blob: 158ffe9bfadee23eccfe93e6c777f5ea52def8c9 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4
5<book id="LKLockingGuide">
6 <bookinfo>
7 <title>Unreliable Guide To Locking</title>
8
9 <authorgroup>
10 <author>
11 <firstname>Rusty</firstname>
12 <surname>Russell</surname>
13 <affiliation>
14 <address>
15 <email>rusty@rustcorp.com.au</email>
16 </address>
17 </affiliation>
18 </author>
19 </authorgroup>
20
21 <copyright>
22 <year>2003</year>
23 <holder>Rusty Russell</holder>
24 </copyright>
25
26 <legalnotice>
27 <para>
28 This documentation is free software; you can redistribute
29 it and/or modify it under the terms of the GNU General Public
30 License as published by the Free Software Foundation; either
31 version 2 of the License, or (at your option) any later
32 version.
33 </para>
34
35 <para>
36 This program is distributed in the hope that it will be
37 useful, but WITHOUT ANY WARRANTY; without even the implied
38 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
39 See the GNU General Public License for more details.
40 </para>
41
42 <para>
43 You should have received a copy of the GNU General Public
44 License along with this program; if not, write to the Free
45 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
46 MA 02111-1307 USA
47 </para>
48
49 <para>
50 For more details see the file COPYING in the source
51 distribution of Linux.
52 </para>
53 </legalnotice>
54 </bookinfo>
55
56 <toc></toc>
57 <chapter id="intro">
58 <title>Introduction</title>
59 <para>
60 Welcome, to Rusty's Remarkably Unreliable Guide to Kernel
61 Locking issues. This document describes the locking systems in
62 the Linux Kernel in 2.6.
63 </para>
64 <para>
65 With the wide availability of HyperThreading, and <firstterm
66 linkend="gloss-preemption">preemption </firstterm> in the Linux
67 Kernel, everyone hacking on the kernel needs to know the
68 fundamentals of concurrency and locking for
69 <firstterm linkend="gloss-smp"><acronym>SMP</acronym></firstterm>.
70 </para>
71 </chapter>
72
73 <chapter id="races">
74 <title>The Problem With Concurrency</title>
75 <para>
76 (Skip this if you know what a Race Condition is).
77 </para>
78 <para>
79 In a normal program, you can increment a counter like so:
80 </para>
81 <programlisting>
82 very_important_count++;
83 </programlisting>
84
85 <para>
86 This is what they would expect to happen:
87 </para>
88
89 <table>
90 <title>Expected Results</title>
91
92 <tgroup cols="2" align="left">
93
94 <thead>
95 <row>
96 <entry>Instance 1</entry>
97 <entry>Instance 2</entry>
98 </row>
99 </thead>
100
101 <tbody>
102 <row>
103 <entry>read very_important_count (5)</entry>
104 <entry></entry>
105 </row>
106 <row>
107 <entry>add 1 (6)</entry>
108 <entry></entry>
109 </row>
110 <row>
111 <entry>write very_important_count (6)</entry>
112 <entry></entry>
113 </row>
114 <row>
115 <entry></entry>
116 <entry>read very_important_count (6)</entry>
117 </row>
118 <row>
119 <entry></entry>
120 <entry>add 1 (7)</entry>
121 </row>
122 <row>
123 <entry></entry>
124 <entry>write very_important_count (7)</entry>
125 </row>
126 </tbody>
127
128 </tgroup>
129 </table>
130
131 <para>
132 This is what might happen:
133 </para>
134
135 <table>
136 <title>Possible Results</title>
137
138 <tgroup cols="2" align="left">
139 <thead>
140 <row>
141 <entry>Instance 1</entry>
142 <entry>Instance 2</entry>
143 </row>
144 </thead>
145
146 <tbody>
147 <row>
148 <entry>read very_important_count (5)</entry>
149 <entry></entry>
150 </row>
151 <row>
152 <entry></entry>
153 <entry>read very_important_count (5)</entry>
154 </row>
155 <row>
156 <entry>add 1 (6)</entry>
157 <entry></entry>
158 </row>
159 <row>
160 <entry></entry>
161 <entry>add 1 (6)</entry>
162 </row>
163 <row>
164 <entry>write very_important_count (6)</entry>
165 <entry></entry>
166 </row>
167 <row>
168 <entry></entry>
169 <entry>write very_important_count (6)</entry>
170 </row>
171 </tbody>
172 </tgroup>
173 </table>
174
175 <sect1 id="race-condition">
176 <title>Race Conditions and Critical Regions</title>
177 <para>
178 This overlap, where the result depends on the
179 relative timing of multiple tasks, is called a <firstterm>race condition</firstterm>.
180 The piece of code containing the concurrency issue is called a
181 <firstterm>critical region</firstterm>. And especially since Linux starting running
182 on SMP machines, they became one of the major issues in kernel
183 design and implementation.
184 </para>
185 <para>
186 Preemption can have the same effect, even if there is only one
187 CPU: by preempting one task during the critical region, we have
188 exactly the same race condition. In this case the thread which
189 preempts might run the critical region itself.
190 </para>
191 <para>
192 The solution is to recognize when these simultaneous accesses
193 occur, and use locks to make sure that only one instance can
194 enter the critical region at any time. There are many
195 friendly primitives in the Linux kernel to help you do this.
196 And then there are the unfriendly primitives, but I'll pretend
197 they don't exist.
198 </para>
199 </sect1>
200 </chapter>
201
202 <chapter id="locks">
203 <title>Locking in the Linux Kernel</title>
204
205 <para>
206 If I could give you one piece of advice: never sleep with anyone
207 crazier than yourself. But if I had to give you advice on
208 locking: <emphasis>keep it simple</emphasis>.
209 </para>
210
211 <para>
212 Be reluctant to introduce new locks.
213 </para>
214
215 <para>
216 Strangely enough, this last one is the exact reverse of my advice when
217 you <emphasis>have</emphasis> slept with someone crazier than yourself.
218 And you should think about getting a big dog.
219 </para>
220
221 <sect1 id="lock-intro">
222 <title>Two Main Types of Kernel Locks: Spinlocks and Semaphores</title>
223
224 <para>
Ingo Molnarf3f54ff2006-01-09 15:59:20 -0800225 There are three main types of kernel locks. The fundamental type
Linus Torvalds1da177e2005-04-16 15:20:36 -0700226 is the spinlock
227 (<filename class="headerfile">include/asm/spinlock.h</filename>),
228 which is a very simple single-holder lock: if you can't get the
229 spinlock, you keep trying (spinning) until you can. Spinlocks are
230 very small and fast, and can be used anywhere.
231 </para>
232 <para>
Ingo Molnarf3f54ff2006-01-09 15:59:20 -0800233 The second type is a mutex
234 (<filename class="headerfile">include/linux/mutex.h</filename>): it
235 is like a spinlock, but you may block holding a mutex.
236 If you can't lock a mutex, your task will suspend itself, and be woken
237 up when the mutex is released. This means the CPU can do something
238 else while you are waiting. There are many cases when you simply
239 can't sleep (see <xref linkend="sleeping-things"/>), and so have to
240 use a spinlock instead.
241 </para>
242 <para>
243 The third type is a semaphore
Linus Torvalds1da177e2005-04-16 15:20:36 -0700244 (<filename class="headerfile">include/asm/semaphore.h</filename>): it
245 can have more than one holder at any time (the number decided at
246 initialization time), although it is most commonly used as a
Ingo Molnarf3f54ff2006-01-09 15:59:20 -0800247 single-holder lock (a mutex). If you can't get a semaphore, your
248 task will be suspended and later on woken up - just like for mutexes.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700249 </para>
250 <para>
251 Neither type of lock is recursive: see
252 <xref linkend="deadlock"/>.
253 </para>
254 </sect1>
255
256 <sect1 id="uniprocessor">
257 <title>Locks and Uniprocessor Kernels</title>
258
259 <para>
260 For kernels compiled without <symbol>CONFIG_SMP</symbol>, and
261 without <symbol>CONFIG_PREEMPT</symbol> spinlocks do not exist at
262 all. This is an excellent design decision: when no-one else can
263 run at the same time, there is no reason to have a lock.
264 </para>
265
266 <para>
267 If the kernel is compiled without <symbol>CONFIG_SMP</symbol>,
268 but <symbol>CONFIG_PREEMPT</symbol> is set, then spinlocks
269 simply disable preemption, which is sufficient to prevent any
270 races. For most purposes, we can think of preemption as
271 equivalent to SMP, and not worry about it separately.
272 </para>
273
274 <para>
275 You should always test your locking code with <symbol>CONFIG_SMP</symbol>
276 and <symbol>CONFIG_PREEMPT</symbol> enabled, even if you don't have an SMP test box, because it
277 will still catch some kinds of locking bugs.
278 </para>
279
280 <para>
281 Semaphores still exist, because they are required for
282 synchronization between <firstterm linkend="gloss-usercontext">user
283 contexts</firstterm>, as we will see below.
284 </para>
285 </sect1>
286
287 <sect1 id="usercontextlocking">
288 <title>Locking Only In User Context</title>
289
290 <para>
291 If you have a data structure which is only ever accessed from
292 user context, then you can use a simple semaphore
293 (<filename>linux/asm/semaphore.h</filename>) to protect it. This
294 is the most trivial case: you initialize the semaphore to the number
295 of resources available (usually 1), and call
296 <function>down_interruptible()</function> to grab the semaphore, and
297 <function>up()</function> to release it. There is also a
298 <function>down()</function>, which should be avoided, because it
299 will not return if a signal is received.
300 </para>
301
302 <para>
303 Example: <filename>linux/net/core/netfilter.c</filename> allows
304 registration of new <function>setsockopt()</function> and
305 <function>getsockopt()</function> calls, with
306 <function>nf_register_sockopt()</function>. Registration and
307 de-registration are only done on module load and unload (and boot
308 time, where there is no concurrency), and the list of registrations
309 is only consulted for an unknown <function>setsockopt()</function>
310 or <function>getsockopt()</function> system call. The
311 <varname>nf_sockopt_mutex</varname> is perfect to protect this,
312 especially since the setsockopt and getsockopt calls may well
313 sleep.
314 </para>
315 </sect1>
316
317 <sect1 id="lock-user-bh">
318 <title>Locking Between User Context and Softirqs</title>
319
320 <para>
321 If a <firstterm linkend="gloss-softirq">softirq</firstterm> shares
322 data with user context, you have two problems. Firstly, the current
323 user context can be interrupted by a softirq, and secondly, the
324 critical region could be entered from another CPU. This is where
325 <function>spin_lock_bh()</function>
326 (<filename class="headerfile">include/linux/spinlock.h</filename>) is
327 used. It disables softirqs on that CPU, then grabs the lock.
328 <function>spin_unlock_bh()</function> does the reverse. (The
329 '_bh' suffix is a historical reference to "Bottom Halves", the
330 old name for software interrupts. It should really be
331 called spin_lock_softirq()' in a perfect world).
332 </para>
333
334 <para>
335 Note that you can also use <function>spin_lock_irq()</function>
336 or <function>spin_lock_irqsave()</function> here, which stop
337 hardware interrupts as well: see <xref linkend="hardirq-context"/>.
338 </para>
339
340 <para>
341 This works perfectly for <firstterm linkend="gloss-up"><acronym>UP
342 </acronym></firstterm> as well: the spin lock vanishes, and this macro
343 simply becomes <function>local_bh_disable()</function>
344 (<filename class="headerfile">include/linux/interrupt.h</filename>), which
345 protects you from the softirq being run.
346 </para>
347 </sect1>
348
349 <sect1 id="lock-user-tasklet">
350 <title>Locking Between User Context and Tasklets</title>
351
352 <para>
353 This is exactly the same as above, because <firstterm
354 linkend="gloss-tasklet">tasklets</firstterm> are actually run
355 from a softirq.
356 </para>
357 </sect1>
358
359 <sect1 id="lock-user-timers">
360 <title>Locking Between User Context and Timers</title>
361
362 <para>
363 This, too, is exactly the same as above, because <firstterm
364 linkend="gloss-timers">timers</firstterm> are actually run from
365 a softirq. From a locking point of view, tasklets and timers
366 are identical.
367 </para>
368 </sect1>
369
370 <sect1 id="lock-tasklets">
371 <title>Locking Between Tasklets/Timers</title>
372
373 <para>
374 Sometimes a tasklet or timer might want to share data with
375 another tasklet or timer.
376 </para>
377
378 <sect2 id="lock-tasklets-same">
379 <title>The Same Tasklet/Timer</title>
380 <para>
381 Since a tasklet is never run on two CPUs at once, you don't
382 need to worry about your tasklet being reentrant (running
383 twice at once), even on SMP.
384 </para>
385 </sect2>
386
387 <sect2 id="lock-tasklets-different">
388 <title>Different Tasklets/Timers</title>
389 <para>
390 If another tasklet/timer wants
391 to share data with your tasklet or timer , you will both need to use
392 <function>spin_lock()</function> and
393 <function>spin_unlock()</function> calls.
394 <function>spin_lock_bh()</function> is
395 unnecessary here, as you are already in a tasklet, and
396 none will be run on the same CPU.
397 </para>
398 </sect2>
399 </sect1>
400
401 <sect1 id="lock-softirqs">
402 <title>Locking Between Softirqs</title>
403
404 <para>
405 Often a softirq might
406 want to share data with itself or a tasklet/timer.
407 </para>
408
409 <sect2 id="lock-softirqs-same">
410 <title>The Same Softirq</title>
411
412 <para>
413 The same softirq can run on the other CPUs: you can use a
414 per-CPU array (see <xref linkend="per-cpu"/>) for better
415 performance. If you're going so far as to use a softirq,
416 you probably care about scalable performance enough
417 to justify the extra complexity.
418 </para>
419
420 <para>
421 You'll need to use <function>spin_lock()</function> and
422 <function>spin_unlock()</function> for shared data.
423 </para>
424 </sect2>
425
426 <sect2 id="lock-softirqs-different">
427 <title>Different Softirqs</title>
428
429 <para>
430 You'll need to use <function>spin_lock()</function> and
431 <function>spin_unlock()</function> for shared data, whether it
432 be a timer, tasklet, different softirq or the same or another
433 softirq: any of them could be running on a different CPU.
434 </para>
435 </sect2>
436 </sect1>
437 </chapter>
438
439 <chapter id="hardirq-context">
440 <title>Hard IRQ Context</title>
441
442 <para>
443 Hardware interrupts usually communicate with a
444 tasklet or softirq. Frequently this involves putting work in a
445 queue, which the softirq will take out.
446 </para>
447
448 <sect1 id="hardirq-softirq">
449 <title>Locking Between Hard IRQ and Softirqs/Tasklets</title>
450
451 <para>
452 If a hardware irq handler shares data with a softirq, you have
453 two concerns. Firstly, the softirq processing can be
454 interrupted by a hardware interrupt, and secondly, the
455 critical region could be entered by a hardware interrupt on
456 another CPU. This is where <function>spin_lock_irq()</function> is
457 used. It is defined to disable interrupts on that cpu, then grab
458 the lock. <function>spin_unlock_irq()</function> does the reverse.
459 </para>
460
461 <para>
462 The irq handler does not to use
463 <function>spin_lock_irq()</function>, because the softirq cannot
464 run while the irq handler is running: it can use
465 <function>spin_lock()</function>, which is slightly faster. The
466 only exception would be if a different hardware irq handler uses
467 the same lock: <function>spin_lock_irq()</function> will stop
468 that from interrupting us.
469 </para>
470
471 <para>
472 This works perfectly for UP as well: the spin lock vanishes,
473 and this macro simply becomes <function>local_irq_disable()</function>
474 (<filename class="headerfile">include/asm/smp.h</filename>), which
475 protects you from the softirq/tasklet/BH being run.
476 </para>
477
478 <para>
479 <function>spin_lock_irqsave()</function>
480 (<filename>include/linux/spinlock.h</filename>) is a variant
481 which saves whether interrupts were on or off in a flags word,
482 which is passed to <function>spin_unlock_irqrestore()</function>. This
483 means that the same code can be used inside an hard irq handler (where
484 interrupts are already off) and in softirqs (where the irq
485 disabling is required).
486 </para>
487
488 <para>
489 Note that softirqs (and hence tasklets and timers) are run on
490 return from hardware interrupts, so
491 <function>spin_lock_irq()</function> also stops these. In that
492 sense, <function>spin_lock_irqsave()</function> is the most
493 general and powerful locking function.
494 </para>
495
496 </sect1>
497 <sect1 id="hardirq-hardirq">
498 <title>Locking Between Two Hard IRQ Handlers</title>
499 <para>
500 It is rare to have to share data between two IRQ handlers, but
501 if you do, <function>spin_lock_irqsave()</function> should be
502 used: it is architecture-specific whether all interrupts are
503 disabled inside irq handlers themselves.
504 </para>
505 </sect1>
506
507 </chapter>
508
509 <chapter id="cheatsheet">
510 <title>Cheat Sheet For Locking</title>
511 <para>
512 Pete Zaitcev gives the following summary:
513 </para>
514 <itemizedlist>
515 <listitem>
516 <para>
517 If you are in a process context (any syscall) and want to
518 lock other process out, use a semaphore. You can take a semaphore
519 and sleep (<function>copy_from_user*(</function> or
520 <function>kmalloc(x,GFP_KERNEL)</function>).
521 </para>
522 </listitem>
523 <listitem>
524 <para>
525 Otherwise (== data can be touched in an interrupt), use
526 <function>spin_lock_irqsave()</function> and
527 <function>spin_unlock_irqrestore()</function>.
528 </para>
529 </listitem>
530 <listitem>
531 <para>
532 Avoid holding spinlock for more than 5 lines of code and
533 across any function call (except accessors like
534 <function>readb</function>).
535 </para>
536 </listitem>
537 </itemizedlist>
538
539 <sect1 id="minimum-lock-reqirements">
540 <title>Table of Minimum Requirements</title>
541
542 <para> The following table lists the <emphasis>minimum</emphasis>
543 locking requirements between various contexts. In some cases,
544 the same context can only be running on one CPU at a time, so
545 no locking is required for that context (eg. a particular
546 thread can only run on one CPU at a time, but if it needs
547 shares data with another thread, locking is required).
548 </para>
549 <para>
550 Remember the advice above: you can always use
551 <function>spin_lock_irqsave()</function>, which is a superset
552 of all other spinlock primitives.
553 </para>
554 <table>
555<title>Table of Locking Requirements</title>
556<tgroup cols="11">
557<tbody>
558<row>
559<entry></entry>
560<entry>IRQ Handler A</entry>
561<entry>IRQ Handler B</entry>
562<entry>Softirq A</entry>
563<entry>Softirq B</entry>
564<entry>Tasklet A</entry>
565<entry>Tasklet B</entry>
566<entry>Timer A</entry>
567<entry>Timer B</entry>
568<entry>User Context A</entry>
569<entry>User Context B</entry>
570</row>
571
572<row>
573<entry>IRQ Handler A</entry>
574<entry>None</entry>
575</row>
576
577<row>
578<entry>IRQ Handler B</entry>
579<entry>spin_lock_irqsave</entry>
580<entry>None</entry>
581</row>
582
583<row>
584<entry>Softirq A</entry>
585<entry>spin_lock_irq</entry>
586<entry>spin_lock_irq</entry>
587<entry>spin_lock</entry>
588</row>
589
590<row>
591<entry>Softirq B</entry>
592<entry>spin_lock_irq</entry>
593<entry>spin_lock_irq</entry>
594<entry>spin_lock</entry>
595<entry>spin_lock</entry>
596</row>
597
598<row>
599<entry>Tasklet A</entry>
600<entry>spin_lock_irq</entry>
601<entry>spin_lock_irq</entry>
602<entry>spin_lock</entry>
603<entry>spin_lock</entry>
604<entry>None</entry>
605</row>
606
607<row>
608<entry>Tasklet B</entry>
609<entry>spin_lock_irq</entry>
610<entry>spin_lock_irq</entry>
611<entry>spin_lock</entry>
612<entry>spin_lock</entry>
613<entry>spin_lock</entry>
614<entry>None</entry>
615</row>
616
617<row>
618<entry>Timer A</entry>
619<entry>spin_lock_irq</entry>
620<entry>spin_lock_irq</entry>
621<entry>spin_lock</entry>
622<entry>spin_lock</entry>
623<entry>spin_lock</entry>
624<entry>spin_lock</entry>
625<entry>None</entry>
626</row>
627
628<row>
629<entry>Timer B</entry>
630<entry>spin_lock_irq</entry>
631<entry>spin_lock_irq</entry>
632<entry>spin_lock</entry>
633<entry>spin_lock</entry>
634<entry>spin_lock</entry>
635<entry>spin_lock</entry>
636<entry>spin_lock</entry>
637<entry>None</entry>
638</row>
639
640<row>
641<entry>User Context A</entry>
642<entry>spin_lock_irq</entry>
643<entry>spin_lock_irq</entry>
644<entry>spin_lock_bh</entry>
645<entry>spin_lock_bh</entry>
646<entry>spin_lock_bh</entry>
647<entry>spin_lock_bh</entry>
648<entry>spin_lock_bh</entry>
649<entry>spin_lock_bh</entry>
650<entry>None</entry>
651</row>
652
653<row>
654<entry>User Context B</entry>
655<entry>spin_lock_irq</entry>
656<entry>spin_lock_irq</entry>
657<entry>spin_lock_bh</entry>
658<entry>spin_lock_bh</entry>
659<entry>spin_lock_bh</entry>
660<entry>spin_lock_bh</entry>
661<entry>spin_lock_bh</entry>
662<entry>spin_lock_bh</entry>
663<entry>down_interruptible</entry>
664<entry>None</entry>
665</row>
666
667</tbody>
668</tgroup>
669</table>
670</sect1>
671</chapter>
672
673 <chapter id="Examples">
674 <title>Common Examples</title>
675 <para>
676Let's step through a simple example: a cache of number to name
677mappings. The cache keeps a count of how often each of the objects is
678used, and when it gets full, throws out the least used one.
679
680 </para>
681
682 <sect1 id="examples-usercontext">
683 <title>All In User Context</title>
684 <para>
685For our first example, we assume that all operations are in user
686context (ie. from system calls), so we can sleep. This means we can
687use a semaphore to protect the cache and all the objects within
688it. Here's the code:
689 </para>
690
691 <programlisting>
692#include &lt;linux/list.h&gt;
693#include &lt;linux/slab.h&gt;
694#include &lt;linux/string.h&gt;
695#include &lt;asm/semaphore.h&gt;
696#include &lt;asm/errno.h&gt;
697
698struct object
699{
700 struct list_head list;
701 int id;
702 char name[32];
703 int popularity;
704};
705
706/* Protects the cache, cache_num, and the objects within it */
707static DECLARE_MUTEX(cache_lock);
708static LIST_HEAD(cache);
709static unsigned int cache_num = 0;
710#define MAX_CACHE_SIZE 10
711
712/* Must be holding cache_lock */
713static struct object *__cache_find(int id)
714{
715 struct object *i;
716
717 list_for_each_entry(i, &amp;cache, list)
718 if (i-&gt;id == id) {
719 i-&gt;popularity++;
720 return i;
721 }
722 return NULL;
723}
724
725/* Must be holding cache_lock */
726static void __cache_delete(struct object *obj)
727{
728 BUG_ON(!obj);
729 list_del(&amp;obj-&gt;list);
730 kfree(obj);
731 cache_num--;
732}
733
734/* Must be holding cache_lock */
735static void __cache_add(struct object *obj)
736{
737 list_add(&amp;obj-&gt;list, &amp;cache);
738 if (++cache_num > MAX_CACHE_SIZE) {
739 struct object *i, *outcast = NULL;
740 list_for_each_entry(i, &amp;cache, list) {
741 if (!outcast || i-&gt;popularity &lt; outcast-&gt;popularity)
742 outcast = i;
743 }
744 __cache_delete(outcast);
745 }
746}
747
748int cache_add(int id, const char *name)
749{
750 struct object *obj;
751
752 if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
753 return -ENOMEM;
754
755 strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name));
756 obj-&gt;id = id;
757 obj-&gt;popularity = 0;
758
759 down(&amp;cache_lock);
760 __cache_add(obj);
761 up(&amp;cache_lock);
762 return 0;
763}
764
765void cache_delete(int id)
766{
767 down(&amp;cache_lock);
768 __cache_delete(__cache_find(id));
769 up(&amp;cache_lock);
770}
771
772int cache_find(int id, char *name)
773{
774 struct object *obj;
775 int ret = -ENOENT;
776
777 down(&amp;cache_lock);
778 obj = __cache_find(id);
779 if (obj) {
780 ret = 0;
781 strcpy(name, obj-&gt;name);
782 }
783 up(&amp;cache_lock);
784 return ret;
785}
786</programlisting>
787
788 <para>
789Note that we always make sure we have the cache_lock when we add,
790delete, or look up the cache: both the cache infrastructure itself and
791the contents of the objects are protected by the lock. In this case
792it's easy, since we copy the data for the user, and never let them
793access the objects directly.
794 </para>
795 <para>
796There is a slight (and common) optimization here: in
797<function>cache_add</function> we set up the fields of the object
798before grabbing the lock. This is safe, as no-one else can access it
799until we put it in cache.
800 </para>
801 </sect1>
802
803 <sect1 id="examples-interrupt">
804 <title>Accessing From Interrupt Context</title>
805 <para>
806Now consider the case where <function>cache_find</function> can be
807called from interrupt context: either a hardware interrupt or a
808softirq. An example would be a timer which deletes object from the
809cache.
810 </para>
811 <para>
812The change is shown below, in standard patch format: the
813<symbol>-</symbol> are lines which are taken away, and the
814<symbol>+</symbol> are lines which are added.
815 </para>
816<programlisting>
817--- cache.c.usercontext 2003-12-09 13:58:54.000000000 +1100
818+++ cache.c.interrupt 2003-12-09 14:07:49.000000000 +1100
819@@ -12,7 +12,7 @@
820 int popularity;
821 };
822
823-static DECLARE_MUTEX(cache_lock);
824+static spinlock_t cache_lock = SPIN_LOCK_UNLOCKED;
825 static LIST_HEAD(cache);
826 static unsigned int cache_num = 0;
827 #define MAX_CACHE_SIZE 10
828@@ -55,6 +55,7 @@
829 int cache_add(int id, const char *name)
830 {
831 struct object *obj;
832+ unsigned long flags;
833
834 if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
835 return -ENOMEM;
836@@ -63,30 +64,33 @@
837 obj-&gt;id = id;
838 obj-&gt;popularity = 0;
839
840- down(&amp;cache_lock);
841+ spin_lock_irqsave(&amp;cache_lock, flags);
842 __cache_add(obj);
843- up(&amp;cache_lock);
844+ spin_unlock_irqrestore(&amp;cache_lock, flags);
845 return 0;
846 }
847
848 void cache_delete(int id)
849 {
850- down(&amp;cache_lock);
851+ unsigned long flags;
852+
853+ spin_lock_irqsave(&amp;cache_lock, flags);
854 __cache_delete(__cache_find(id));
855- up(&amp;cache_lock);
856+ spin_unlock_irqrestore(&amp;cache_lock, flags);
857 }
858
859 int cache_find(int id, char *name)
860 {
861 struct object *obj;
862 int ret = -ENOENT;
863+ unsigned long flags;
864
865- down(&amp;cache_lock);
866+ spin_lock_irqsave(&amp;cache_lock, flags);
867 obj = __cache_find(id);
868 if (obj) {
869 ret = 0;
870 strcpy(name, obj-&gt;name);
871 }
872- up(&amp;cache_lock);
873+ spin_unlock_irqrestore(&amp;cache_lock, flags);
874 return ret;
875 }
876</programlisting>
877
878 <para>
879Note that the <function>spin_lock_irqsave</function> will turn off
880interrupts if they are on, otherwise does nothing (if we are already
881in an interrupt handler), hence these functions are safe to call from
882any context.
883 </para>
884 <para>
885Unfortunately, <function>cache_add</function> calls
886<function>kmalloc</function> with the <symbol>GFP_KERNEL</symbol>
887flag, which is only legal in user context. I have assumed that
888<function>cache_add</function> is still only called in user context,
889otherwise this should become a parameter to
890<function>cache_add</function>.
891 </para>
892 </sect1>
893 <sect1 id="examples-refcnt">
894 <title>Exposing Objects Outside This File</title>
895 <para>
896If our objects contained more information, it might not be sufficient
897to copy the information in and out: other parts of the code might want
898to keep pointers to these objects, for example, rather than looking up
899the id every time. This produces two problems.
900 </para>
901 <para>
902The first problem is that we use the <symbol>cache_lock</symbol> to
903protect objects: we'd need to make this non-static so the rest of the
904code can use it. This makes locking trickier, as it is no longer all
905in one place.
906 </para>
907 <para>
908The second problem is the lifetime problem: if another structure keeps
909a pointer to an object, it presumably expects that pointer to remain
910valid. Unfortunately, this is only guaranteed while you hold the
911lock, otherwise someone might call <function>cache_delete</function>
912and even worse, add another object, re-using the same address.
913 </para>
914 <para>
915As there is only one lock, you can't hold it forever: no-one else would
916get any work done.
917 </para>
918 <para>
919The solution to this problem is to use a reference count: everyone who
920has a pointer to the object increases it when they first get the
921object, and drops the reference count when they're finished with it.
922Whoever drops it to zero knows it is unused, and can actually delete it.
923 </para>
924 <para>
925Here is the code:
926 </para>
927
928<programlisting>
929--- cache.c.interrupt 2003-12-09 14:25:43.000000000 +1100
930+++ cache.c.refcnt 2003-12-09 14:33:05.000000000 +1100
931@@ -7,6 +7,7 @@
932 struct object
933 {
934 struct list_head list;
935+ unsigned int refcnt;
936 int id;
937 char name[32];
938 int popularity;
939@@ -17,6 +18,35 @@
940 static unsigned int cache_num = 0;
941 #define MAX_CACHE_SIZE 10
942
943+static void __object_put(struct object *obj)
944+{
945+ if (--obj-&gt;refcnt == 0)
946+ kfree(obj);
947+}
948+
949+static void __object_get(struct object *obj)
950+{
951+ obj-&gt;refcnt++;
952+}
953+
954+void object_put(struct object *obj)
955+{
956+ unsigned long flags;
957+
958+ spin_lock_irqsave(&amp;cache_lock, flags);
959+ __object_put(obj);
960+ spin_unlock_irqrestore(&amp;cache_lock, flags);
961+}
962+
963+void object_get(struct object *obj)
964+{
965+ unsigned long flags;
966+
967+ spin_lock_irqsave(&amp;cache_lock, flags);
968+ __object_get(obj);
969+ spin_unlock_irqrestore(&amp;cache_lock, flags);
970+}
971+
972 /* Must be holding cache_lock */
973 static struct object *__cache_find(int id)
974 {
975@@ -35,6 +65,7 @@
976 {
977 BUG_ON(!obj);
978 list_del(&amp;obj-&gt;list);
979+ __object_put(obj);
980 cache_num--;
981 }
982
983@@ -63,6 +94,7 @@
984 strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name));
985 obj-&gt;id = id;
986 obj-&gt;popularity = 0;
987+ obj-&gt;refcnt = 1; /* The cache holds a reference */
988
989 spin_lock_irqsave(&amp;cache_lock, flags);
990 __cache_add(obj);
991@@ -79,18 +111,15 @@
992 spin_unlock_irqrestore(&amp;cache_lock, flags);
993 }
994
995-int cache_find(int id, char *name)
996+struct object *cache_find(int id)
997 {
998 struct object *obj;
999- int ret = -ENOENT;
1000 unsigned long flags;
1001
1002 spin_lock_irqsave(&amp;cache_lock, flags);
1003 obj = __cache_find(id);
1004- if (obj) {
1005- ret = 0;
1006- strcpy(name, obj-&gt;name);
1007- }
1008+ if (obj)
1009+ __object_get(obj);
1010 spin_unlock_irqrestore(&amp;cache_lock, flags);
1011- return ret;
1012+ return obj;
1013 }
1014</programlisting>
1015
1016<para>
1017We encapsulate the reference counting in the standard 'get' and 'put'
1018functions. Now we can return the object itself from
1019<function>cache_find</function> which has the advantage that the user
1020can now sleep holding the object (eg. to
1021<function>copy_to_user</function> to name to userspace).
1022</para>
1023<para>
1024The other point to note is that I said a reference should be held for
1025every pointer to the object: thus the reference count is 1 when first
1026inserted into the cache. In some versions the framework does not hold
1027a reference count, but they are more complicated.
1028</para>
1029
1030 <sect2 id="examples-refcnt-atomic">
1031 <title>Using Atomic Operations For The Reference Count</title>
1032<para>
1033In practice, <type>atomic_t</type> would usually be used for
1034<structfield>refcnt</structfield>. There are a number of atomic
1035operations defined in
1036
1037<filename class="headerfile">include/asm/atomic.h</filename>: these are
1038guaranteed to be seen atomically from all CPUs in the system, so no
1039lock is required. In this case, it is simpler than using spinlocks,
1040although for anything non-trivial using spinlocks is clearer. The
1041<function>atomic_inc</function> and
1042<function>atomic_dec_and_test</function> are used instead of the
1043standard increment and decrement operators, and the lock is no longer
1044used to protect the reference count itself.
1045</para>
1046
1047<programlisting>
1048--- cache.c.refcnt 2003-12-09 15:00:35.000000000 +1100
1049+++ cache.c.refcnt-atomic 2003-12-11 15:49:42.000000000 +1100
1050@@ -7,7 +7,7 @@
1051 struct object
1052 {
1053 struct list_head list;
1054- unsigned int refcnt;
1055+ atomic_t refcnt;
1056 int id;
1057 char name[32];
1058 int popularity;
1059@@ -18,33 +18,15 @@
1060 static unsigned int cache_num = 0;
1061 #define MAX_CACHE_SIZE 10
1062
1063-static void __object_put(struct object *obj)
1064-{
1065- if (--obj-&gt;refcnt == 0)
1066- kfree(obj);
1067-}
1068-
1069-static void __object_get(struct object *obj)
1070-{
1071- obj-&gt;refcnt++;
1072-}
1073-
1074 void object_put(struct object *obj)
1075 {
1076- unsigned long flags;
1077-
1078- spin_lock_irqsave(&amp;cache_lock, flags);
1079- __object_put(obj);
1080- spin_unlock_irqrestore(&amp;cache_lock, flags);
1081+ if (atomic_dec_and_test(&amp;obj-&gt;refcnt))
1082+ kfree(obj);
1083 }
1084
1085 void object_get(struct object *obj)
1086 {
1087- unsigned long flags;
1088-
1089- spin_lock_irqsave(&amp;cache_lock, flags);
1090- __object_get(obj);
1091- spin_unlock_irqrestore(&amp;cache_lock, flags);
1092+ atomic_inc(&amp;obj-&gt;refcnt);
1093 }
1094
1095 /* Must be holding cache_lock */
1096@@ -65,7 +47,7 @@
1097 {
1098 BUG_ON(!obj);
1099 list_del(&amp;obj-&gt;list);
1100- __object_put(obj);
1101+ object_put(obj);
1102 cache_num--;
1103 }
1104
1105@@ -94,7 +76,7 @@
1106 strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name));
1107 obj-&gt;id = id;
1108 obj-&gt;popularity = 0;
1109- obj-&gt;refcnt = 1; /* The cache holds a reference */
1110+ atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */
1111
1112 spin_lock_irqsave(&amp;cache_lock, flags);
1113 __cache_add(obj);
1114@@ -119,7 +101,7 @@
1115 spin_lock_irqsave(&amp;cache_lock, flags);
1116 obj = __cache_find(id);
1117 if (obj)
1118- __object_get(obj);
1119+ object_get(obj);
1120 spin_unlock_irqrestore(&amp;cache_lock, flags);
1121 return obj;
1122 }
1123</programlisting>
1124</sect2>
1125</sect1>
1126
1127 <sect1 id="examples-lock-per-obj">
1128 <title>Protecting The Objects Themselves</title>
1129 <para>
1130In these examples, we assumed that the objects (except the reference
1131counts) never changed once they are created. If we wanted to allow
1132the name to change, there are three possibilities:
1133 </para>
1134 <itemizedlist>
1135 <listitem>
1136 <para>
1137You can make <symbol>cache_lock</symbol> non-static, and tell people
1138to grab that lock before changing the name in any object.
1139 </para>
1140 </listitem>
1141 <listitem>
1142 <para>
1143You can provide a <function>cache_obj_rename</function> which grabs
1144this lock and changes the name for the caller, and tell everyone to
1145use that function.
1146 </para>
1147 </listitem>
1148 <listitem>
1149 <para>
1150You can make the <symbol>cache_lock</symbol> protect only the cache
1151itself, and use another lock to protect the name.
1152 </para>
1153 </listitem>
1154 </itemizedlist>
1155
1156 <para>
1157Theoretically, you can make the locks as fine-grained as one lock for
1158every field, for every object. In practice, the most common variants
1159are:
1160</para>
1161 <itemizedlist>
1162 <listitem>
1163 <para>
1164One lock which protects the infrastructure (the <symbol>cache</symbol>
1165list in this example) and all the objects. This is what we have done
1166so far.
1167 </para>
1168 </listitem>
1169 <listitem>
1170 <para>
1171One lock which protects the infrastructure (including the list
1172pointers inside the objects), and one lock inside the object which
1173protects the rest of that object.
1174 </para>
1175 </listitem>
1176 <listitem>
1177 <para>
1178Multiple locks to protect the infrastructure (eg. one lock per hash
1179chain), possibly with a separate per-object lock.
1180 </para>
1181 </listitem>
1182 </itemizedlist>
1183
1184<para>
1185Here is the "lock-per-object" implementation:
1186</para>
1187<programlisting>
1188--- cache.c.refcnt-atomic 2003-12-11 15:50:54.000000000 +1100
1189+++ cache.c.perobjectlock 2003-12-11 17:15:03.000000000 +1100
1190@@ -6,11 +6,17 @@
1191
1192 struct object
1193 {
1194+ /* These two protected by cache_lock. */
1195 struct list_head list;
1196+ int popularity;
1197+
1198 atomic_t refcnt;
1199+
1200+ /* Doesn't change once created. */
1201 int id;
1202+
1203+ spinlock_t lock; /* Protects the name */
1204 char name[32];
1205- int popularity;
1206 };
1207
1208 static spinlock_t cache_lock = SPIN_LOCK_UNLOCKED;
1209@@ -77,6 +84,7 @@
1210 obj-&gt;id = id;
1211 obj-&gt;popularity = 0;
1212 atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */
1213+ spin_lock_init(&amp;obj-&gt;lock);
1214
1215 spin_lock_irqsave(&amp;cache_lock, flags);
1216 __cache_add(obj);
1217</programlisting>
1218
1219<para>
1220Note that I decide that the <structfield>popularity</structfield>
1221count should be protected by the <symbol>cache_lock</symbol> rather
1222than the per-object lock: this is because it (like the
1223<structname>struct list_head</structname> inside the object) is
1224logically part of the infrastructure. This way, I don't need to grab
1225the lock of every object in <function>__cache_add</function> when
1226seeking the least popular.
1227</para>
1228
1229<para>
1230I also decided that the <structfield>id</structfield> member is
1231unchangeable, so I don't need to grab each object lock in
1232<function>__cache_find()</function> to examine the
1233<structfield>id</structfield>: the object lock is only used by a
1234caller who wants to read or write the <structfield>name</structfield>
1235field.
1236</para>
1237
1238<para>
1239Note also that I added a comment describing what data was protected by
1240which locks. This is extremely important, as it describes the runtime
1241behavior of the code, and can be hard to gain from just reading. And
1242as Alan Cox says, <quote>Lock data, not code</quote>.
1243</para>
1244</sect1>
1245</chapter>
1246
1247 <chapter id="common-problems">
1248 <title>Common Problems</title>
1249 <sect1 id="deadlock">
1250 <title>Deadlock: Simple and Advanced</title>
1251
1252 <para>
1253 There is a coding bug where a piece of code tries to grab a
1254 spinlock twice: it will spin forever, waiting for the lock to
1255 be released (spinlocks, rwlocks and semaphores are not
1256 recursive in Linux). This is trivial to diagnose: not a
1257 stay-up-five-nights-talk-to-fluffy-code-bunnies kind of
1258 problem.
1259 </para>
1260
1261 <para>
1262 For a slightly more complex case, imagine you have a region
1263 shared by a softirq and user context. If you use a
1264 <function>spin_lock()</function> call to protect it, it is
1265 possible that the user context will be interrupted by the softirq
1266 while it holds the lock, and the softirq will then spin
1267 forever trying to get the same lock.
1268 </para>
1269
1270 <para>
1271 Both of these are called deadlock, and as shown above, it can
1272 occur even with a single CPU (although not on UP compiles,
1273 since spinlocks vanish on kernel compiles with
1274 <symbol>CONFIG_SMP</symbol>=n. You'll still get data corruption
1275 in the second example).
1276 </para>
1277
1278 <para>
1279 This complete lockup is easy to diagnose: on SMP boxes the
1280 watchdog timer or compiling with <symbol>DEBUG_SPINLOCKS</symbol> set
1281 (<filename>include/linux/spinlock.h</filename>) will show this up
1282 immediately when it happens.
1283 </para>
1284
1285 <para>
1286 A more complex problem is the so-called 'deadly embrace',
1287 involving two or more locks. Say you have a hash table: each
1288 entry in the table is a spinlock, and a chain of hashed
1289 objects. Inside a softirq handler, you sometimes want to
1290 alter an object from one place in the hash to another: you
1291 grab the spinlock of the old hash chain and the spinlock of
1292 the new hash chain, and delete the object from the old one,
1293 and insert it in the new one.
1294 </para>
1295
1296 <para>
1297 There are two problems here. First, if your code ever
1298 tries to move the object to the same chain, it will deadlock
1299 with itself as it tries to lock it twice. Secondly, if the
1300 same softirq on another CPU is trying to move another object
1301 in the reverse direction, the following could happen:
1302 </para>
1303
1304 <table>
1305 <title>Consequences</title>
1306
1307 <tgroup cols="2" align="left">
1308
1309 <thead>
1310 <row>
1311 <entry>CPU 1</entry>
1312 <entry>CPU 2</entry>
1313 </row>
1314 </thead>
1315
1316 <tbody>
1317 <row>
1318 <entry>Grab lock A -&gt; OK</entry>
1319 <entry>Grab lock B -&gt; OK</entry>
1320 </row>
1321 <row>
1322 <entry>Grab lock B -&gt; spin</entry>
1323 <entry>Grab lock A -&gt; spin</entry>
1324 </row>
1325 </tbody>
1326 </tgroup>
1327 </table>
1328
1329 <para>
1330 The two CPUs will spin forever, waiting for the other to give up
1331 their lock. It will look, smell, and feel like a crash.
1332 </para>
1333 </sect1>
1334
1335 <sect1 id="techs-deadlock-prevent">
1336 <title>Preventing Deadlock</title>
1337
1338 <para>
1339 Textbooks will tell you that if you always lock in the same
1340 order, you will never get this kind of deadlock. Practice
1341 will tell you that this approach doesn't scale: when I
1342 create a new lock, I don't understand enough of the kernel
1343 to figure out where in the 5000 lock hierarchy it will fit.
1344 </para>
1345
1346 <para>
1347 The best locks are encapsulated: they never get exposed in
1348 headers, and are never held around calls to non-trivial
1349 functions outside the same file. You can read through this
1350 code and see that it will never deadlock, because it never
1351 tries to grab another lock while it has that one. People
1352 using your code don't even need to know you are using a
1353 lock.
1354 </para>
1355
1356 <para>
1357 A classic problem here is when you provide callbacks or
1358 hooks: if you call these with the lock held, you risk simple
1359 deadlock, or a deadly embrace (who knows what the callback
1360 will do?). Remember, the other programmers are out to get
1361 you, so don't do this.
1362 </para>
1363
1364 <sect2 id="techs-deadlock-overprevent">
1365 <title>Overzealous Prevention Of Deadlocks</title>
1366
1367 <para>
1368 Deadlocks are problematic, but not as bad as data
1369 corruption. Code which grabs a read lock, searches a list,
1370 fails to find what it wants, drops the read lock, grabs a
1371 write lock and inserts the object has a race condition.
1372 </para>
1373
1374 <para>
1375 If you don't see why, please stay the fuck away from my code.
1376 </para>
1377 </sect2>
1378 </sect1>
1379
1380 <sect1 id="racing-timers">
1381 <title>Racing Timers: A Kernel Pastime</title>
1382
1383 <para>
1384 Timers can produce their own special problems with races.
1385 Consider a collection of objects (list, hash, etc) where each
1386 object has a timer which is due to destroy it.
1387 </para>
1388
1389 <para>
1390 If you want to destroy the entire collection (say on module
1391 removal), you might do the following:
1392 </para>
1393
1394 <programlisting>
1395 /* THIS CODE BAD BAD BAD BAD: IF IT WAS ANY WORSE IT WOULD USE
1396 HUNGARIAN NOTATION */
1397 spin_lock_bh(&amp;list_lock);
1398
1399 while (list) {
1400 struct foo *next = list-&gt;next;
1401 del_timer(&amp;list-&gt;timer);
1402 kfree(list);
1403 list = next;
1404 }
1405
1406 spin_unlock_bh(&amp;list_lock);
1407 </programlisting>
1408
1409 <para>
1410 Sooner or later, this will crash on SMP, because a timer can
1411 have just gone off before the <function>spin_lock_bh()</function>,
1412 and it will only get the lock after we
1413 <function>spin_unlock_bh()</function>, and then try to free
1414 the element (which has already been freed!).
1415 </para>
1416
1417 <para>
1418 This can be avoided by checking the result of
1419 <function>del_timer()</function>: if it returns
1420 <returnvalue>1</returnvalue>, the timer has been deleted.
1421 If <returnvalue>0</returnvalue>, it means (in this
1422 case) that it is currently running, so we can do:
1423 </para>
1424
1425 <programlisting>
1426 retry:
1427 spin_lock_bh(&amp;list_lock);
1428
1429 while (list) {
1430 struct foo *next = list-&gt;next;
1431 if (!del_timer(&amp;list-&gt;timer)) {
1432 /* Give timer a chance to delete this */
1433 spin_unlock_bh(&amp;list_lock);
1434 goto retry;
1435 }
1436 kfree(list);
1437 list = next;
1438 }
1439
1440 spin_unlock_bh(&amp;list_lock);
1441 </programlisting>
1442
1443 <para>
1444 Another common problem is deleting timers which restart
1445 themselves (by calling <function>add_timer()</function> at the end
1446 of their timer function). Because this is a fairly common case
1447 which is prone to races, you should use <function>del_timer_sync()</function>
1448 (<filename class="headerfile">include/linux/timer.h</filename>)
1449 to handle this case. It returns the number of times the timer
1450 had to be deleted before we finally stopped it from adding itself back
1451 in.
1452 </para>
1453 </sect1>
1454
1455 </chapter>
1456
1457 <chapter id="Efficiency">
1458 <title>Locking Speed</title>
1459
1460 <para>
1461There are three main things to worry about when considering speed of
1462some code which does locking. First is concurrency: how many things
1463are going to be waiting while someone else is holding a lock. Second
1464is the time taken to actually acquire and release an uncontended lock.
1465Third is using fewer, or smarter locks. I'm assuming that the lock is
1466used fairly often: otherwise, you wouldn't be concerned about
1467efficiency.
1468</para>
1469 <para>
1470Concurrency depends on how long the lock is usually held: you should
1471hold the lock for as long as needed, but no longer. In the cache
1472example, we always create the object without the lock held, and then
1473grab the lock only when we are ready to insert it in the list.
1474</para>
1475 <para>
1476Acquisition times depend on how much damage the lock operations do to
1477the pipeline (pipeline stalls) and how likely it is that this CPU was
1478the last one to grab the lock (ie. is the lock cache-hot for this
1479CPU): on a machine with more CPUs, this likelihood drops fast.
1480Consider a 700MHz Intel Pentium III: an instruction takes about 0.7ns,
1481an atomic increment takes about 58ns, a lock which is cache-hot on
1482this CPU takes 160ns, and a cacheline transfer from another CPU takes
1483an additional 170 to 360ns. (These figures from Paul McKenney's
1484<ulink url="http://www.linuxjournal.com/article.php?sid=6993"> Linux
1485Journal RCU article</ulink>).
1486</para>
1487 <para>
1488These two aims conflict: holding a lock for a short time might be done
1489by splitting locks into parts (such as in our final per-object-lock
1490example), but this increases the number of lock acquisitions, and the
1491results are often slower than having a single lock. This is another
1492reason to advocate locking simplicity.
1493</para>
1494 <para>
1495The third concern is addressed below: there are some methods to reduce
1496the amount of locking which needs to be done.
1497</para>
1498
1499 <sect1 id="efficiency-rwlocks">
1500 <title>Read/Write Lock Variants</title>
1501
1502 <para>
1503 Both spinlocks and semaphores have read/write variants:
1504 <type>rwlock_t</type> and <structname>struct rw_semaphore</structname>.
1505 These divide users into two classes: the readers and the writers. If
1506 you are only reading the data, you can get a read lock, but to write to
1507 the data you need the write lock. Many people can hold a read lock,
1508 but a writer must be sole holder.
1509 </para>
1510
1511 <para>
1512 If your code divides neatly along reader/writer lines (as our
1513 cache code does), and the lock is held by readers for
1514 significant lengths of time, using these locks can help. They
1515 are slightly slower than the normal locks though, so in practice
1516 <type>rwlock_t</type> is not usually worthwhile.
1517 </para>
1518 </sect1>
1519
1520 <sect1 id="efficiency-read-copy-update">
1521 <title>Avoiding Locks: Read Copy Update</title>
1522
1523 <para>
1524 There is a special method of read/write locking called Read Copy
1525 Update. Using RCU, the readers can avoid taking a lock
1526 altogether: as we expect our cache to be read more often than
1527 updated (otherwise the cache is a waste of time), it is a
1528 candidate for this optimization.
1529 </para>
1530
1531 <para>
1532 How do we get rid of read locks? Getting rid of read locks
1533 means that writers may be changing the list underneath the
1534 readers. That is actually quite simple: we can read a linked
1535 list while an element is being added if the writer adds the
1536 element very carefully. For example, adding
1537 <symbol>new</symbol> to a single linked list called
1538 <symbol>list</symbol>:
1539 </para>
1540
1541 <programlisting>
1542 new-&gt;next = list-&gt;next;
1543 wmb();
1544 list-&gt;next = new;
1545 </programlisting>
1546
1547 <para>
1548 The <function>wmb()</function> is a write memory barrier. It
1549 ensures that the first operation (setting the new element's
1550 <symbol>next</symbol> pointer) is complete and will be seen by
1551 all CPUs, before the second operation is (putting the new
1552 element into the list). This is important, since modern
1553 compilers and modern CPUs can both reorder instructions unless
1554 told otherwise: we want a reader to either not see the new
1555 element at all, or see the new element with the
1556 <symbol>next</symbol> pointer correctly pointing at the rest of
1557 the list.
1558 </para>
1559 <para>
1560 Fortunately, there is a function to do this for standard
1561 <structname>struct list_head</structname> lists:
1562 <function>list_add_rcu()</function>
1563 (<filename>include/linux/list.h</filename>).
1564 </para>
1565 <para>
1566 Removing an element from the list is even simpler: we replace
1567 the pointer to the old element with a pointer to its successor,
1568 and readers will either see it, or skip over it.
1569 </para>
1570 <programlisting>
1571 list-&gt;next = old-&gt;next;
1572 </programlisting>
1573 <para>
1574 There is <function>list_del_rcu()</function>
1575 (<filename>include/linux/list.h</filename>) which does this (the
1576 normal version poisons the old object, which we don't want).
1577 </para>
1578 <para>
1579 The reader must also be careful: some CPUs can look through the
1580 <symbol>next</symbol> pointer to start reading the contents of
1581 the next element early, but don't realize that the pre-fetched
1582 contents is wrong when the <symbol>next</symbol> pointer changes
1583 underneath them. Once again, there is a
1584 <function>list_for_each_entry_rcu()</function>
1585 (<filename>include/linux/list.h</filename>) to help you. Of
1586 course, writers can just use
1587 <function>list_for_each_entry()</function>, since there cannot
1588 be two simultaneous writers.
1589 </para>
1590 <para>
1591 Our final dilemma is this: when can we actually destroy the
1592 removed element? Remember, a reader might be stepping through
1593 this element in the list right now: it we free this element and
1594 the <symbol>next</symbol> pointer changes, the reader will jump
1595 off into garbage and crash. We need to wait until we know that
1596 all the readers who were traversing the list when we deleted the
1597 element are finished. We use <function>call_rcu()</function> to
1598 register a callback which will actually destroy the object once
1599 the readers are finished.
1600 </para>
1601 <para>
1602 But how does Read Copy Update know when the readers are
1603 finished? The method is this: firstly, the readers always
1604 traverse the list inside
1605 <function>rcu_read_lock()</function>/<function>rcu_read_unlock()</function>
1606 pairs: these simply disable preemption so the reader won't go to
1607 sleep while reading the list.
1608 </para>
1609 <para>
1610 RCU then waits until every other CPU has slept at least once:
1611 since readers cannot sleep, we know that any readers which were
1612 traversing the list during the deletion are finished, and the
1613 callback is triggered. The real Read Copy Update code is a
1614 little more optimized than this, but this is the fundamental
1615 idea.
1616 </para>
1617
1618<programlisting>
1619--- cache.c.perobjectlock 2003-12-11 17:15:03.000000000 +1100
1620+++ cache.c.rcupdate 2003-12-11 17:55:14.000000000 +1100
1621@@ -1,15 +1,18 @@
1622 #include &lt;linux/list.h&gt;
1623 #include &lt;linux/slab.h&gt;
1624 #include &lt;linux/string.h&gt;
1625+#include &lt;linux/rcupdate.h&gt;
1626 #include &lt;asm/semaphore.h&gt;
1627 #include &lt;asm/errno.h&gt;
1628
1629 struct object
1630 {
1631- /* These two protected by cache_lock. */
1632+ /* This is protected by RCU */
1633 struct list_head list;
1634 int popularity;
1635
1636+ struct rcu_head rcu;
1637+
1638 atomic_t refcnt;
1639
1640 /* Doesn't change once created. */
1641@@ -40,7 +43,7 @@
1642 {
1643 struct object *i;
1644
1645- list_for_each_entry(i, &amp;cache, list) {
1646+ list_for_each_entry_rcu(i, &amp;cache, list) {
1647 if (i-&gt;id == id) {
1648 i-&gt;popularity++;
1649 return i;
1650@@ -49,19 +52,25 @@
1651 return NULL;
1652 }
1653
1654+/* Final discard done once we know no readers are looking. */
1655+static void cache_delete_rcu(void *arg)
1656+{
1657+ object_put(arg);
1658+}
1659+
1660 /* Must be holding cache_lock */
1661 static void __cache_delete(struct object *obj)
1662 {
1663 BUG_ON(!obj);
1664- list_del(&amp;obj-&gt;list);
1665- object_put(obj);
1666+ list_del_rcu(&amp;obj-&gt;list);
1667 cache_num--;
1668+ call_rcu(&amp;obj-&gt;rcu, cache_delete_rcu, obj);
1669 }
1670
1671 /* Must be holding cache_lock */
1672 static void __cache_add(struct object *obj)
1673 {
1674- list_add(&amp;obj-&gt;list, &amp;cache);
1675+ list_add_rcu(&amp;obj-&gt;list, &amp;cache);
1676 if (++cache_num > MAX_CACHE_SIZE) {
1677 struct object *i, *outcast = NULL;
1678 list_for_each_entry(i, &amp;cache, list) {
1679@@ -85,6 +94,7 @@
1680 obj-&gt;popularity = 0;
1681 atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */
1682 spin_lock_init(&amp;obj-&gt;lock);
1683+ INIT_RCU_HEAD(&amp;obj-&gt;rcu);
1684
1685 spin_lock_irqsave(&amp;cache_lock, flags);
1686 __cache_add(obj);
1687@@ -104,12 +114,11 @@
1688 struct object *cache_find(int id)
1689 {
1690 struct object *obj;
1691- unsigned long flags;
1692
1693- spin_lock_irqsave(&amp;cache_lock, flags);
1694+ rcu_read_lock();
1695 obj = __cache_find(id);
1696 if (obj)
1697 object_get(obj);
1698- spin_unlock_irqrestore(&amp;cache_lock, flags);
1699+ rcu_read_unlock();
1700 return obj;
1701 }
1702</programlisting>
1703
1704<para>
1705Note that the reader will alter the
1706<structfield>popularity</structfield> member in
1707<function>__cache_find()</function>, and now it doesn't hold a lock.
1708One solution would be to make it an <type>atomic_t</type>, but for
1709this usage, we don't really care about races: an approximate result is
1710good enough, so I didn't change it.
1711</para>
1712
1713<para>
1714The result is that <function>cache_find()</function> requires no
1715synchronization with any other functions, so is almost as fast on SMP
1716as it would be on UP.
1717</para>
1718
1719<para>
1720There is a furthur optimization possible here: remember our original
1721cache code, where there were no reference counts and the caller simply
1722held the lock whenever using the object? This is still possible: if
1723you hold the lock, noone can delete the object, so you don't need to
1724get and put the reference count.
1725</para>
1726
1727<para>
1728Now, because the 'read lock' in RCU is simply disabling preemption, a
1729caller which always has preemption disabled between calling
1730<function>cache_find()</function> and
1731<function>object_put()</function> does not need to actually get and
1732put the reference count: we could expose
1733<function>__cache_find()</function> by making it non-static, and
1734such callers could simply call that.
1735</para>
1736<para>
1737The benefit here is that the reference count is not written to: the
1738object is not altered in any way, which is much faster on SMP
1739machines due to caching.
1740</para>
1741 </sect1>
1742
1743 <sect1 id="per-cpu">
1744 <title>Per-CPU Data</title>
1745
1746 <para>
1747 Another technique for avoiding locking which is used fairly
1748 widely is to duplicate information for each CPU. For example,
1749 if you wanted to keep a count of a common condition, you could
1750 use a spin lock and a single counter. Nice and simple.
1751 </para>
1752
1753 <para>
1754 If that was too slow (it's usually not, but if you've got a
1755 really big machine to test on and can show that it is), you
1756 could instead use a counter for each CPU, then none of them need
1757 an exclusive lock. See <function>DEFINE_PER_CPU()</function>,
1758 <function>get_cpu_var()</function> and
1759 <function>put_cpu_var()</function>
1760 (<filename class="headerfile">include/linux/percpu.h</filename>).
1761 </para>
1762
1763 <para>
1764 Of particular use for simple per-cpu counters is the
1765 <type>local_t</type> type, and the
1766 <function>cpu_local_inc()</function> and related functions,
1767 which are more efficient than simple code on some architectures
1768 (<filename class="headerfile">include/asm/local.h</filename>).
1769 </para>
1770
1771 <para>
1772 Note that there is no simple, reliable way of getting an exact
1773 value of such a counter, without introducing more locks. This
1774 is not a problem for some uses.
1775 </para>
1776 </sect1>
1777
1778 <sect1 id="mostly-hardirq">
1779 <title>Data Which Mostly Used By An IRQ Handler</title>
1780
1781 <para>
1782 If data is always accessed from within the same IRQ handler, you
1783 don't need a lock at all: the kernel already guarantees that the
1784 irq handler will not run simultaneously on multiple CPUs.
1785 </para>
1786 <para>
1787 Manfred Spraul points out that you can still do this, even if
1788 the data is very occasionally accessed in user context or
1789 softirqs/tasklets. The irq handler doesn't use a lock, and
1790 all other accesses are done as so:
1791 </para>
1792
1793<programlisting>
1794 spin_lock(&amp;lock);
1795 disable_irq(irq);
1796 ...
1797 enable_irq(irq);
1798 spin_unlock(&amp;lock);
1799</programlisting>
1800 <para>
1801 The <function>disable_irq()</function> prevents the irq handler
1802 from running (and waits for it to finish if it's currently
1803 running on other CPUs). The spinlock prevents any other
1804 accesses happening at the same time. Naturally, this is slower
1805 than just a <function>spin_lock_irq()</function> call, so it
1806 only makes sense if this type of access happens extremely
1807 rarely.
1808 </para>
1809 </sect1>
1810 </chapter>
1811
1812 <chapter id="sleeping-things">
1813 <title>What Functions Are Safe To Call From Interrupts?</title>
1814
1815 <para>
1816 Many functions in the kernel sleep (ie. call schedule())
1817 directly or indirectly: you can never call them while holding a
1818 spinlock, or with preemption disabled. This also means you need
1819 to be in user context: calling them from an interrupt is illegal.
1820 </para>
1821
1822 <sect1 id="sleeping">
1823 <title>Some Functions Which Sleep</title>
1824
1825 <para>
1826 The most common ones are listed below, but you usually have to
1827 read the code to find out if other calls are safe. If everyone
1828 else who calls it can sleep, you probably need to be able to
1829 sleep, too. In particular, registration and deregistration
1830 functions usually expect to be called from user context, and can
1831 sleep.
1832 </para>
1833
1834 <itemizedlist>
1835 <listitem>
1836 <para>
1837 Accesses to
1838 <firstterm linkend="gloss-userspace">userspace</firstterm>:
1839 </para>
1840 <itemizedlist>
1841 <listitem>
1842 <para>
1843 <function>copy_from_user()</function>
1844 </para>
1845 </listitem>
1846 <listitem>
1847 <para>
1848 <function>copy_to_user()</function>
1849 </para>
1850 </listitem>
1851 <listitem>
1852 <para>
1853 <function>get_user()</function>
1854 </para>
1855 </listitem>
1856 <listitem>
1857 <para>
1858 <function> put_user()</function>
1859 </para>
1860 </listitem>
1861 </itemizedlist>
1862 </listitem>
1863
1864 <listitem>
1865 <para>
1866 <function>kmalloc(GFP_KERNEL)</function>
1867 </para>
1868 </listitem>
1869
1870 <listitem>
1871 <para>
1872 <function>down_interruptible()</function> and
1873 <function>down()</function>
1874 </para>
1875 <para>
1876 There is a <function>down_trylock()</function> which can be
1877 used inside interrupt context, as it will not sleep.
1878 <function>up()</function> will also never sleep.
1879 </para>
1880 </listitem>
1881 </itemizedlist>
1882 </sect1>
1883
1884 <sect1 id="dont-sleep">
1885 <title>Some Functions Which Don't Sleep</title>
1886
1887 <para>
1888 Some functions are safe to call from any context, or holding
1889 almost any lock.
1890 </para>
1891
1892 <itemizedlist>
1893 <listitem>
1894 <para>
1895 <function>printk()</function>
1896 </para>
1897 </listitem>
1898 <listitem>
1899 <para>
1900 <function>kfree()</function>
1901 </para>
1902 </listitem>
1903 <listitem>
1904 <para>
1905 <function>add_timer()</function> and <function>del_timer()</function>
1906 </para>
1907 </listitem>
1908 </itemizedlist>
1909 </sect1>
1910 </chapter>
1911
1912 <chapter id="references">
1913 <title>Further reading</title>
1914
1915 <itemizedlist>
1916 <listitem>
1917 <para>
1918 <filename>Documentation/spinlocks.txt</filename>:
1919 Linus Torvalds' spinlocking tutorial in the kernel sources.
1920 </para>
1921 </listitem>
1922
1923 <listitem>
1924 <para>
1925 Unix Systems for Modern Architectures: Symmetric
1926 Multiprocessing and Caching for Kernel Programmers:
1927 </para>
1928
1929 <para>
1930 Curt Schimmel's very good introduction to kernel level
1931 locking (not written for Linux, but nearly everything
1932 applies). The book is expensive, but really worth every
1933 penny to understand SMP locking. [ISBN: 0201633388]
1934 </para>
1935 </listitem>
1936 </itemizedlist>
1937 </chapter>
1938
1939 <chapter id="thanks">
1940 <title>Thanks</title>
1941
1942 <para>
1943 Thanks to Telsa Gwynne for DocBooking, neatening and adding
1944 style.
1945 </para>
1946
1947 <para>
1948 Thanks to Martin Pool, Philipp Rumpf, Stephen Rothwell, Paul
1949 Mackerras, Ruedi Aschwanden, Alan Cox, Manfred Spraul, Tim
1950 Waugh, Pete Zaitcev, James Morris, Robert Love, Paul McKenney,
1951 John Ashby for proofreading, correcting, flaming, commenting.
1952 </para>
1953
1954 <para>
1955 Thanks to the cabal for having no influence on this document.
1956 </para>
1957 </chapter>
1958
1959 <glossary id="glossary">
1960 <title>Glossary</title>
1961
1962 <glossentry id="gloss-preemption">
1963 <glossterm>preemption</glossterm>
1964 <glossdef>
1965 <para>
1966 Prior to 2.5, or when <symbol>CONFIG_PREEMPT</symbol> is
1967 unset, processes in user context inside the kernel would not
1968 preempt each other (ie. you had that CPU until you have it up,
1969 except for interrupts). With the addition of
1970 <symbol>CONFIG_PREEMPT</symbol> in 2.5.4, this changed: when
1971 in user context, higher priority tasks can "cut in": spinlocks
1972 were changed to disable preemption, even on UP.
1973 </para>
1974 </glossdef>
1975 </glossentry>
1976
1977 <glossentry id="gloss-bh">
1978 <glossterm>bh</glossterm>
1979 <glossdef>
1980 <para>
1981 Bottom Half: for historical reasons, functions with
1982 '_bh' in them often now refer to any software interrupt, e.g.
1983 <function>spin_lock_bh()</function> blocks any software interrupt
1984 on the current CPU. Bottom halves are deprecated, and will
1985 eventually be replaced by tasklets. Only one bottom half will be
1986 running at any time.
1987 </para>
1988 </glossdef>
1989 </glossentry>
1990
1991 <glossentry id="gloss-hwinterrupt">
1992 <glossterm>Hardware Interrupt / Hardware IRQ</glossterm>
1993 <glossdef>
1994 <para>
1995 Hardware interrupt request. <function>in_irq()</function> returns
1996 <returnvalue>true</returnvalue> in a hardware interrupt handler.
1997 </para>
1998 </glossdef>
1999 </glossentry>
2000
2001 <glossentry id="gloss-interruptcontext">
2002 <glossterm>Interrupt Context</glossterm>
2003 <glossdef>
2004 <para>
2005 Not user context: processing a hardware irq or software irq.
2006 Indicated by the <function>in_interrupt()</function> macro
2007 returning <returnvalue>true</returnvalue>.
2008 </para>
2009 </glossdef>
2010 </glossentry>
2011
2012 <glossentry id="gloss-smp">
2013 <glossterm><acronym>SMP</acronym></glossterm>
2014 <glossdef>
2015 <para>
2016 Symmetric Multi-Processor: kernels compiled for multiple-CPU
2017 machines. (CONFIG_SMP=y).
2018 </para>
2019 </glossdef>
2020 </glossentry>
2021
2022 <glossentry id="gloss-softirq">
2023 <glossterm>Software Interrupt / softirq</glossterm>
2024 <glossdef>
2025 <para>
2026 Software interrupt handler. <function>in_irq()</function> returns
2027 <returnvalue>false</returnvalue>; <function>in_softirq()</function>
2028 returns <returnvalue>true</returnvalue>. Tasklets and softirqs
2029 both fall into the category of 'software interrupts'.
2030 </para>
2031 <para>
2032 Strictly speaking a softirq is one of up to 32 enumerated software
2033 interrupts which can run on multiple CPUs at once.
2034 Sometimes used to refer to tasklets as
2035 well (ie. all software interrupts).
2036 </para>
2037 </glossdef>
2038 </glossentry>
2039
2040 <glossentry id="gloss-tasklet">
2041 <glossterm>tasklet</glossterm>
2042 <glossdef>
2043 <para>
2044 A dynamically-registrable software interrupt,
2045 which is guaranteed to only run on one CPU at a time.
2046 </para>
2047 </glossdef>
2048 </glossentry>
2049
2050 <glossentry id="gloss-timers">
2051 <glossterm>timer</glossterm>
2052 <glossdef>
2053 <para>
2054 A dynamically-registrable software interrupt, which is run at
2055 (or close to) a given time. When running, it is just like a
2056 tasklet (in fact, they are called from the TIMER_SOFTIRQ).
2057 </para>
2058 </glossdef>
2059 </glossentry>
2060
2061 <glossentry id="gloss-up">
2062 <glossterm><acronym>UP</acronym></glossterm>
2063 <glossdef>
2064 <para>
2065 Uni-Processor: Non-SMP. (CONFIG_SMP=n).
2066 </para>
2067 </glossdef>
2068 </glossentry>
2069
2070 <glossentry id="gloss-usercontext">
2071 <glossterm>User Context</glossterm>
2072 <glossdef>
2073 <para>
2074 The kernel executing on behalf of a particular process (ie. a
2075 system call or trap) or kernel thread. You can tell which
2076 process with the <symbol>current</symbol> macro.) Not to
2077 be confused with userspace. Can be interrupted by software or
2078 hardware interrupts.
2079 </para>
2080 </glossdef>
2081 </glossentry>
2082
2083 <glossentry id="gloss-userspace">
2084 <glossterm>Userspace</glossterm>
2085 <glossdef>
2086 <para>
2087 A process executing its own code outside the kernel.
2088 </para>
2089 </glossdef>
2090 </glossentry>
2091
2092 </glossary>
2093</book>
2094