blob: 2f3d6f917fb3373c02335b6912fcba1006f5fabe [file] [log] [blame]
Arne Jansena2de7332011-03-08 14:14:00 +01001/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
Arne Jansena2de7332011-03-08 14:14:00 +010019#include <linux/blkdev.h>
Jan Schmidt558540c2011-06-13 19:59:12 +020020#include <linux/ratelimit.h>
Arne Jansena2de7332011-03-08 14:14:00 +010021#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
Jan Schmidt0ef8e452011-06-13 20:04:15 +020025#include "transaction.h"
Jan Schmidt558540c2011-06-13 19:59:12 +020026#include "backref.h"
Jan Schmidt5da6fcb2011-08-04 18:11:04 +020027#include "extent_io.h"
Stefan Behrens21adbd52011-11-09 13:44:05 +010028#include "check-integrity.h"
Arne Jansena2de7332011-03-08 14:14:00 +010029
30/*
31 * This is only the first step towards a full-features scrub. It reads all
32 * extent and super block and verifies the checksums. In case a bad checksum
33 * is found or the extent cannot be read, good data will be written back if
34 * any can be found.
35 *
36 * Future enhancements:
Arne Jansena2de7332011-03-08 14:14:00 +010037 * - In case an unrepairable extent is encountered, track which files are
38 * affected and report them
Arne Jansena2de7332011-03-08 14:14:00 +010039 * - track and record media errors, throw out bad devices
Arne Jansena2de7332011-03-08 14:14:00 +010040 * - add a mode to also read unallocated space
Arne Jansena2de7332011-03-08 14:14:00 +010041 */
42
Stefan Behrensb5d67f62012-03-27 14:21:27 -040043struct scrub_block;
Arne Jansena2de7332011-03-08 14:14:00 +010044struct scrub_dev;
Arne Jansena2de7332011-03-08 14:14:00 +010045
46#define SCRUB_PAGES_PER_BIO 16 /* 64k per bio */
47#define SCRUB_BIOS_PER_DEV 16 /* 1 MB per device in flight */
Stefan Behrensb5d67f62012-03-27 14:21:27 -040048#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
Arne Jansena2de7332011-03-08 14:14:00 +010049
50struct scrub_page {
Stefan Behrensb5d67f62012-03-27 14:21:27 -040051 struct scrub_block *sblock;
52 struct page *page;
53 struct block_device *bdev;
Arne Jansena2de7332011-03-08 14:14:00 +010054 u64 flags; /* extent flags */
55 u64 generation;
Stefan Behrensb5d67f62012-03-27 14:21:27 -040056 u64 logical;
57 u64 physical;
58 struct {
59 unsigned int mirror_num:8;
60 unsigned int have_csum:1;
61 unsigned int io_error:1;
62 };
Arne Jansena2de7332011-03-08 14:14:00 +010063 u8 csum[BTRFS_CSUM_SIZE];
64};
65
66struct scrub_bio {
67 int index;
68 struct scrub_dev *sdev;
69 struct bio *bio;
70 int err;
71 u64 logical;
72 u64 physical;
Stefan Behrensb5d67f62012-03-27 14:21:27 -040073 struct scrub_page *pagev[SCRUB_PAGES_PER_BIO];
74 int page_count;
Arne Jansena2de7332011-03-08 14:14:00 +010075 int next_free;
76 struct btrfs_work work;
77};
78
Stefan Behrensb5d67f62012-03-27 14:21:27 -040079struct scrub_block {
80 struct scrub_page pagev[SCRUB_MAX_PAGES_PER_BLOCK];
81 int page_count;
82 atomic_t outstanding_pages;
83 atomic_t ref_count; /* free mem on transition to zero */
84 struct scrub_dev *sdev;
85 struct {
86 unsigned int header_error:1;
87 unsigned int checksum_error:1;
88 unsigned int no_io_error_seen:1;
89 };
90};
91
Arne Jansena2de7332011-03-08 14:14:00 +010092struct scrub_dev {
93 struct scrub_bio *bios[SCRUB_BIOS_PER_DEV];
94 struct btrfs_device *dev;
95 int first_free;
96 int curr;
97 atomic_t in_flight;
Jan Schmidt0ef8e452011-06-13 20:04:15 +020098 atomic_t fixup_cnt;
Arne Jansena2de7332011-03-08 14:14:00 +010099 spinlock_t list_lock;
100 wait_queue_head_t list_wait;
101 u16 csum_size;
102 struct list_head csum_list;
103 atomic_t cancel_req;
Arne Jansen86287642011-03-23 16:34:19 +0100104 int readonly;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400105 int pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
106 u32 sectorsize;
107 u32 nodesize;
108 u32 leafsize;
Arne Jansena2de7332011-03-08 14:14:00 +0100109 /*
110 * statistics
111 */
112 struct btrfs_scrub_progress stat;
113 spinlock_t stat_lock;
114};
115
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200116struct scrub_fixup_nodatasum {
117 struct scrub_dev *sdev;
118 u64 logical;
119 struct btrfs_root *root;
120 struct btrfs_work work;
121 int mirror_num;
122};
123
Jan Schmidt558540c2011-06-13 19:59:12 +0200124struct scrub_warning {
125 struct btrfs_path *path;
126 u64 extent_item_size;
127 char *scratch_buf;
128 char *msg_buf;
129 const char *errstr;
130 sector_t sector;
131 u64 logical;
132 struct btrfs_device *dev;
133 int msg_bufsize;
134 int scratch_bufsize;
135};
136
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400137
138static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
139static int scrub_setup_recheck_block(struct scrub_dev *sdev,
140 struct btrfs_mapping_tree *map_tree,
141 u64 length, u64 logical,
142 struct scrub_block *sblock);
143static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
144 struct scrub_block *sblock, int is_metadata,
145 int have_csum, u8 *csum, u64 generation,
146 u16 csum_size);
147static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
148 struct scrub_block *sblock,
149 int is_metadata, int have_csum,
150 const u8 *csum, u64 generation,
151 u16 csum_size);
152static void scrub_complete_bio_end_io(struct bio *bio, int err);
153static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
154 struct scrub_block *sblock_good,
155 int force_write);
156static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
157 struct scrub_block *sblock_good,
158 int page_num, int force_write);
159static int scrub_checksum_data(struct scrub_block *sblock);
160static int scrub_checksum_tree_block(struct scrub_block *sblock);
161static int scrub_checksum_super(struct scrub_block *sblock);
162static void scrub_block_get(struct scrub_block *sblock);
163static void scrub_block_put(struct scrub_block *sblock);
164static int scrub_add_page_to_bio(struct scrub_dev *sdev,
165 struct scrub_page *spage);
166static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
167 u64 physical, u64 flags, u64 gen, int mirror_num,
168 u8 *csum, int force);
Stefan Behrens1623ede2012-03-27 14:21:26 -0400169static void scrub_bio_end_io(struct bio *bio, int err);
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400170static void scrub_bio_end_io_worker(struct btrfs_work *work);
171static void scrub_block_complete(struct scrub_block *sblock);
Stefan Behrens1623ede2012-03-27 14:21:26 -0400172
173
Arne Jansena2de7332011-03-08 14:14:00 +0100174static void scrub_free_csums(struct scrub_dev *sdev)
175{
176 while (!list_empty(&sdev->csum_list)) {
177 struct btrfs_ordered_sum *sum;
178 sum = list_first_entry(&sdev->csum_list,
179 struct btrfs_ordered_sum, list);
180 list_del(&sum->list);
181 kfree(sum);
182 }
183}
184
185static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
186{
187 int i;
Arne Jansena2de7332011-03-08 14:14:00 +0100188
189 if (!sdev)
190 return;
191
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400192 /* this can happen when scrub is cancelled */
193 if (sdev->curr != -1) {
194 struct scrub_bio *sbio = sdev->bios[sdev->curr];
195
196 for (i = 0; i < sbio->page_count; i++) {
197 BUG_ON(!sbio->pagev[i]);
198 BUG_ON(!sbio->pagev[i]->page);
199 scrub_block_put(sbio->pagev[i]->sblock);
200 }
201 bio_put(sbio->bio);
202 }
203
Arne Jansena2de7332011-03-08 14:14:00 +0100204 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
205 struct scrub_bio *sbio = sdev->bios[i];
Arne Jansena2de7332011-03-08 14:14:00 +0100206
207 if (!sbio)
208 break;
Arne Jansena2de7332011-03-08 14:14:00 +0100209 kfree(sbio);
210 }
211
212 scrub_free_csums(sdev);
213 kfree(sdev);
214}
215
216static noinline_for_stack
217struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
218{
219 struct scrub_dev *sdev;
220 int i;
Arne Jansena2de7332011-03-08 14:14:00 +0100221 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400222 int pages_per_bio;
Arne Jansena2de7332011-03-08 14:14:00 +0100223
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400224 pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
225 bio_get_nr_vecs(dev->bdev));
Arne Jansena2de7332011-03-08 14:14:00 +0100226 sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
227 if (!sdev)
228 goto nomem;
229 sdev->dev = dev;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400230 sdev->pages_per_bio = pages_per_bio;
231 sdev->curr = -1;
Arne Jansena2de7332011-03-08 14:14:00 +0100232 for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
Arne Jansena2de7332011-03-08 14:14:00 +0100233 struct scrub_bio *sbio;
234
235 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
236 if (!sbio)
237 goto nomem;
238 sdev->bios[i] = sbio;
239
Arne Jansena2de7332011-03-08 14:14:00 +0100240 sbio->index = i;
241 sbio->sdev = sdev;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400242 sbio->page_count = 0;
243 sbio->work.func = scrub_bio_end_io_worker;
Arne Jansena2de7332011-03-08 14:14:00 +0100244
245 if (i != SCRUB_BIOS_PER_DEV-1)
246 sdev->bios[i]->next_free = i + 1;
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200247 else
Arne Jansena2de7332011-03-08 14:14:00 +0100248 sdev->bios[i]->next_free = -1;
249 }
250 sdev->first_free = 0;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400251 sdev->nodesize = dev->dev_root->nodesize;
252 sdev->leafsize = dev->dev_root->leafsize;
253 sdev->sectorsize = dev->dev_root->sectorsize;
Arne Jansena2de7332011-03-08 14:14:00 +0100254 atomic_set(&sdev->in_flight, 0);
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200255 atomic_set(&sdev->fixup_cnt, 0);
Arne Jansena2de7332011-03-08 14:14:00 +0100256 atomic_set(&sdev->cancel_req, 0);
David Sterba6c417612011-04-13 15:41:04 +0200257 sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
Arne Jansena2de7332011-03-08 14:14:00 +0100258 INIT_LIST_HEAD(&sdev->csum_list);
259
260 spin_lock_init(&sdev->list_lock);
261 spin_lock_init(&sdev->stat_lock);
262 init_waitqueue_head(&sdev->list_wait);
263 return sdev;
264
265nomem:
266 scrub_free_dev(sdev);
267 return ERR_PTR(-ENOMEM);
268}
269
Jan Schmidt558540c2011-06-13 19:59:12 +0200270static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
271{
272 u64 isize;
273 u32 nlink;
274 int ret;
275 int i;
276 struct extent_buffer *eb;
277 struct btrfs_inode_item *inode_item;
278 struct scrub_warning *swarn = ctx;
279 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
280 struct inode_fs_paths *ipath = NULL;
281 struct btrfs_root *local_root;
282 struct btrfs_key root_key;
283
284 root_key.objectid = root;
285 root_key.type = BTRFS_ROOT_ITEM_KEY;
286 root_key.offset = (u64)-1;
287 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
288 if (IS_ERR(local_root)) {
289 ret = PTR_ERR(local_root);
290 goto err;
291 }
292
293 ret = inode_item_info(inum, 0, local_root, swarn->path);
294 if (ret) {
295 btrfs_release_path(swarn->path);
296 goto err;
297 }
298
299 eb = swarn->path->nodes[0];
300 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
301 struct btrfs_inode_item);
302 isize = btrfs_inode_size(eb, inode_item);
303 nlink = btrfs_inode_nlink(eb, inode_item);
304 btrfs_release_path(swarn->path);
305
306 ipath = init_ipath(4096, local_root, swarn->path);
Dan Carpenter26bdef52011-11-16 11:28:01 +0300307 if (IS_ERR(ipath)) {
308 ret = PTR_ERR(ipath);
309 ipath = NULL;
310 goto err;
311 }
Jan Schmidt558540c2011-06-13 19:59:12 +0200312 ret = paths_from_inode(inum, ipath);
313
314 if (ret < 0)
315 goto err;
316
317 /*
318 * we deliberately ignore the bit ipath might have been too small to
319 * hold all of the paths here
320 */
321 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
322 printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
323 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
324 "length %llu, links %u (path: %s)\n", swarn->errstr,
325 swarn->logical, swarn->dev->name,
326 (unsigned long long)swarn->sector, root, inum, offset,
327 min(isize - offset, (u64)PAGE_SIZE), nlink,
Jeff Mahoney745c4d82011-11-20 07:31:57 -0500328 (char *)(unsigned long)ipath->fspath->val[i]);
Jan Schmidt558540c2011-06-13 19:59:12 +0200329
330 free_ipath(ipath);
331 return 0;
332
333err:
334 printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
335 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
336 "resolving failed with ret=%d\n", swarn->errstr,
337 swarn->logical, swarn->dev->name,
338 (unsigned long long)swarn->sector, root, inum, offset, ret);
339
340 free_ipath(ipath);
341 return 0;
342}
343
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400344static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
Jan Schmidt558540c2011-06-13 19:59:12 +0200345{
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400346 struct btrfs_device *dev = sblock->sdev->dev;
Jan Schmidt558540c2011-06-13 19:59:12 +0200347 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
348 struct btrfs_path *path;
349 struct btrfs_key found_key;
350 struct extent_buffer *eb;
351 struct btrfs_extent_item *ei;
352 struct scrub_warning swarn;
353 u32 item_size;
354 int ret;
355 u64 ref_root;
356 u8 ref_level;
357 unsigned long ptr = 0;
358 const int bufsize = 4096;
Jan Schmidt4692cf52011-12-02 14:56:41 +0100359 u64 extent_item_pos;
Jan Schmidt558540c2011-06-13 19:59:12 +0200360
361 path = btrfs_alloc_path();
362
363 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
364 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400365 BUG_ON(sblock->page_count < 1);
366 swarn.sector = (sblock->pagev[0].physical) >> 9;
367 swarn.logical = sblock->pagev[0].logical;
Jan Schmidt558540c2011-06-13 19:59:12 +0200368 swarn.errstr = errstr;
369 swarn.dev = dev;
370 swarn.msg_bufsize = bufsize;
371 swarn.scratch_bufsize = bufsize;
372
373 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
374 goto out;
375
376 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
377 if (ret < 0)
378 goto out;
379
Jan Schmidt4692cf52011-12-02 14:56:41 +0100380 extent_item_pos = swarn.logical - found_key.objectid;
Jan Schmidt558540c2011-06-13 19:59:12 +0200381 swarn.extent_item_size = found_key.offset;
382
383 eb = path->nodes[0];
384 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
385 item_size = btrfs_item_size_nr(eb, path->slots[0]);
Jan Schmidt4692cf52011-12-02 14:56:41 +0100386 btrfs_release_path(path);
Jan Schmidt558540c2011-06-13 19:59:12 +0200387
388 if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
389 do {
390 ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
391 &ref_root, &ref_level);
Stefan Behrens1623ede2012-03-27 14:21:26 -0400392 printk(KERN_WARNING
393 "btrfs: %s at logical %llu on dev %s, "
Jan Schmidt558540c2011-06-13 19:59:12 +0200394 "sector %llu: metadata %s (level %d) in tree "
395 "%llu\n", errstr, swarn.logical, dev->name,
396 (unsigned long long)swarn.sector,
397 ref_level ? "node" : "leaf",
398 ret < 0 ? -1 : ref_level,
399 ret < 0 ? -1 : ref_root);
400 } while (ret != 1);
401 } else {
402 swarn.path = path;
Jan Schmidt7a3ae2f2012-03-23 17:32:28 +0100403 iterate_extent_inodes(fs_info, found_key.objectid,
404 extent_item_pos, 1,
Jan Schmidt558540c2011-06-13 19:59:12 +0200405 scrub_print_warning_inode, &swarn);
406 }
407
408out:
409 btrfs_free_path(path);
410 kfree(swarn.scratch_buf);
411 kfree(swarn.msg_buf);
412}
413
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200414static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
415{
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200416 struct page *page = NULL;
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200417 unsigned long index;
418 struct scrub_fixup_nodatasum *fixup = ctx;
419 int ret;
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200420 int corrected = 0;
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200421 struct btrfs_key key;
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200422 struct inode *inode = NULL;
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200423 u64 end = offset + PAGE_SIZE - 1;
424 struct btrfs_root *local_root;
425
426 key.objectid = root;
427 key.type = BTRFS_ROOT_ITEM_KEY;
428 key.offset = (u64)-1;
429 local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
430 if (IS_ERR(local_root))
431 return PTR_ERR(local_root);
432
433 key.type = BTRFS_INODE_ITEM_KEY;
434 key.objectid = inum;
435 key.offset = 0;
436 inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
437 if (IS_ERR(inode))
438 return PTR_ERR(inode);
439
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200440 index = offset >> PAGE_CACHE_SHIFT;
441
442 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200443 if (!page) {
444 ret = -ENOMEM;
445 goto out;
446 }
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200447
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200448 if (PageUptodate(page)) {
449 struct btrfs_mapping_tree *map_tree;
450 if (PageDirty(page)) {
451 /*
452 * we need to write the data to the defect sector. the
453 * data that was in that sector is not in memory,
454 * because the page was modified. we must not write the
455 * modified page to that sector.
456 *
457 * TODO: what could be done here: wait for the delalloc
458 * runner to write out that page (might involve
459 * COW) and see whether the sector is still
460 * referenced afterwards.
461 *
462 * For the meantime, we'll treat this error
463 * incorrectable, although there is a chance that a
464 * later scrub will find the bad sector again and that
465 * there's no dirty page in memory, then.
466 */
467 ret = -EIO;
468 goto out;
469 }
470 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
471 ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
472 fixup->logical, page,
473 fixup->mirror_num);
474 unlock_page(page);
475 corrected = !ret;
476 } else {
477 /*
478 * we need to get good data first. the general readpage path
479 * will call repair_io_failure for us, we just have to make
480 * sure we read the bad mirror.
481 */
482 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
483 EXTENT_DAMAGED, GFP_NOFS);
484 if (ret) {
485 /* set_extent_bits should give proper error */
486 WARN_ON(ret > 0);
487 if (ret > 0)
488 ret = -EFAULT;
489 goto out;
490 }
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200491
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200492 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
493 btrfs_get_extent,
494 fixup->mirror_num);
495 wait_on_page_locked(page);
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200496
Jan Schmidt5da6fcb2011-08-04 18:11:04 +0200497 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
498 end, EXTENT_DAMAGED, 0, NULL);
499 if (!corrected)
500 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
501 EXTENT_DAMAGED, GFP_NOFS);
502 }
503
504out:
505 if (page)
506 put_page(page);
507 if (inode)
508 iput(inode);
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200509
510 if (ret < 0)
511 return ret;
512
513 if (ret == 0 && corrected) {
514 /*
515 * we only need to call readpage for one of the inodes belonging
516 * to this extent. so make iterate_extent_inodes stop
517 */
518 return 1;
519 }
520
521 return -EIO;
522}
523
524static void scrub_fixup_nodatasum(struct btrfs_work *work)
525{
526 int ret;
527 struct scrub_fixup_nodatasum *fixup;
528 struct scrub_dev *sdev;
529 struct btrfs_trans_handle *trans = NULL;
530 struct btrfs_fs_info *fs_info;
531 struct btrfs_path *path;
532 int uncorrectable = 0;
533
534 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
535 sdev = fixup->sdev;
536 fs_info = fixup->root->fs_info;
537
538 path = btrfs_alloc_path();
539 if (!path) {
540 spin_lock(&sdev->stat_lock);
541 ++sdev->stat.malloc_errors;
542 spin_unlock(&sdev->stat_lock);
543 uncorrectable = 1;
544 goto out;
545 }
546
547 trans = btrfs_join_transaction(fixup->root);
548 if (IS_ERR(trans)) {
549 uncorrectable = 1;
550 goto out;
551 }
552
553 /*
554 * the idea is to trigger a regular read through the standard path. we
555 * read a page from the (failed) logical address by specifying the
556 * corresponding copynum of the failed sector. thus, that readpage is
557 * expected to fail.
558 * that is the point where on-the-fly error correction will kick in
559 * (once it's finished) and rewrite the failed sector if a good copy
560 * can be found.
561 */
562 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
563 path, scrub_fixup_readpage,
564 fixup);
565 if (ret < 0) {
566 uncorrectable = 1;
567 goto out;
568 }
569 WARN_ON(ret != 1);
570
571 spin_lock(&sdev->stat_lock);
572 ++sdev->stat.corrected_errors;
573 spin_unlock(&sdev->stat_lock);
574
575out:
576 if (trans && !IS_ERR(trans))
577 btrfs_end_transaction(trans, fixup->root);
578 if (uncorrectable) {
579 spin_lock(&sdev->stat_lock);
580 ++sdev->stat.uncorrectable_errors;
581 spin_unlock(&sdev->stat_lock);
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400582 printk_ratelimited(KERN_ERR
583 "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
584 (unsigned long long)fixup->logical, sdev->dev->name);
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200585 }
586
587 btrfs_free_path(path);
588 kfree(fixup);
589
590 /* see caller why we're pretending to be paused in the scrub counters */
591 mutex_lock(&fs_info->scrub_lock);
592 atomic_dec(&fs_info->scrubs_running);
593 atomic_dec(&fs_info->scrubs_paused);
594 mutex_unlock(&fs_info->scrub_lock);
595 atomic_dec(&sdev->fixup_cnt);
596 wake_up(&fs_info->scrub_pause_wait);
597 wake_up(&sdev->list_wait);
598}
599
Arne Jansena2de7332011-03-08 14:14:00 +0100600/*
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400601 * scrub_handle_errored_block gets called when either verification of the
602 * pages failed or the bio failed to read, e.g. with EIO. In the latter
603 * case, this function handles all pages in the bio, even though only one
604 * may be bad.
605 * The goal of this function is to repair the errored block by using the
606 * contents of one of the mirrors.
Arne Jansena2de7332011-03-08 14:14:00 +0100607 */
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400608static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
Arne Jansena2de7332011-03-08 14:14:00 +0100609{
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400610 struct scrub_dev *sdev = sblock_to_check->sdev;
611 struct btrfs_fs_info *fs_info;
Arne Jansena2de7332011-03-08 14:14:00 +0100612 u64 length;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400613 u64 logical;
614 u64 generation;
615 unsigned int failed_mirror_index;
616 unsigned int is_metadata;
617 unsigned int have_csum;
618 u8 *csum;
619 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
620 struct scrub_block *sblock_bad;
Arne Jansena2de7332011-03-08 14:14:00 +0100621 int ret;
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400622 int mirror_index;
623 int page_num;
624 int success;
625 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
626 DEFAULT_RATELIMIT_BURST);
Arne Jansena2de7332011-03-08 14:14:00 +0100627
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400628 BUG_ON(sblock_to_check->page_count < 1);
629 fs_info = sdev->dev->dev_root->fs_info;
630 length = sblock_to_check->page_count * PAGE_SIZE;
631 logical = sblock_to_check->pagev[0].logical;
632 generation = sblock_to_check->pagev[0].generation;
633 BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
634 failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
635 is_metadata = !(sblock_to_check->pagev[0].flags &
636 BTRFS_EXTENT_FLAG_DATA);
637 have_csum = sblock_to_check->pagev[0].have_csum;
638 csum = sblock_to_check->pagev[0].csum;
639
640 /*
641 * read all mirrors one after the other. This includes to
642 * re-read the extent or metadata block that failed (that was
643 * the cause that this fixup code is called) another time,
644 * page by page this time in order to know which pages
645 * caused I/O errors and which ones are good (for all mirrors).
646 * It is the goal to handle the situation when more than one
647 * mirror contains I/O errors, but the errors do not
648 * overlap, i.e. the data can be repaired by selecting the
649 * pages from those mirrors without I/O error on the
650 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
651 * would be that mirror #1 has an I/O error on the first page,
652 * the second page is good, and mirror #2 has an I/O error on
653 * the second page, but the first page is good.
654 * Then the first page of the first mirror can be repaired by
655 * taking the first page of the second mirror, and the
656 * second page of the second mirror can be repaired by
657 * copying the contents of the 2nd page of the 1st mirror.
658 * One more note: if the pages of one mirror contain I/O
659 * errors, the checksum cannot be verified. In order to get
660 * the best data for repairing, the first attempt is to find
661 * a mirror without I/O errors and with a validated checksum.
662 * Only if this is not possible, the pages are picked from
663 * mirrors with I/O errors without considering the checksum.
664 * If the latter is the case, at the end, the checksum of the
665 * repaired area is verified in order to correctly maintain
666 * the statistics.
667 */
668
669 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
670 sizeof(*sblocks_for_recheck),
671 GFP_NOFS);
672 if (!sblocks_for_recheck) {
673 spin_lock(&sdev->stat_lock);
674 sdev->stat.malloc_errors++;
675 sdev->stat.read_errors++;
676 sdev->stat.uncorrectable_errors++;
677 spin_unlock(&sdev->stat_lock);
678 goto out;
679 }
680
681 /* setup the context, map the logical blocks and alloc the pages */
682 ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
683 logical, sblocks_for_recheck);
684 if (ret) {
685 spin_lock(&sdev->stat_lock);
686 sdev->stat.read_errors++;
687 sdev->stat.uncorrectable_errors++;
688 spin_unlock(&sdev->stat_lock);
689 goto out;
690 }
691 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
692 sblock_bad = sblocks_for_recheck + failed_mirror_index;
693
694 /* build and submit the bios for the failed mirror, check checksums */
695 ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
696 csum, generation, sdev->csum_size);
697 if (ret) {
698 spin_lock(&sdev->stat_lock);
699 sdev->stat.read_errors++;
700 sdev->stat.uncorrectable_errors++;
701 spin_unlock(&sdev->stat_lock);
702 goto out;
703 }
704
705 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
706 sblock_bad->no_io_error_seen) {
707 /*
708 * the error disappeared after reading page by page, or
709 * the area was part of a huge bio and other parts of the
710 * bio caused I/O errors, or the block layer merged several
711 * read requests into one and the error is caused by a
712 * different bio (usually one of the two latter cases is
713 * the cause)
714 */
715 spin_lock(&sdev->stat_lock);
716 sdev->stat.unverified_errors++;
717 spin_unlock(&sdev->stat_lock);
718
719 goto out;
720 }
721
722 if (!sblock_bad->no_io_error_seen) {
723 spin_lock(&sdev->stat_lock);
724 sdev->stat.read_errors++;
725 spin_unlock(&sdev->stat_lock);
726 if (__ratelimit(&_rs))
727 scrub_print_warning("i/o error", sblock_to_check);
728 } else if (sblock_bad->checksum_error) {
729 spin_lock(&sdev->stat_lock);
730 sdev->stat.csum_errors++;
731 spin_unlock(&sdev->stat_lock);
732 if (__ratelimit(&_rs))
733 scrub_print_warning("checksum error", sblock_to_check);
734 } else if (sblock_bad->header_error) {
735 spin_lock(&sdev->stat_lock);
736 sdev->stat.verify_errors++;
737 spin_unlock(&sdev->stat_lock);
738 if (__ratelimit(&_rs))
739 scrub_print_warning("checksum/header error",
740 sblock_to_check);
741 }
742
743 if (sdev->readonly)
744 goto did_not_correct_error;
745
746 if (!is_metadata && !have_csum) {
747 struct scrub_fixup_nodatasum *fixup_nodatasum;
748
749 /*
750 * !is_metadata and !have_csum, this means that the data
751 * might not be COW'ed, that it might be modified
752 * concurrently. The general strategy to work on the
753 * commit root does not help in the case when COW is not
754 * used.
755 */
756 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
757 if (!fixup_nodatasum)
758 goto did_not_correct_error;
759 fixup_nodatasum->sdev = sdev;
760 fixup_nodatasum->logical = logical;
761 fixup_nodatasum->root = fs_info->extent_root;
762 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
Arne Jansena2de7332011-03-08 14:14:00 +0100763 /*
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200764 * increment scrubs_running to prevent cancel requests from
765 * completing as long as a fixup worker is running. we must also
766 * increment scrubs_paused to prevent deadlocking on pause
767 * requests used for transactions commits (as the worker uses a
768 * transaction context). it is safe to regard the fixup worker
769 * as paused for all matters practical. effectively, we only
770 * avoid cancellation requests from completing.
Arne Jansena2de7332011-03-08 14:14:00 +0100771 */
Jan Schmidt0ef8e452011-06-13 20:04:15 +0200772 mutex_lock(&fs_info->scrub_lock);
773 atomic_inc(&fs_info->scrubs_running);
774 atomic_inc(&fs_info->scrubs_paused);
775 mutex_unlock(&fs_info->scrub_lock);
776 atomic_inc(&sdev->fixup_cnt);
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400777 fixup_nodatasum->work.func = scrub_fixup_nodatasum;
778 btrfs_queue_worker(&fs_info->scrub_workers,
779 &fixup_nodatasum->work);
Arne Jansena2de7332011-03-08 14:14:00 +0100780 goto out;
781 }
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400782
783 /*
784 * now build and submit the bios for the other mirrors, check
785 * checksums
786 */
787 for (mirror_index = 0;
788 mirror_index < BTRFS_MAX_MIRRORS &&
789 sblocks_for_recheck[mirror_index].page_count > 0;
790 mirror_index++) {
791 if (mirror_index == failed_mirror_index)
792 continue;
793
794 /* build and submit the bios, check checksums */
795 ret = scrub_recheck_block(fs_info,
796 sblocks_for_recheck + mirror_index,
797 is_metadata, have_csum, csum,
798 generation, sdev->csum_size);
799 if (ret)
800 goto did_not_correct_error;
801 }
802
803 /*
804 * first try to pick the mirror which is completely without I/O
805 * errors and also does not have a checksum error.
806 * If one is found, and if a checksum is present, the full block
807 * that is known to contain an error is rewritten. Afterwards
808 * the block is known to be corrected.
809 * If a mirror is found which is completely correct, and no
810 * checksum is present, only those pages are rewritten that had
811 * an I/O error in the block to be repaired, since it cannot be
812 * determined, which copy of the other pages is better (and it
813 * could happen otherwise that a correct page would be
814 * overwritten by a bad one).
815 */
816 for (mirror_index = 0;
817 mirror_index < BTRFS_MAX_MIRRORS &&
818 sblocks_for_recheck[mirror_index].page_count > 0;
819 mirror_index++) {
820 struct scrub_block *sblock_other = sblocks_for_recheck +
821 mirror_index;
822
823 if (!sblock_other->header_error &&
824 !sblock_other->checksum_error &&
825 sblock_other->no_io_error_seen) {
826 int force_write = is_metadata || have_csum;
827
828 ret = scrub_repair_block_from_good_copy(sblock_bad,
829 sblock_other,
830 force_write);
831 if (0 == ret)
832 goto corrected_error;
Arne Jansena2de7332011-03-08 14:14:00 +0100833 }
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400834 }
835
836 /*
837 * in case of I/O errors in the area that is supposed to be
838 * repaired, continue by picking good copies of those pages.
839 * Select the good pages from mirrors to rewrite bad pages from
840 * the area to fix. Afterwards verify the checksum of the block
841 * that is supposed to be repaired. This verification step is
842 * only done for the purpose of statistic counting and for the
843 * final scrub report, whether errors remain.
844 * A perfect algorithm could make use of the checksum and try
845 * all possible combinations of pages from the different mirrors
846 * until the checksum verification succeeds. For example, when
847 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
848 * of mirror #2 is readable but the final checksum test fails,
849 * then the 2nd page of mirror #3 could be tried, whether now
850 * the final checksum succeedes. But this would be a rare
851 * exception and is therefore not implemented. At least it is
852 * avoided that the good copy is overwritten.
853 * A more useful improvement would be to pick the sectors
854 * without I/O error based on sector sizes (512 bytes on legacy
855 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
856 * mirror could be repaired by taking 512 byte of a different
857 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
858 * area are unreadable.
859 */
860
861 /* can only fix I/O errors from here on */
862 if (sblock_bad->no_io_error_seen)
863 goto did_not_correct_error;
864
865 success = 1;
866 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
867 struct scrub_page *page_bad = sblock_bad->pagev + page_num;
868
869 if (!page_bad->io_error)
870 continue;
871
872 for (mirror_index = 0;
873 mirror_index < BTRFS_MAX_MIRRORS &&
874 sblocks_for_recheck[mirror_index].page_count > 0;
875 mirror_index++) {
876 struct scrub_block *sblock_other = sblocks_for_recheck +
877 mirror_index;
878 struct scrub_page *page_other = sblock_other->pagev +
879 page_num;
880
881 if (!page_other->io_error) {
882 ret = scrub_repair_page_from_good_copy(
883 sblock_bad, sblock_other, page_num, 0);
884 if (0 == ret) {
885 page_bad->io_error = 0;
886 break; /* succeeded for this page */
887 }
Jan Schmidt13db62b2011-06-13 19:56:13 +0200888 }
889 }
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400890
891 if (page_bad->io_error) {
892 /* did not find a mirror to copy the page from */
893 success = 0;
894 }
895 }
896
897 if (success) {
898 if (is_metadata || have_csum) {
899 /*
900 * need to verify the checksum now that all
901 * sectors on disk are repaired (the write
902 * request for data to be repaired is on its way).
903 * Just be lazy and use scrub_recheck_block()
904 * which re-reads the data before the checksum
905 * is verified, but most likely the data comes out
906 * of the page cache.
907 */
908 ret = scrub_recheck_block(fs_info, sblock_bad,
909 is_metadata, have_csum, csum,
910 generation, sdev->csum_size);
911 if (!ret && !sblock_bad->header_error &&
912 !sblock_bad->checksum_error &&
913 sblock_bad->no_io_error_seen)
914 goto corrected_error;
915 else
916 goto did_not_correct_error;
917 } else {
918corrected_error:
919 spin_lock(&sdev->stat_lock);
920 sdev->stat.corrected_errors++;
921 spin_unlock(&sdev->stat_lock);
922 printk_ratelimited(KERN_ERR
923 "btrfs: fixed up error at logical %llu on dev %s\n",
924 (unsigned long long)logical, sdev->dev->name);
925 }
926 } else {
927did_not_correct_error:
928 spin_lock(&sdev->stat_lock);
929 sdev->stat.uncorrectable_errors++;
930 spin_unlock(&sdev->stat_lock);
931 printk_ratelimited(KERN_ERR
932 "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
933 (unsigned long long)logical, sdev->dev->name);
Arne Jansena2de7332011-03-08 14:14:00 +0100934 }
935
936out:
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400937 if (sblocks_for_recheck) {
938 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
939 mirror_index++) {
940 struct scrub_block *sblock = sblocks_for_recheck +
941 mirror_index;
942 int page_index;
943
944 for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
945 page_index++)
946 if (sblock->pagev[page_index].page)
947 __free_page(
948 sblock->pagev[page_index].page);
949 }
950 kfree(sblocks_for_recheck);
951 }
952
953 return 0;
Arne Jansena2de7332011-03-08 14:14:00 +0100954}
955
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400956static int scrub_setup_recheck_block(struct scrub_dev *sdev,
957 struct btrfs_mapping_tree *map_tree,
958 u64 length, u64 logical,
959 struct scrub_block *sblocks_for_recheck)
Arne Jansena2de7332011-03-08 14:14:00 +0100960{
Stefan Behrensb5d67f62012-03-27 14:21:27 -0400961 int page_index;
962 int mirror_index;
963 int ret;
964
965 /*
966 * note: the three members sdev, ref_count and outstanding_pages
967 * are not used (and not set) in the blocks that are used for
968 * the recheck procedure
969 */
970
971 page_index = 0;
972 while (length > 0) {
973 u64 sublen = min_t(u64, length, PAGE_SIZE);
974 u64 mapped_length = sublen;
975 struct btrfs_bio *bbio = NULL;
976
977 /*
978 * with a length of PAGE_SIZE, each returned stripe
979 * represents one mirror
980 */
981 ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
982 &bbio, 0);
983 if (ret || !bbio || mapped_length < sublen) {
984 kfree(bbio);
985 return -EIO;
986 }
987
988 BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
989 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
990 mirror_index++) {
991 struct scrub_block *sblock;
992 struct scrub_page *page;
993
994 if (mirror_index >= BTRFS_MAX_MIRRORS)
995 continue;
996
997 sblock = sblocks_for_recheck + mirror_index;
998 page = sblock->pagev + page_index;
999 page->logical = logical;
1000 page->physical = bbio->stripes[mirror_index].physical;
Stefan Behrensea9947b2012-05-04 15:16:07 -04001001 /* for missing devices, bdev is NULL */
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001002 page->bdev = bbio->stripes[mirror_index].dev->bdev;
1003 page->mirror_num = mirror_index + 1;
1004 page->page = alloc_page(GFP_NOFS);
1005 if (!page->page) {
1006 spin_lock(&sdev->stat_lock);
1007 sdev->stat.malloc_errors++;
1008 spin_unlock(&sdev->stat_lock);
1009 return -ENOMEM;
1010 }
1011 sblock->page_count++;
1012 }
1013 kfree(bbio);
1014 length -= sublen;
1015 logical += sublen;
1016 page_index++;
1017 }
1018
1019 return 0;
1020}
1021
1022/*
1023 * this function will check the on disk data for checksum errors, header
1024 * errors and read I/O errors. If any I/O errors happen, the exact pages
1025 * which are errored are marked as being bad. The goal is to enable scrub
1026 * to take those pages that are not errored from all the mirrors so that
1027 * the pages that are errored in the just handled mirror can be repaired.
1028 */
1029static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
1030 struct scrub_block *sblock, int is_metadata,
1031 int have_csum, u8 *csum, u64 generation,
1032 u16 csum_size)
1033{
1034 int page_num;
1035
1036 sblock->no_io_error_seen = 1;
1037 sblock->header_error = 0;
1038 sblock->checksum_error = 0;
1039
1040 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1041 struct bio *bio;
1042 int ret;
1043 struct scrub_page *page = sblock->pagev + page_num;
1044 DECLARE_COMPLETION_ONSTACK(complete);
1045
Stefan Behrensea9947b2012-05-04 15:16:07 -04001046 if (page->bdev == NULL) {
1047 page->io_error = 1;
1048 sblock->no_io_error_seen = 0;
1049 continue;
1050 }
1051
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001052 BUG_ON(!page->page);
1053 bio = bio_alloc(GFP_NOFS, 1);
Tsutomu Itohe627ee72012-04-12 16:03:56 -04001054 if (!bio)
1055 return -EIO;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001056 bio->bi_bdev = page->bdev;
1057 bio->bi_sector = page->physical >> 9;
1058 bio->bi_end_io = scrub_complete_bio_end_io;
1059 bio->bi_private = &complete;
1060
1061 ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
1062 if (PAGE_SIZE != ret) {
1063 bio_put(bio);
1064 return -EIO;
1065 }
1066 btrfsic_submit_bio(READ, bio);
1067
1068 /* this will also unplug the queue */
1069 wait_for_completion(&complete);
1070
1071 page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1072 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1073 sblock->no_io_error_seen = 0;
1074 bio_put(bio);
1075 }
1076
1077 if (sblock->no_io_error_seen)
1078 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1079 have_csum, csum, generation,
1080 csum_size);
1081
1082 return 0;
1083}
1084
1085static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1086 struct scrub_block *sblock,
1087 int is_metadata, int have_csum,
1088 const u8 *csum, u64 generation,
1089 u16 csum_size)
1090{
1091 int page_num;
1092 u8 calculated_csum[BTRFS_CSUM_SIZE];
1093 u32 crc = ~(u32)0;
1094 struct btrfs_root *root = fs_info->extent_root;
1095 void *mapped_buffer;
1096
1097 BUG_ON(!sblock->pagev[0].page);
1098 if (is_metadata) {
1099 struct btrfs_header *h;
1100
Linus Torvalds9613beb2012-03-30 12:44:29 -07001101 mapped_buffer = kmap_atomic(sblock->pagev[0].page);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001102 h = (struct btrfs_header *)mapped_buffer;
1103
1104 if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
1105 generation != le64_to_cpu(h->generation) ||
1106 memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1107 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1108 BTRFS_UUID_SIZE))
1109 sblock->header_error = 1;
1110 csum = h->csum;
1111 } else {
1112 if (!have_csum)
1113 return;
1114
Linus Torvalds9613beb2012-03-30 12:44:29 -07001115 mapped_buffer = kmap_atomic(sblock->pagev[0].page);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001116 }
1117
1118 for (page_num = 0;;) {
1119 if (page_num == 0 && is_metadata)
1120 crc = btrfs_csum_data(root,
1121 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1122 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1123 else
1124 crc = btrfs_csum_data(root, mapped_buffer, crc,
1125 PAGE_SIZE);
1126
Linus Torvalds9613beb2012-03-30 12:44:29 -07001127 kunmap_atomic(mapped_buffer);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001128 page_num++;
1129 if (page_num >= sblock->page_count)
1130 break;
1131 BUG_ON(!sblock->pagev[page_num].page);
1132
Linus Torvalds9613beb2012-03-30 12:44:29 -07001133 mapped_buffer = kmap_atomic(sblock->pagev[page_num].page);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001134 }
1135
1136 btrfs_csum_final(crc, calculated_csum);
1137 if (memcmp(calculated_csum, csum, csum_size))
1138 sblock->checksum_error = 1;
1139}
1140
1141static void scrub_complete_bio_end_io(struct bio *bio, int err)
1142{
1143 complete((struct completion *)bio->bi_private);
1144}
1145
1146static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1147 struct scrub_block *sblock_good,
1148 int force_write)
1149{
1150 int page_num;
1151 int ret = 0;
1152
1153 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1154 int ret_sub;
1155
1156 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1157 sblock_good,
1158 page_num,
1159 force_write);
1160 if (ret_sub)
1161 ret = ret_sub;
1162 }
1163
1164 return ret;
1165}
1166
1167static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1168 struct scrub_block *sblock_good,
1169 int page_num, int force_write)
1170{
1171 struct scrub_page *page_bad = sblock_bad->pagev + page_num;
1172 struct scrub_page *page_good = sblock_good->pagev + page_num;
1173
1174 BUG_ON(sblock_bad->pagev[page_num].page == NULL);
1175 BUG_ON(sblock_good->pagev[page_num].page == NULL);
1176 if (force_write || sblock_bad->header_error ||
1177 sblock_bad->checksum_error || page_bad->io_error) {
1178 struct bio *bio;
1179 int ret;
1180 DECLARE_COMPLETION_ONSTACK(complete);
1181
1182 bio = bio_alloc(GFP_NOFS, 1);
Tsutomu Itohe627ee72012-04-12 16:03:56 -04001183 if (!bio)
1184 return -EIO;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001185 bio->bi_bdev = page_bad->bdev;
1186 bio->bi_sector = page_bad->physical >> 9;
1187 bio->bi_end_io = scrub_complete_bio_end_io;
1188 bio->bi_private = &complete;
1189
1190 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1191 if (PAGE_SIZE != ret) {
1192 bio_put(bio);
1193 return -EIO;
1194 }
1195 btrfsic_submit_bio(WRITE, bio);
1196
1197 /* this will also unplug the queue */
1198 wait_for_completion(&complete);
1199 bio_put(bio);
1200 }
1201
1202 return 0;
1203}
1204
1205static void scrub_checksum(struct scrub_block *sblock)
1206{
1207 u64 flags;
1208 int ret;
1209
1210 BUG_ON(sblock->page_count < 1);
1211 flags = sblock->pagev[0].flags;
1212 ret = 0;
1213 if (flags & BTRFS_EXTENT_FLAG_DATA)
1214 ret = scrub_checksum_data(sblock);
1215 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1216 ret = scrub_checksum_tree_block(sblock);
1217 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1218 (void)scrub_checksum_super(sblock);
1219 else
1220 WARN_ON(1);
1221 if (ret)
1222 scrub_handle_errored_block(sblock);
1223}
1224
1225static int scrub_checksum_data(struct scrub_block *sblock)
1226{
1227 struct scrub_dev *sdev = sblock->sdev;
Arne Jansena2de7332011-03-08 14:14:00 +01001228 u8 csum[BTRFS_CSUM_SIZE];
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001229 u8 *on_disk_csum;
1230 struct page *page;
1231 void *buffer;
Arne Jansena2de7332011-03-08 14:14:00 +01001232 u32 crc = ~(u32)0;
1233 int fail = 0;
1234 struct btrfs_root *root = sdev->dev->dev_root;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001235 u64 len;
1236 int index;
Arne Jansena2de7332011-03-08 14:14:00 +01001237
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001238 BUG_ON(sblock->page_count < 1);
1239 if (!sblock->pagev[0].have_csum)
Arne Jansena2de7332011-03-08 14:14:00 +01001240 return 0;
1241
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001242 on_disk_csum = sblock->pagev[0].csum;
1243 page = sblock->pagev[0].page;
Linus Torvalds9613beb2012-03-30 12:44:29 -07001244 buffer = kmap_atomic(page);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001245
1246 len = sdev->sectorsize;
1247 index = 0;
1248 for (;;) {
1249 u64 l = min_t(u64, len, PAGE_SIZE);
1250
1251 crc = btrfs_csum_data(root, buffer, crc, l);
Linus Torvalds9613beb2012-03-30 12:44:29 -07001252 kunmap_atomic(buffer);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001253 len -= l;
1254 if (len == 0)
1255 break;
1256 index++;
1257 BUG_ON(index >= sblock->page_count);
1258 BUG_ON(!sblock->pagev[index].page);
1259 page = sblock->pagev[index].page;
Linus Torvalds9613beb2012-03-30 12:44:29 -07001260 buffer = kmap_atomic(page);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001261 }
1262
Arne Jansena2de7332011-03-08 14:14:00 +01001263 btrfs_csum_final(crc, csum);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001264 if (memcmp(csum, on_disk_csum, sdev->csum_size))
Arne Jansena2de7332011-03-08 14:14:00 +01001265 fail = 1;
1266
Arne Jansena2de7332011-03-08 14:14:00 +01001267 return fail;
1268}
1269
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001270static int scrub_checksum_tree_block(struct scrub_block *sblock)
Arne Jansena2de7332011-03-08 14:14:00 +01001271{
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001272 struct scrub_dev *sdev = sblock->sdev;
Arne Jansena2de7332011-03-08 14:14:00 +01001273 struct btrfs_header *h;
1274 struct btrfs_root *root = sdev->dev->dev_root;
1275 struct btrfs_fs_info *fs_info = root->fs_info;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001276 u8 calculated_csum[BTRFS_CSUM_SIZE];
1277 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1278 struct page *page;
1279 void *mapped_buffer;
1280 u64 mapped_size;
1281 void *p;
Arne Jansena2de7332011-03-08 14:14:00 +01001282 u32 crc = ~(u32)0;
1283 int fail = 0;
1284 int crc_fail = 0;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001285 u64 len;
1286 int index;
1287
1288 BUG_ON(sblock->page_count < 1);
1289 page = sblock->pagev[0].page;
Linus Torvalds9613beb2012-03-30 12:44:29 -07001290 mapped_buffer = kmap_atomic(page);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001291 h = (struct btrfs_header *)mapped_buffer;
1292 memcpy(on_disk_csum, h->csum, sdev->csum_size);
Arne Jansena2de7332011-03-08 14:14:00 +01001293
1294 /*
1295 * we don't use the getter functions here, as we
1296 * a) don't have an extent buffer and
1297 * b) the page is already kmapped
1298 */
Arne Jansena2de7332011-03-08 14:14:00 +01001299
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001300 if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
Arne Jansena2de7332011-03-08 14:14:00 +01001301 ++fail;
1302
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001303 if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
Arne Jansena2de7332011-03-08 14:14:00 +01001304 ++fail;
1305
1306 if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1307 ++fail;
1308
1309 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1310 BTRFS_UUID_SIZE))
1311 ++fail;
1312
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001313 BUG_ON(sdev->nodesize != sdev->leafsize);
1314 len = sdev->nodesize - BTRFS_CSUM_SIZE;
1315 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1316 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1317 index = 0;
1318 for (;;) {
1319 u64 l = min_t(u64, len, mapped_size);
1320
1321 crc = btrfs_csum_data(root, p, crc, l);
Linus Torvalds9613beb2012-03-30 12:44:29 -07001322 kunmap_atomic(mapped_buffer);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001323 len -= l;
1324 if (len == 0)
1325 break;
1326 index++;
1327 BUG_ON(index >= sblock->page_count);
1328 BUG_ON(!sblock->pagev[index].page);
1329 page = sblock->pagev[index].page;
Linus Torvalds9613beb2012-03-30 12:44:29 -07001330 mapped_buffer = kmap_atomic(page);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001331 mapped_size = PAGE_SIZE;
1332 p = mapped_buffer;
1333 }
1334
1335 btrfs_csum_final(crc, calculated_csum);
1336 if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
Arne Jansena2de7332011-03-08 14:14:00 +01001337 ++crc_fail;
1338
Arne Jansena2de7332011-03-08 14:14:00 +01001339 return fail || crc_fail;
1340}
1341
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001342static int scrub_checksum_super(struct scrub_block *sblock)
Arne Jansena2de7332011-03-08 14:14:00 +01001343{
1344 struct btrfs_super_block *s;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001345 struct scrub_dev *sdev = sblock->sdev;
Arne Jansena2de7332011-03-08 14:14:00 +01001346 struct btrfs_root *root = sdev->dev->dev_root;
1347 struct btrfs_fs_info *fs_info = root->fs_info;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001348 u8 calculated_csum[BTRFS_CSUM_SIZE];
1349 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1350 struct page *page;
1351 void *mapped_buffer;
1352 u64 mapped_size;
1353 void *p;
Arne Jansena2de7332011-03-08 14:14:00 +01001354 u32 crc = ~(u32)0;
1355 int fail = 0;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001356 u64 len;
1357 int index;
Arne Jansena2de7332011-03-08 14:14:00 +01001358
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001359 BUG_ON(sblock->page_count < 1);
1360 page = sblock->pagev[0].page;
Linus Torvalds9613beb2012-03-30 12:44:29 -07001361 mapped_buffer = kmap_atomic(page);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001362 s = (struct btrfs_super_block *)mapped_buffer;
1363 memcpy(on_disk_csum, s->csum, sdev->csum_size);
Arne Jansena2de7332011-03-08 14:14:00 +01001364
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001365 if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
Arne Jansena2de7332011-03-08 14:14:00 +01001366 ++fail;
1367
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001368 if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
Arne Jansena2de7332011-03-08 14:14:00 +01001369 ++fail;
1370
1371 if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1372 ++fail;
1373
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001374 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1375 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1376 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1377 index = 0;
1378 for (;;) {
1379 u64 l = min_t(u64, len, mapped_size);
1380
1381 crc = btrfs_csum_data(root, p, crc, l);
Linus Torvalds9613beb2012-03-30 12:44:29 -07001382 kunmap_atomic(mapped_buffer);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001383 len -= l;
1384 if (len == 0)
1385 break;
1386 index++;
1387 BUG_ON(index >= sblock->page_count);
1388 BUG_ON(!sblock->pagev[index].page);
1389 page = sblock->pagev[index].page;
Linus Torvalds9613beb2012-03-30 12:44:29 -07001390 mapped_buffer = kmap_atomic(page);
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001391 mapped_size = PAGE_SIZE;
1392 p = mapped_buffer;
1393 }
1394
1395 btrfs_csum_final(crc, calculated_csum);
1396 if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
Arne Jansena2de7332011-03-08 14:14:00 +01001397 ++fail;
1398
1399 if (fail) {
1400 /*
1401 * if we find an error in a super block, we just report it.
1402 * They will get written with the next transaction commit
1403 * anyway
1404 */
1405 spin_lock(&sdev->stat_lock);
1406 ++sdev->stat.super_errors;
1407 spin_unlock(&sdev->stat_lock);
1408 }
1409
1410 return fail;
1411}
1412
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001413static void scrub_block_get(struct scrub_block *sblock)
1414{
1415 atomic_inc(&sblock->ref_count);
1416}
1417
1418static void scrub_block_put(struct scrub_block *sblock)
1419{
1420 if (atomic_dec_and_test(&sblock->ref_count)) {
1421 int i;
1422
1423 for (i = 0; i < sblock->page_count; i++)
1424 if (sblock->pagev[i].page)
1425 __free_page(sblock->pagev[i].page);
1426 kfree(sblock);
1427 }
1428}
1429
Stefan Behrens1623ede2012-03-27 14:21:26 -04001430static void scrub_submit(struct scrub_dev *sdev)
Arne Jansena2de7332011-03-08 14:14:00 +01001431{
1432 struct scrub_bio *sbio;
1433
1434 if (sdev->curr == -1)
Stefan Behrens1623ede2012-03-27 14:21:26 -04001435 return;
Arne Jansena2de7332011-03-08 14:14:00 +01001436
1437 sbio = sdev->bios[sdev->curr];
Arne Jansena2de7332011-03-08 14:14:00 +01001438 sdev->curr = -1;
1439 atomic_inc(&sdev->in_flight);
1440
Stefan Behrens21adbd52011-11-09 13:44:05 +01001441 btrfsic_submit_bio(READ, sbio->bio);
Arne Jansena2de7332011-03-08 14:14:00 +01001442}
1443
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001444static int scrub_add_page_to_bio(struct scrub_dev *sdev,
1445 struct scrub_page *spage)
Arne Jansena2de7332011-03-08 14:14:00 +01001446{
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001447 struct scrub_block *sblock = spage->sblock;
Arne Jansena2de7332011-03-08 14:14:00 +01001448 struct scrub_bio *sbio;
Arne Jansen69f4cb52011-11-11 08:17:10 -05001449 int ret;
Arne Jansena2de7332011-03-08 14:14:00 +01001450
1451again:
1452 /*
1453 * grab a fresh bio or wait for one to become available
1454 */
1455 while (sdev->curr == -1) {
1456 spin_lock(&sdev->list_lock);
1457 sdev->curr = sdev->first_free;
1458 if (sdev->curr != -1) {
1459 sdev->first_free = sdev->bios[sdev->curr]->next_free;
1460 sdev->bios[sdev->curr]->next_free = -1;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001461 sdev->bios[sdev->curr]->page_count = 0;
Arne Jansena2de7332011-03-08 14:14:00 +01001462 spin_unlock(&sdev->list_lock);
1463 } else {
1464 spin_unlock(&sdev->list_lock);
1465 wait_event(sdev->list_wait, sdev->first_free != -1);
1466 }
1467 }
1468 sbio = sdev->bios[sdev->curr];
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001469 if (sbio->page_count == 0) {
Arne Jansen69f4cb52011-11-11 08:17:10 -05001470 struct bio *bio;
1471
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001472 sbio->physical = spage->physical;
1473 sbio->logical = spage->logical;
1474 bio = sbio->bio;
1475 if (!bio) {
1476 bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
1477 if (!bio)
1478 return -ENOMEM;
1479 sbio->bio = bio;
1480 }
Arne Jansen69f4cb52011-11-11 08:17:10 -05001481
1482 bio->bi_private = sbio;
1483 bio->bi_end_io = scrub_bio_end_io;
1484 bio->bi_bdev = sdev->dev->bdev;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001485 bio->bi_sector = spage->physical >> 9;
Arne Jansen69f4cb52011-11-11 08:17:10 -05001486 sbio->err = 0;
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001487 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1488 spage->physical ||
1489 sbio->logical + sbio->page_count * PAGE_SIZE !=
1490 spage->logical) {
Stefan Behrens1623ede2012-03-27 14:21:26 -04001491 scrub_submit(sdev);
Arne Jansen69f4cb52011-11-11 08:17:10 -05001492 goto again;
1493 }
1494
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001495 sbio->pagev[sbio->page_count] = spage;
1496 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1497 if (ret != PAGE_SIZE) {
1498 if (sbio->page_count < 1) {
1499 bio_put(sbio->bio);
1500 sbio->bio = NULL;
1501 return -EIO;
1502 }
1503 scrub_submit(sdev);
1504 goto again;
Arne Jansena2de7332011-03-08 14:14:00 +01001505 }
Arne Jansen1bc87792011-05-28 21:57:55 +02001506
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001507 scrub_block_get(sblock); /* one for the added page */
1508 atomic_inc(&sblock->outstanding_pages);
1509 sbio->page_count++;
1510 if (sbio->page_count == sdev->pages_per_bio)
Stefan Behrens1623ede2012-03-27 14:21:26 -04001511 scrub_submit(sdev);
Arne Jansena2de7332011-03-08 14:14:00 +01001512
1513 return 0;
1514}
1515
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001516static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
1517 u64 physical, u64 flags, u64 gen, int mirror_num,
1518 u8 *csum, int force)
1519{
1520 struct scrub_block *sblock;
1521 int index;
1522
1523 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1524 if (!sblock) {
1525 spin_lock(&sdev->stat_lock);
1526 sdev->stat.malloc_errors++;
1527 spin_unlock(&sdev->stat_lock);
1528 return -ENOMEM;
1529 }
1530
1531 /* one ref inside this function, plus one for each page later on */
1532 atomic_set(&sblock->ref_count, 1);
1533 sblock->sdev = sdev;
1534 sblock->no_io_error_seen = 1;
1535
1536 for (index = 0; len > 0; index++) {
1537 struct scrub_page *spage = sblock->pagev + index;
1538 u64 l = min_t(u64, len, PAGE_SIZE);
1539
1540 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1541 spage->page = alloc_page(GFP_NOFS);
1542 if (!spage->page) {
1543 spin_lock(&sdev->stat_lock);
1544 sdev->stat.malloc_errors++;
1545 spin_unlock(&sdev->stat_lock);
1546 while (index > 0) {
1547 index--;
1548 __free_page(sblock->pagev[index].page);
1549 }
1550 kfree(sblock);
1551 return -ENOMEM;
1552 }
1553 spage->sblock = sblock;
1554 spage->bdev = sdev->dev->bdev;
1555 spage->flags = flags;
1556 spage->generation = gen;
1557 spage->logical = logical;
1558 spage->physical = physical;
1559 spage->mirror_num = mirror_num;
1560 if (csum) {
1561 spage->have_csum = 1;
1562 memcpy(spage->csum, csum, sdev->csum_size);
1563 } else {
1564 spage->have_csum = 0;
1565 }
1566 sblock->page_count++;
1567 len -= l;
1568 logical += l;
1569 physical += l;
1570 }
1571
1572 BUG_ON(sblock->page_count == 0);
1573 for (index = 0; index < sblock->page_count; index++) {
1574 struct scrub_page *spage = sblock->pagev + index;
1575 int ret;
1576
1577 ret = scrub_add_page_to_bio(sdev, spage);
1578 if (ret) {
1579 scrub_block_put(sblock);
1580 return ret;
1581 }
1582 }
1583
1584 if (force)
1585 scrub_submit(sdev);
1586
1587 /* last one frees, either here or in bio completion for last page */
1588 scrub_block_put(sblock);
1589 return 0;
1590}
1591
1592static void scrub_bio_end_io(struct bio *bio, int err)
1593{
1594 struct scrub_bio *sbio = bio->bi_private;
1595 struct scrub_dev *sdev = sbio->sdev;
1596 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1597
1598 sbio->err = err;
1599 sbio->bio = bio;
1600
1601 btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
1602}
1603
1604static void scrub_bio_end_io_worker(struct btrfs_work *work)
1605{
1606 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1607 struct scrub_dev *sdev = sbio->sdev;
1608 int i;
1609
1610 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
1611 if (sbio->err) {
1612 for (i = 0; i < sbio->page_count; i++) {
1613 struct scrub_page *spage = sbio->pagev[i];
1614
1615 spage->io_error = 1;
1616 spage->sblock->no_io_error_seen = 0;
1617 }
1618 }
1619
1620 /* now complete the scrub_block items that have all pages completed */
1621 for (i = 0; i < sbio->page_count; i++) {
1622 struct scrub_page *spage = sbio->pagev[i];
1623 struct scrub_block *sblock = spage->sblock;
1624
1625 if (atomic_dec_and_test(&sblock->outstanding_pages))
1626 scrub_block_complete(sblock);
1627 scrub_block_put(sblock);
1628 }
1629
1630 if (sbio->err) {
1631 /* what is this good for??? */
1632 sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1633 sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
1634 sbio->bio->bi_phys_segments = 0;
1635 sbio->bio->bi_idx = 0;
1636
1637 for (i = 0; i < sbio->page_count; i++) {
1638 struct bio_vec *bi;
1639 bi = &sbio->bio->bi_io_vec[i];
1640 bi->bv_offset = 0;
1641 bi->bv_len = PAGE_SIZE;
1642 }
1643 }
1644
1645 bio_put(sbio->bio);
1646 sbio->bio = NULL;
1647 spin_lock(&sdev->list_lock);
1648 sbio->next_free = sdev->first_free;
1649 sdev->first_free = sbio->index;
1650 spin_unlock(&sdev->list_lock);
1651 atomic_dec(&sdev->in_flight);
1652 wake_up(&sdev->list_wait);
1653}
1654
1655static void scrub_block_complete(struct scrub_block *sblock)
1656{
1657 if (!sblock->no_io_error_seen)
1658 scrub_handle_errored_block(sblock);
1659 else
1660 scrub_checksum(sblock);
1661}
1662
Arne Jansena2de7332011-03-08 14:14:00 +01001663static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1664 u8 *csum)
1665{
1666 struct btrfs_ordered_sum *sum = NULL;
1667 int ret = 0;
1668 unsigned long i;
1669 unsigned long num_sectors;
Arne Jansena2de7332011-03-08 14:14:00 +01001670
1671 while (!list_empty(&sdev->csum_list)) {
1672 sum = list_first_entry(&sdev->csum_list,
1673 struct btrfs_ordered_sum, list);
1674 if (sum->bytenr > logical)
1675 return 0;
1676 if (sum->bytenr + sum->len > logical)
1677 break;
1678
1679 ++sdev->stat.csum_discards;
1680 list_del(&sum->list);
1681 kfree(sum);
1682 sum = NULL;
1683 }
1684 if (!sum)
1685 return 0;
1686
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001687 num_sectors = sum->len / sdev->sectorsize;
Arne Jansena2de7332011-03-08 14:14:00 +01001688 for (i = 0; i < num_sectors; ++i) {
1689 if (sum->sums[i].bytenr == logical) {
1690 memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1691 ret = 1;
1692 break;
1693 }
1694 }
1695 if (ret && i == num_sectors - 1) {
1696 list_del(&sum->list);
1697 kfree(sum);
1698 }
1699 return ret;
1700}
1701
1702/* scrub extent tries to collect up to 64 kB for each bio */
1703static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
Jan Schmidte12fa9c2011-06-17 15:55:21 +02001704 u64 physical, u64 flags, u64 gen, int mirror_num)
Arne Jansena2de7332011-03-08 14:14:00 +01001705{
1706 int ret;
1707 u8 csum[BTRFS_CSUM_SIZE];
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001708 u32 blocksize;
1709
1710 if (flags & BTRFS_EXTENT_FLAG_DATA) {
1711 blocksize = sdev->sectorsize;
1712 spin_lock(&sdev->stat_lock);
1713 sdev->stat.data_extents_scrubbed++;
1714 sdev->stat.data_bytes_scrubbed += len;
1715 spin_unlock(&sdev->stat_lock);
1716 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1717 BUG_ON(sdev->nodesize != sdev->leafsize);
1718 blocksize = sdev->nodesize;
1719 spin_lock(&sdev->stat_lock);
1720 sdev->stat.tree_extents_scrubbed++;
1721 sdev->stat.tree_bytes_scrubbed += len;
1722 spin_unlock(&sdev->stat_lock);
1723 } else {
1724 blocksize = sdev->sectorsize;
1725 BUG_ON(1);
1726 }
Arne Jansena2de7332011-03-08 14:14:00 +01001727
1728 while (len) {
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001729 u64 l = min_t(u64, len, blocksize);
Arne Jansena2de7332011-03-08 14:14:00 +01001730 int have_csum = 0;
1731
1732 if (flags & BTRFS_EXTENT_FLAG_DATA) {
1733 /* push csums to sbio */
1734 have_csum = scrub_find_csum(sdev, logical, l, csum);
1735 if (have_csum == 0)
1736 ++sdev->stat.no_csum;
1737 }
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001738 ret = scrub_pages(sdev, logical, l, physical, flags, gen,
1739 mirror_num, have_csum ? csum : NULL, 0);
Arne Jansena2de7332011-03-08 14:14:00 +01001740 if (ret)
1741 return ret;
1742 len -= l;
1743 logical += l;
1744 physical += l;
1745 }
1746 return 0;
1747}
1748
1749static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1750 struct map_lookup *map, int num, u64 base, u64 length)
1751{
1752 struct btrfs_path *path;
1753 struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1754 struct btrfs_root *root = fs_info->extent_root;
1755 struct btrfs_root *csum_root = fs_info->csum_root;
1756 struct btrfs_extent_item *extent;
Arne Jansene7786c32011-05-28 20:58:38 +00001757 struct blk_plug plug;
Arne Jansena2de7332011-03-08 14:14:00 +01001758 u64 flags;
1759 int ret;
1760 int slot;
1761 int i;
1762 u64 nstripes;
Arne Jansena2de7332011-03-08 14:14:00 +01001763 struct extent_buffer *l;
1764 struct btrfs_key key;
1765 u64 physical;
1766 u64 logical;
1767 u64 generation;
Jan Schmidte12fa9c2011-06-17 15:55:21 +02001768 int mirror_num;
Arne Jansen7a262852011-06-10 12:39:23 +02001769 struct reada_control *reada1;
1770 struct reada_control *reada2;
1771 struct btrfs_key key_start;
1772 struct btrfs_key key_end;
Arne Jansena2de7332011-03-08 14:14:00 +01001773
1774 u64 increment = map->stripe_len;
1775 u64 offset;
1776
1777 nstripes = length;
1778 offset = 0;
1779 do_div(nstripes, map->stripe_len);
1780 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1781 offset = map->stripe_len * num;
1782 increment = map->stripe_len * map->num_stripes;
Jan Schmidt193ea742011-06-13 19:56:54 +02001783 mirror_num = 1;
Arne Jansena2de7332011-03-08 14:14:00 +01001784 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1785 int factor = map->num_stripes / map->sub_stripes;
1786 offset = map->stripe_len * (num / map->sub_stripes);
1787 increment = map->stripe_len * factor;
Jan Schmidt193ea742011-06-13 19:56:54 +02001788 mirror_num = num % map->sub_stripes + 1;
Arne Jansena2de7332011-03-08 14:14:00 +01001789 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1790 increment = map->stripe_len;
Jan Schmidt193ea742011-06-13 19:56:54 +02001791 mirror_num = num % map->num_stripes + 1;
Arne Jansena2de7332011-03-08 14:14:00 +01001792 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1793 increment = map->stripe_len;
Jan Schmidt193ea742011-06-13 19:56:54 +02001794 mirror_num = num % map->num_stripes + 1;
Arne Jansena2de7332011-03-08 14:14:00 +01001795 } else {
1796 increment = map->stripe_len;
Jan Schmidt193ea742011-06-13 19:56:54 +02001797 mirror_num = 1;
Arne Jansena2de7332011-03-08 14:14:00 +01001798 }
1799
1800 path = btrfs_alloc_path();
1801 if (!path)
1802 return -ENOMEM;
1803
Stefan Behrensb5d67f62012-03-27 14:21:27 -04001804 /*
1805 * work on commit root. The related disk blocks are static as
1806 * long as COW is applied. This means, it is save to rewrite
1807 * them to repair disk errors without any race conditions
1808 */
Arne Jansena2de7332011-03-08 14:14:00 +01001809 path->search_commit_root = 1;
1810 path->skip_locking = 1;
1811
1812 /*
Arne Jansen7a262852011-06-10 12:39:23 +02001813 * trigger the readahead for extent tree csum tree and wait for
1814 * completion. During readahead, the scrub is officially paused
1815 * to not hold off transaction commits
Arne Jansena2de7332011-03-08 14:14:00 +01001816 */
1817 logical = base + offset;
Arne Jansena2de7332011-03-08 14:14:00 +01001818
Arne Jansen7a262852011-06-10 12:39:23 +02001819 wait_event(sdev->list_wait,
1820 atomic_read(&sdev->in_flight) == 0);
1821 atomic_inc(&fs_info->scrubs_paused);
1822 wake_up(&fs_info->scrub_pause_wait);
Arne Jansena2de7332011-03-08 14:14:00 +01001823
Arne Jansen7a262852011-06-10 12:39:23 +02001824 /* FIXME it might be better to start readahead at commit root */
1825 key_start.objectid = logical;
1826 key_start.type = BTRFS_EXTENT_ITEM_KEY;
1827 key_start.offset = (u64)0;
1828 key_end.objectid = base + offset + nstripes * increment;
1829 key_end.type = BTRFS_EXTENT_ITEM_KEY;
1830 key_end.offset = (u64)0;
1831 reada1 = btrfs_reada_add(root, &key_start, &key_end);
Arne Jansena2de7332011-03-08 14:14:00 +01001832
Arne Jansen7a262852011-06-10 12:39:23 +02001833 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1834 key_start.type = BTRFS_EXTENT_CSUM_KEY;
1835 key_start.offset = logical;
1836 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1837 key_end.type = BTRFS_EXTENT_CSUM_KEY;
1838 key_end.offset = base + offset + nstripes * increment;
1839 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
Arne Jansena2de7332011-03-08 14:14:00 +01001840
Arne Jansen7a262852011-06-10 12:39:23 +02001841 if (!IS_ERR(reada1))
1842 btrfs_reada_wait(reada1);
1843 if (!IS_ERR(reada2))
1844 btrfs_reada_wait(reada2);
Arne Jansena2de7332011-03-08 14:14:00 +01001845
Arne Jansen7a262852011-06-10 12:39:23 +02001846 mutex_lock(&fs_info->scrub_lock);
1847 while (atomic_read(&fs_info->scrub_pause_req)) {
1848 mutex_unlock(&fs_info->scrub_lock);
1849 wait_event(fs_info->scrub_pause_wait,
1850 atomic_read(&fs_info->scrub_pause_req) == 0);
1851 mutex_lock(&fs_info->scrub_lock);
Arne Jansena2de7332011-03-08 14:14:00 +01001852 }
Arne Jansen7a262852011-06-10 12:39:23 +02001853 atomic_dec(&fs_info->scrubs_paused);
1854 mutex_unlock(&fs_info->scrub_lock);
1855 wake_up(&fs_info->scrub_pause_wait);
Arne Jansena2de7332011-03-08 14:14:00 +01001856
1857 /*
1858 * collect all data csums for the stripe to avoid seeking during
1859 * the scrub. This might currently (crc32) end up to be about 1MB
1860 */
Arne Jansene7786c32011-05-28 20:58:38 +00001861 blk_start_plug(&plug);
Arne Jansena2de7332011-03-08 14:14:00 +01001862
Arne Jansena2de7332011-03-08 14:14:00 +01001863 /*
1864 * now find all extents for each stripe and scrub them
1865 */
Arne Jansen7a262852011-06-10 12:39:23 +02001866 logical = base + offset;
1867 physical = map->stripes[num].physical;
Arne Jansena2de7332011-03-08 14:14:00 +01001868 ret = 0;
Arne Jansen7a262852011-06-10 12:39:23 +02001869 for (i = 0; i < nstripes; ++i) {
Arne Jansena2de7332011-03-08 14:14:00 +01001870 /*
1871 * canceled?
1872 */
1873 if (atomic_read(&fs_info->scrub_cancel_req) ||
1874 atomic_read(&sdev->cancel_req)) {
1875 ret = -ECANCELED;
1876 goto out;
1877 }
1878 /*
1879 * check to see if we have to pause
1880 */
1881 if (atomic_read(&fs_info->scrub_pause_req)) {
1882 /* push queued extents */
1883 scrub_submit(sdev);
1884 wait_event(sdev->list_wait,
1885 atomic_read(&sdev->in_flight) == 0);
1886 atomic_inc(&fs_info->scrubs_paused);
1887 wake_up(&fs_info->scrub_pause_wait);
1888 mutex_lock(&fs_info->scrub_lock);
1889 while (atomic_read(&fs_info->scrub_pause_req)) {
1890 mutex_unlock(&fs_info->scrub_lock);
1891 wait_event(fs_info->scrub_pause_wait,
1892 atomic_read(&fs_info->scrub_pause_req) == 0);
1893 mutex_lock(&fs_info->scrub_lock);
1894 }
1895 atomic_dec(&fs_info->scrubs_paused);
1896 mutex_unlock(&fs_info->scrub_lock);
1897 wake_up(&fs_info->scrub_pause_wait);
Arne Jansena2de7332011-03-08 14:14:00 +01001898 }
1899
Arne Jansen7a262852011-06-10 12:39:23 +02001900 ret = btrfs_lookup_csums_range(csum_root, logical,
1901 logical + map->stripe_len - 1,
1902 &sdev->csum_list, 1);
1903 if (ret)
1904 goto out;
1905
Arne Jansena2de7332011-03-08 14:14:00 +01001906 key.objectid = logical;
1907 key.type = BTRFS_EXTENT_ITEM_KEY;
1908 key.offset = (u64)0;
1909
1910 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1911 if (ret < 0)
1912 goto out;
Arne Jansen8c510322011-06-03 10:09:26 +02001913 if (ret > 0) {
Arne Jansena2de7332011-03-08 14:14:00 +01001914 ret = btrfs_previous_item(root, path, 0,
1915 BTRFS_EXTENT_ITEM_KEY);
1916 if (ret < 0)
1917 goto out;
Arne Jansen8c510322011-06-03 10:09:26 +02001918 if (ret > 0) {
1919 /* there's no smaller item, so stick with the
1920 * larger one */
1921 btrfs_release_path(path);
1922 ret = btrfs_search_slot(NULL, root, &key,
1923 path, 0, 0);
1924 if (ret < 0)
1925 goto out;
1926 }
Arne Jansena2de7332011-03-08 14:14:00 +01001927 }
1928
1929 while (1) {
1930 l = path->nodes[0];
1931 slot = path->slots[0];
1932 if (slot >= btrfs_header_nritems(l)) {
1933 ret = btrfs_next_leaf(root, path);
1934 if (ret == 0)
1935 continue;
1936 if (ret < 0)
1937 goto out;
1938
1939 break;
1940 }
1941 btrfs_item_key_to_cpu(l, &key, slot);
1942
1943 if (key.objectid + key.offset <= logical)
1944 goto next;
1945
1946 if (key.objectid >= logical + map->stripe_len)
1947 break;
1948
1949 if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1950 goto next;
1951
1952 extent = btrfs_item_ptr(l, slot,
1953 struct btrfs_extent_item);
1954 flags = btrfs_extent_flags(l, extent);
1955 generation = btrfs_extent_generation(l, extent);
1956
1957 if (key.objectid < logical &&
1958 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1959 printk(KERN_ERR
1960 "btrfs scrub: tree block %llu spanning "
1961 "stripes, ignored. logical=%llu\n",
1962 (unsigned long long)key.objectid,
1963 (unsigned long long)logical);
1964 goto next;
1965 }
1966
1967 /*
1968 * trim extent to this stripe
1969 */
1970 if (key.objectid < logical) {
1971 key.offset -= logical - key.objectid;
1972 key.objectid = logical;
1973 }
1974 if (key.objectid + key.offset >
1975 logical + map->stripe_len) {
1976 key.offset = logical + map->stripe_len -
1977 key.objectid;
1978 }
1979
1980 ret = scrub_extent(sdev, key.objectid, key.offset,
1981 key.objectid - logical + physical,
1982 flags, generation, mirror_num);
1983 if (ret)
1984 goto out;
1985
1986next:
1987 path->slots[0]++;
1988 }
Chris Mason71267332011-05-23 06:30:52 -04001989 btrfs_release_path(path);
Arne Jansena2de7332011-03-08 14:14:00 +01001990 logical += increment;
1991 physical += map->stripe_len;
1992 spin_lock(&sdev->stat_lock);
1993 sdev->stat.last_physical = physical;
1994 spin_unlock(&sdev->stat_lock);
1995 }
1996 /* push queued extents */
1997 scrub_submit(sdev);
1998
1999out:
Arne Jansene7786c32011-05-28 20:58:38 +00002000 blk_finish_plug(&plug);
Arne Jansena2de7332011-03-08 14:14:00 +01002001 btrfs_free_path(path);
2002 return ret < 0 ? ret : 0;
2003}
2004
2005static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
Arne Jansen859acaf2012-02-09 15:09:02 +01002006 u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
2007 u64 dev_offset)
Arne Jansena2de7332011-03-08 14:14:00 +01002008{
2009 struct btrfs_mapping_tree *map_tree =
2010 &sdev->dev->dev_root->fs_info->mapping_tree;
2011 struct map_lookup *map;
2012 struct extent_map *em;
2013 int i;
2014 int ret = -EINVAL;
2015
2016 read_lock(&map_tree->map_tree.lock);
2017 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2018 read_unlock(&map_tree->map_tree.lock);
2019
2020 if (!em)
2021 return -EINVAL;
2022
2023 map = (struct map_lookup *)em->bdev;
2024 if (em->start != chunk_offset)
2025 goto out;
2026
2027 if (em->len < length)
2028 goto out;
2029
2030 for (i = 0; i < map->num_stripes; ++i) {
Arne Jansen859acaf2012-02-09 15:09:02 +01002031 if (map->stripes[i].dev == sdev->dev &&
2032 map->stripes[i].physical == dev_offset) {
Arne Jansena2de7332011-03-08 14:14:00 +01002033 ret = scrub_stripe(sdev, map, i, chunk_offset, length);
2034 if (ret)
2035 goto out;
2036 }
2037 }
2038out:
2039 free_extent_map(em);
2040
2041 return ret;
2042}
2043
2044static noinline_for_stack
2045int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
2046{
2047 struct btrfs_dev_extent *dev_extent = NULL;
2048 struct btrfs_path *path;
2049 struct btrfs_root *root = sdev->dev->dev_root;
2050 struct btrfs_fs_info *fs_info = root->fs_info;
2051 u64 length;
2052 u64 chunk_tree;
2053 u64 chunk_objectid;
2054 u64 chunk_offset;
2055 int ret;
2056 int slot;
2057 struct extent_buffer *l;
2058 struct btrfs_key key;
2059 struct btrfs_key found_key;
2060 struct btrfs_block_group_cache *cache;
2061
2062 path = btrfs_alloc_path();
2063 if (!path)
2064 return -ENOMEM;
2065
2066 path->reada = 2;
2067 path->search_commit_root = 1;
2068 path->skip_locking = 1;
2069
2070 key.objectid = sdev->dev->devid;
2071 key.offset = 0ull;
2072 key.type = BTRFS_DEV_EXTENT_KEY;
2073
2074
2075 while (1) {
2076 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2077 if (ret < 0)
Arne Jansen8c510322011-06-03 10:09:26 +02002078 break;
2079 if (ret > 0) {
2080 if (path->slots[0] >=
2081 btrfs_header_nritems(path->nodes[0])) {
2082 ret = btrfs_next_leaf(root, path);
2083 if (ret)
2084 break;
2085 }
2086 }
Arne Jansena2de7332011-03-08 14:14:00 +01002087
2088 l = path->nodes[0];
2089 slot = path->slots[0];
2090
2091 btrfs_item_key_to_cpu(l, &found_key, slot);
2092
2093 if (found_key.objectid != sdev->dev->devid)
2094 break;
2095
Arne Jansen8c510322011-06-03 10:09:26 +02002096 if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
Arne Jansena2de7332011-03-08 14:14:00 +01002097 break;
2098
2099 if (found_key.offset >= end)
2100 break;
2101
2102 if (found_key.offset < key.offset)
2103 break;
2104
2105 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2106 length = btrfs_dev_extent_length(l, dev_extent);
2107
2108 if (found_key.offset + length <= start) {
2109 key.offset = found_key.offset + length;
Chris Mason71267332011-05-23 06:30:52 -04002110 btrfs_release_path(path);
Arne Jansena2de7332011-03-08 14:14:00 +01002111 continue;
2112 }
2113
2114 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2115 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2116 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2117
2118 /*
2119 * get a reference on the corresponding block group to prevent
2120 * the chunk from going away while we scrub it
2121 */
2122 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2123 if (!cache) {
2124 ret = -ENOENT;
Arne Jansen8c510322011-06-03 10:09:26 +02002125 break;
Arne Jansena2de7332011-03-08 14:14:00 +01002126 }
2127 ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
Arne Jansen859acaf2012-02-09 15:09:02 +01002128 chunk_offset, length, found_key.offset);
Arne Jansena2de7332011-03-08 14:14:00 +01002129 btrfs_put_block_group(cache);
2130 if (ret)
2131 break;
2132
2133 key.offset = found_key.offset + length;
Chris Mason71267332011-05-23 06:30:52 -04002134 btrfs_release_path(path);
Arne Jansena2de7332011-03-08 14:14:00 +01002135 }
2136
Arne Jansena2de7332011-03-08 14:14:00 +01002137 btrfs_free_path(path);
Arne Jansen8c510322011-06-03 10:09:26 +02002138
2139 /*
2140 * ret can still be 1 from search_slot or next_leaf,
2141 * that's not an error
2142 */
2143 return ret < 0 ? ret : 0;
Arne Jansena2de7332011-03-08 14:14:00 +01002144}
2145
2146static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
2147{
2148 int i;
2149 u64 bytenr;
2150 u64 gen;
2151 int ret;
2152 struct btrfs_device *device = sdev->dev;
2153 struct btrfs_root *root = device->dev_root;
2154
Jeff Mahoney79787ea2012-03-12 16:03:00 +01002155 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2156 return -EIO;
2157
Arne Jansena2de7332011-03-08 14:14:00 +01002158 gen = root->fs_info->last_trans_committed;
2159
2160 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2161 bytenr = btrfs_sb_offset(i);
Stefan Behrens1623ede2012-03-27 14:21:26 -04002162 if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
Arne Jansena2de7332011-03-08 14:14:00 +01002163 break;
2164
Stefan Behrensb5d67f62012-03-27 14:21:27 -04002165 ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2166 BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
Arne Jansena2de7332011-03-08 14:14:00 +01002167 if (ret)
2168 return ret;
2169 }
2170 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2171
2172 return 0;
2173}
2174
2175/*
2176 * get a reference count on fs_info->scrub_workers. start worker if necessary
2177 */
2178static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
2179{
2180 struct btrfs_fs_info *fs_info = root->fs_info;
Josef Bacik0dc3b842011-11-18 14:37:27 -05002181 int ret = 0;
Arne Jansena2de7332011-03-08 14:14:00 +01002182
2183 mutex_lock(&fs_info->scrub_lock);
Arne Jansen632dd772011-06-10 12:07:07 +02002184 if (fs_info->scrub_workers_refcnt == 0) {
2185 btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2186 fs_info->thread_pool_size, &fs_info->generic_worker);
2187 fs_info->scrub_workers.idle_thresh = 4;
Josef Bacik0dc3b842011-11-18 14:37:27 -05002188 ret = btrfs_start_workers(&fs_info->scrub_workers);
2189 if (ret)
2190 goto out;
Arne Jansen632dd772011-06-10 12:07:07 +02002191 }
Arne Jansena2de7332011-03-08 14:14:00 +01002192 ++fs_info->scrub_workers_refcnt;
Josef Bacik0dc3b842011-11-18 14:37:27 -05002193out:
Arne Jansena2de7332011-03-08 14:14:00 +01002194 mutex_unlock(&fs_info->scrub_lock);
2195
Josef Bacik0dc3b842011-11-18 14:37:27 -05002196 return ret;
Arne Jansena2de7332011-03-08 14:14:00 +01002197}
2198
2199static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
2200{
2201 struct btrfs_fs_info *fs_info = root->fs_info;
2202
2203 mutex_lock(&fs_info->scrub_lock);
2204 if (--fs_info->scrub_workers_refcnt == 0)
2205 btrfs_stop_workers(&fs_info->scrub_workers);
2206 WARN_ON(fs_info->scrub_workers_refcnt < 0);
2207 mutex_unlock(&fs_info->scrub_lock);
2208}
2209
2210
2211int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
Arne Jansen86287642011-03-23 16:34:19 +01002212 struct btrfs_scrub_progress *progress, int readonly)
Arne Jansena2de7332011-03-08 14:14:00 +01002213{
2214 struct scrub_dev *sdev;
2215 struct btrfs_fs_info *fs_info = root->fs_info;
2216 int ret;
2217 struct btrfs_device *dev;
2218
David Sterba7841cb22011-05-31 18:07:27 +02002219 if (btrfs_fs_closing(root->fs_info))
Arne Jansena2de7332011-03-08 14:14:00 +01002220 return -EINVAL;
2221
2222 /*
2223 * check some assumptions
2224 */
Stefan Behrensb5d67f62012-03-27 14:21:27 -04002225 if (root->nodesize != root->leafsize) {
2226 printk(KERN_ERR
2227 "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2228 root->nodesize, root->leafsize);
2229 return -EINVAL;
2230 }
2231
2232 if (root->nodesize > BTRFS_STRIPE_LEN) {
2233 /*
2234 * in this case scrub is unable to calculate the checksum
2235 * the way scrub is implemented. Do not handle this
2236 * situation at all because it won't ever happen.
2237 */
2238 printk(KERN_ERR
2239 "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2240 root->nodesize, BTRFS_STRIPE_LEN);
2241 return -EINVAL;
2242 }
2243
2244 if (root->sectorsize != PAGE_SIZE) {
2245 /* not supported for data w/o checksums */
2246 printk(KERN_ERR
2247 "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2248 root->sectorsize, (unsigned long long)PAGE_SIZE);
Arne Jansena2de7332011-03-08 14:14:00 +01002249 return -EINVAL;
2250 }
2251
2252 ret = scrub_workers_get(root);
2253 if (ret)
2254 return ret;
2255
2256 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2257 dev = btrfs_find_device(root, devid, NULL, NULL);
2258 if (!dev || dev->missing) {
2259 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2260 scrub_workers_put(root);
2261 return -ENODEV;
2262 }
2263 mutex_lock(&fs_info->scrub_lock);
2264
2265 if (!dev->in_fs_metadata) {
2266 mutex_unlock(&fs_info->scrub_lock);
2267 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2268 scrub_workers_put(root);
2269 return -ENODEV;
2270 }
2271
2272 if (dev->scrub_device) {
2273 mutex_unlock(&fs_info->scrub_lock);
2274 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2275 scrub_workers_put(root);
2276 return -EINPROGRESS;
2277 }
2278 sdev = scrub_setup_dev(dev);
2279 if (IS_ERR(sdev)) {
2280 mutex_unlock(&fs_info->scrub_lock);
2281 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2282 scrub_workers_put(root);
2283 return PTR_ERR(sdev);
2284 }
Arne Jansen86287642011-03-23 16:34:19 +01002285 sdev->readonly = readonly;
Arne Jansena2de7332011-03-08 14:14:00 +01002286 dev->scrub_device = sdev;
2287
2288 atomic_inc(&fs_info->scrubs_running);
2289 mutex_unlock(&fs_info->scrub_lock);
2290 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2291
2292 down_read(&fs_info->scrub_super_lock);
2293 ret = scrub_supers(sdev);
2294 up_read(&fs_info->scrub_super_lock);
2295
2296 if (!ret)
2297 ret = scrub_enumerate_chunks(sdev, start, end);
2298
2299 wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
Arne Jansena2de7332011-03-08 14:14:00 +01002300 atomic_dec(&fs_info->scrubs_running);
2301 wake_up(&fs_info->scrub_pause_wait);
2302
Jan Schmidt0ef8e452011-06-13 20:04:15 +02002303 wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
2304
Arne Jansena2de7332011-03-08 14:14:00 +01002305 if (progress)
2306 memcpy(progress, &sdev->stat, sizeof(*progress));
2307
2308 mutex_lock(&fs_info->scrub_lock);
2309 dev->scrub_device = NULL;
2310 mutex_unlock(&fs_info->scrub_lock);
2311
2312 scrub_free_dev(sdev);
2313 scrub_workers_put(root);
2314
2315 return ret;
2316}
2317
Jeff Mahoney143bede2012-03-01 14:56:26 +01002318void btrfs_scrub_pause(struct btrfs_root *root)
Arne Jansena2de7332011-03-08 14:14:00 +01002319{
2320 struct btrfs_fs_info *fs_info = root->fs_info;
2321
2322 mutex_lock(&fs_info->scrub_lock);
2323 atomic_inc(&fs_info->scrub_pause_req);
2324 while (atomic_read(&fs_info->scrubs_paused) !=
2325 atomic_read(&fs_info->scrubs_running)) {
2326 mutex_unlock(&fs_info->scrub_lock);
2327 wait_event(fs_info->scrub_pause_wait,
2328 atomic_read(&fs_info->scrubs_paused) ==
2329 atomic_read(&fs_info->scrubs_running));
2330 mutex_lock(&fs_info->scrub_lock);
2331 }
2332 mutex_unlock(&fs_info->scrub_lock);
Arne Jansena2de7332011-03-08 14:14:00 +01002333}
2334
Jeff Mahoney143bede2012-03-01 14:56:26 +01002335void btrfs_scrub_continue(struct btrfs_root *root)
Arne Jansena2de7332011-03-08 14:14:00 +01002336{
2337 struct btrfs_fs_info *fs_info = root->fs_info;
2338
2339 atomic_dec(&fs_info->scrub_pause_req);
2340 wake_up(&fs_info->scrub_pause_wait);
Arne Jansena2de7332011-03-08 14:14:00 +01002341}
2342
Jeff Mahoney143bede2012-03-01 14:56:26 +01002343void btrfs_scrub_pause_super(struct btrfs_root *root)
Arne Jansena2de7332011-03-08 14:14:00 +01002344{
2345 down_write(&root->fs_info->scrub_super_lock);
Arne Jansena2de7332011-03-08 14:14:00 +01002346}
2347
Jeff Mahoney143bede2012-03-01 14:56:26 +01002348void btrfs_scrub_continue_super(struct btrfs_root *root)
Arne Jansena2de7332011-03-08 14:14:00 +01002349{
2350 up_write(&root->fs_info->scrub_super_lock);
Arne Jansena2de7332011-03-08 14:14:00 +01002351}
2352
Jeff Mahoney49b25e02012-03-01 17:24:58 +01002353int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
Arne Jansena2de7332011-03-08 14:14:00 +01002354{
Arne Jansena2de7332011-03-08 14:14:00 +01002355
2356 mutex_lock(&fs_info->scrub_lock);
2357 if (!atomic_read(&fs_info->scrubs_running)) {
2358 mutex_unlock(&fs_info->scrub_lock);
2359 return -ENOTCONN;
2360 }
2361
2362 atomic_inc(&fs_info->scrub_cancel_req);
2363 while (atomic_read(&fs_info->scrubs_running)) {
2364 mutex_unlock(&fs_info->scrub_lock);
2365 wait_event(fs_info->scrub_pause_wait,
2366 atomic_read(&fs_info->scrubs_running) == 0);
2367 mutex_lock(&fs_info->scrub_lock);
2368 }
2369 atomic_dec(&fs_info->scrub_cancel_req);
2370 mutex_unlock(&fs_info->scrub_lock);
2371
2372 return 0;
2373}
2374
Jeff Mahoney49b25e02012-03-01 17:24:58 +01002375int btrfs_scrub_cancel(struct btrfs_root *root)
2376{
2377 return __btrfs_scrub_cancel(root->fs_info);
2378}
2379
Arne Jansena2de7332011-03-08 14:14:00 +01002380int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
2381{
2382 struct btrfs_fs_info *fs_info = root->fs_info;
2383 struct scrub_dev *sdev;
2384
2385 mutex_lock(&fs_info->scrub_lock);
2386 sdev = dev->scrub_device;
2387 if (!sdev) {
2388 mutex_unlock(&fs_info->scrub_lock);
2389 return -ENOTCONN;
2390 }
2391 atomic_inc(&sdev->cancel_req);
2392 while (dev->scrub_device) {
2393 mutex_unlock(&fs_info->scrub_lock);
2394 wait_event(fs_info->scrub_pause_wait,
2395 dev->scrub_device == NULL);
2396 mutex_lock(&fs_info->scrub_lock);
2397 }
2398 mutex_unlock(&fs_info->scrub_lock);
2399
2400 return 0;
2401}
Stefan Behrens1623ede2012-03-27 14:21:26 -04002402
Arne Jansena2de7332011-03-08 14:14:00 +01002403int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
2404{
2405 struct btrfs_fs_info *fs_info = root->fs_info;
2406 struct btrfs_device *dev;
2407 int ret;
2408
2409 /*
2410 * we have to hold the device_list_mutex here so the device
2411 * does not go away in cancel_dev. FIXME: find a better solution
2412 */
2413 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2414 dev = btrfs_find_device(root, devid, NULL, NULL);
2415 if (!dev) {
2416 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2417 return -ENODEV;
2418 }
2419 ret = btrfs_scrub_cancel_dev(root, dev);
2420 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2421
2422 return ret;
2423}
2424
2425int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2426 struct btrfs_scrub_progress *progress)
2427{
2428 struct btrfs_device *dev;
2429 struct scrub_dev *sdev = NULL;
2430
2431 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2432 dev = btrfs_find_device(root, devid, NULL, NULL);
2433 if (dev)
2434 sdev = dev->scrub_device;
2435 if (sdev)
2436 memcpy(progress, &sdev->stat, sizeof(*progress));
2437 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2438
2439 return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
2440}