blob: e3e8541ee63b07f57d915e5409e279d0f09ce2c6 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef ASMARM_DMA_MAPPING_H
2#define ASMARM_DMA_MAPPING_H
3
4#ifdef __KERNEL__
5
6#include <linux/config.h>
7#include <linux/mm.h> /* need struct page */
8
9#include <asm/scatterlist.h>
10
11/*
12 * DMA-consistent mapping functions. These allocate/free a region of
13 * uncached, unwrite-buffered mapped memory space for use with DMA
14 * devices. This is the "generic" version. The PCI specific version
15 * is in pci.h
16 */
17extern void consistent_sync(void *kaddr, size_t size, int rw);
18
19/*
20 * Return whether the given device DMA address mask can be supported
21 * properly. For example, if your device can only drive the low 24-bits
22 * during bus mastering, then you would pass 0x00ffffff as the mask
23 * to this function.
akpm@osdl.org7a228aa2005-04-16 15:23:57 -070024 *
25 * FIXME: This should really be a platform specific issue - we should
26 * return false if GFP_DMA allocations may not satisfy the supplied 'mask'.
Linus Torvalds1da177e2005-04-16 15:20:36 -070027 */
28static inline int dma_supported(struct device *dev, u64 mask)
29{
30 return dev->dma_mask && *dev->dma_mask != 0;
31}
32
33static inline int dma_set_mask(struct device *dev, u64 dma_mask)
34{
35 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
36 return -EIO;
37
38 *dev->dma_mask = dma_mask;
39
40 return 0;
41}
42
43static inline int dma_get_cache_alignment(void)
44{
45 return 32;
46}
47
48static inline int dma_is_consistent(dma_addr_t handle)
49{
50 return 0;
51}
52
53/*
54 * DMA errors are defined by all-bits-set in the DMA address.
55 */
56static inline int dma_mapping_error(dma_addr_t dma_addr)
57{
58 return dma_addr == ~0;
59}
60
61/**
62 * dma_alloc_coherent - allocate consistent memory for DMA
63 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
64 * @size: required memory size
65 * @handle: bus-specific DMA address
66 *
67 * Allocate some uncached, unbuffered memory for a device for
68 * performing DMA. This function allocates pages, and will
69 * return the CPU-viewed address, and sets @handle to be the
70 * device-viewed address.
71 */
72extern void *
Al Virof9e32142005-10-21 03:20:58 -040073dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp);
Linus Torvalds1da177e2005-04-16 15:20:36 -070074
75/**
76 * dma_free_coherent - free memory allocated by dma_alloc_coherent
77 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
78 * @size: size of memory originally requested in dma_alloc_coherent
79 * @cpu_addr: CPU-view address returned from dma_alloc_coherent
80 * @handle: device-view address returned from dma_alloc_coherent
81 *
82 * Free (and unmap) a DMA buffer previously allocated by
83 * dma_alloc_coherent().
84 *
85 * References to memory and mappings associated with cpu_addr/handle
86 * during and after this call executing are illegal.
87 */
88extern void
89dma_free_coherent(struct device *dev, size_t size, void *cpu_addr,
90 dma_addr_t handle);
91
92/**
93 * dma_mmap_coherent - map a coherent DMA allocation into user space
94 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
95 * @vma: vm_area_struct describing requested user mapping
96 * @cpu_addr: kernel CPU-view address returned from dma_alloc_coherent
97 * @handle: device-view address returned from dma_alloc_coherent
98 * @size: size of memory originally requested in dma_alloc_coherent
99 *
100 * Map a coherent DMA buffer previously allocated by dma_alloc_coherent
101 * into user space. The coherent DMA buffer must not be freed by the
102 * driver until the user space mapping has been released.
103 */
104int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
105 void *cpu_addr, dma_addr_t handle, size_t size);
106
107
108/**
109 * dma_alloc_writecombine - allocate writecombining memory for DMA
110 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
111 * @size: required memory size
112 * @handle: bus-specific DMA address
113 *
114 * Allocate some uncached, buffered memory for a device for
115 * performing DMA. This function allocates pages, and will
116 * return the CPU-viewed address, and sets @handle to be the
117 * device-viewed address.
118 */
119extern void *
Al Virof9e32142005-10-21 03:20:58 -0400120dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700121
122#define dma_free_writecombine(dev,size,cpu_addr,handle) \
123 dma_free_coherent(dev,size,cpu_addr,handle)
124
125int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
126 void *cpu_addr, dma_addr_t handle, size_t size);
127
128
129/**
130 * dma_map_single - map a single buffer for streaming DMA
131 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
132 * @cpu_addr: CPU direct mapped address of buffer
133 * @size: size of buffer to map
134 * @dir: DMA transfer direction
135 *
136 * Ensure that any data held in the cache is appropriately discarded
137 * or written back.
138 *
139 * The device owns this memory once this call has completed. The CPU
140 * can regain ownership by calling dma_unmap_single() or
141 * dma_sync_single_for_cpu().
142 */
143#ifndef CONFIG_DMABOUNCE
144static inline dma_addr_t
145dma_map_single(struct device *dev, void *cpu_addr, size_t size,
146 enum dma_data_direction dir)
147{
148 consistent_sync(cpu_addr, size, dir);
149 return virt_to_dma(dev, (unsigned long)cpu_addr);
150}
151#else
152extern dma_addr_t dma_map_single(struct device *,void *, size_t, enum dma_data_direction);
153#endif
154
155/**
156 * dma_map_page - map a portion of a page for streaming DMA
157 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
158 * @page: page that buffer resides in
159 * @offset: offset into page for start of buffer
160 * @size: size of buffer to map
161 * @dir: DMA transfer direction
162 *
163 * Ensure that any data held in the cache is appropriately discarded
164 * or written back.
165 *
166 * The device owns this memory once this call has completed. The CPU
167 * can regain ownership by calling dma_unmap_page() or
168 * dma_sync_single_for_cpu().
169 */
170static inline dma_addr_t
171dma_map_page(struct device *dev, struct page *page,
172 unsigned long offset, size_t size,
173 enum dma_data_direction dir)
174{
175 return dma_map_single(dev, page_address(page) + offset, size, (int)dir);
176}
177
178/**
179 * dma_unmap_single - unmap a single buffer previously mapped
180 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
181 * @handle: DMA address of buffer
182 * @size: size of buffer to map
183 * @dir: DMA transfer direction
184 *
185 * Unmap a single streaming mode DMA translation. The handle and size
186 * must match what was provided in the previous dma_map_single() call.
187 * All other usages are undefined.
188 *
189 * After this call, reads by the CPU to the buffer are guaranteed to see
190 * whatever the device wrote there.
191 */
192#ifndef CONFIG_DMABOUNCE
193static inline void
194dma_unmap_single(struct device *dev, dma_addr_t handle, size_t size,
195 enum dma_data_direction dir)
196{
197 /* nothing to do */
198}
199#else
200extern void dma_unmap_single(struct device *, dma_addr_t, size_t, enum dma_data_direction);
201#endif
202
203/**
204 * dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
205 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
206 * @handle: DMA address of buffer
207 * @size: size of buffer to map
208 * @dir: DMA transfer direction
209 *
210 * Unmap a single streaming mode DMA translation. The handle and size
211 * must match what was provided in the previous dma_map_single() call.
212 * All other usages are undefined.
213 *
214 * After this call, reads by the CPU to the buffer are guaranteed to see
215 * whatever the device wrote there.
216 */
217static inline void
218dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
219 enum dma_data_direction dir)
220{
221 dma_unmap_single(dev, handle, size, (int)dir);
222}
223
224/**
225 * dma_map_sg - map a set of SG buffers for streaming mode DMA
226 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
227 * @sg: list of buffers
228 * @nents: number of buffers to map
229 * @dir: DMA transfer direction
230 *
231 * Map a set of buffers described by scatterlist in streaming
232 * mode for DMA. This is the scatter-gather version of the
233 * above dma_map_single interface. Here the scatter gather list
234 * elements are each tagged with the appropriate dma address
235 * and length. They are obtained via sg_dma_{address,length}(SG).
236 *
237 * NOTE: An implementation may be able to use a smaller number of
238 * DMA address/length pairs than there are SG table elements.
239 * (for example via virtual mapping capabilities)
240 * The routine returns the number of addr/length pairs actually
241 * used, at most nents.
242 *
243 * Device ownership issues as mentioned above for dma_map_single are
244 * the same here.
245 */
246#ifndef CONFIG_DMABOUNCE
247static inline int
248dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
249 enum dma_data_direction dir)
250{
251 int i;
252
253 for (i = 0; i < nents; i++, sg++) {
254 char *virt;
255
256 sg->dma_address = page_to_dma(dev, sg->page) + sg->offset;
257 virt = page_address(sg->page) + sg->offset;
258 consistent_sync(virt, sg->length, dir);
259 }
260
261 return nents;
262}
263#else
264extern int dma_map_sg(struct device *, struct scatterlist *, int, enum dma_data_direction);
265#endif
266
267/**
268 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
269 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
270 * @sg: list of buffers
271 * @nents: number of buffers to map
272 * @dir: DMA transfer direction
273 *
274 * Unmap a set of streaming mode DMA translations.
275 * Again, CPU read rules concerning calls here are the same as for
276 * dma_unmap_single() above.
277 */
278#ifndef CONFIG_DMABOUNCE
279static inline void
280dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
281 enum dma_data_direction dir)
282{
283
284 /* nothing to do */
285}
286#else
287extern void dma_unmap_sg(struct device *, struct scatterlist *, int, enum dma_data_direction);
288#endif
289
290
291/**
292 * dma_sync_single_for_cpu
293 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
294 * @handle: DMA address of buffer
295 * @size: size of buffer to map
296 * @dir: DMA transfer direction
297 *
298 * Make physical memory consistent for a single streaming mode DMA
299 * translation after a transfer.
300 *
301 * If you perform a dma_map_single() but wish to interrogate the
302 * buffer using the cpu, yet do not wish to teardown the PCI dma
303 * mapping, you must call this function before doing so. At the
304 * next point you give the PCI dma address back to the card, you
305 * must first the perform a dma_sync_for_device, and then the
306 * device again owns the buffer.
307 */
308#ifndef CONFIG_DMABOUNCE
309static inline void
310dma_sync_single_for_cpu(struct device *dev, dma_addr_t handle, size_t size,
311 enum dma_data_direction dir)
312{
313 consistent_sync((void *)dma_to_virt(dev, handle), size, dir);
314}
315
316static inline void
317dma_sync_single_for_device(struct device *dev, dma_addr_t handle, size_t size,
318 enum dma_data_direction dir)
319{
320 consistent_sync((void *)dma_to_virt(dev, handle), size, dir);
321}
322#else
323extern void dma_sync_single_for_cpu(struct device*, dma_addr_t, size_t, enum dma_data_direction);
324extern void dma_sync_single_for_device(struct device*, dma_addr_t, size_t, enum dma_data_direction);
325#endif
326
327
328/**
329 * dma_sync_sg_for_cpu
330 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
331 * @sg: list of buffers
332 * @nents: number of buffers to map
333 * @dir: DMA transfer direction
334 *
335 * Make physical memory consistent for a set of streaming
336 * mode DMA translations after a transfer.
337 *
338 * The same as dma_sync_single_for_* but for a scatter-gather list,
339 * same rules and usage.
340 */
341#ifndef CONFIG_DMABOUNCE
342static inline void
343dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents,
344 enum dma_data_direction dir)
345{
346 int i;
347
348 for (i = 0; i < nents; i++, sg++) {
349 char *virt = page_address(sg->page) + sg->offset;
350 consistent_sync(virt, sg->length, dir);
351 }
352}
353
354static inline void
355dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents,
356 enum dma_data_direction dir)
357{
358 int i;
359
360 for (i = 0; i < nents; i++, sg++) {
361 char *virt = page_address(sg->page) + sg->offset;
362 consistent_sync(virt, sg->length, dir);
363 }
364}
365#else
366extern void dma_sync_sg_for_cpu(struct device*, struct scatterlist*, int, enum dma_data_direction);
367extern void dma_sync_sg_for_device(struct device*, struct scatterlist*, int, enum dma_data_direction);
368#endif
369
370#ifdef CONFIG_DMABOUNCE
371/*
372 * For SA-1111, IXP425, and ADI systems the dma-mapping functions are "magic"
373 * and utilize bounce buffers as needed to work around limited DMA windows.
374 *
375 * On the SA-1111, a bug limits DMA to only certain regions of RAM.
376 * On the IXP425, the PCI inbound window is 64MB (256MB total RAM)
377 * On some ADI engineering sytems, PCI inbound window is 32MB (12MB total RAM)
378 *
379 * The following are helper functions used by the dmabounce subystem
380 *
381 */
382
383/**
384 * dmabounce_register_dev
385 *
386 * @dev: valid struct device pointer
387 * @small_buf_size: size of buffers to use with small buffer pool
388 * @large_buf_size: size of buffers to use with large buffer pool (can be 0)
389 *
390 * This function should be called by low-level platform code to register
391 * a device as requireing DMA buffer bouncing. The function will allocate
392 * appropriate DMA pools for the device.
393 *
394 */
395extern int dmabounce_register_dev(struct device *, unsigned long, unsigned long);
396
397/**
398 * dmabounce_unregister_dev
399 *
400 * @dev: valid struct device pointer
401 *
402 * This function should be called by low-level platform code when device
403 * that was previously registered with dmabounce_register_dev is removed
404 * from the system.
405 *
406 */
407extern void dmabounce_unregister_dev(struct device *);
408
409/**
410 * dma_needs_bounce
411 *
412 * @dev: valid struct device pointer
413 * @dma_handle: dma_handle of unbounced buffer
414 * @size: size of region being mapped
415 *
416 * Platforms that utilize the dmabounce mechanism must implement
417 * this function.
418 *
419 * The dmabounce routines call this function whenever a dma-mapping
420 * is requested to determine whether a given buffer needs to be bounced
421 * or not. The function must return 0 if the the buffer is OK for
422 * DMA access and 1 if the buffer needs to be bounced.
423 *
424 */
425extern int dma_needs_bounce(struct device*, dma_addr_t, size_t);
426#endif /* CONFIG_DMABOUNCE */
427
428#endif /* __KERNEL__ */
429#endif