Bryan Huntsman | 3f2bc4d | 2011-08-16 17:27:22 -0700 | [diff] [blame] | 1 | /* Copyright (c) 2011, Code Aurora Forum. All rights reserved. |
| 2 | * |
| 3 | * This program is free software; you can redistribute it and/or modify |
| 4 | * it under the terms of the GNU General Public License version 2 and |
| 5 | * only version 2 as published by the Free Software Foundation. |
| 6 | * |
| 7 | * This program is distributed in the hope that it will be useful, |
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 10 | * GNU General Public License for more details. |
| 11 | */ |
| 12 | |
| 13 | #define pr_fmt(fmt) "%s: " fmt, __func__ |
| 14 | |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/init.h> |
| 17 | #include <linux/io.h> |
| 18 | #include <linux/delay.h> |
| 19 | #include <linux/mutex.h> |
| 20 | #include <linux/err.h> |
| 21 | #include <linux/errno.h> |
| 22 | #include <linux/cpufreq.h> |
| 23 | #include <linux/cpu.h> |
| 24 | #include <linux/regulator/consumer.h> |
| 25 | |
| 26 | #include <asm/mach-types.h> |
| 27 | #include <asm/cpu.h> |
| 28 | |
| 29 | #include <mach/board.h> |
| 30 | #include <mach/msm_iomap.h> |
| 31 | #include <mach/rpm-regulator.h> |
| 32 | #include <mach/msm_bus.h> |
| 33 | #include <mach/msm_bus_board.h> |
| 34 | #include <mach/socinfo.h> |
| 35 | |
| 36 | #include "acpuclock.h" |
| 37 | |
| 38 | /* |
| 39 | * Source IDs. |
| 40 | * These must be negative to not overlap with the source IDs |
| 41 | * used by the 8x60 local clock driver. |
| 42 | */ |
| 43 | #define PLL_8 0 |
| 44 | #define HFPLL -1 |
| 45 | #define QSB -2 |
| 46 | |
| 47 | /* Mux source selects. */ |
| 48 | #define PRI_SRC_SEL_SEC_SRC 0 |
| 49 | #define PRI_SRC_SEL_HFPLL 1 |
| 50 | #define PRI_SRC_SEL_HFPLL_DIV2 2 |
| 51 | #define SEC_SRC_SEL_QSB 0 |
| 52 | |
| 53 | /* HFPLL registers offsets. */ |
| 54 | #define HFPLL_MODE 0x00 |
| 55 | #define HFPLL_CONFIG_CTL 0x04 |
| 56 | #define HFPLL_L_VAL 0x08 |
| 57 | #define HFPLL_M_VAL 0x0C |
| 58 | #define HFPLL_N_VAL 0x10 |
| 59 | #define HFPLL_DROOP_CTL 0x14 |
| 60 | |
| 61 | /* CP15 L2 indirect addresses. */ |
| 62 | #define L2CPMR_IADDR 0x500 |
| 63 | #define L2CPUCPMR_IADDR 0x501 |
| 64 | |
| 65 | #define STBY_KHZ 1 |
| 66 | |
| 67 | #define HFPLL_NOMINAL_VDD 1050000 |
| 68 | #define HFPLL_LOW_VDD 1050000 |
| 69 | #define HFPLL_LOW_VDD_PLL_L_MAX 0x28 |
| 70 | |
| 71 | #define SECCLKAGD BIT(4) |
| 72 | |
| 73 | enum scalables { |
| 74 | CPU0 = 0, |
| 75 | CPU1, |
| 76 | L2, |
| 77 | NUM_SCALABLES |
| 78 | }; |
| 79 | |
| 80 | enum vregs { |
| 81 | VREG_CORE, |
| 82 | VREG_MEM, |
| 83 | VREG_DIG, |
| 84 | NUM_VREG |
| 85 | }; |
| 86 | |
| 87 | struct vreg { |
| 88 | const char name[15]; |
| 89 | const unsigned int max_vdd; |
| 90 | const int rpm_vreg_voter; |
| 91 | const int rpm_vreg_id; |
| 92 | struct regulator *reg; |
| 93 | unsigned int cur_vdd; |
| 94 | }; |
| 95 | |
| 96 | struct core_speed { |
| 97 | unsigned int khz; |
| 98 | int src; |
| 99 | unsigned int pri_src_sel; |
| 100 | unsigned int sec_src_sel; |
| 101 | unsigned int pll_l_val; |
| 102 | }; |
| 103 | |
| 104 | struct l2_level { |
| 105 | struct core_speed speed; |
| 106 | unsigned int vdd_dig; |
| 107 | unsigned int vdd_mem; |
| 108 | unsigned int bw_level; |
| 109 | }; |
| 110 | |
| 111 | struct acpu_level { |
| 112 | unsigned int use_for_scaling; |
| 113 | struct core_speed speed; |
| 114 | struct l2_level *l2_level; |
| 115 | unsigned int vdd_core; |
| 116 | }; |
| 117 | |
| 118 | struct scalable { |
| 119 | void * __iomem const hfpll_base; |
| 120 | void * __iomem const aux_clk_sel; |
| 121 | const uint32_t l2cpmr_iaddr; |
| 122 | struct core_speed *current_speed; |
| 123 | struct l2_level *l2_vote; |
| 124 | struct vreg vreg[NUM_VREG]; |
| 125 | bool first_set_call; |
| 126 | }; |
| 127 | |
| 128 | static struct scalable scalable[] = { |
| 129 | [CPU0] = { |
| 130 | .hfpll_base = MSM_HFPLL_BASE + 0x200, |
| 131 | .aux_clk_sel = MSM_ACC0_BASE + 0x014, |
| 132 | .l2cpmr_iaddr = L2CPUCPMR_IADDR, |
| 133 | .vreg[VREG_CORE] = { "krait0", 1150000 }, |
| 134 | .vreg[VREG_MEM] = { "krait0_mem", 1150000, |
| 135 | RPM_VREG_VOTER1, |
| 136 | RPM_VREG_ID_PM8921_L24 }, |
| 137 | .vreg[VREG_DIG] = { "krait0_dig", 1150000, |
| 138 | RPM_VREG_VOTER1, |
| 139 | RPM_VREG_ID_PM8921_S3 }, |
| 140 | }, |
| 141 | [CPU1] = { |
| 142 | .hfpll_base = MSM_HFPLL_BASE + 0x300, |
| 143 | .aux_clk_sel = MSM_ACC1_BASE + 0x014, |
| 144 | .l2cpmr_iaddr = L2CPUCPMR_IADDR, |
| 145 | .vreg[VREG_CORE] = { "krait1", 1150000 }, |
| 146 | .vreg[VREG_MEM] = { "krait0_mem", 1150000, |
| 147 | RPM_VREG_VOTER2, |
| 148 | RPM_VREG_ID_PM8921_L24 }, |
| 149 | .vreg[VREG_DIG] = { "krait0_dig", 1150000, |
| 150 | RPM_VREG_VOTER2, |
| 151 | RPM_VREG_ID_PM8921_S3 }, |
| 152 | }, |
| 153 | [L2] = { |
| 154 | .hfpll_base = MSM_HFPLL_BASE + 0x400, |
| 155 | .aux_clk_sel = MSM_APCS_GCC_BASE + 0x028, |
| 156 | .l2cpmr_iaddr = L2CPMR_IADDR, |
| 157 | }, |
| 158 | }; |
| 159 | |
| 160 | struct mutex driver_lock; |
| 161 | static spinlock_t l2_lock; |
| 162 | |
| 163 | /* Instantaneous bandwidth requests in MB/s. */ |
| 164 | #define BW_MBPS(_bw) \ |
| 165 | { \ |
| 166 | .vectors = (struct msm_bus_vectors[]){ \ |
| 167 | {\ |
| 168 | .src = MSM_BUS_MASTER_AMPSS_M0, \ |
| 169 | .dst = MSM_BUS_SLAVE_EBI_CH0, \ |
| 170 | .ib = (_bw) * 1000000UL, \ |
| 171 | .ab = (_bw) * 100000UL, \ |
| 172 | }, \ |
| 173 | { \ |
| 174 | .src = MSM_BUS_MASTER_AMPSS_M1, \ |
| 175 | .dst = MSM_BUS_SLAVE_EBI_CH0, \ |
| 176 | .ib = (_bw) * 1000000UL, \ |
| 177 | .ab = (_bw) * 100000UL, \ |
| 178 | }, \ |
| 179 | }, \ |
| 180 | .num_paths = 2, \ |
| 181 | } |
| 182 | static struct msm_bus_paths bw_level_tbl[] = { |
| 183 | [0] = BW_MBPS(616), /* At least 77 MHz on bus. */ |
| 184 | [1] = BW_MBPS(1024), /* At least 128 MHz on bus. */ |
| 185 | [2] = BW_MBPS(1536), /* At least 192 MHz on bus. */ |
| 186 | [3] = BW_MBPS(2048), /* At least 256 MHz on bus. */ |
| 187 | [4] = BW_MBPS(3080), /* At least 385 MHz on bus. */ |
| 188 | [5] = BW_MBPS(3968), /* At least 496 MHz on bus. */ |
| 189 | }; |
| 190 | |
| 191 | static struct msm_bus_scale_pdata bus_client_pdata = { |
| 192 | .usecase = bw_level_tbl, |
| 193 | .num_usecases = ARRAY_SIZE(bw_level_tbl), |
| 194 | .active_only = 1, |
| 195 | .name = "acpuclock", |
| 196 | }; |
| 197 | |
| 198 | static uint32_t bus_perf_client; |
| 199 | |
| 200 | /* TODO: Update vdd_dig and vdd_mem when voltage data is available. */ |
| 201 | #define L2(x) (&l2_freq_tbl[(x)]) |
| 202 | #define L2_BOOT_IDX 11 |
| 203 | static struct l2_level l2_freq_tbl[] = { |
| 204 | [0] = { {STBY_KHZ, QSB, 0, 0, 0x00 }, 1050000, 1050000, 0 }, |
Matt Wagantall | e64d56a | 2011-07-14 19:35:27 -0700 | [diff] [blame] | 205 | [1] = { { 384000, PLL_8, 0, 2, 0x00 }, 1050000, 1050000, 1 }, |
Bryan Huntsman | 3f2bc4d | 2011-08-16 17:27:22 -0700 | [diff] [blame] | 206 | [2] = { { 432000, HFPLL, 2, 0, 0x20 }, 1050000, 1050000, 1 }, |
| 207 | [3] = { { 486000, HFPLL, 2, 0, 0x24 }, 1050000, 1050000, 1 }, |
| 208 | [4] = { { 540000, HFPLL, 2, 0, 0x28 }, 1050000, 1050000, 1 }, |
| 209 | [5] = { { 594000, HFPLL, 1, 0, 0x16 }, 1050000, 1050000, 2 }, |
| 210 | [6] = { { 648000, HFPLL, 1, 0, 0x18 }, 1050000, 1050000, 2 }, |
| 211 | [7] = { { 702000, HFPLL, 1, 0, 0x1A }, 1050000, 1050000, 2 }, |
Matt Wagantall | e64d56a | 2011-07-14 19:35:27 -0700 | [diff] [blame] | 212 | [8] = { { 756000, HFPLL, 1, 0, 0x1C }, 1150000, 1150000, 2 }, |
Bryan Huntsman | 3f2bc4d | 2011-08-16 17:27:22 -0700 | [diff] [blame] | 213 | [9] = { { 810000, HFPLL, 1, 0, 0x1E }, 1150000, 1150000, 3 }, |
| 214 | [10] = { { 864000, HFPLL, 1, 0, 0x20 }, 1150000, 1150000, 3 }, |
| 215 | [11] = { { 918000, HFPLL, 1, 0, 0x22 }, 1150000, 1150000, 3 }, |
| 216 | [12] = { { 972000, HFPLL, 1, 0, 0x24 }, 1150000, 1150000, 3 }, |
Matt Wagantall | e64d56a | 2011-07-14 19:35:27 -0700 | [diff] [blame] | 217 | [13] = { { 1026000, HFPLL, 1, 0, 0x26 }, 1150000, 1150000, 4 }, |
Bryan Huntsman | 3f2bc4d | 2011-08-16 17:27:22 -0700 | [diff] [blame] | 218 | [14] = { { 1080000, HFPLL, 1, 0, 0x28 }, 1150000, 1150000, 4 }, |
| 219 | [15] = { { 1134000, HFPLL, 1, 0, 0x2A }, 1150000, 1150000, 4 }, |
| 220 | [16] = { { 1188000, HFPLL, 1, 0, 0x2C }, 1150000, 1150000, 4 }, |
Matt Wagantall | e64d56a | 2011-07-14 19:35:27 -0700 | [diff] [blame] | 221 | [17] = { { 1242000, HFPLL, 1, 0, 0x2E }, 1150000, 1150000, 5 }, |
| 222 | [18] = { { 1296000, HFPLL, 1, 0, 0x30 }, 1150000, 1150000, 5 }, |
| 223 | [19] = { { 1350000, HFPLL, 1, 0, 0x32 }, 1150000, 1150000, 5 }, |
| 224 | [20] = { { 1404000, HFPLL, 1, 0, 0x34 }, 1150000, 1150000, 5 }, |
Bryan Huntsman | 3f2bc4d | 2011-08-16 17:27:22 -0700 | [diff] [blame] | 225 | [21] = { { 1458000, HFPLL, 1, 0, 0x36 }, 1150000, 1150000, 5 }, |
| 226 | [22] = { { 1512000, HFPLL, 1, 0, 0x38 }, 1150000, 1150000, 5 }, |
| 227 | [23] = { { 1566000, HFPLL, 1, 0, 0x3A }, 1150000, 1150000, 5 }, |
| 228 | [24] = { { 1620000, HFPLL, 1, 0, 0x3C }, 1150000, 1150000, 5 }, |
| 229 | [25] = { { 1674000, HFPLL, 1, 0, 0x3E }, 1150000, 1150000, 5 }, |
| 230 | }; |
| 231 | |
| 232 | /* TODO: Update core voltages when data is available. */ |
| 233 | #define CPU_BOOT_IDX 11 |
| 234 | static struct acpu_level acpu_freq_tbl[] = { |
| 235 | { 0, {STBY_KHZ, QSB, 0, 0, 0x00 }, L2(0), 1050000 }, |
| 236 | { 1, { 384000, PLL_8, 0, 2, 0x00 }, L2(1), 1050000 }, |
Matt Wagantall | e64d56a | 2011-07-14 19:35:27 -0700 | [diff] [blame] | 237 | { 1, { 432000, HFPLL, 2, 0, 0x20 }, L2(6), 1050000 }, |
| 238 | { 1, { 486000, HFPLL, 2, 0, 0x24 }, L2(6), 1050000 }, |
| 239 | { 1, { 540000, HFPLL, 2, 0, 0x28 }, L2(6), 1050000 }, |
| 240 | { 1, { 594000, HFPLL, 1, 0, 0x16 }, L2(6), 1050000 }, |
Bryan Huntsman | 3f2bc4d | 2011-08-16 17:27:22 -0700 | [diff] [blame] | 241 | { 1, { 648000, HFPLL, 1, 0, 0x18 }, L2(6), 1050000 }, |
Matt Wagantall | e64d56a | 2011-07-14 19:35:27 -0700 | [diff] [blame] | 242 | { 1, { 702000, HFPLL, 1, 0, 0x1A }, L2(6), 1050000 }, |
| 243 | { 1, { 756000, HFPLL, 1, 0, 0x1C }, L2(13), 1150000 }, |
| 244 | { 1, { 810000, HFPLL, 1, 0, 0x1E }, L2(13), 1150000 }, |
| 245 | { 1, { 864000, HFPLL, 1, 0, 0x20 }, L2(13), 1150000 }, |
| 246 | { 1, { 918000, HFPLL, 1, 0, 0x22 }, L2(13), 1150000 }, |
Bryan Huntsman | 3f2bc4d | 2011-08-16 17:27:22 -0700 | [diff] [blame] | 247 | { 0, { 0 } } |
| 248 | }; |
| 249 | |
| 250 | unsigned long acpuclk_get_rate(int cpu) |
| 251 | { |
| 252 | return scalable[cpu].current_speed->khz; |
| 253 | } |
| 254 | |
| 255 | uint32_t acpuclk_get_switch_time(void) |
| 256 | { |
| 257 | return 0; |
| 258 | } |
| 259 | |
| 260 | unsigned long acpuclk_power_collapse(void) |
| 261 | { |
| 262 | int ret = acpuclk_get_rate(smp_processor_id()); |
| 263 | acpuclk_set_rate(smp_processor_id(), STBY_KHZ, SETRATE_PC); |
| 264 | return ret; |
| 265 | } |
| 266 | |
| 267 | unsigned long acpuclk_wait_for_irq(void) |
| 268 | { |
| 269 | int ret = acpuclk_get_rate(smp_processor_id()); |
| 270 | acpuclk_set_rate(smp_processor_id(), STBY_KHZ, SETRATE_SWFI); |
| 271 | return ret; |
| 272 | } |
| 273 | |
| 274 | /* Read an 'indirectly' addressed L2 CP15 register. */ |
| 275 | static uint32_t readl_cp15_l2ind(uint32_t addr) |
| 276 | { |
| 277 | uint32_t regval; |
| 278 | |
| 279 | /* |
| 280 | * TODO: CP15 registers are not emulated on RUMI3. |
| 281 | * Remove this check if/when they are. |
| 282 | */ |
| 283 | if (machine_is_msm8960_rumi3()) |
| 284 | return 0; |
| 285 | |
| 286 | asm volatile ("mcr p15, 3, %[l2cpsler], c15, c0, 6\n\t" |
| 287 | "mrc p15, 3, %[l2cpdr], c15, c0, 7\n\t" |
| 288 | : [l2cpdr]"=r" (regval) |
| 289 | : [l2cpsler]"r" (addr) |
| 290 | : "cc" |
| 291 | ); |
| 292 | return regval; |
| 293 | } |
| 294 | |
| 295 | /* Write an 'indirectly' addressed L2 CP15 register. */ |
| 296 | static void writel_cp15_l2ind(uint32_t regval, uint32_t addr) |
| 297 | { |
| 298 | /* |
| 299 | * TODO: CP15 registers are not emulated on RUMI3. |
| 300 | * Remove this check if/when they are. |
| 301 | */ |
| 302 | if (machine_is_msm8960_rumi3()) |
| 303 | return; |
| 304 | |
| 305 | mb(); |
| 306 | asm volatile ("mcr p15, 3, %[l2cpsler], c15, c0, 6\n\t" |
| 307 | "mcr p15, 3, %[l2cpdr], c15, c0, 7\n\t" |
| 308 | : |
| 309 | : [l2cpsler]"r" (addr), [l2cpdr]"r" (regval) |
| 310 | : "cc" |
| 311 | ); |
| 312 | isb(); |
| 313 | } |
| 314 | |
| 315 | /* Get the selected source on primary MUX. */ |
| 316 | static int get_pri_clk_src(struct scalable *sc) |
| 317 | { |
| 318 | uint32_t regval; |
| 319 | |
| 320 | regval = readl_cp15_l2ind(sc->l2cpmr_iaddr); |
| 321 | return regval & 0x3; |
| 322 | } |
| 323 | |
| 324 | /* Set the selected source on primary MUX. */ |
| 325 | static void set_pri_clk_src(struct scalable *sc, uint32_t pri_src_sel) |
| 326 | { |
| 327 | uint32_t regval; |
| 328 | |
| 329 | regval = readl_cp15_l2ind(sc->l2cpmr_iaddr); |
| 330 | regval &= ~0x3; |
| 331 | regval |= (pri_src_sel & 0x3); |
| 332 | writel_cp15_l2ind(regval, sc->l2cpmr_iaddr); |
| 333 | /* Wait for switch to complete. */ |
| 334 | mb(); |
| 335 | udelay(1); |
| 336 | } |
| 337 | |
| 338 | /* Get the selected source on secondary MUX. */ |
| 339 | static int get_sec_clk_src(struct scalable *sc) |
| 340 | { |
| 341 | uint32_t regval; |
| 342 | |
| 343 | regval = readl_cp15_l2ind(sc->l2cpmr_iaddr); |
| 344 | return (regval >> 2) & 0x3; |
| 345 | } |
| 346 | |
| 347 | /* Set the selected source on secondary MUX. */ |
| 348 | static void set_sec_clk_src(struct scalable *sc, uint32_t sec_src_sel) |
| 349 | { |
| 350 | uint32_t regval; |
| 351 | |
| 352 | /* Disable secondary source clock gating during switch. */ |
| 353 | regval = readl_cp15_l2ind(sc->l2cpmr_iaddr); |
| 354 | regval |= SECCLKAGD; |
| 355 | writel_cp15_l2ind(regval, sc->l2cpmr_iaddr); |
| 356 | |
| 357 | /* Program the MUX. */ |
| 358 | regval &= ~(0x3 << 2); |
| 359 | regval |= ((sec_src_sel & 0x3) << 2); |
| 360 | writel_cp15_l2ind(regval, sc->l2cpmr_iaddr); |
| 361 | |
| 362 | /* Wait for switch to complete. */ |
| 363 | mb(); |
| 364 | udelay(1); |
| 365 | |
| 366 | /* Re-enable secondary source clock gating. */ |
| 367 | regval &= ~SECCLKAGD; |
| 368 | writel_cp15_l2ind(regval, sc->l2cpmr_iaddr); |
| 369 | } |
| 370 | |
| 371 | /* Enable an already-configured HFPLL. */ |
| 372 | static void hfpll_enable(struct scalable *sc) |
| 373 | { |
| 374 | /* Disable PLL bypass mode. */ |
| 375 | writel_relaxed(0x2, sc->hfpll_base + HFPLL_MODE); |
| 376 | |
| 377 | /* |
| 378 | * H/W requires a 5us delay between disabling the bypass and |
| 379 | * de-asserting the reset. Delay 10us just to be safe. |
| 380 | */ |
| 381 | mb(); |
| 382 | udelay(10); |
| 383 | |
| 384 | /* De-assert active-low PLL reset. */ |
| 385 | writel_relaxed(0x6, sc->hfpll_base + HFPLL_MODE); |
| 386 | |
| 387 | /* Wait for PLL to lock. */ |
| 388 | mb(); |
| 389 | udelay(60); |
| 390 | |
| 391 | /* Enable PLL output. */ |
| 392 | writel_relaxed(0x7, sc->hfpll_base + HFPLL_MODE); |
| 393 | } |
| 394 | |
| 395 | /* Disable a HFPLL for power-savings or while its being reprogrammed. */ |
| 396 | static void hfpll_disable(struct scalable *sc) |
| 397 | { |
| 398 | /* |
| 399 | * Disable the PLL output, disable test mode, enable |
| 400 | * the bypass mode, and assert the reset. |
| 401 | */ |
| 402 | writel_relaxed(0, sc->hfpll_base + HFPLL_MODE); |
| 403 | } |
| 404 | |
| 405 | /* Program the HFPLL rate. Assumes HFPLL is already disabled. */ |
| 406 | static void hfpll_set_rate(struct scalable *sc, struct core_speed *tgt_s) |
| 407 | { |
| 408 | writel_relaxed(tgt_s->pll_l_val, sc->hfpll_base + HFPLL_L_VAL); |
| 409 | } |
| 410 | |
| 411 | /* Return the L2 speed that should be applied. */ |
| 412 | static struct l2_level *compute_l2_level(struct scalable *sc, |
| 413 | struct l2_level *vote_l) |
| 414 | { |
| 415 | struct l2_level *new_l; |
| 416 | int cpu; |
| 417 | |
| 418 | /* Bounds check. */ |
| 419 | BUG_ON(vote_l >= (l2_freq_tbl + ARRAY_SIZE(l2_freq_tbl))); |
| 420 | |
| 421 | /* Find max L2 speed vote. */ |
| 422 | sc->l2_vote = vote_l; |
| 423 | new_l = l2_freq_tbl; |
| 424 | for_each_present_cpu(cpu) |
| 425 | new_l = max(new_l, scalable[cpu].l2_vote); |
| 426 | |
| 427 | return new_l; |
| 428 | } |
| 429 | |
| 430 | /* Update the bus bandwidth request. */ |
| 431 | static void set_bus_bw(unsigned int bw) |
| 432 | { |
| 433 | int ret; |
| 434 | |
| 435 | /* Bounds check. */ |
| 436 | if (bw >= ARRAY_SIZE(bw_level_tbl)) { |
| 437 | pr_err("invalid bandwidth request (%d)\n", bw); |
| 438 | return; |
| 439 | } |
| 440 | |
| 441 | /* Update bandwidth if request has changed. This may sleep. */ |
| 442 | ret = msm_bus_scale_client_update_request(bus_perf_client, bw); |
| 443 | if (ret) |
| 444 | pr_err("bandwidth request failed (%d)\n", ret); |
| 445 | } |
| 446 | |
| 447 | /* Set the CPU or L2 clock speed. */ |
| 448 | static void set_speed(struct scalable *sc, struct core_speed *tgt_s, |
| 449 | enum setrate_reason reason) |
| 450 | { |
| 451 | struct core_speed *strt_s = sc->current_speed; |
| 452 | |
| 453 | if (tgt_s == strt_s) |
| 454 | return; |
| 455 | |
| 456 | if (strt_s->src == HFPLL && tgt_s->src == HFPLL) { |
| 457 | /* Move CPU to QSB source. */ |
| 458 | /* |
| 459 | * TODO: If using QSB here requires elevating voltages, |
| 460 | * consider using PLL8 instead. |
| 461 | */ |
| 462 | set_sec_clk_src(sc, SEC_SRC_SEL_QSB); |
| 463 | set_pri_clk_src(sc, PRI_SRC_SEL_SEC_SRC); |
| 464 | |
| 465 | /* Program CPU HFPLL. */ |
| 466 | hfpll_disable(sc); |
| 467 | hfpll_set_rate(sc, tgt_s); |
| 468 | hfpll_enable(sc); |
| 469 | |
| 470 | /* Move CPU to HFPLL source. */ |
| 471 | set_pri_clk_src(sc, tgt_s->pri_src_sel); |
| 472 | } else if (strt_s->src == HFPLL && tgt_s->src != HFPLL) { |
| 473 | /* TODO: Enable source. */ |
| 474 | /* |
| 475 | * If responding to CPU_DEAD we must be running on another |
| 476 | * CPU. Therefore, we can't access the downed CPU's CP15 |
| 477 | * clock MUX registers from here and can't change clock sources. |
| 478 | * Just turn off the PLL- since the CPU is down already, halting |
| 479 | * its clock should be safe. |
| 480 | */ |
| 481 | if (reason != SETRATE_HOTPLUG || sc == &scalable[L2]) { |
| 482 | set_sec_clk_src(sc, tgt_s->sec_src_sel); |
| 483 | set_pri_clk_src(sc, tgt_s->pri_src_sel); |
| 484 | } |
| 485 | hfpll_disable(sc); |
| 486 | } else if (strt_s->src != HFPLL && tgt_s->src == HFPLL) { |
| 487 | hfpll_set_rate(sc, tgt_s); |
| 488 | hfpll_enable(sc); |
| 489 | /* |
| 490 | * If responding to CPU_UP_PREPARE, we can't change CP15 |
| 491 | * registers for the CPU that's coming up since we're not |
| 492 | * running on that CPU. That's okay though, since the MUX |
| 493 | * source was not changed on the way down, either. |
| 494 | */ |
| 495 | if (reason != SETRATE_HOTPLUG || sc == &scalable[L2]) |
| 496 | set_pri_clk_src(sc, tgt_s->pri_src_sel); |
| 497 | /* TODO: Disable source. */ |
| 498 | } else { |
| 499 | /* TODO: Enable source. */ |
| 500 | if (reason != SETRATE_HOTPLUG || sc == &scalable[L2]) |
| 501 | set_sec_clk_src(sc, tgt_s->sec_src_sel); |
| 502 | /* TODO: Disable source. */ |
| 503 | } |
| 504 | |
| 505 | sc->current_speed = tgt_s; |
| 506 | } |
| 507 | |
| 508 | /* Apply any per-cpu voltage increases. */ |
| 509 | static int increase_vdd(int cpu, unsigned int vdd_core, unsigned int vdd_mem, |
| 510 | unsigned int vdd_dig, enum setrate_reason reason) |
| 511 | { |
| 512 | struct scalable *sc = &scalable[cpu]; |
| 513 | int rc; |
| 514 | |
| 515 | /* |
| 516 | * Increase vdd_mem active-set before vdd_dig and vdd_core. |
| 517 | * vdd_mem should be >= both vdd_core and vdd_dig. |
| 518 | */ |
| 519 | if (vdd_mem > sc->vreg[VREG_MEM].cur_vdd) { |
| 520 | rc = rpm_vreg_set_voltage(sc->vreg[VREG_MEM].rpm_vreg_id, |
| 521 | sc->vreg[VREG_MEM].rpm_vreg_voter, vdd_mem, |
| 522 | sc->vreg[VREG_MEM].max_vdd, 0); |
| 523 | if (rc) { |
| 524 | pr_err("%s: vdd_mem (cpu%d) increase failed (%d)\n", |
| 525 | __func__, cpu, rc); |
| 526 | return rc; |
| 527 | } |
| 528 | sc->vreg[VREG_MEM].cur_vdd = vdd_mem; |
| 529 | } |
| 530 | |
| 531 | /* Increase vdd_dig active-set vote. */ |
| 532 | if (vdd_dig > sc->vreg[VREG_DIG].cur_vdd) { |
| 533 | rc = rpm_vreg_set_voltage(sc->vreg[VREG_DIG].rpm_vreg_id, |
| 534 | sc->vreg[VREG_DIG].rpm_vreg_voter, vdd_dig, |
| 535 | sc->vreg[VREG_DIG].max_vdd, 0); |
| 536 | if (rc) { |
| 537 | pr_err("%s: vdd_dig (cpu%d) increase failed (%d)\n", |
| 538 | __func__, cpu, rc); |
| 539 | return rc; |
| 540 | } |
| 541 | sc->vreg[VREG_DIG].cur_vdd = vdd_dig; |
| 542 | } |
| 543 | |
| 544 | /* |
| 545 | * Update per-CPU core voltage. Don't do this for the hotplug path for |
| 546 | * which it should already be correct. Attempting to set it is bad |
| 547 | * because we don't know what CPU we are running on at this point, but |
| 548 | * the CPU regulator API requires we call it from the affected CPU. |
| 549 | */ |
| 550 | if (vdd_core > sc->vreg[VREG_CORE].cur_vdd |
| 551 | && reason != SETRATE_HOTPLUG) { |
| 552 | rc = regulator_set_voltage(sc->vreg[VREG_CORE].reg, vdd_core, |
| 553 | sc->vreg[VREG_CORE].max_vdd); |
| 554 | if (rc) { |
| 555 | pr_err("%s: vdd_core (cpu%d) increase failed (%d)\n", |
| 556 | __func__, cpu, rc); |
| 557 | return rc; |
| 558 | } |
| 559 | sc->vreg[VREG_CORE].cur_vdd = vdd_core; |
| 560 | } |
| 561 | |
| 562 | return rc; |
| 563 | } |
| 564 | |
| 565 | /* Apply any per-cpu voltage decreases. */ |
| 566 | static void decrease_vdd(int cpu, unsigned int vdd_core, unsigned int vdd_mem, |
| 567 | unsigned int vdd_dig, enum setrate_reason reason) |
| 568 | { |
| 569 | struct scalable *sc = &scalable[cpu]; |
| 570 | int ret; |
| 571 | |
| 572 | /* |
| 573 | * Update per-CPU core voltage. This must be called on the CPU |
| 574 | * that's being affected. Don't do this in the hotplug remove path, |
| 575 | * where the rail is off and we're executing on the other CPU. |
| 576 | */ |
| 577 | if (vdd_core < sc->vreg[VREG_CORE].cur_vdd |
| 578 | && reason != SETRATE_HOTPLUG) { |
| 579 | ret = regulator_set_voltage(sc->vreg[VREG_CORE].reg, vdd_core, |
| 580 | sc->vreg[VREG_CORE].max_vdd); |
| 581 | if (ret) { |
| 582 | pr_err("%s: vdd_core (cpu%d) decrease failed (%d)\n", |
| 583 | __func__, cpu, ret); |
| 584 | return; |
| 585 | } |
| 586 | sc->vreg[VREG_CORE].cur_vdd = vdd_core; |
| 587 | } |
| 588 | |
| 589 | /* Decrease vdd_dig active-set vote. */ |
| 590 | if (vdd_dig < sc->vreg[VREG_DIG].cur_vdd) { |
| 591 | ret = rpm_vreg_set_voltage(sc->vreg[VREG_DIG].rpm_vreg_id, |
| 592 | sc->vreg[VREG_DIG].rpm_vreg_voter, vdd_dig, |
| 593 | sc->vreg[VREG_DIG].max_vdd, 0); |
| 594 | if (ret) { |
| 595 | pr_err("%s: vdd_dig (cpu%d) decrease failed (%d)\n", |
| 596 | __func__, cpu, ret); |
| 597 | return; |
| 598 | } |
| 599 | sc->vreg[VREG_DIG].cur_vdd = vdd_dig; |
| 600 | } |
| 601 | |
| 602 | /* |
| 603 | * Decrease vdd_mem active-set after vdd_dig and vdd_core. |
| 604 | * vdd_mem should be >= both vdd_core and vdd_dig. |
| 605 | */ |
| 606 | if (vdd_mem < sc->vreg[VREG_MEM].cur_vdd) { |
| 607 | ret = rpm_vreg_set_voltage(sc->vreg[VREG_MEM].rpm_vreg_id, |
| 608 | sc->vreg[VREG_MEM].rpm_vreg_voter, vdd_mem, |
| 609 | sc->vreg[VREG_MEM].max_vdd, 0); |
| 610 | if (ret) { |
| 611 | pr_err("%s: vdd_mem (cpu%d) decrease failed (%d)\n", |
| 612 | __func__, cpu, ret); |
| 613 | return; |
| 614 | } |
| 615 | sc->vreg[VREG_MEM].cur_vdd = vdd_mem; |
| 616 | } |
| 617 | } |
| 618 | |
| 619 | static unsigned int calculate_vdd_mem(struct acpu_level *tgt) |
| 620 | { |
| 621 | return max(tgt->vdd_core, tgt->l2_level->vdd_mem); |
| 622 | } |
| 623 | |
| 624 | static unsigned int calculate_vdd_dig(struct acpu_level *tgt) |
| 625 | { |
| 626 | unsigned int pll_vdd_dig; |
| 627 | |
| 628 | if (tgt->l2_level->speed.pll_l_val > HFPLL_LOW_VDD_PLL_L_MAX) |
| 629 | pll_vdd_dig = HFPLL_NOMINAL_VDD; |
| 630 | else |
| 631 | pll_vdd_dig = HFPLL_LOW_VDD; |
| 632 | |
| 633 | return max(tgt->l2_level->vdd_dig, pll_vdd_dig); |
| 634 | } |
| 635 | |
| 636 | static unsigned int calculate_vdd_core(struct acpu_level *tgt) |
| 637 | { |
| 638 | unsigned int pll_vdd_core; |
| 639 | |
| 640 | if (tgt->speed.pll_l_val > HFPLL_LOW_VDD_PLL_L_MAX) |
| 641 | pll_vdd_core = HFPLL_NOMINAL_VDD; |
| 642 | else |
| 643 | pll_vdd_core = HFPLL_LOW_VDD; |
| 644 | |
| 645 | return max(tgt->vdd_core, pll_vdd_core); |
| 646 | } |
| 647 | |
| 648 | /* Set the CPU's clock rate and adjust the L2 rate, if appropriate. */ |
| 649 | int acpuclk_set_rate(int cpu, unsigned long rate, enum setrate_reason reason) |
| 650 | { |
| 651 | struct core_speed *strt_acpu_s, *tgt_acpu_s; |
| 652 | struct l2_level *tgt_l2_l; |
| 653 | struct acpu_level *tgt; |
| 654 | unsigned int vdd_mem, vdd_dig, vdd_core; |
| 655 | unsigned long flags; |
| 656 | int rc = 0; |
| 657 | |
| 658 | if (cpu > num_possible_cpus()) { |
| 659 | rc = -EINVAL; |
| 660 | goto out; |
| 661 | } |
| 662 | |
| 663 | if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG) |
| 664 | mutex_lock(&driver_lock); |
| 665 | |
| 666 | strt_acpu_s = scalable[cpu].current_speed; |
| 667 | |
| 668 | /* Return early if rate didn't change. */ |
| 669 | if (rate == strt_acpu_s->khz && scalable[cpu].first_set_call == false) |
| 670 | goto out; |
| 671 | |
| 672 | /* Find target frequency. */ |
| 673 | for (tgt = acpu_freq_tbl; tgt->speed.khz != 0; tgt++) { |
| 674 | if (tgt->speed.khz == rate) { |
| 675 | tgt_acpu_s = &tgt->speed; |
| 676 | break; |
| 677 | } |
| 678 | } |
| 679 | if (tgt->speed.khz == 0) { |
| 680 | rc = -EINVAL; |
| 681 | goto out; |
| 682 | } |
| 683 | |
| 684 | /* Calculate voltage requirements for the current CPU. */ |
| 685 | vdd_mem = calculate_vdd_mem(tgt); |
| 686 | vdd_dig = calculate_vdd_dig(tgt); |
| 687 | vdd_core = calculate_vdd_core(tgt); |
| 688 | |
| 689 | /* Increase VDD levels if needed. */ |
| 690 | if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG) { |
| 691 | rc = increase_vdd(cpu, vdd_core, vdd_mem, vdd_dig, reason); |
| 692 | if (rc) |
| 693 | goto out; |
| 694 | } |
| 695 | |
| 696 | pr_debug("Switching from ACPU%d rate %u KHz -> %u KHz\n", |
| 697 | cpu, strt_acpu_s->khz, tgt_acpu_s->khz); |
| 698 | |
| 699 | /* Set the CPU speed. */ |
| 700 | set_speed(&scalable[cpu], tgt_acpu_s, reason); |
| 701 | |
| 702 | /* |
| 703 | * Update the L2 vote and apply the rate change. A spinlock is |
| 704 | * necessary to ensure L2 rate is calulated and set atomically, |
| 705 | * even if acpuclk_set_rate() is called from an atomic context |
| 706 | * and the driver_lock mutex is not acquired. |
| 707 | */ |
| 708 | spin_lock_irqsave(&l2_lock, flags); |
| 709 | tgt_l2_l = compute_l2_level(&scalable[cpu], tgt->l2_level); |
| 710 | set_speed(&scalable[L2], &tgt_l2_l->speed, reason); |
| 711 | spin_unlock_irqrestore(&l2_lock, flags); |
| 712 | |
| 713 | /* Nothing else to do for power collapse or SWFI. */ |
| 714 | if (reason == SETRATE_PC || reason == SETRATE_SWFI) |
| 715 | goto out; |
| 716 | |
| 717 | /* Update bus bandwith request. */ |
| 718 | set_bus_bw(tgt_l2_l->bw_level); |
| 719 | |
| 720 | /* Drop VDD levels if we can. */ |
| 721 | decrease_vdd(cpu, vdd_core, vdd_mem, vdd_dig, reason); |
| 722 | |
| 723 | scalable[cpu].first_set_call = false; |
| 724 | pr_debug("ACPU%d speed change complete\n", cpu); |
| 725 | |
| 726 | out: |
| 727 | if (reason == SETRATE_CPUFREQ || reason == SETRATE_HOTPLUG) |
| 728 | mutex_unlock(&driver_lock); |
| 729 | return rc; |
| 730 | } |
| 731 | |
| 732 | /* Initialize a HFPLL at a given rate and enable it. */ |
| 733 | static void __init hfpll_init(struct scalable *sc, struct core_speed *tgt_s) |
| 734 | { |
| 735 | pr_debug("Initializing HFPLL%d\n", sc - scalable); |
| 736 | |
| 737 | /* Disable the PLL for re-programming. */ |
| 738 | hfpll_disable(sc); |
| 739 | |
| 740 | /* Configure PLL parameters for integer mode. */ |
| 741 | writel_relaxed(0x7845C665, sc->hfpll_base + HFPLL_CONFIG_CTL); |
| 742 | writel_relaxed(0, sc->hfpll_base + HFPLL_M_VAL); |
| 743 | writel_relaxed(1, sc->hfpll_base + HFPLL_N_VAL); |
| 744 | |
| 745 | /* Program droop controller. */ |
| 746 | writel_relaxed(0x0108C000, sc->hfpll_base + HFPLL_DROOP_CTL); |
| 747 | |
| 748 | /* Set an initial rate and enable the PLL. */ |
| 749 | hfpll_set_rate(sc, tgt_s); |
| 750 | hfpll_enable(sc); |
| 751 | } |
| 752 | |
| 753 | /* Voltage regulator initialization. */ |
| 754 | static void __init regulator_init(void) |
| 755 | { |
| 756 | int cpu, ret; |
| 757 | struct scalable *sc; |
| 758 | |
| 759 | for_each_possible_cpu(cpu) { |
| 760 | sc = &scalable[cpu]; |
| 761 | sc->vreg[VREG_CORE].reg = regulator_get(NULL, |
| 762 | sc->vreg[VREG_CORE].name); |
| 763 | if (IS_ERR(sc->vreg[VREG_CORE].reg)) { |
| 764 | pr_err("regulator_get(%s) failed (%ld)\n", |
| 765 | sc->vreg[VREG_CORE].name, |
| 766 | PTR_ERR(sc->vreg[VREG_CORE].reg)); |
| 767 | BUG(); |
| 768 | } |
| 769 | |
| 770 | ret = regulator_set_voltage(sc->vreg[VREG_CORE].reg, |
| 771 | sc->vreg[VREG_CORE].max_vdd, |
| 772 | sc->vreg[VREG_CORE].max_vdd); |
| 773 | if (ret) |
| 774 | pr_err("regulator_set_voltage(%s) failed" |
| 775 | " (%d)\n", sc->vreg[VREG_CORE].name, ret); |
| 776 | |
| 777 | ret = regulator_enable(sc->vreg[VREG_CORE].reg); |
| 778 | if (ret) |
| 779 | pr_err("regulator_enable(%s) failed (%d)\n", |
| 780 | sc->vreg[VREG_CORE].name, ret); |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | #define INIT_QSB_ID 0 |
| 785 | #define INIT_HFPLL_ID 1 |
| 786 | /* Set initial rate for a given core. */ |
| 787 | static void __init init_clock_sources(struct scalable *sc, |
| 788 | struct core_speed *tgt_s) |
| 789 | { |
| 790 | uint32_t pri_src, regval; |
| 791 | |
| 792 | /* |
| 793 | * If the HFPLL is in use, program AUX source for QSB, switch to it, |
| 794 | * re-initialize the HFPLL, and switch back to the HFPLL. Otherwise, |
| 795 | * the HFPLL is not in use, so we can switch directly to it. |
| 796 | */ |
| 797 | pri_src = get_pri_clk_src(scalable); |
| 798 | if (pri_src == PRI_SRC_SEL_HFPLL || pri_src == PRI_SRC_SEL_HFPLL_DIV2) { |
| 799 | set_sec_clk_src(sc, SEC_SRC_SEL_QSB); |
| 800 | set_pri_clk_src(sc, PRI_SRC_SEL_SEC_SRC); |
| 801 | } |
| 802 | hfpll_init(sc, tgt_s); |
| 803 | |
| 804 | /* Set PRI_SRC_SEL_HFPLL_DIV2 divider to div-2. */ |
| 805 | regval = readl_cp15_l2ind(sc->l2cpmr_iaddr); |
| 806 | regval &= ~(0x3 << 6); |
| 807 | writel_cp15_l2ind(regval, sc->l2cpmr_iaddr); |
| 808 | |
| 809 | /* Select PLL8 as AUX source input to the secondary MUX. */ |
| 810 | writel_relaxed(0x3, sc->aux_clk_sel); |
| 811 | |
| 812 | set_pri_clk_src(sc, tgt_s->pri_src_sel); |
| 813 | sc->current_speed = tgt_s; |
| 814 | |
| 815 | /* |
| 816 | * Set this flag so that the first call to acpuclk_set_rate() can drop |
| 817 | * voltages and set initial bus bandwidth requests. |
| 818 | */ |
| 819 | sc->first_set_call = true; |
| 820 | } |
| 821 | |
| 822 | /* Perform CPU0-specific setup. */ |
| 823 | int __init msm_acpu_clock_early_init(void) |
| 824 | { |
| 825 | init_clock_sources(&scalable[L2], &l2_freq_tbl[L2_BOOT_IDX].speed); |
| 826 | init_clock_sources(&scalable[CPU0], &acpu_freq_tbl[CPU_BOOT_IDX].speed); |
| 827 | scalable[CPU0].l2_vote = &l2_freq_tbl[L2_BOOT_IDX]; |
| 828 | |
| 829 | return 0; |
| 830 | } |
| 831 | early_initcall(msm_acpu_clock_early_init); |
| 832 | |
| 833 | /* Perform CPU1-specific setup. */ |
| 834 | void __cpuinit acpuclock_secondary_init(void) |
| 835 | { |
| 836 | static bool warm_boot; |
| 837 | |
| 838 | if (warm_boot) |
| 839 | return; |
| 840 | |
| 841 | init_clock_sources(&scalable[CPU1], &acpu_freq_tbl[CPU_BOOT_IDX].speed); |
| 842 | scalable[CPU1].l2_vote = &l2_freq_tbl[L2_BOOT_IDX]; |
| 843 | |
| 844 | /* Secondary CPU has booted, don't repeat for subsequent warm boots. */ |
| 845 | warm_boot = true; |
| 846 | } |
| 847 | |
| 848 | /* Register with bus driver. */ |
| 849 | static void __init bus_init(void) |
| 850 | { |
| 851 | int ret; |
| 852 | |
| 853 | bus_perf_client = msm_bus_scale_register_client(&bus_client_pdata); |
| 854 | if (!bus_perf_client) { |
| 855 | pr_err("unable to register bus client\n"); |
| 856 | BUG(); |
| 857 | } |
| 858 | |
| 859 | ret = msm_bus_scale_client_update_request(bus_perf_client, |
| 860 | (ARRAY_SIZE(bw_level_tbl)-1)); |
| 861 | if (ret) |
| 862 | pr_err("initial bandwidth request failed (%d)\n", ret); |
| 863 | } |
| 864 | |
| 865 | #ifdef CONFIG_CPU_FREQ_MSM |
| 866 | static struct cpufreq_frequency_table freq_table[NR_CPUS][30]; |
| 867 | |
| 868 | static void __init cpufreq_table_init(void) |
| 869 | { |
| 870 | int cpu; |
| 871 | |
| 872 | for_each_possible_cpu(cpu) { |
| 873 | int i, freq_cnt = 0; |
| 874 | /* Construct the freq_table tables from acpu_freq_tbl. */ |
| 875 | for (i = 0; acpu_freq_tbl[i].speed.khz != 0 |
| 876 | && freq_cnt < ARRAY_SIZE(*freq_table); i++) { |
| 877 | if (acpu_freq_tbl[i].use_for_scaling) { |
| 878 | freq_table[cpu][freq_cnt].index = freq_cnt; |
| 879 | freq_table[cpu][freq_cnt].frequency |
| 880 | = acpu_freq_tbl[i].speed.khz; |
| 881 | freq_cnt++; |
| 882 | } |
| 883 | } |
| 884 | /* freq_table not big enough to store all usable freqs. */ |
| 885 | BUG_ON(acpu_freq_tbl[i].speed.khz != 0); |
| 886 | |
| 887 | freq_table[cpu][freq_cnt].index = freq_cnt; |
| 888 | freq_table[cpu][freq_cnt].frequency = CPUFREQ_TABLE_END; |
| 889 | |
| 890 | pr_info("CPU%d: %d scaling frequencies supported.\n", |
| 891 | cpu, freq_cnt); |
| 892 | |
| 893 | /* Register table with CPUFreq. */ |
| 894 | cpufreq_frequency_table_get_attr(freq_table[cpu], cpu); |
| 895 | } |
| 896 | } |
| 897 | #else |
| 898 | static void __init cpufreq_table_init(void) {} |
| 899 | #endif |
| 900 | |
| 901 | #define HOT_UNPLUG_KHZ STBY_KHZ |
| 902 | static int __cpuinit acpuclock_cpu_callback(struct notifier_block *nfb, |
| 903 | unsigned long action, void *hcpu) |
| 904 | { |
| 905 | static int prev_khz[NR_CPUS]; |
| 906 | static int prev_pri_src[NR_CPUS]; |
| 907 | static int prev_sec_src[NR_CPUS]; |
| 908 | int cpu = (int)hcpu; |
| 909 | uint32_t soc_platform_version = socinfo_get_platform_version(); |
| 910 | |
| 911 | switch (action) { |
| 912 | case CPU_DYING: |
| 913 | case CPU_DYING_FROZEN: |
| 914 | /* |
| 915 | * 8960 HW versions < 2.1 must set their primary and secondary |
| 916 | * mux source selections to QSB before L2 power collapse and |
| 917 | * restore it after. |
| 918 | */ |
| 919 | if (SOCINFO_VERSION_MAJOR(soc_platform_version) < 2 || |
| 920 | (SOCINFO_VERSION_MAJOR(soc_platform_version) == 2 && |
| 921 | SOCINFO_VERSION_MINOR(soc_platform_version) < 1)) { |
| 922 | prev_sec_src[cpu] = get_sec_clk_src(&scalable[cpu]); |
| 923 | prev_pri_src[cpu] = get_pri_clk_src(&scalable[cpu]); |
| 924 | set_sec_clk_src(&scalable[cpu], SEC_SRC_SEL_QSB); |
| 925 | set_pri_clk_src(&scalable[cpu], PRI_SRC_SEL_SEC_SRC); |
| 926 | } |
| 927 | break; |
| 928 | case CPU_DEAD: |
| 929 | case CPU_DEAD_FROZEN: |
| 930 | prev_khz[cpu] = acpuclk_get_rate(cpu); |
| 931 | /* Fall through. */ |
| 932 | case CPU_UP_CANCELED: |
| 933 | case CPU_UP_CANCELED_FROZEN: |
| 934 | acpuclk_set_rate(cpu, HOT_UNPLUG_KHZ, SETRATE_HOTPLUG); |
| 935 | break; |
| 936 | case CPU_UP_PREPARE: |
| 937 | case CPU_UP_PREPARE_FROZEN: |
| 938 | if (WARN_ON(!prev_khz[cpu])) |
| 939 | prev_khz[cpu] = acpu_freq_tbl->speed.khz; |
| 940 | acpuclk_set_rate(cpu, prev_khz[cpu], SETRATE_HOTPLUG); |
| 941 | break; |
| 942 | case CPU_STARTING: |
| 943 | case CPU_STARTING_FROZEN: |
| 944 | if (SOCINFO_VERSION_MAJOR(soc_platform_version) < 2 || |
| 945 | (SOCINFO_VERSION_MAJOR(soc_platform_version) == 2 && |
| 946 | SOCINFO_VERSION_MINOR(soc_platform_version) < 1)) { |
| 947 | set_sec_clk_src(&scalable[cpu], prev_sec_src[cpu]); |
| 948 | set_pri_clk_src(&scalable[cpu], prev_pri_src[cpu]); |
| 949 | } |
| 950 | break; |
| 951 | default: |
| 952 | break; |
| 953 | } |
| 954 | |
| 955 | return NOTIFY_OK; |
| 956 | } |
| 957 | |
| 958 | static struct notifier_block __cpuinitdata acpuclock_cpu_notifier = { |
| 959 | .notifier_call = acpuclock_cpu_callback, |
| 960 | }; |
| 961 | |
| 962 | void __init msm_acpu_clock_init(struct msm_acpu_clock_platform_data *clkdata) |
| 963 | { |
| 964 | mutex_init(&driver_lock); |
| 965 | regulator_init(); |
| 966 | bus_init(); |
| 967 | cpufreq_table_init(); |
| 968 | register_hotcpu_notifier(&acpuclock_cpu_notifier); |
| 969 | } |