Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /****************************************************************************** |
| 2 | * |
| 3 | * Name: ski2c.c |
| 4 | * Project: Gigabit Ethernet Adapters, TWSI-Module |
| 5 | * Version: $Revision: 1.59 $ |
| 6 | * Date: $Date: 2003/10/20 09:07:25 $ |
| 7 | * Purpose: Functions to access Voltage and Temperature Sensor |
| 8 | * |
| 9 | ******************************************************************************/ |
| 10 | |
| 11 | /****************************************************************************** |
| 12 | * |
| 13 | * (C)Copyright 1998-2002 SysKonnect. |
| 14 | * (C)Copyright 2002-2003 Marvell. |
| 15 | * |
| 16 | * This program is free software; you can redistribute it and/or modify |
| 17 | * it under the terms of the GNU General Public License as published by |
| 18 | * the Free Software Foundation; either version 2 of the License, or |
| 19 | * (at your option) any later version. |
| 20 | * |
| 21 | * The information in this file is provided "AS IS" without warranty. |
| 22 | * |
| 23 | ******************************************************************************/ |
| 24 | |
| 25 | /* |
| 26 | * I2C Protocol |
| 27 | */ |
| 28 | #if (defined(DEBUG) || ((!defined(LINT)) && (!defined(SK_SLIM)))) |
| 29 | static const char SysKonnectFileId[] = |
| 30 | "@(#) $Id: ski2c.c,v 1.59 2003/10/20 09:07:25 rschmidt Exp $ (C) Marvell. "; |
| 31 | #endif |
| 32 | |
| 33 | #include "h/skdrv1st.h" /* Driver Specific Definitions */ |
| 34 | #include "h/lm80.h" |
| 35 | #include "h/skdrv2nd.h" /* Adapter Control- and Driver specific Def. */ |
| 36 | |
| 37 | #ifdef __C2MAN__ |
| 38 | /* |
| 39 | I2C protocol implementation. |
| 40 | |
| 41 | General Description: |
| 42 | |
| 43 | The I2C protocol is used for the temperature sensors and for |
| 44 | the serial EEPROM which hold the configuration. |
| 45 | |
| 46 | This file covers functions that allow to read write and do |
| 47 | some bulk requests a specified I2C address. |
| 48 | |
| 49 | The Genesis has 2 I2C buses. One for the EEPROM which holds |
| 50 | the VPD Data and one for temperature and voltage sensor. |
| 51 | The following picture shows the I2C buses, I2C devices and |
| 52 | their control registers. |
| 53 | |
| 54 | Note: The VPD functions are in skvpd.c |
| 55 | . |
| 56 | . PCI Config I2C Bus for VPD Data: |
| 57 | . |
| 58 | . +------------+ |
| 59 | . | VPD EEPROM | |
| 60 | . +------------+ |
| 61 | . | |
| 62 | . | <-- I2C |
| 63 | . | |
| 64 | . +-----------+-----------+ |
| 65 | . | | |
| 66 | . +-----------------+ +-----------------+ |
| 67 | . | PCI_VPD_ADR_REG | | PCI_VPD_DAT_REG | |
| 68 | . +-----------------+ +-----------------+ |
| 69 | . |
| 70 | . |
| 71 | . I2C Bus for LM80 sensor: |
| 72 | . |
| 73 | . +-----------------+ |
| 74 | . | Temperature and | |
| 75 | . | Voltage Sensor | |
| 76 | . | LM80 | |
| 77 | . +-----------------+ |
| 78 | . | |
| 79 | . | |
| 80 | . I2C --> | |
| 81 | . | |
| 82 | . +----+ |
| 83 | . +-------------->| OR |<--+ |
| 84 | . | +----+ | |
| 85 | . +------+------+ | |
| 86 | . | | | |
| 87 | . +--------+ +--------+ +----------+ |
| 88 | . | B2_I2C | | B2_I2C | | B2_I2C | |
| 89 | . | _CTRL | | _DATA | | _SW | |
| 90 | . +--------+ +--------+ +----------+ |
| 91 | . |
| 92 | The I2C bus may be driven by the B2_I2C_SW or by the B2_I2C_CTRL |
| 93 | and B2_I2C_DATA registers. |
| 94 | For driver software it is recommended to use the I2C control and |
| 95 | data register, because I2C bus timing is done by the ASIC and |
| 96 | an interrupt may be received when the I2C request is completed. |
| 97 | |
| 98 | Clock Rate Timing: MIN MAX generated by |
| 99 | VPD EEPROM: 50 kHz 100 kHz HW |
| 100 | LM80 over I2C Ctrl/Data reg. 50 kHz 100 kHz HW |
| 101 | LM80 over B2_I2C_SW register 0 400 kHz SW |
| 102 | |
| 103 | Note: The clock generated by the hardware is dependend on the |
| 104 | PCI clock. If the PCI bus clock is 33 MHz, the I2C/VPD |
| 105 | clock is 50 kHz. |
| 106 | */ |
| 107 | intro() |
| 108 | {} |
| 109 | #endif |
| 110 | |
| 111 | #ifdef SK_DIAG |
| 112 | /* |
| 113 | * I2C Fast Mode timing values used by the LM80. |
| 114 | * If new devices are added to the I2C bus the timing values have to be checked. |
| 115 | */ |
| 116 | #ifndef I2C_SLOW_TIMING |
| 117 | #define T_CLK_LOW 1300L /* clock low time in ns */ |
| 118 | #define T_CLK_HIGH 600L /* clock high time in ns */ |
| 119 | #define T_DATA_IN_SETUP 100L /* data in Set-up Time */ |
| 120 | #define T_START_HOLD 600L /* start condition hold time */ |
| 121 | #define T_START_SETUP 600L /* start condition Set-up time */ |
| 122 | #define T_STOP_SETUP 600L /* stop condition Set-up time */ |
| 123 | #define T_BUS_IDLE 1300L /* time the bus must free after Tx */ |
| 124 | #define T_CLK_2_DATA_OUT 900L /* max. clock low to data output valid */ |
| 125 | #else /* I2C_SLOW_TIMING */ |
| 126 | /* I2C Standard Mode Timing */ |
| 127 | #define T_CLK_LOW 4700L /* clock low time in ns */ |
| 128 | #define T_CLK_HIGH 4000L /* clock high time in ns */ |
| 129 | #define T_DATA_IN_SETUP 250L /* data in Set-up Time */ |
| 130 | #define T_START_HOLD 4000L /* start condition hold time */ |
| 131 | #define T_START_SETUP 4700L /* start condition Set-up time */ |
| 132 | #define T_STOP_SETUP 4000L /* stop condition Set-up time */ |
| 133 | #define T_BUS_IDLE 4700L /* time the bus must free after Tx */ |
| 134 | #endif /* !I2C_SLOW_TIMING */ |
| 135 | |
| 136 | #define NS2BCLK(x) (((x)*125)/10000) |
| 137 | |
| 138 | /* |
| 139 | * I2C Wire Operations |
| 140 | * |
| 141 | * About I2C_CLK_LOW(): |
| 142 | * |
| 143 | * The Data Direction bit (I2C_DATA_DIR) has to be set to input when setting |
| 144 | * clock to low, to prevent the ASIC and the I2C data client from driving the |
| 145 | * serial data line simultaneously (ASIC: last bit of a byte = '1', I2C client |
| 146 | * send an 'ACK'). See also Concentrator Bugreport No. 10192. |
| 147 | */ |
| 148 | #define I2C_DATA_HIGH(IoC) SK_I2C_SET_BIT(IoC, I2C_DATA) |
| 149 | #define I2C_DATA_LOW(IoC) SK_I2C_CLR_BIT(IoC, I2C_DATA) |
| 150 | #define I2C_DATA_OUT(IoC) SK_I2C_SET_BIT(IoC, I2C_DATA_DIR) |
| 151 | #define I2C_DATA_IN(IoC) SK_I2C_CLR_BIT(IoC, I2C_DATA_DIR | I2C_DATA) |
| 152 | #define I2C_CLK_HIGH(IoC) SK_I2C_SET_BIT(IoC, I2C_CLK) |
| 153 | #define I2C_CLK_LOW(IoC) SK_I2C_CLR_BIT(IoC, I2C_CLK | I2C_DATA_DIR) |
| 154 | #define I2C_START_COND(IoC) SK_I2C_CLR_BIT(IoC, I2C_CLK) |
| 155 | |
| 156 | #define NS2CLKT(x) ((x*125L)/10000) |
| 157 | |
| 158 | /*--------------- I2C Interface Register Functions --------------- */ |
| 159 | |
| 160 | /* |
| 161 | * sending one bit |
| 162 | */ |
| 163 | void SkI2cSndBit( |
| 164 | SK_IOC IoC, /* I/O Context */ |
| 165 | SK_U8 Bit) /* Bit to send */ |
| 166 | { |
| 167 | I2C_DATA_OUT(IoC); |
| 168 | if (Bit) { |
| 169 | I2C_DATA_HIGH(IoC); |
| 170 | } |
| 171 | else { |
| 172 | I2C_DATA_LOW(IoC); |
| 173 | } |
| 174 | SkDgWaitTime(IoC, NS2BCLK(T_DATA_IN_SETUP)); |
| 175 | I2C_CLK_HIGH(IoC); |
| 176 | SkDgWaitTime(IoC, NS2BCLK(T_CLK_HIGH)); |
| 177 | I2C_CLK_LOW(IoC); |
| 178 | } /* SkI2cSndBit*/ |
| 179 | |
| 180 | |
| 181 | /* |
| 182 | * Signal a start to the I2C Bus. |
| 183 | * |
| 184 | * A start is signaled when data goes to low in a high clock cycle. |
| 185 | * |
| 186 | * Ends with Clock Low. |
| 187 | * |
| 188 | * Status: not tested |
| 189 | */ |
| 190 | void SkI2cStart( |
| 191 | SK_IOC IoC) /* I/O Context */ |
| 192 | { |
| 193 | /* Init data and Clock to output lines */ |
| 194 | /* Set Data high */ |
| 195 | I2C_DATA_OUT(IoC); |
| 196 | I2C_DATA_HIGH(IoC); |
| 197 | /* Set Clock high */ |
| 198 | I2C_CLK_HIGH(IoC); |
| 199 | |
| 200 | SkDgWaitTime(IoC, NS2BCLK(T_START_SETUP)); |
| 201 | |
| 202 | /* Set Data Low */ |
| 203 | I2C_DATA_LOW(IoC); |
| 204 | |
| 205 | SkDgWaitTime(IoC, NS2BCLK(T_START_HOLD)); |
| 206 | |
| 207 | /* Clock low without Data to Input */ |
| 208 | I2C_START_COND(IoC); |
| 209 | |
| 210 | SkDgWaitTime(IoC, NS2BCLK(T_CLK_LOW)); |
| 211 | } /* SkI2cStart */ |
| 212 | |
| 213 | |
| 214 | void SkI2cStop( |
| 215 | SK_IOC IoC) /* I/O Context */ |
| 216 | { |
| 217 | /* Init data and Clock to output lines */ |
| 218 | /* Set Data low */ |
| 219 | I2C_DATA_OUT(IoC); |
| 220 | I2C_DATA_LOW(IoC); |
| 221 | |
| 222 | SkDgWaitTime(IoC, NS2BCLK(T_CLK_2_DATA_OUT)); |
| 223 | |
| 224 | /* Set Clock high */ |
| 225 | I2C_CLK_HIGH(IoC); |
| 226 | |
| 227 | SkDgWaitTime(IoC, NS2BCLK(T_STOP_SETUP)); |
| 228 | |
| 229 | /* |
| 230 | * Set Data High: Do it by setting the Data Line to Input. |
| 231 | * Because of a pull up resistor the Data Line |
| 232 | * floods to high. |
| 233 | */ |
| 234 | I2C_DATA_IN(IoC); |
| 235 | |
| 236 | /* |
| 237 | * When I2C activity is stopped |
| 238 | * o DATA should be set to input and |
| 239 | * o CLOCK should be set to high! |
| 240 | */ |
| 241 | SkDgWaitTime(IoC, NS2BCLK(T_BUS_IDLE)); |
| 242 | } /* SkI2cStop */ |
| 243 | |
| 244 | |
| 245 | /* |
| 246 | * Receive just one bit via the I2C bus. |
| 247 | * |
| 248 | * Note: Clock must be set to LOW before calling this function. |
| 249 | * |
| 250 | * Returns The received bit. |
| 251 | */ |
| 252 | int SkI2cRcvBit( |
| 253 | SK_IOC IoC) /* I/O Context */ |
| 254 | { |
| 255 | int Bit; |
| 256 | SK_U8 I2cSwCtrl; |
| 257 | |
| 258 | /* Init data as input line */ |
| 259 | I2C_DATA_IN(IoC); |
| 260 | |
| 261 | SkDgWaitTime(IoC, NS2BCLK(T_CLK_2_DATA_OUT)); |
| 262 | |
| 263 | I2C_CLK_HIGH(IoC); |
| 264 | |
| 265 | SkDgWaitTime(IoC, NS2BCLK(T_CLK_HIGH)); |
| 266 | |
| 267 | SK_I2C_GET_SW(IoC, &I2cSwCtrl); |
| 268 | |
| 269 | Bit = (I2cSwCtrl & I2C_DATA) ? 1 : 0; |
| 270 | |
| 271 | I2C_CLK_LOW(IoC); |
| 272 | SkDgWaitTime(IoC, NS2BCLK(T_CLK_LOW-T_CLK_2_DATA_OUT)); |
| 273 | |
| 274 | return(Bit); |
| 275 | } /* SkI2cRcvBit */ |
| 276 | |
| 277 | |
| 278 | /* |
| 279 | * Receive an ACK. |
| 280 | * |
| 281 | * returns 0 If acknowledged |
| 282 | * 1 in case of an error |
| 283 | */ |
| 284 | int SkI2cRcvAck( |
| 285 | SK_IOC IoC) /* I/O Context */ |
| 286 | { |
| 287 | /* |
| 288 | * Received bit must be zero. |
| 289 | */ |
| 290 | return(SkI2cRcvBit(IoC) != 0); |
| 291 | } /* SkI2cRcvAck */ |
| 292 | |
| 293 | |
| 294 | /* |
| 295 | * Send an NACK. |
| 296 | */ |
| 297 | void SkI2cSndNAck( |
| 298 | SK_IOC IoC) /* I/O Context */ |
| 299 | { |
| 300 | /* |
| 301 | * Received bit must be zero. |
| 302 | */ |
| 303 | SkI2cSndBit(IoC, 1); |
| 304 | } /* SkI2cSndNAck */ |
| 305 | |
| 306 | |
| 307 | /* |
| 308 | * Send an ACK. |
| 309 | */ |
| 310 | void SkI2cSndAck( |
| 311 | SK_IOC IoC) /* I/O Context */ |
| 312 | { |
| 313 | /* |
| 314 | * Received bit must be zero. |
| 315 | */ |
| 316 | SkI2cSndBit(IoC, 0); |
| 317 | } /* SkI2cSndAck */ |
| 318 | |
| 319 | |
| 320 | /* |
| 321 | * Send one byte to the I2C device and wait for ACK. |
| 322 | * |
| 323 | * Return acknowleged status. |
| 324 | */ |
| 325 | int SkI2cSndByte( |
| 326 | SK_IOC IoC, /* I/O Context */ |
| 327 | int Byte) /* byte to send */ |
| 328 | { |
| 329 | int i; |
| 330 | |
| 331 | for (i = 0; i < 8; i++) { |
| 332 | if (Byte & (1<<(7-i))) { |
| 333 | SkI2cSndBit(IoC, 1); |
| 334 | } |
| 335 | else { |
| 336 | SkI2cSndBit(IoC, 0); |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | return(SkI2cRcvAck(IoC)); |
| 341 | } /* SkI2cSndByte */ |
| 342 | |
| 343 | |
| 344 | /* |
| 345 | * Receive one byte and ack it. |
| 346 | * |
| 347 | * Return byte. |
| 348 | */ |
| 349 | int SkI2cRcvByte( |
| 350 | SK_IOC IoC, /* I/O Context */ |
| 351 | int Last) /* Last Byte Flag */ |
| 352 | { |
| 353 | int i; |
| 354 | int Byte = 0; |
| 355 | |
| 356 | for (i = 0; i < 8; i++) { |
| 357 | Byte <<= 1; |
| 358 | Byte |= SkI2cRcvBit(IoC); |
| 359 | } |
| 360 | |
| 361 | if (Last) { |
| 362 | SkI2cSndNAck(IoC); |
| 363 | } |
| 364 | else { |
| 365 | SkI2cSndAck(IoC); |
| 366 | } |
| 367 | |
| 368 | return(Byte); |
| 369 | } /* SkI2cRcvByte */ |
| 370 | |
| 371 | |
| 372 | /* |
| 373 | * Start dialog and send device address |
| 374 | * |
| 375 | * Return 0 if acknowleged, 1 in case of an error |
| 376 | */ |
| 377 | int SkI2cSndDev( |
| 378 | SK_IOC IoC, /* I/O Context */ |
| 379 | int Addr, /* Device Address */ |
| 380 | int Rw) /* Read / Write Flag */ |
| 381 | { |
| 382 | SkI2cStart(IoC); |
| 383 | Rw = ~Rw; |
| 384 | Rw &= I2C_WRITE; |
| 385 | return(SkI2cSndByte(IoC, (Addr<<1) | Rw)); |
| 386 | } /* SkI2cSndDev */ |
| 387 | |
| 388 | #endif /* SK_DIAG */ |
| 389 | |
| 390 | /*----------------- I2C CTRL Register Functions ----------*/ |
| 391 | |
| 392 | /* |
| 393 | * waits for a completion of an I2C transfer |
| 394 | * |
| 395 | * returns 0: success, transfer completes |
| 396 | * 1: error, transfer does not complete, I2C transfer |
| 397 | * killed, wait loop terminated. |
| 398 | */ |
| 399 | int SkI2cWait( |
| 400 | SK_AC *pAC, /* Adapter Context */ |
| 401 | SK_IOC IoC, /* I/O Context */ |
| 402 | int Event) /* complete event to wait for (I2C_READ or I2C_WRITE) */ |
| 403 | { |
| 404 | SK_U64 StartTime; |
| 405 | SK_U64 CurrentTime; |
| 406 | SK_U32 I2cCtrl; |
| 407 | |
| 408 | StartTime = SkOsGetTime(pAC); |
| 409 | |
| 410 | do { |
| 411 | CurrentTime = SkOsGetTime(pAC); |
| 412 | |
| 413 | if (CurrentTime - StartTime > SK_TICKS_PER_SEC / 8) { |
| 414 | |
| 415 | SK_I2C_STOP(IoC); |
| 416 | #ifndef SK_DIAG |
| 417 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_I2C_E002, SKERR_I2C_E002MSG); |
| 418 | #endif /* !SK_DIAG */ |
| 419 | return(1); |
| 420 | } |
| 421 | |
| 422 | SK_I2C_GET_CTL(IoC, &I2cCtrl); |
| 423 | |
| 424 | #ifdef xYUKON_DBG |
| 425 | printf("StartTime=%lu, CurrentTime=%lu\n", |
| 426 | StartTime, CurrentTime); |
| 427 | if (kbhit()) { |
| 428 | return(1); |
| 429 | } |
| 430 | #endif /* YUKON_DBG */ |
| 431 | |
| 432 | } while ((I2cCtrl & I2C_FLAG) == (SK_U32)Event << 31); |
| 433 | |
| 434 | return(0); |
| 435 | } /* SkI2cWait */ |
| 436 | |
| 437 | |
| 438 | /* |
| 439 | * waits for a completion of an I2C transfer |
| 440 | * |
| 441 | * Returns |
| 442 | * Nothing |
| 443 | */ |
| 444 | void SkI2cWaitIrq( |
| 445 | SK_AC *pAC, /* Adapter Context */ |
| 446 | SK_IOC IoC) /* I/O Context */ |
| 447 | { |
| 448 | SK_SENSOR *pSen; |
| 449 | SK_U64 StartTime; |
| 450 | SK_U32 IrqSrc; |
| 451 | |
| 452 | pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; |
| 453 | |
| 454 | if (pSen->SenState == SK_SEN_IDLE) { |
| 455 | return; |
| 456 | } |
| 457 | |
| 458 | StartTime = SkOsGetTime(pAC); |
| 459 | |
| 460 | do { |
| 461 | if (SkOsGetTime(pAC) - StartTime > SK_TICKS_PER_SEC / 8) { |
| 462 | |
| 463 | SK_I2C_STOP(IoC); |
| 464 | #ifndef SK_DIAG |
| 465 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_I2C_E016, SKERR_I2C_E016MSG); |
| 466 | #endif /* !SK_DIAG */ |
| 467 | return; |
| 468 | } |
| 469 | |
| 470 | SK_IN32(IoC, B0_ISRC, &IrqSrc); |
| 471 | |
| 472 | } while ((IrqSrc & IS_I2C_READY) == 0); |
| 473 | |
| 474 | pSen->SenState = SK_SEN_IDLE; |
| 475 | return; |
| 476 | } /* SkI2cWaitIrq */ |
| 477 | |
| 478 | /* |
| 479 | * writes a single byte or 4 bytes into the I2C device |
| 480 | * |
| 481 | * returns 0: success |
| 482 | * 1: error |
| 483 | */ |
| 484 | int SkI2cWrite( |
| 485 | SK_AC *pAC, /* Adapter Context */ |
| 486 | SK_IOC IoC, /* I/O Context */ |
| 487 | SK_U32 I2cData, /* I2C Data to write */ |
| 488 | int I2cDev, /* I2C Device Address */ |
| 489 | int I2cDevSize, /* I2C Device Size (e.g. I2C_025K_DEV or I2C_2K_DEV) */ |
| 490 | int I2cReg, /* I2C Device Register Address */ |
| 491 | int I2cBurst) /* I2C Burst Flag */ |
| 492 | { |
| 493 | SK_OUT32(IoC, B2_I2C_DATA, I2cData); |
| 494 | |
| 495 | SK_I2C_CTL(IoC, I2C_WRITE, I2cDev, I2cDevSize, I2cReg, I2cBurst); |
| 496 | |
| 497 | return(SkI2cWait(pAC, IoC, I2C_WRITE)); |
| 498 | } /* SkI2cWrite*/ |
| 499 | |
| 500 | |
| 501 | #ifdef SK_DIAG |
| 502 | /* |
| 503 | * reads a single byte or 4 bytes from the I2C device |
| 504 | * |
| 505 | * returns the word read |
| 506 | */ |
| 507 | SK_U32 SkI2cRead( |
| 508 | SK_AC *pAC, /* Adapter Context */ |
| 509 | SK_IOC IoC, /* I/O Context */ |
| 510 | int I2cDev, /* I2C Device Address */ |
| 511 | int I2cDevSize, /* I2C Device Size (e.g. I2C_025K_DEV or I2C_2K_DEV) */ |
| 512 | int I2cReg, /* I2C Device Register Address */ |
| 513 | int I2cBurst) /* I2C Burst Flag */ |
| 514 | { |
| 515 | SK_U32 Data; |
| 516 | |
| 517 | SK_OUT32(IoC, B2_I2C_DATA, 0); |
| 518 | SK_I2C_CTL(IoC, I2C_READ, I2cDev, I2cDevSize, I2cReg, I2cBurst); |
| 519 | |
| 520 | if (SkI2cWait(pAC, IoC, I2C_READ) != 0) { |
| 521 | w_print("%s\n", SKERR_I2C_E002MSG); |
| 522 | } |
| 523 | |
| 524 | SK_IN32(IoC, B2_I2C_DATA, &Data); |
| 525 | |
| 526 | return(Data); |
| 527 | } /* SkI2cRead */ |
| 528 | #endif /* SK_DIAG */ |
| 529 | |
| 530 | |
| 531 | /* |
| 532 | * read a sensor's value |
| 533 | * |
| 534 | * This function reads a sensor's value from the I2C sensor chip. The sensor |
| 535 | * is defined by its index into the sensors database in the struct pAC points |
| 536 | * to. |
| 537 | * Returns |
| 538 | * 1 if the read is completed |
| 539 | * 0 if the read must be continued (I2C Bus still allocated) |
| 540 | */ |
| 541 | int SkI2cReadSensor( |
| 542 | SK_AC *pAC, /* Adapter Context */ |
| 543 | SK_IOC IoC, /* I/O Context */ |
| 544 | SK_SENSOR *pSen) /* Sensor to be read */ |
| 545 | { |
| 546 | if (pSen->SenRead != NULL) { |
| 547 | return((*pSen->SenRead)(pAC, IoC, pSen)); |
| 548 | } |
| 549 | else { |
| 550 | return(0); /* no success */ |
| 551 | } |
| 552 | } /* SkI2cReadSensor */ |
| 553 | |
| 554 | /* |
| 555 | * Do the Init state 0 initialization |
| 556 | */ |
| 557 | static int SkI2cInit0( |
| 558 | SK_AC *pAC) /* Adapter Context */ |
| 559 | { |
| 560 | int i; |
| 561 | |
| 562 | /* Begin with first sensor */ |
| 563 | pAC->I2c.CurrSens = 0; |
| 564 | |
| 565 | /* Begin with timeout control for state machine */ |
| 566 | pAC->I2c.TimerMode = SK_TIMER_WATCH_SM; |
| 567 | |
| 568 | /* Set sensor number to zero */ |
| 569 | pAC->I2c.MaxSens = 0; |
| 570 | |
| 571 | #ifndef SK_DIAG |
| 572 | /* Initialize Number of Dummy Reads */ |
| 573 | pAC->I2c.DummyReads = SK_MAX_SENSORS; |
| 574 | #endif |
| 575 | |
| 576 | for (i = 0; i < SK_MAX_SENSORS; i++) { |
| 577 | pAC->I2c.SenTable[i].SenDesc = "unknown"; |
| 578 | pAC->I2c.SenTable[i].SenType = SK_SEN_UNKNOWN; |
| 579 | pAC->I2c.SenTable[i].SenThreErrHigh = 0; |
| 580 | pAC->I2c.SenTable[i].SenThreErrLow = 0; |
| 581 | pAC->I2c.SenTable[i].SenThreWarnHigh = 0; |
| 582 | pAC->I2c.SenTable[i].SenThreWarnLow = 0; |
| 583 | pAC->I2c.SenTable[i].SenReg = LM80_FAN2_IN; |
| 584 | pAC->I2c.SenTable[i].SenInit = SK_SEN_DYN_INIT_NONE; |
| 585 | pAC->I2c.SenTable[i].SenValue = 0; |
| 586 | pAC->I2c.SenTable[i].SenErrFlag = SK_SEN_ERR_NOT_PRESENT; |
| 587 | pAC->I2c.SenTable[i].SenErrCts = 0; |
| 588 | pAC->I2c.SenTable[i].SenBegErrTS = 0; |
| 589 | pAC->I2c.SenTable[i].SenState = SK_SEN_IDLE; |
| 590 | pAC->I2c.SenTable[i].SenRead = NULL; |
| 591 | pAC->I2c.SenTable[i].SenDev = 0; |
| 592 | } |
| 593 | |
| 594 | /* Now we are "INIT data"ed */ |
| 595 | pAC->I2c.InitLevel = SK_INIT_DATA; |
| 596 | return(0); |
| 597 | } /* SkI2cInit0*/ |
| 598 | |
| 599 | |
| 600 | /* |
| 601 | * Do the init state 1 initialization |
| 602 | * |
| 603 | * initialize the following register of the LM80: |
| 604 | * Configuration register: |
| 605 | * - START, noINT, activeLOW, noINT#Clear, noRESET, noCI, noGPO#, noINIT |
| 606 | * |
| 607 | * Interrupt Mask Register 1: |
| 608 | * - all interrupts are Disabled (0xff) |
| 609 | * |
| 610 | * Interrupt Mask Register 2: |
| 611 | * - all interrupts are Disabled (0xff) Interrupt modi doesn't matter. |
| 612 | * |
| 613 | * Fan Divisor/RST_OUT register: |
| 614 | * - Divisors set to 1 (bits 00), all others 0s. |
| 615 | * |
| 616 | * OS# Configuration/Temperature resolution Register: |
| 617 | * - all 0s |
| 618 | * |
| 619 | */ |
| 620 | static int SkI2cInit1( |
| 621 | SK_AC *pAC, /* Adapter Context */ |
| 622 | SK_IOC IoC) /* I/O Context */ |
| 623 | { |
| 624 | int i; |
| 625 | SK_U8 I2cSwCtrl; |
| 626 | SK_GEPORT *pPrt; /* GIni Port struct pointer */ |
| 627 | |
| 628 | if (pAC->I2c.InitLevel != SK_INIT_DATA) { |
| 629 | /* ReInit not needed in I2C module */ |
| 630 | return(0); |
| 631 | } |
| 632 | |
| 633 | /* Set the Direction of I2C-Data Pin to IN */ |
| 634 | SK_I2C_CLR_BIT(IoC, I2C_DATA_DIR | I2C_DATA); |
| 635 | /* Check for 32-Bit Yukon with Low at I2C-Data Pin */ |
| 636 | SK_I2C_GET_SW(IoC, &I2cSwCtrl); |
| 637 | |
| 638 | if ((I2cSwCtrl & I2C_DATA) == 0) { |
| 639 | /* this is a 32-Bit board */ |
| 640 | pAC->GIni.GIYukon32Bit = SK_TRUE; |
| 641 | return(0); |
| 642 | } |
| 643 | |
| 644 | /* Check for 64 Bit Yukon without sensors */ |
| 645 | if (SkI2cWrite(pAC, IoC, 0, LM80_ADDR, I2C_025K_DEV, LM80_CFG, 0) != 0) { |
| 646 | return(0); |
| 647 | } |
| 648 | |
| 649 | (void)SkI2cWrite(pAC, IoC, 0xffUL, LM80_ADDR, I2C_025K_DEV, LM80_IMSK_1, 0); |
| 650 | |
| 651 | (void)SkI2cWrite(pAC, IoC, 0xffUL, LM80_ADDR, I2C_025K_DEV, LM80_IMSK_2, 0); |
| 652 | |
| 653 | (void)SkI2cWrite(pAC, IoC, 0, LM80_ADDR, I2C_025K_DEV, LM80_FAN_CTRL, 0); |
| 654 | |
| 655 | (void)SkI2cWrite(pAC, IoC, 0, LM80_ADDR, I2C_025K_DEV, LM80_TEMP_CTRL, 0); |
| 656 | |
| 657 | (void)SkI2cWrite(pAC, IoC, (SK_U32)LM80_CFG_START, LM80_ADDR, I2C_025K_DEV, |
| 658 | LM80_CFG, 0); |
| 659 | |
| 660 | /* |
| 661 | * MaxSens has to be updated here, because PhyType is not |
| 662 | * set when performing Init Level 0 |
| 663 | */ |
| 664 | pAC->I2c.MaxSens = 5; |
| 665 | |
| 666 | pPrt = &pAC->GIni.GP[0]; |
| 667 | |
| 668 | if (pAC->GIni.GIGenesis) { |
| 669 | if (pPrt->PhyType == SK_PHY_BCOM) { |
| 670 | if (pAC->GIni.GIMacsFound == 1) { |
| 671 | pAC->I2c.MaxSens += 1; |
| 672 | } |
| 673 | else { |
| 674 | pAC->I2c.MaxSens += 3; |
| 675 | } |
| 676 | } |
| 677 | } |
| 678 | else { |
| 679 | pAC->I2c.MaxSens += 3; |
| 680 | } |
| 681 | |
| 682 | for (i = 0; i < pAC->I2c.MaxSens; i++) { |
| 683 | switch (i) { |
| 684 | case 0: |
| 685 | pAC->I2c.SenTable[i].SenDesc = "Temperature"; |
| 686 | pAC->I2c.SenTable[i].SenType = SK_SEN_TEMP; |
| 687 | pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_TEMP_HIGH_ERR; |
| 688 | pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_TEMP_HIGH_WARN; |
| 689 | pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_TEMP_LOW_WARN; |
| 690 | pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_TEMP_LOW_ERR; |
| 691 | pAC->I2c.SenTable[i].SenReg = LM80_TEMP_IN; |
| 692 | break; |
| 693 | case 1: |
| 694 | pAC->I2c.SenTable[i].SenDesc = "Voltage PCI"; |
| 695 | pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; |
| 696 | pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PCI_5V_HIGH_ERR; |
| 697 | pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PCI_5V_HIGH_WARN; |
| 698 | pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PCI_5V_LOW_WARN; |
| 699 | pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PCI_5V_LOW_ERR; |
| 700 | pAC->I2c.SenTable[i].SenReg = LM80_VT0_IN; |
| 701 | break; |
| 702 | case 2: |
| 703 | pAC->I2c.SenTable[i].SenDesc = "Voltage PCI-IO"; |
| 704 | pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; |
| 705 | pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PCI_IO_5V_HIGH_ERR; |
| 706 | pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PCI_IO_5V_HIGH_WARN; |
| 707 | pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PCI_IO_3V3_LOW_WARN; |
| 708 | pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PCI_IO_3V3_LOW_ERR; |
| 709 | pAC->I2c.SenTable[i].SenReg = LM80_VT1_IN; |
| 710 | pAC->I2c.SenTable[i].SenInit = SK_SEN_DYN_INIT_PCI_IO; |
| 711 | break; |
| 712 | case 3: |
| 713 | pAC->I2c.SenTable[i].SenDesc = "Voltage ASIC"; |
| 714 | pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; |
| 715 | pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_VDD_HIGH_ERR; |
| 716 | pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_VDD_HIGH_WARN; |
| 717 | pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_VDD_LOW_WARN; |
| 718 | pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_VDD_LOW_ERR; |
| 719 | pAC->I2c.SenTable[i].SenReg = LM80_VT2_IN; |
| 720 | break; |
| 721 | case 4: |
| 722 | if (pAC->GIni.GIGenesis) { |
| 723 | if (pPrt->PhyType == SK_PHY_BCOM) { |
| 724 | pAC->I2c.SenTable[i].SenDesc = "Voltage PHY A PLL"; |
| 725 | pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PLL_3V3_HIGH_ERR; |
| 726 | pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PLL_3V3_HIGH_WARN; |
| 727 | pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PLL_3V3_LOW_WARN; |
| 728 | pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PLL_3V3_LOW_ERR; |
| 729 | } |
| 730 | else { |
| 731 | pAC->I2c.SenTable[i].SenDesc = "Voltage PMA"; |
| 732 | pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PLL_3V3_HIGH_ERR; |
| 733 | pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PLL_3V3_HIGH_WARN; |
| 734 | pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PLL_3V3_LOW_WARN; |
| 735 | pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PLL_3V3_LOW_ERR; |
| 736 | } |
| 737 | } |
| 738 | else { |
| 739 | pAC->I2c.SenTable[i].SenDesc = "Voltage VAUX"; |
| 740 | pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_VAUX_3V3_HIGH_ERR; |
| 741 | pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_VAUX_3V3_HIGH_WARN; |
| 742 | if (pAC->GIni.GIVauxAvail) { |
| 743 | pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_VAUX_3V3_LOW_WARN; |
| 744 | pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_VAUX_3V3_LOW_ERR; |
| 745 | } |
| 746 | else { |
| 747 | pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_VAUX_0V_WARN_ERR; |
| 748 | pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_VAUX_0V_WARN_ERR; |
| 749 | } |
| 750 | } |
| 751 | pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; |
| 752 | pAC->I2c.SenTable[i].SenReg = LM80_VT3_IN; |
| 753 | break; |
| 754 | case 5: |
| 755 | if (pAC->GIni.GIGenesis) { |
| 756 | pAC->I2c.SenTable[i].SenDesc = "Voltage PHY 2V5"; |
| 757 | pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PHY_2V5_HIGH_ERR; |
| 758 | pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PHY_2V5_HIGH_WARN; |
| 759 | pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PHY_2V5_LOW_WARN; |
| 760 | pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PHY_2V5_LOW_ERR; |
| 761 | } |
| 762 | else { |
| 763 | pAC->I2c.SenTable[i].SenDesc = "Voltage Core 1V5"; |
| 764 | pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_CORE_1V5_HIGH_ERR; |
| 765 | pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_CORE_1V5_HIGH_WARN; |
| 766 | pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_CORE_1V5_LOW_WARN; |
| 767 | pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_CORE_1V5_LOW_ERR; |
| 768 | } |
| 769 | pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; |
| 770 | pAC->I2c.SenTable[i].SenReg = LM80_VT4_IN; |
| 771 | break; |
| 772 | case 6: |
| 773 | if (pAC->GIni.GIGenesis) { |
| 774 | pAC->I2c.SenTable[i].SenDesc = "Voltage PHY B PLL"; |
| 775 | } |
| 776 | else { |
| 777 | pAC->I2c.SenTable[i].SenDesc = "Voltage PHY 3V3"; |
| 778 | } |
| 779 | pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; |
| 780 | pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PLL_3V3_HIGH_ERR; |
| 781 | pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PLL_3V3_HIGH_WARN; |
| 782 | pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PLL_3V3_LOW_WARN; |
| 783 | pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PLL_3V3_LOW_ERR; |
| 784 | pAC->I2c.SenTable[i].SenReg = LM80_VT5_IN; |
| 785 | break; |
| 786 | case 7: |
| 787 | if (pAC->GIni.GIGenesis) { |
| 788 | pAC->I2c.SenTable[i].SenDesc = "Speed Fan"; |
| 789 | pAC->I2c.SenTable[i].SenType = SK_SEN_FAN; |
| 790 | pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_FAN_HIGH_ERR; |
| 791 | pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_FAN_HIGH_WARN; |
| 792 | pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_FAN_LOW_WARN; |
| 793 | pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_FAN_LOW_ERR; |
| 794 | pAC->I2c.SenTable[i].SenReg = LM80_FAN2_IN; |
| 795 | } |
| 796 | else { |
| 797 | pAC->I2c.SenTable[i].SenDesc = "Voltage PHY 2V5"; |
| 798 | pAC->I2c.SenTable[i].SenType = SK_SEN_VOLT; |
| 799 | pAC->I2c.SenTable[i].SenThreErrHigh = SK_SEN_PHY_2V5_HIGH_ERR; |
| 800 | pAC->I2c.SenTable[i].SenThreWarnHigh = SK_SEN_PHY_2V5_HIGH_WARN; |
| 801 | pAC->I2c.SenTable[i].SenThreWarnLow = SK_SEN_PHY_2V5_LOW_WARN; |
| 802 | pAC->I2c.SenTable[i].SenThreErrLow = SK_SEN_PHY_2V5_LOW_ERR; |
| 803 | pAC->I2c.SenTable[i].SenReg = LM80_VT6_IN; |
| 804 | } |
| 805 | break; |
| 806 | default: |
| 807 | SK_ERR_LOG(pAC, SK_ERRCL_INIT | SK_ERRCL_SW, |
| 808 | SKERR_I2C_E001, SKERR_I2C_E001MSG); |
| 809 | break; |
| 810 | } |
| 811 | |
| 812 | pAC->I2c.SenTable[i].SenValue = 0; |
| 813 | pAC->I2c.SenTable[i].SenErrFlag = SK_SEN_ERR_OK; |
| 814 | pAC->I2c.SenTable[i].SenErrCts = 0; |
| 815 | pAC->I2c.SenTable[i].SenBegErrTS = 0; |
| 816 | pAC->I2c.SenTable[i].SenState = SK_SEN_IDLE; |
| 817 | pAC->I2c.SenTable[i].SenRead = SkLm80ReadSensor; |
| 818 | pAC->I2c.SenTable[i].SenDev = LM80_ADDR; |
| 819 | } |
| 820 | |
| 821 | #ifndef SK_DIAG |
| 822 | pAC->I2c.DummyReads = pAC->I2c.MaxSens; |
| 823 | #endif /* !SK_DIAG */ |
| 824 | |
| 825 | /* Clear I2C IRQ */ |
| 826 | SK_OUT32(IoC, B2_I2C_IRQ, I2C_CLR_IRQ); |
| 827 | |
| 828 | /* Now we are I/O initialized */ |
| 829 | pAC->I2c.InitLevel = SK_INIT_IO; |
| 830 | return(0); |
| 831 | } /* SkI2cInit1 */ |
| 832 | |
| 833 | |
| 834 | /* |
| 835 | * Init level 2: Start first sensor read. |
| 836 | */ |
| 837 | static int SkI2cInit2( |
| 838 | SK_AC *pAC, /* Adapter Context */ |
| 839 | SK_IOC IoC) /* I/O Context */ |
| 840 | { |
| 841 | int ReadComplete; |
| 842 | SK_SENSOR *pSen; |
| 843 | |
| 844 | if (pAC->I2c.InitLevel != SK_INIT_IO) { |
| 845 | /* ReInit not needed in I2C module */ |
| 846 | /* Init0 and Init2 not permitted */ |
| 847 | return(0); |
| 848 | } |
| 849 | |
| 850 | pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; |
| 851 | ReadComplete = SkI2cReadSensor(pAC, IoC, pSen); |
| 852 | |
| 853 | if (ReadComplete) { |
| 854 | SK_ERR_LOG(pAC, SK_ERRCL_INIT, SKERR_I2C_E008, SKERR_I2C_E008MSG); |
| 855 | } |
| 856 | |
| 857 | /* Now we are correctly initialized */ |
| 858 | pAC->I2c.InitLevel = SK_INIT_RUN; |
| 859 | |
| 860 | return(0); |
| 861 | } /* SkI2cInit2*/ |
| 862 | |
| 863 | |
| 864 | /* |
| 865 | * Initialize I2C devices |
| 866 | * |
| 867 | * Get the first voltage value and discard it. |
| 868 | * Go into temperature read mode. A default pointer is not set. |
| 869 | * |
| 870 | * The things to be done depend on the init level in the parameter list: |
| 871 | * Level 0: |
| 872 | * Initialize only the data structures. Do NOT access hardware. |
| 873 | * Level 1: |
| 874 | * Initialize hardware through SK_IN / SK_OUT commands. Do NOT use interrupts. |
| 875 | * Level 2: |
| 876 | * Everything is possible. Interrupts may be used from now on. |
| 877 | * |
| 878 | * return: |
| 879 | * 0 = success |
| 880 | * other = error. |
| 881 | */ |
| 882 | int SkI2cInit( |
| 883 | SK_AC *pAC, /* Adapter Context */ |
| 884 | SK_IOC IoC, /* I/O Context needed in levels 1 and 2 */ |
| 885 | int Level) /* Init Level */ |
| 886 | { |
| 887 | |
| 888 | switch (Level) { |
| 889 | case SK_INIT_DATA: |
| 890 | return(SkI2cInit0(pAC)); |
| 891 | case SK_INIT_IO: |
| 892 | return(SkI2cInit1(pAC, IoC)); |
| 893 | case SK_INIT_RUN: |
| 894 | return(SkI2cInit2(pAC, IoC)); |
| 895 | default: |
| 896 | break; |
| 897 | } |
| 898 | |
| 899 | return(0); |
| 900 | } /* SkI2cInit */ |
| 901 | |
| 902 | |
| 903 | #ifndef SK_DIAG |
| 904 | |
| 905 | /* |
| 906 | * Interrupt service function for the I2C Interface |
| 907 | * |
| 908 | * Clears the Interrupt source |
| 909 | * |
| 910 | * Reads the register and check it for sending a trap. |
| 911 | * |
| 912 | * Starts the timer if necessary. |
| 913 | */ |
| 914 | void SkI2cIsr( |
| 915 | SK_AC *pAC, /* Adapter Context */ |
| 916 | SK_IOC IoC) /* I/O Context */ |
| 917 | { |
| 918 | SK_EVPARA Para; |
| 919 | |
| 920 | /* Clear I2C IRQ */ |
| 921 | SK_OUT32(IoC, B2_I2C_IRQ, I2C_CLR_IRQ); |
| 922 | |
| 923 | Para.Para64 = 0; |
| 924 | SkEventQueue(pAC, SKGE_I2C, SK_I2CEV_IRQ, Para); |
| 925 | } /* SkI2cIsr */ |
| 926 | |
| 927 | |
| 928 | /* |
| 929 | * Check this sensors Value against the threshold and send events. |
| 930 | */ |
| 931 | static void SkI2cCheckSensor( |
| 932 | SK_AC *pAC, /* Adapter Context */ |
| 933 | SK_SENSOR *pSen) |
| 934 | { |
| 935 | SK_EVPARA ParaLocal; |
| 936 | SK_BOOL TooHigh; /* Is sensor too high? */ |
| 937 | SK_BOOL TooLow; /* Is sensor too low? */ |
| 938 | SK_U64 CurrTime; /* Current Time */ |
| 939 | SK_BOOL DoTrapSend; /* We need to send a trap */ |
| 940 | SK_BOOL DoErrLog; /* We need to log the error */ |
| 941 | SK_BOOL IsError; /* We need to log the error */ |
| 942 | |
| 943 | /* Check Dummy Reads first */ |
| 944 | if (pAC->I2c.DummyReads > 0) { |
| 945 | pAC->I2c.DummyReads--; |
| 946 | return; |
| 947 | } |
| 948 | |
| 949 | /* Get the current time */ |
| 950 | CurrTime = SkOsGetTime(pAC); |
| 951 | |
| 952 | /* Set para to the most useful setting: The current sensor. */ |
| 953 | ParaLocal.Para64 = (SK_U64)pAC->I2c.CurrSens; |
| 954 | |
| 955 | /* Check the Value against the thresholds. First: Error Thresholds */ |
| 956 | TooHigh = (pSen->SenValue > pSen->SenThreErrHigh); |
| 957 | TooLow = (pSen->SenValue < pSen->SenThreErrLow); |
| 958 | |
| 959 | IsError = SK_FALSE; |
| 960 | if (TooHigh || TooLow) { |
| 961 | /* Error condition is satisfied */ |
| 962 | DoTrapSend = SK_TRUE; |
| 963 | DoErrLog = SK_TRUE; |
| 964 | |
| 965 | /* Now error condition is satisfied */ |
| 966 | IsError = SK_TRUE; |
| 967 | |
| 968 | if (pSen->SenErrFlag == SK_SEN_ERR_ERR) { |
| 969 | /* This state is the former one */ |
| 970 | |
| 971 | /* So check first whether we have to send a trap */ |
| 972 | if (pSen->SenLastErrTrapTS + SK_SEN_ERR_TR_HOLD > |
| 973 | CurrTime) { |
| 974 | /* |
| 975 | * Do NOT send the Trap. The hold back time |
| 976 | * has to run out first. |
| 977 | */ |
| 978 | DoTrapSend = SK_FALSE; |
| 979 | } |
| 980 | |
| 981 | /* Check now whether we have to log an Error */ |
| 982 | if (pSen->SenLastErrLogTS + SK_SEN_ERR_LOG_HOLD > |
| 983 | CurrTime) { |
| 984 | /* |
| 985 | * Do NOT log the error. The hold back time |
| 986 | * has to run out first. |
| 987 | */ |
| 988 | DoErrLog = SK_FALSE; |
| 989 | } |
| 990 | } |
| 991 | else { |
| 992 | /* We came from a different state -> Set Begin Time Stamp */ |
| 993 | pSen->SenBegErrTS = CurrTime; |
| 994 | pSen->SenErrFlag = SK_SEN_ERR_ERR; |
| 995 | } |
| 996 | |
| 997 | if (DoTrapSend) { |
| 998 | /* Set current Time */ |
| 999 | pSen->SenLastErrTrapTS = CurrTime; |
| 1000 | pSen->SenErrCts++; |
| 1001 | |
| 1002 | /* Queue PNMI Event */ |
| 1003 | SkEventQueue(pAC, SKGE_PNMI, (TooHigh ? |
| 1004 | SK_PNMI_EVT_SEN_ERR_UPP : |
| 1005 | SK_PNMI_EVT_SEN_ERR_LOW), |
| 1006 | ParaLocal); |
| 1007 | } |
| 1008 | |
| 1009 | if (DoErrLog) { |
| 1010 | /* Set current Time */ |
| 1011 | pSen->SenLastErrLogTS = CurrTime; |
| 1012 | |
| 1013 | if (pSen->SenType == SK_SEN_TEMP) { |
| 1014 | SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E011, SKERR_I2C_E011MSG); |
| 1015 | } |
| 1016 | else if (pSen->SenType == SK_SEN_VOLT) { |
| 1017 | SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E012, SKERR_I2C_E012MSG); |
| 1018 | } |
| 1019 | else { |
| 1020 | SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E015, SKERR_I2C_E015MSG); |
| 1021 | } |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | /* Check the Value against the thresholds */ |
| 1026 | /* 2nd: Warning thresholds */ |
| 1027 | TooHigh = (pSen->SenValue > pSen->SenThreWarnHigh); |
| 1028 | TooLow = (pSen->SenValue < pSen->SenThreWarnLow); |
| 1029 | |
| 1030 | if (!IsError && (TooHigh || TooLow)) { |
| 1031 | /* Error condition is satisfied */ |
| 1032 | DoTrapSend = SK_TRUE; |
| 1033 | DoErrLog = SK_TRUE; |
| 1034 | |
| 1035 | if (pSen->SenErrFlag == SK_SEN_ERR_WARN) { |
| 1036 | /* This state is the former one */ |
| 1037 | |
| 1038 | /* So check first whether we have to send a trap */ |
| 1039 | if (pSen->SenLastWarnTrapTS + SK_SEN_WARN_TR_HOLD > CurrTime) { |
| 1040 | /* |
| 1041 | * Do NOT send the Trap. The hold back time |
| 1042 | * has to run out first. |
| 1043 | */ |
| 1044 | DoTrapSend = SK_FALSE; |
| 1045 | } |
| 1046 | |
| 1047 | /* Check now whether we have to log an Error */ |
| 1048 | if (pSen->SenLastWarnLogTS + SK_SEN_WARN_LOG_HOLD > CurrTime) { |
| 1049 | /* |
| 1050 | * Do NOT log the error. The hold back time |
| 1051 | * has to run out first. |
| 1052 | */ |
| 1053 | DoErrLog = SK_FALSE; |
| 1054 | } |
| 1055 | } |
| 1056 | else { |
| 1057 | /* We came from a different state -> Set Begin Time Stamp */ |
| 1058 | pSen->SenBegWarnTS = CurrTime; |
| 1059 | pSen->SenErrFlag = SK_SEN_ERR_WARN; |
| 1060 | } |
| 1061 | |
| 1062 | if (DoTrapSend) { |
| 1063 | /* Set current Time */ |
| 1064 | pSen->SenLastWarnTrapTS = CurrTime; |
| 1065 | pSen->SenWarnCts++; |
| 1066 | |
| 1067 | /* Queue PNMI Event */ |
| 1068 | SkEventQueue(pAC, SKGE_PNMI, (TooHigh ? |
| 1069 | SK_PNMI_EVT_SEN_WAR_UPP : |
| 1070 | SK_PNMI_EVT_SEN_WAR_LOW), |
| 1071 | ParaLocal); |
| 1072 | } |
| 1073 | |
| 1074 | if (DoErrLog) { |
| 1075 | /* Set current Time */ |
| 1076 | pSen->SenLastWarnLogTS = CurrTime; |
| 1077 | |
| 1078 | if (pSen->SenType == SK_SEN_TEMP) { |
| 1079 | SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E009, SKERR_I2C_E009MSG); |
| 1080 | } |
| 1081 | else if (pSen->SenType == SK_SEN_VOLT) { |
| 1082 | SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E010, SKERR_I2C_E010MSG); |
| 1083 | } |
| 1084 | else { |
| 1085 | SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E014, SKERR_I2C_E014MSG); |
| 1086 | } |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | /* Check for NO error at all */ |
| 1091 | if (!IsError && !TooHigh && !TooLow) { |
| 1092 | /* Set o.k. Status if no error and no warning condition */ |
| 1093 | pSen->SenErrFlag = SK_SEN_ERR_OK; |
| 1094 | } |
| 1095 | |
| 1096 | /* End of check against the thresholds */ |
| 1097 | |
| 1098 | /* Bug fix AF: 16.Aug.2001: Correct the init base |
| 1099 | * of LM80 sensor. |
| 1100 | */ |
| 1101 | if (pSen->SenInit == SK_SEN_DYN_INIT_PCI_IO) { |
| 1102 | |
| 1103 | pSen->SenInit = SK_SEN_DYN_INIT_NONE; |
| 1104 | |
| 1105 | if (pSen->SenValue > SK_SEN_PCI_IO_RANGE_LIMITER) { |
| 1106 | /* 5V PCI-IO Voltage */ |
| 1107 | pSen->SenThreWarnLow = SK_SEN_PCI_IO_5V_LOW_WARN; |
| 1108 | pSen->SenThreErrLow = SK_SEN_PCI_IO_5V_LOW_ERR; |
| 1109 | } |
| 1110 | else { |
| 1111 | /* 3.3V PCI-IO Voltage */ |
| 1112 | pSen->SenThreWarnHigh = SK_SEN_PCI_IO_3V3_HIGH_WARN; |
| 1113 | pSen->SenThreErrHigh = SK_SEN_PCI_IO_3V3_HIGH_ERR; |
| 1114 | } |
| 1115 | } |
| 1116 | |
| 1117 | #ifdef TEST_ONLY |
| 1118 | /* Dynamic thresholds also for VAUX of LM80 sensor */ |
| 1119 | if (pSen->SenInit == SK_SEN_DYN_INIT_VAUX) { |
| 1120 | |
| 1121 | pSen->SenInit = SK_SEN_DYN_INIT_NONE; |
| 1122 | |
| 1123 | /* 3.3V VAUX Voltage */ |
| 1124 | if (pSen->SenValue > SK_SEN_VAUX_RANGE_LIMITER) { |
| 1125 | pSen->SenThreWarnLow = SK_SEN_VAUX_3V3_LOW_WARN; |
| 1126 | pSen->SenThreErrLow = SK_SEN_VAUX_3V3_LOW_ERR; |
| 1127 | } |
| 1128 | /* 0V VAUX Voltage */ |
| 1129 | else { |
| 1130 | pSen->SenThreWarnHigh = SK_SEN_VAUX_0V_WARN_ERR; |
| 1131 | pSen->SenThreErrHigh = SK_SEN_VAUX_0V_WARN_ERR; |
| 1132 | } |
| 1133 | } |
| 1134 | |
| 1135 | /* |
| 1136 | * Check initialization state: |
| 1137 | * The VIO Thresholds need adaption |
| 1138 | */ |
| 1139 | if (!pSen->SenInit && pSen->SenReg == LM80_VT1_IN && |
| 1140 | pSen->SenValue > SK_SEN_WARNLOW2C && |
| 1141 | pSen->SenValue < SK_SEN_WARNHIGH2) { |
| 1142 | pSen->SenThreErrLow = SK_SEN_ERRLOW2C; |
| 1143 | pSen->SenThreWarnLow = SK_SEN_WARNLOW2C; |
| 1144 | pSen->SenInit = SK_TRUE; |
| 1145 | } |
| 1146 | |
| 1147 | if (!pSen->SenInit && pSen->SenReg == LM80_VT1_IN && |
| 1148 | pSen->SenValue > SK_SEN_WARNLOW2 && |
| 1149 | pSen->SenValue < SK_SEN_WARNHIGH2C) { |
| 1150 | pSen->SenThreErrHigh = SK_SEN_ERRHIGH2C; |
| 1151 | pSen->SenThreWarnHigh = SK_SEN_WARNHIGH2C; |
| 1152 | pSen->SenInit = SK_TRUE; |
| 1153 | } |
| 1154 | #endif |
| 1155 | |
| 1156 | if (pSen->SenInit != SK_SEN_DYN_INIT_NONE) { |
| 1157 | SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_I2C_E013, SKERR_I2C_E013MSG); |
| 1158 | } |
| 1159 | } /* SkI2cCheckSensor */ |
| 1160 | |
| 1161 | |
| 1162 | /* |
| 1163 | * The only Event to be served is the timeout event |
| 1164 | * |
| 1165 | */ |
| 1166 | int SkI2cEvent( |
| 1167 | SK_AC *pAC, /* Adapter Context */ |
| 1168 | SK_IOC IoC, /* I/O Context */ |
| 1169 | SK_U32 Event, /* Module specific Event */ |
| 1170 | SK_EVPARA Para) /* Event specific Parameter */ |
| 1171 | { |
| 1172 | int ReadComplete; |
| 1173 | SK_SENSOR *pSen; |
| 1174 | SK_U32 Time; |
| 1175 | SK_EVPARA ParaLocal; |
| 1176 | int i; |
| 1177 | |
| 1178 | /* New case: no sensors */ |
| 1179 | if (pAC->I2c.MaxSens == 0) { |
| 1180 | return(0); |
| 1181 | } |
| 1182 | |
| 1183 | switch (Event) { |
| 1184 | case SK_I2CEV_IRQ: |
| 1185 | pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; |
| 1186 | ReadComplete = SkI2cReadSensor(pAC, IoC, pSen); |
| 1187 | |
| 1188 | if (ReadComplete) { |
| 1189 | /* Check sensor against defined thresholds */ |
| 1190 | SkI2cCheckSensor(pAC, pSen); |
| 1191 | |
| 1192 | /* Increment Current sensor and set appropriate Timeout */ |
| 1193 | pAC->I2c.CurrSens++; |
| 1194 | if (pAC->I2c.CurrSens >= pAC->I2c.MaxSens) { |
| 1195 | pAC->I2c.CurrSens = 0; |
| 1196 | Time = SK_I2C_TIM_LONG; |
| 1197 | } |
| 1198 | else { |
| 1199 | Time = SK_I2C_TIM_SHORT; |
| 1200 | } |
| 1201 | |
| 1202 | /* Start Timer */ |
| 1203 | ParaLocal.Para64 = (SK_U64)0; |
| 1204 | |
| 1205 | pAC->I2c.TimerMode = SK_TIMER_NEW_GAUGING; |
| 1206 | |
| 1207 | SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, Time, |
| 1208 | SKGE_I2C, SK_I2CEV_TIM, ParaLocal); |
| 1209 | } |
| 1210 | else { |
| 1211 | /* Start Timer */ |
| 1212 | ParaLocal.Para64 = (SK_U64)0; |
| 1213 | |
| 1214 | pAC->I2c.TimerMode = SK_TIMER_WATCH_SM; |
| 1215 | |
| 1216 | SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, SK_I2C_TIM_WATCH, |
| 1217 | SKGE_I2C, SK_I2CEV_TIM, ParaLocal); |
| 1218 | } |
| 1219 | break; |
| 1220 | case SK_I2CEV_TIM: |
| 1221 | if (pAC->I2c.TimerMode == SK_TIMER_NEW_GAUGING) { |
| 1222 | |
| 1223 | ParaLocal.Para64 = (SK_U64)0; |
| 1224 | SkTimerStop(pAC, IoC, &pAC->I2c.SenTimer); |
| 1225 | |
| 1226 | pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; |
| 1227 | ReadComplete = SkI2cReadSensor(pAC, IoC, pSen); |
| 1228 | |
| 1229 | if (ReadComplete) { |
| 1230 | /* Check sensor against defined thresholds */ |
| 1231 | SkI2cCheckSensor(pAC, pSen); |
| 1232 | |
| 1233 | /* Increment Current sensor and set appropriate Timeout */ |
| 1234 | pAC->I2c.CurrSens++; |
| 1235 | if (pAC->I2c.CurrSens == pAC->I2c.MaxSens) { |
| 1236 | pAC->I2c.CurrSens = 0; |
| 1237 | Time = SK_I2C_TIM_LONG; |
| 1238 | } |
| 1239 | else { |
| 1240 | Time = SK_I2C_TIM_SHORT; |
| 1241 | } |
| 1242 | |
| 1243 | /* Start Timer */ |
| 1244 | ParaLocal.Para64 = (SK_U64)0; |
| 1245 | |
| 1246 | pAC->I2c.TimerMode = SK_TIMER_NEW_GAUGING; |
| 1247 | |
| 1248 | SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, Time, |
| 1249 | SKGE_I2C, SK_I2CEV_TIM, ParaLocal); |
| 1250 | } |
| 1251 | } |
| 1252 | else { |
| 1253 | pSen = &pAC->I2c.SenTable[pAC->I2c.CurrSens]; |
| 1254 | pSen->SenErrFlag = SK_SEN_ERR_FAULTY; |
| 1255 | SK_I2C_STOP(IoC); |
| 1256 | |
| 1257 | /* Increment Current sensor and set appropriate Timeout */ |
| 1258 | pAC->I2c.CurrSens++; |
| 1259 | if (pAC->I2c.CurrSens == pAC->I2c.MaxSens) { |
| 1260 | pAC->I2c.CurrSens = 0; |
| 1261 | Time = SK_I2C_TIM_LONG; |
| 1262 | } |
| 1263 | else { |
| 1264 | Time = SK_I2C_TIM_SHORT; |
| 1265 | } |
| 1266 | |
| 1267 | /* Start Timer */ |
| 1268 | ParaLocal.Para64 = (SK_U64)0; |
| 1269 | |
| 1270 | pAC->I2c.TimerMode = SK_TIMER_NEW_GAUGING; |
| 1271 | |
| 1272 | SkTimerStart(pAC, IoC, &pAC->I2c.SenTimer, Time, |
| 1273 | SKGE_I2C, SK_I2CEV_TIM, ParaLocal); |
| 1274 | } |
| 1275 | break; |
| 1276 | case SK_I2CEV_CLEAR: |
| 1277 | for (i = 0; i < SK_MAX_SENSORS; i++) { |
| 1278 | pAC->I2c.SenTable[i].SenErrFlag = SK_SEN_ERR_OK; |
| 1279 | pAC->I2c.SenTable[i].SenErrCts = 0; |
| 1280 | pAC->I2c.SenTable[i].SenWarnCts = 0; |
| 1281 | pAC->I2c.SenTable[i].SenBegErrTS = 0; |
| 1282 | pAC->I2c.SenTable[i].SenBegWarnTS = 0; |
| 1283 | pAC->I2c.SenTable[i].SenLastErrTrapTS = (SK_U64)0; |
| 1284 | pAC->I2c.SenTable[i].SenLastErrLogTS = (SK_U64)0; |
| 1285 | pAC->I2c.SenTable[i].SenLastWarnTrapTS = (SK_U64)0; |
| 1286 | pAC->I2c.SenTable[i].SenLastWarnLogTS = (SK_U64)0; |
| 1287 | } |
| 1288 | break; |
| 1289 | default: |
| 1290 | SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_I2C_E006, SKERR_I2C_E006MSG); |
| 1291 | } |
| 1292 | |
| 1293 | return(0); |
| 1294 | } /* SkI2cEvent*/ |
| 1295 | |
| 1296 | #endif /* !SK_DIAG */ |