 **/
3007static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3008{
3009 u32 bank = 0;
3010
Bruce Allanfc0c7762009-07-01 13:27:55 +00003011 if (hw->mac.type >= e1000_pchlan) {
3012 u32 status = er32(STATUS);
3013
3014 if (status & E1000_STATUS_PHYRA)
3015 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3016 else
3017 hw_dbg(hw,
3018 "PHY Reset Asserted not set - needs delay\n");
3019 }
3020
Bruce Allanf4187b52008-08-26 18:36:50 -07003021 e1000e_get_cfg_done(hw);
3022
3023 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
Bruce Allana4f58f52009-06-02 11:29:18 +00003024 if ((hw->mac.type != e1000_ich10lan) &&
3025 (hw->mac.type != e1000_pchlan)) {
Bruce Allanf4187b52008-08-26 18:36:50 -07003026 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3027 (hw->phy.type == e1000_phy_igp_3)) {
3028 e1000e_phy_init_script_igp3(hw);
3029 }
3030 } else {
3031 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3032 /* Maybe we should do a basic PHY config */
3033 hw_dbg(hw, "EEPROM not present\n");
3034 return -E1000_ERR_CONFIG;
3035 }
3036 }
3037
3038 return 0;
3039}
3040
3041/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07003042 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3043 * @hw: pointer to the HW structure
3044 *
3045 * Clears hardware counters specific to the silicon family and calls
3046 * clear_hw_cntrs_generic to clear all general purpose counters.
3047 **/
3048static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3049{
3050 u32 temp;
Bruce Allana4f58f52009-06-02 11:29:18 +00003051 u16 phy_data;
Auke Kokbc7f75f2007-09-17 12:30:59 -07003052
3053 e1000e_clear_hw_cntrs_base(hw);
3054
3055 temp = er32(ALGNERRC);
3056 temp = er32(RXERRC);
3057 temp = er32(TNCRS);
3058 temp = er32(CEXTERR);
3059 temp = er32(TSCTC);
3060 temp = er32(TSCTFC);
3061
3062 temp = er32(MGTPRC);
3063 temp = er32(MGTPDC);
3064 temp = er32(MGTPTC);
3065
3066 temp = er32(IAC);
3067 temp = er32(ICRXOC);
3068
Bruce Allana4f58f52009-06-02 11:29:18 +00003069 /* Clear PHY statistics registers */
3070 if ((hw->phy.type == e1000_phy_82578) ||
3071 (hw->phy.type == e1000_phy_82577)) {
3072 hw->phy.ops.read_phy_reg(hw, HV_SCC_UPPER, &phy_data);
3073 hw->phy.ops.read_phy_reg(hw, HV_SCC_LOWER, &phy_data);
3074 hw->phy.ops.read_phy_reg(hw, HV_ECOL_UPPER, &phy_data);
3075 hw->phy.ops.read_phy_reg(hw, HV_ECOL_LOWER, &phy_data);
3076 hw->phy.ops.read_phy_reg(hw, HV_MCC_UPPER, &phy_data);
3077 hw->phy.ops.read_phy_reg(hw, HV_MCC_LOWER, &phy_data);
3078 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_UPPER, &phy_data);
3079 hw->phy.ops.read_phy_reg(hw, HV_LATECOL_LOWER, &phy_data);
3080 hw->phy.ops.read_phy_reg(hw, HV_COLC_UPPER, &phy_data);
3081 hw->phy.ops.read_phy_reg(hw, HV_COLC_LOWER, &phy_data);
3082 hw->phy.ops.read_phy_reg(hw, HV_DC_UPPER, &phy_data);
3083 hw->phy.ops.read_phy_reg(hw, HV_DC_LOWER, &phy_data);
3084 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_UPPER, &phy_data);
3085 hw->phy.ops.read_phy_reg(hw, HV_TNCRS_LOWER, &phy_data);
3086 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07003087}
3088
3089static struct e1000_mac_operations ich8_mac_ops = {
Bruce Allana4f58f52009-06-02 11:29:18 +00003090 .id_led_init = e1000e_id_led_init,
Bruce Allan4662e822008-08-26 18:37:06 -07003091 .check_mng_mode = e1000_check_mng_mode_ich8lan,
Bruce Allan7d3cabb2009-07-01 13:29:08 +00003092 .check_for_link = e1000_check_for_copper_link_ich8lan,
Bruce Allana4f58f52009-06-02 11:29:18 +00003093 /* cleanup_led dependent on mac type */
Auke Kokbc7f75f2007-09-17 12:30:59 -07003094 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
3095 .get_bus_info = e1000_get_bus_info_ich8lan,
3096 .get_link_up_info = e1000_get_link_up_info_ich8lan,
Bruce Allana4f58f52009-06-02 11:29:18 +00003097 /* led_on dependent on mac type */
3098 /* led_off dependent on mac type */
Jeff Kirshere2de3eb2008-03-28 09:15:11 -07003099 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
Auke Kokbc7f75f2007-09-17 12:30:59 -07003100 .reset_hw = e1000_reset_hw_ich8lan,
3101 .init_hw = e1000_init_hw_ich8lan,
3102 .setup_link = e1000_setup_link_ich8lan,
3103 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
Bruce Allana4f58f52009-06-02 11:29:18 +00003104 /* id_led_init dependent on mac type */
Auke Kokbc7f75f2007-09-17 12:30:59 -07003105};
3106
3107static struct e1000_phy_operations ich8_phy_ops = {
3108 .acquire_phy = e1000_acquire_swflag_ich8lan,
3109 .check_reset_block = e1000_check_reset_block_ich8lan,
3110 .commit_phy = NULL,
3111 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
Bruce Allanf4187b52008-08-26 18:36:50 -07003112 .get_cfg_done = e1000_get_cfg_done_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07003113 .get_cable_length = e1000e_get_cable_length_igp_2,
3114 .get_phy_info = e1000_get_phy_info_ich8lan,
3115 .read_phy_reg = e1000e_read_phy_reg_igp,
3116 .release_phy = e1000_release_swflag_ich8lan,
3117 .reset_phy = e1000_phy_hw_reset_ich8lan,
3118 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
3119 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
3120 .write_phy_reg = e1000e_write_phy_reg_igp,
3121};
3122
3123static struct e1000_nvm_operations ich8_nvm_ops = {
3124 .acquire_nvm = e1000_acquire_swflag_ich8lan,
3125 .read_nvm = e1000_read_nvm_ich8lan,
3126 .release_nvm = e1000_release_swflag_ich8lan,
3127 .update_nvm = e1000_update_nvm_checksum_ich8lan,
3128 .valid_led_default = e1000_valid_led_default_ich8lan,
3129 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
3130 .write_nvm = e1000_write_nvm_ich8lan,
3131};
3132
3133struct e1000_info e1000_ich8_info = {
3134 .mac = e1000_ich8lan,
3135 .flags = FLAG_HAS_WOL
Bruce Allan97ac8ca2008-04-29 09:16:05 -07003136 | FLAG_IS_ICH
Auke Kokbc7f75f2007-09-17 12:30:59 -07003137 | FLAG_RX_CSUM_ENABLED
3138 | FLAG_HAS_CTRLEXT_ON_LOAD
3139 | FLAG_HAS_AMT
3140 | FLAG_HAS_FLASH
3141 | FLAG_APME_IN_WUC,
3142 .pba = 8,
Bruce Allan2adc55c2009-06-02 11:28:58 +00003143 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
Jeff Kirsher69e3fd82008-04-02 13:48:18 -07003144 .get_variants = e1000_get_variants_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07003145 .mac_ops = &ich8_mac_ops,
3146 .phy_ops = &ich8_phy_ops,
3147 .nvm_ops = &ich8_nvm_ops,
3148};
3149
3150struct e1000_info e1000_ich9_info = {
3151 .mac = e1000_ich9lan,
3152 .flags = FLAG_HAS_JUMBO_FRAMES
Bruce Allan97ac8ca2008-04-29 09:16:05 -07003153 | FLAG_IS_ICH
Auke Kokbc7f75f2007-09-17 12:30:59 -07003154 | FLAG_HAS_WOL
3155 | FLAG_RX_CSUM_ENABLED
3156 | FLAG_HAS_CTRLEXT_ON_LOAD
3157 | FLAG_HAS_AMT
3158 | FLAG_HAS_ERT
3159 | FLAG_HAS_FLASH
3160 | FLAG_APME_IN_WUC,
3161 .pba = 10,
Bruce Allan2adc55c2009-06-02 11:28:58 +00003162 .max_hw_frame_size = DEFAULT_JUMBO,
Jeff Kirsher69e3fd82008-04-02 13:48:18 -07003163 .get_variants = e1000_get_variants_ich8lan,
Auke Kokbc7f75f2007-09-17 12:30:59 -07003164 .mac_ops = &ich8_mac_ops,
3165 .phy_ops = &ich8_phy_ops,
3166 .nvm_ops = &ich8_nvm_ops,
3167};
3168
Bruce Allanf4187b52008-08-26 18:36:50 -07003169struct e1000_info e1000_ich10_info = {
3170 .mac = e1000_ich10lan,
3171 .flags = FLAG_HAS_JUMBO_FRAMES
3172 | FLAG_IS_ICH
3173 | FLAG_HAS_WOL
3174 | FLAG_RX_CSUM_ENABLED
3175 | FLAG_HAS_CTRLEXT_ON_LOAD
3176 | FLAG_HAS_AMT
3177 | FLAG_HAS_ERT
3178 | FLAG_HAS_FLASH
3179 | FLAG_APME_IN_WUC,
3180 .pba = 10,
Bruce Allan2adc55c2009-06-02 11:28:58 +00003181 .max_hw_frame_size = DEFAULT_JUMBO,
Bruce Allanf4187b52008-08-26 18:36:50 -07003182 .get_variants = e1000_get_variants_ich8lan,
3183 .mac_ops = &ich8_mac_ops,
3184 .phy_ops = &ich8_phy_ops,
3185 .nvm_ops = &ich8_nvm_ops,
3186};
Bruce Allana4f58f52009-06-02 11:29:18 +00003187
3188struct e1000_info e1000_pch_info = {
3189 .mac = e1000_pchlan,
3190 .flags = FLAG_IS_ICH
3191 | FLAG_HAS_WOL
3192 | FLAG_RX_CSUM_ENABLED
3193 | FLAG_HAS_CTRLEXT_ON_LOAD
3194 | FLAG_HAS_AMT
3195 | FLAG_HAS_FLASH
3196 | FLAG_HAS_JUMBO_FRAMES
3197 | FLAG_APME_IN_WUC,
3198 .pba = 26,
3199 .max_hw_frame_size = 4096,
3200 .get_variants = e1000_get_variants_ich8lan,
3201 .mac_ops = &ich8_mac_ops,
3202 .phy_ops = &ich8_phy_ops,
3203 .nvm_ops = &ich8_nvm_ops,
3204};