blob: 9e3591d7706fb9f2a3c61d6faf42f9d21d73b637 [file] [log] [blame]
Divy Le Ray4d22de32007-01-18 22:04:14 -05001/*
Divy Le Ray1d68e932007-01-30 19:44:35 -08002 * Copyright (c) 2003-2007 Chelsio, Inc. All rights reserved.
Divy Le Ray4d22de32007-01-18 22:04:14 -05003 *
Divy Le Ray1d68e932007-01-30 19:44:35 -08004 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
Divy Le Ray4d22de32007-01-18 22:04:14 -05009 *
Divy Le Ray1d68e932007-01-30 19:44:35 -080010 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
Divy Le Ray4d22de32007-01-18 22:04:14 -050031 */
Divy Le Ray4d22de32007-01-18 22:04:14 -050032#include "common.h"
33#include "regs.h"
34#include "sge_defs.h"
35#include "firmware_exports.h"
36
Divy Le Rayf2c68792007-01-30 19:44:13 -080037/**
38 * t3_wait_op_done_val - wait until an operation is completed
39 * @adapter: the adapter performing the operation
40 * @reg: the register to check for completion
41 * @mask: a single-bit field within @reg that indicates completion
42 * @polarity: the value of the field when the operation is completed
43 * @attempts: number of check iterations
44 * @delay: delay in usecs between iterations
45 * @valp: where to store the value of the register at completion time
46 *
47 * Wait until an operation is completed by checking a bit in a register
48 * up to @attempts times. If @valp is not NULL the value of the register
49 * at the time it indicated completion is stored there. Returns 0 if the
50 * operation completes and -EAGAIN otherwise.
51 */
Divy Le Ray4d22de32007-01-18 22:04:14 -050052
53int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
54 int polarity, int attempts, int delay, u32 *valp)
55{
56 while (1) {
57 u32 val = t3_read_reg(adapter, reg);
58
59 if (!!(val & mask) == polarity) {
60 if (valp)
61 *valp = val;
62 return 0;
63 }
64 if (--attempts == 0)
65 return -EAGAIN;
66 if (delay)
67 udelay(delay);
68 }
69}
70
71/**
72 * t3_write_regs - write a bunch of registers
73 * @adapter: the adapter to program
74 * @p: an array of register address/register value pairs
75 * @n: the number of address/value pairs
76 * @offset: register address offset
77 *
78 * Takes an array of register address/register value pairs and writes each
79 * value to the corresponding register. Register addresses are adjusted
80 * by the supplied offset.
81 */
82void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
83 int n, unsigned int offset)
84{
85 while (n--) {
86 t3_write_reg(adapter, p->reg_addr + offset, p->val);
87 p++;
88 }
89}
90
91/**
92 * t3_set_reg_field - set a register field to a value
93 * @adapter: the adapter to program
94 * @addr: the register address
95 * @mask: specifies the portion of the register to modify
96 * @val: the new value for the register field
97 *
98 * Sets a register field specified by the supplied mask to the
99 * given value.
100 */
101void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
102 u32 val)
103{
104 u32 v = t3_read_reg(adapter, addr) & ~mask;
105
106 t3_write_reg(adapter, addr, v | val);
107 t3_read_reg(adapter, addr); /* flush */
108}
109
110/**
111 * t3_read_indirect - read indirectly addressed registers
112 * @adap: the adapter
113 * @addr_reg: register holding the indirect address
114 * @data_reg: register holding the value of the indirect register
115 * @vals: where the read register values are stored
116 * @start_idx: index of first indirect register to read
117 * @nregs: how many indirect registers to read
118 *
119 * Reads registers that are accessed indirectly through an address/data
120 * register pair.
121 */
122void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
123 unsigned int data_reg, u32 *vals, unsigned int nregs,
124 unsigned int start_idx)
125{
126 while (nregs--) {
127 t3_write_reg(adap, addr_reg, start_idx);
128 *vals++ = t3_read_reg(adap, data_reg);
129 start_idx++;
130 }
131}
132
133/**
134 * t3_mc7_bd_read - read from MC7 through backdoor accesses
135 * @mc7: identifies MC7 to read from
136 * @start: index of first 64-bit word to read
137 * @n: number of 64-bit words to read
138 * @buf: where to store the read result
139 *
140 * Read n 64-bit words from MC7 starting at word start, using backdoor
141 * accesses.
142 */
143int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
144 u64 *buf)
145{
146 static const int shift[] = { 0, 0, 16, 24 };
147 static const int step[] = { 0, 32, 16, 8 };
148
149 unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
150 struct adapter *adap = mc7->adapter;
151
152 if (start >= size64 || start + n > size64)
153 return -EINVAL;
154
155 start *= (8 << mc7->width);
156 while (n--) {
157 int i;
158 u64 val64 = 0;
159
160 for (i = (1 << mc7->width) - 1; i >= 0; --i) {
161 int attempts = 10;
162 u32 val;
163
164 t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
165 t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
166 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
167 while ((val & F_BUSY) && attempts--)
168 val = t3_read_reg(adap,
169 mc7->offset + A_MC7_BD_OP);
170 if (val & F_BUSY)
171 return -EIO;
172
173 val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
174 if (mc7->width == 0) {
175 val64 = t3_read_reg(adap,
176 mc7->offset +
177 A_MC7_BD_DATA0);
178 val64 |= (u64) val << 32;
179 } else {
180 if (mc7->width > 1)
181 val >>= shift[mc7->width];
182 val64 |= (u64) val << (step[mc7->width] * i);
183 }
184 start += 8;
185 }
186 *buf++ = val64;
187 }
188 return 0;
189}
190
191/*
192 * Initialize MI1.
193 */
194static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
195{
196 u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
197 u32 val = F_PREEN | V_MDIINV(ai->mdiinv) | V_MDIEN(ai->mdien) |
198 V_CLKDIV(clkdiv);
199
200 if (!(ai->caps & SUPPORTED_10000baseT_Full))
201 val |= V_ST(1);
202 t3_write_reg(adap, A_MI1_CFG, val);
203}
204
205#define MDIO_ATTEMPTS 10
206
207/*
208 * MI1 read/write operations for direct-addressed PHYs.
209 */
210static int mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr,
211 int reg_addr, unsigned int *valp)
212{
213 int ret;
214 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
215
216 if (mmd_addr)
217 return -EINVAL;
218
219 mutex_lock(&adapter->mdio_lock);
220 t3_write_reg(adapter, A_MI1_ADDR, addr);
221 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
222 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
223 if (!ret)
224 *valp = t3_read_reg(adapter, A_MI1_DATA);
225 mutex_unlock(&adapter->mdio_lock);
226 return ret;
227}
228
229static int mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr,
230 int reg_addr, unsigned int val)
231{
232 int ret;
233 u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
234
235 if (mmd_addr)
236 return -EINVAL;
237
238 mutex_lock(&adapter->mdio_lock);
239 t3_write_reg(adapter, A_MI1_ADDR, addr);
240 t3_write_reg(adapter, A_MI1_DATA, val);
241 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
242 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
243 mutex_unlock(&adapter->mdio_lock);
244 return ret;
245}
246
247static const struct mdio_ops mi1_mdio_ops = {
248 mi1_read,
249 mi1_write
250};
251
252/*
253 * MI1 read/write operations for indirect-addressed PHYs.
254 */
255static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr,
256 int reg_addr, unsigned int *valp)
257{
258 int ret;
259 u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
260
261 mutex_lock(&adapter->mdio_lock);
262 t3_write_reg(adapter, A_MI1_ADDR, addr);
263 t3_write_reg(adapter, A_MI1_DATA, reg_addr);
264 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
265 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
266 if (!ret) {
267 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
268 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
269 MDIO_ATTEMPTS, 20);
270 if (!ret)
271 *valp = t3_read_reg(adapter, A_MI1_DATA);
272 }
273 mutex_unlock(&adapter->mdio_lock);
274 return ret;
275}
276
277static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr,
278 int reg_addr, unsigned int val)
279{
280 int ret;
281 u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
282
283 mutex_lock(&adapter->mdio_lock);
284 t3_write_reg(adapter, A_MI1_ADDR, addr);
285 t3_write_reg(adapter, A_MI1_DATA, reg_addr);
286 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
287 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
288 if (!ret) {
289 t3_write_reg(adapter, A_MI1_DATA, val);
290 t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
291 ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
292 MDIO_ATTEMPTS, 20);
293 }
294 mutex_unlock(&adapter->mdio_lock);
295 return ret;
296}
297
298static const struct mdio_ops mi1_mdio_ext_ops = {
299 mi1_ext_read,
300 mi1_ext_write
301};
302
303/**
304 * t3_mdio_change_bits - modify the value of a PHY register
305 * @phy: the PHY to operate on
306 * @mmd: the device address
307 * @reg: the register address
308 * @clear: what part of the register value to mask off
309 * @set: what part of the register value to set
310 *
311 * Changes the value of a PHY register by applying a mask to its current
312 * value and ORing the result with a new value.
313 */
314int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
315 unsigned int set)
316{
317 int ret;
318 unsigned int val;
319
320 ret = mdio_read(phy, mmd, reg, &val);
321 if (!ret) {
322 val &= ~clear;
323 ret = mdio_write(phy, mmd, reg, val | set);
324 }
325 return ret;
326}
327
328/**
329 * t3_phy_reset - reset a PHY block
330 * @phy: the PHY to operate on
331 * @mmd: the device address of the PHY block to reset
332 * @wait: how long to wait for the reset to complete in 1ms increments
333 *
334 * Resets a PHY block and optionally waits for the reset to complete.
335 * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
336 * for 10G PHYs.
337 */
338int t3_phy_reset(struct cphy *phy, int mmd, int wait)
339{
340 int err;
341 unsigned int ctl;
342
343 err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET);
344 if (err || !wait)
345 return err;
346
347 do {
348 err = mdio_read(phy, mmd, MII_BMCR, &ctl);
349 if (err)
350 return err;
351 ctl &= BMCR_RESET;
352 if (ctl)
353 msleep(1);
354 } while (ctl && --wait);
355
356 return ctl ? -1 : 0;
357}
358
359/**
360 * t3_phy_advertise - set the PHY advertisement registers for autoneg
361 * @phy: the PHY to operate on
362 * @advert: bitmap of capabilities the PHY should advertise
363 *
364 * Sets a 10/100/1000 PHY's advertisement registers to advertise the
365 * requested capabilities.
366 */
367int t3_phy_advertise(struct cphy *phy, unsigned int advert)
368{
369 int err;
370 unsigned int val = 0;
371
372 err = mdio_read(phy, 0, MII_CTRL1000, &val);
373 if (err)
374 return err;
375
376 val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
377 if (advert & ADVERTISED_1000baseT_Half)
378 val |= ADVERTISE_1000HALF;
379 if (advert & ADVERTISED_1000baseT_Full)
380 val |= ADVERTISE_1000FULL;
381
382 err = mdio_write(phy, 0, MII_CTRL1000, val);
383 if (err)
384 return err;
385
386 val = 1;
387 if (advert & ADVERTISED_10baseT_Half)
388 val |= ADVERTISE_10HALF;
389 if (advert & ADVERTISED_10baseT_Full)
390 val |= ADVERTISE_10FULL;
391 if (advert & ADVERTISED_100baseT_Half)
392 val |= ADVERTISE_100HALF;
393 if (advert & ADVERTISED_100baseT_Full)
394 val |= ADVERTISE_100FULL;
395 if (advert & ADVERTISED_Pause)
396 val |= ADVERTISE_PAUSE_CAP;
397 if (advert & ADVERTISED_Asym_Pause)
398 val |= ADVERTISE_PAUSE_ASYM;
399 return mdio_write(phy, 0, MII_ADVERTISE, val);
400}
401
402/**
403 * t3_set_phy_speed_duplex - force PHY speed and duplex
404 * @phy: the PHY to operate on
405 * @speed: requested PHY speed
406 * @duplex: requested PHY duplex
407 *
408 * Force a 10/100/1000 PHY's speed and duplex. This also disables
409 * auto-negotiation except for GigE, where auto-negotiation is mandatory.
410 */
411int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
412{
413 int err;
414 unsigned int ctl;
415
416 err = mdio_read(phy, 0, MII_BMCR, &ctl);
417 if (err)
418 return err;
419
420 if (speed >= 0) {
421 ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
422 if (speed == SPEED_100)
423 ctl |= BMCR_SPEED100;
424 else if (speed == SPEED_1000)
425 ctl |= BMCR_SPEED1000;
426 }
427 if (duplex >= 0) {
428 ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
429 if (duplex == DUPLEX_FULL)
430 ctl |= BMCR_FULLDPLX;
431 }
432 if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
433 ctl |= BMCR_ANENABLE;
434 return mdio_write(phy, 0, MII_BMCR, ctl);
435}
436
437static const struct adapter_info t3_adap_info[] = {
438 {2, 0, 0, 0,
439 F_GPIO2_OEN | F_GPIO4_OEN |
440 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
Divy Le Ray8ac3ba62007-03-31 00:23:19 -0700441 0,
Divy Le Ray4d22de32007-01-18 22:04:14 -0500442 &mi1_mdio_ops, "Chelsio PE9000"},
443 {2, 0, 0, 0,
444 F_GPIO2_OEN | F_GPIO4_OEN |
445 F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
Divy Le Ray8ac3ba62007-03-31 00:23:19 -0700446 0,
Divy Le Ray4d22de32007-01-18 22:04:14 -0500447 &mi1_mdio_ops, "Chelsio T302"},
448 {1, 0, 0, 0,
449 F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
450 F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
Divy Le Ray8ac3ba62007-03-31 00:23:19 -0700451 SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
Divy Le Ray4d22de32007-01-18 22:04:14 -0500452 &mi1_mdio_ext_ops, "Chelsio T310"},
453 {2, 0, 0, 0,
454 F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
455 F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
456 F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
Divy Le Ray8ac3ba62007-03-31 00:23:19 -0700457 SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
Divy Le Ray4d22de32007-01-18 22:04:14 -0500458 &mi1_mdio_ext_ops, "Chelsio T320"},
459};
460
461/*
462 * Return the adapter_info structure with a given index. Out-of-range indices
463 * return NULL.
464 */
465const struct adapter_info *t3_get_adapter_info(unsigned int id)
466{
467 return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
468}
469
470#define CAPS_1G (SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full | \
471 SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII)
472#define CAPS_10G (SUPPORTED_10000baseT_Full | SUPPORTED_AUI)
473
474static const struct port_type_info port_types[] = {
475 {NULL},
476 {t3_ael1002_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
477 "10GBASE-XR"},
478 {t3_vsc8211_phy_prep, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
479 "10/100/1000BASE-T"},
480 {NULL, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
481 "10/100/1000BASE-T"},
482 {t3_xaui_direct_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
483 {NULL, CAPS_10G, "10GBASE-KX4"},
484 {t3_qt2045_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
485 {t3_ael1006_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
486 "10GBASE-SR"},
487 {NULL, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
488};
489
490#undef CAPS_1G
491#undef CAPS_10G
492
493#define VPD_ENTRY(name, len) \
494 u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
495
496/*
497 * Partial EEPROM Vital Product Data structure. Includes only the ID and
498 * VPD-R sections.
499 */
500struct t3_vpd {
501 u8 id_tag;
502 u8 id_len[2];
503 u8 id_data[16];
504 u8 vpdr_tag;
505 u8 vpdr_len[2];
506 VPD_ENTRY(pn, 16); /* part number */
507 VPD_ENTRY(ec, 16); /* EC level */
508 VPD_ENTRY(sn, 16); /* serial number */
509 VPD_ENTRY(na, 12); /* MAC address base */
510 VPD_ENTRY(cclk, 6); /* core clock */
511 VPD_ENTRY(mclk, 6); /* mem clock */
512 VPD_ENTRY(uclk, 6); /* uP clk */
513 VPD_ENTRY(mdc, 6); /* MDIO clk */
514 VPD_ENTRY(mt, 2); /* mem timing */
515 VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
516 VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
517 VPD_ENTRY(port0, 2); /* PHY0 complex */
518 VPD_ENTRY(port1, 2); /* PHY1 complex */
519 VPD_ENTRY(port2, 2); /* PHY2 complex */
520 VPD_ENTRY(port3, 2); /* PHY3 complex */
521 VPD_ENTRY(rv, 1); /* csum */
522 u32 pad; /* for multiple-of-4 sizing and alignment */
523};
524
525#define EEPROM_MAX_POLL 4
526#define EEPROM_STAT_ADDR 0x4000
527#define VPD_BASE 0xc00
528
529/**
530 * t3_seeprom_read - read a VPD EEPROM location
531 * @adapter: adapter to read
532 * @addr: EEPROM address
533 * @data: where to store the read data
534 *
535 * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
536 * VPD ROM capability. A zero is written to the flag bit when the
537 * addres is written to the control register. The hardware device will
538 * set the flag to 1 when 4 bytes have been read into the data register.
539 */
540int t3_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
541{
542 u16 val;
543 int attempts = EEPROM_MAX_POLL;
544 unsigned int base = adapter->params.pci.vpd_cap_addr;
545
546 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
547 return -EINVAL;
548
549 pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
550 do {
551 udelay(10);
552 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
553 } while (!(val & PCI_VPD_ADDR_F) && --attempts);
554
555 if (!(val & PCI_VPD_ADDR_F)) {
556 CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
557 return -EIO;
558 }
559 pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, data);
560 *data = le32_to_cpu(*data);
561 return 0;
562}
563
564/**
565 * t3_seeprom_write - write a VPD EEPROM location
566 * @adapter: adapter to write
567 * @addr: EEPROM address
568 * @data: value to write
569 *
570 * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
571 * VPD ROM capability.
572 */
573int t3_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
574{
575 u16 val;
576 int attempts = EEPROM_MAX_POLL;
577 unsigned int base = adapter->params.pci.vpd_cap_addr;
578
579 if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
580 return -EINVAL;
581
582 pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
583 cpu_to_le32(data));
584 pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
585 addr | PCI_VPD_ADDR_F);
586 do {
587 msleep(1);
588 pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
589 } while ((val & PCI_VPD_ADDR_F) && --attempts);
590
591 if (val & PCI_VPD_ADDR_F) {
592 CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
593 return -EIO;
594 }
595 return 0;
596}
597
598/**
599 * t3_seeprom_wp - enable/disable EEPROM write protection
600 * @adapter: the adapter
601 * @enable: 1 to enable write protection, 0 to disable it
602 *
603 * Enables or disables write protection on the serial EEPROM.
604 */
605int t3_seeprom_wp(struct adapter *adapter, int enable)
606{
607 return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
608}
609
610/*
611 * Convert a character holding a hex digit to a number.
612 */
613static unsigned int hex2int(unsigned char c)
614{
615 return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
616}
617
618/**
619 * get_vpd_params - read VPD parameters from VPD EEPROM
620 * @adapter: adapter to read
621 * @p: where to store the parameters
622 *
623 * Reads card parameters stored in VPD EEPROM.
624 */
625static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
626{
627 int i, addr, ret;
628 struct t3_vpd vpd;
629
630 /*
631 * Card information is normally at VPD_BASE but some early cards had
632 * it at 0.
633 */
634 ret = t3_seeprom_read(adapter, VPD_BASE, (u32 *)&vpd);
635 if (ret)
636 return ret;
637 addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
638
639 for (i = 0; i < sizeof(vpd); i += 4) {
640 ret = t3_seeprom_read(adapter, addr + i,
641 (u32 *)((u8 *)&vpd + i));
642 if (ret)
643 return ret;
644 }
645
646 p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
647 p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
648 p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
649 p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
650 p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
651
652 /* Old eeproms didn't have port information */
653 if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
654 p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
655 p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
656 } else {
657 p->port_type[0] = hex2int(vpd.port0_data[0]);
658 p->port_type[1] = hex2int(vpd.port1_data[0]);
659 p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
660 p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
661 }
662
663 for (i = 0; i < 6; i++)
664 p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
665 hex2int(vpd.na_data[2 * i + 1]);
666 return 0;
667}
668
669/* serial flash and firmware constants */
670enum {
671 SF_ATTEMPTS = 5, /* max retries for SF1 operations */
672 SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
673 SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
674
675 /* flash command opcodes */
676 SF_PROG_PAGE = 2, /* program page */
677 SF_WR_DISABLE = 4, /* disable writes */
678 SF_RD_STATUS = 5, /* read status register */
679 SF_WR_ENABLE = 6, /* enable writes */
680 SF_RD_DATA_FAST = 0xb, /* read flash */
681 SF_ERASE_SECTOR = 0xd8, /* erase sector */
682
683 FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
Divy Le Ray2e283962007-03-18 13:10:06 -0700684 FW_VERS_ADDR = 0x77ffc, /* flash address holding FW version */
685 FW_MIN_SIZE = 8 /* at least version and csum */
Divy Le Ray4d22de32007-01-18 22:04:14 -0500686};
687
688/**
689 * sf1_read - read data from the serial flash
690 * @adapter: the adapter
691 * @byte_cnt: number of bytes to read
692 * @cont: whether another operation will be chained
693 * @valp: where to store the read data
694 *
695 * Reads up to 4 bytes of data from the serial flash. The location of
696 * the read needs to be specified prior to calling this by issuing the
697 * appropriate commands to the serial flash.
698 */
699static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
700 u32 *valp)
701{
702 int ret;
703
704 if (!byte_cnt || byte_cnt > 4)
705 return -EINVAL;
706 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
707 return -EBUSY;
708 t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
709 ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
710 if (!ret)
711 *valp = t3_read_reg(adapter, A_SF_DATA);
712 return ret;
713}
714
715/**
716 * sf1_write - write data to the serial flash
717 * @adapter: the adapter
718 * @byte_cnt: number of bytes to write
719 * @cont: whether another operation will be chained
720 * @val: value to write
721 *
722 * Writes up to 4 bytes of data to the serial flash. The location of
723 * the write needs to be specified prior to calling this by issuing the
724 * appropriate commands to the serial flash.
725 */
726static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
727 u32 val)
728{
729 if (!byte_cnt || byte_cnt > 4)
730 return -EINVAL;
731 if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
732 return -EBUSY;
733 t3_write_reg(adapter, A_SF_DATA, val);
734 t3_write_reg(adapter, A_SF_OP,
735 V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
736 return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
737}
738
739/**
740 * flash_wait_op - wait for a flash operation to complete
741 * @adapter: the adapter
742 * @attempts: max number of polls of the status register
743 * @delay: delay between polls in ms
744 *
745 * Wait for a flash operation to complete by polling the status register.
746 */
747static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
748{
749 int ret;
750 u32 status;
751
752 while (1) {
753 if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
754 (ret = sf1_read(adapter, 1, 0, &status)) != 0)
755 return ret;
756 if (!(status & 1))
757 return 0;
758 if (--attempts == 0)
759 return -EAGAIN;
760 if (delay)
761 msleep(delay);
762 }
763}
764
765/**
766 * t3_read_flash - read words from serial flash
767 * @adapter: the adapter
768 * @addr: the start address for the read
769 * @nwords: how many 32-bit words to read
770 * @data: where to store the read data
771 * @byte_oriented: whether to store data as bytes or as words
772 *
773 * Read the specified number of 32-bit words from the serial flash.
774 * If @byte_oriented is set the read data is stored as a byte array
775 * (i.e., big-endian), otherwise as 32-bit words in the platform's
776 * natural endianess.
777 */
778int t3_read_flash(struct adapter *adapter, unsigned int addr,
779 unsigned int nwords, u32 *data, int byte_oriented)
780{
781 int ret;
782
783 if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
784 return -EINVAL;
785
786 addr = swab32(addr) | SF_RD_DATA_FAST;
787
788 if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
789 (ret = sf1_read(adapter, 1, 1, data)) != 0)
790 return ret;
791
792 for (; nwords; nwords--, data++) {
793 ret = sf1_read(adapter, 4, nwords > 1, data);
794 if (ret)
795 return ret;
796 if (byte_oriented)
797 *data = htonl(*data);
798 }
799 return 0;
800}
801
802/**
803 * t3_write_flash - write up to a page of data to the serial flash
804 * @adapter: the adapter
805 * @addr: the start address to write
806 * @n: length of data to write
807 * @data: the data to write
808 *
809 * Writes up to a page of data (256 bytes) to the serial flash starting
810 * at the given address.
811 */
812static int t3_write_flash(struct adapter *adapter, unsigned int addr,
813 unsigned int n, const u8 *data)
814{
815 int ret;
816 u32 buf[64];
817 unsigned int i, c, left, val, offset = addr & 0xff;
818
819 if (addr + n > SF_SIZE || offset + n > 256)
820 return -EINVAL;
821
822 val = swab32(addr) | SF_PROG_PAGE;
823
824 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
825 (ret = sf1_write(adapter, 4, 1, val)) != 0)
826 return ret;
827
828 for (left = n; left; left -= c) {
829 c = min(left, 4U);
830 for (val = 0, i = 0; i < c; ++i)
831 val = (val << 8) + *data++;
832
833 ret = sf1_write(adapter, c, c != left, val);
834 if (ret)
835 return ret;
836 }
837 if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
838 return ret;
839
840 /* Read the page to verify the write succeeded */
841 ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
842 if (ret)
843 return ret;
844
845 if (memcmp(data - n, (u8 *) buf + offset, n))
846 return -EIO;
847 return 0;
848}
849
Divy Le Ray4aac3892007-01-30 19:43:45 -0800850enum fw_version_type {
851 FW_VERSION_N3,
852 FW_VERSION_T3
853};
854
Divy Le Ray4d22de32007-01-18 22:04:14 -0500855/**
856 * t3_get_fw_version - read the firmware version
857 * @adapter: the adapter
858 * @vers: where to place the version
859 *
860 * Reads the FW version from flash.
861 */
862int t3_get_fw_version(struct adapter *adapter, u32 *vers)
863{
864 return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
865}
866
867/**
868 * t3_check_fw_version - check if the FW is compatible with this driver
869 * @adapter: the adapter
870 *
871 * Checks if an adapter's FW is compatible with the driver. Returns 0
872 * if the versions are compatible, a negative error otherwise.
873 */
874int t3_check_fw_version(struct adapter *adapter)
875{
876 int ret;
877 u32 vers;
Divy Le Ray4aac3892007-01-30 19:43:45 -0800878 unsigned int type, major, minor;
Divy Le Ray4d22de32007-01-18 22:04:14 -0500879
880 ret = t3_get_fw_version(adapter, &vers);
881 if (ret)
882 return ret;
883
Divy Le Ray4aac3892007-01-30 19:43:45 -0800884 type = G_FW_VERSION_TYPE(vers);
885 major = G_FW_VERSION_MAJOR(vers);
886 minor = G_FW_VERSION_MINOR(vers);
887
Divy Le Ray75d86262007-02-25 16:32:37 -0800888 if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
889 minor == FW_VERSION_MINOR)
Divy Le Ray4d22de32007-01-18 22:04:14 -0500890 return 0;
891
Divy Le Ray4aac3892007-01-30 19:43:45 -0800892 CH_ERR(adapter, "found wrong FW version(%u.%u), "
Divy Le Ray75d86262007-02-25 16:32:37 -0800893 "driver needs version %u.%u\n", major, minor,
894 FW_VERSION_MAJOR, FW_VERSION_MINOR);
Divy Le Ray4d22de32007-01-18 22:04:14 -0500895 return -EINVAL;
896}
897
898/**
899 * t3_flash_erase_sectors - erase a range of flash sectors
900 * @adapter: the adapter
901 * @start: the first sector to erase
902 * @end: the last sector to erase
903 *
904 * Erases the sectors in the given range.
905 */
906static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
907{
908 while (start <= end) {
909 int ret;
910
911 if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
912 (ret = sf1_write(adapter, 4, 0,
913 SF_ERASE_SECTOR | (start << 8))) != 0 ||
914 (ret = flash_wait_op(adapter, 5, 500)) != 0)
915 return ret;
916 start++;
917 }
918 return 0;
919}
920
921/*
922 * t3_load_fw - download firmware
923 * @adapter: the adapter
Divy Le Ray8a9fab22007-05-30 21:10:52 -0700924 * @fw_data: the firmware image to write
Divy Le Ray4d22de32007-01-18 22:04:14 -0500925 * @size: image size
926 *
927 * Write the supplied firmware image to the card's serial flash.
928 * The FW image has the following sections: @size - 8 bytes of code and
929 * data, followed by 4 bytes of FW version, followed by the 32-bit
930 * 1's complement checksum of the whole image.
931 */
932int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
933{
934 u32 csum;
935 unsigned int i;
936 const u32 *p = (const u32 *)fw_data;
937 int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
938
Divy Le Ray2e283962007-03-18 13:10:06 -0700939 if ((size & 3) || size < FW_MIN_SIZE)
Divy Le Ray4d22de32007-01-18 22:04:14 -0500940 return -EINVAL;
941 if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
942 return -EFBIG;
943
944 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
945 csum += ntohl(p[i]);
946 if (csum != 0xffffffff) {
947 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
948 csum);
949 return -EINVAL;
950 }
951
952 ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
953 if (ret)
954 goto out;
955
956 size -= 8; /* trim off version and checksum */
957 for (addr = FW_FLASH_BOOT_ADDR; size;) {
958 unsigned int chunk_size = min(size, 256U);
959
960 ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
961 if (ret)
962 goto out;
963
964 addr += chunk_size;
965 fw_data += chunk_size;
966 size -= chunk_size;
967 }
968
969 ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
970out:
971 if (ret)
972 CH_ERR(adapter, "firmware download failed, error %d\n", ret);
973 return ret;
974}
975
976#define CIM_CTL_BASE 0x2000
977
978/**
979 * t3_cim_ctl_blk_read - read a block from CIM control region
980 *
981 * @adap: the adapter
982 * @addr: the start address within the CIM control region
983 * @n: number of words to read
984 * @valp: where to store the result
985 *
986 * Reads a block of 4-byte words from the CIM control region.
987 */
988int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
989 unsigned int n, unsigned int *valp)
990{
991 int ret = 0;
992
993 if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
994 return -EBUSY;
995
996 for ( ; !ret && n--; addr += 4) {
997 t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
998 ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
999 0, 5, 2);
1000 if (!ret)
1001 *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
1002 }
1003 return ret;
1004}
1005
1006
1007/**
1008 * t3_link_changed - handle interface link changes
1009 * @adapter: the adapter
1010 * @port_id: the port index that changed link state
1011 *
1012 * Called when a port's link settings change to propagate the new values
1013 * to the associated PHY and MAC. After performing the common tasks it
1014 * invokes an OS-specific handler.
1015 */
1016void t3_link_changed(struct adapter *adapter, int port_id)
1017{
1018 int link_ok, speed, duplex, fc;
1019 struct port_info *pi = adap2pinfo(adapter, port_id);
1020 struct cphy *phy = &pi->phy;
1021 struct cmac *mac = &pi->mac;
1022 struct link_config *lc = &pi->link_config;
1023
1024 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
1025
1026 if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
1027 uses_xaui(adapter)) {
1028 if (link_ok)
1029 t3b_pcs_reset(mac);
1030 t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
1031 link_ok ? F_TXACTENABLE | F_RXEN : 0);
1032 }
1033 lc->link_ok = link_ok;
1034 lc->speed = speed < 0 ? SPEED_INVALID : speed;
1035 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
1036 if (lc->requested_fc & PAUSE_AUTONEG)
1037 fc &= lc->requested_fc;
1038 else
1039 fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1040
1041 if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
1042 /* Set MAC speed, duplex, and flow control to match PHY. */
1043 t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
1044 lc->fc = fc;
1045 }
1046
1047 t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
1048}
1049
1050/**
1051 * t3_link_start - apply link configuration to MAC/PHY
1052 * @phy: the PHY to setup
1053 * @mac: the MAC to setup
1054 * @lc: the requested link configuration
1055 *
1056 * Set up a port's MAC and PHY according to a desired link configuration.
1057 * - If the PHY can auto-negotiate first decide what to advertise, then
1058 * enable/disable auto-negotiation as desired, and reset.
1059 * - If the PHY does not auto-negotiate just reset it.
1060 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1061 * otherwise do it later based on the outcome of auto-negotiation.
1062 */
1063int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
1064{
1065 unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1066
1067 lc->link_ok = 0;
1068 if (lc->supported & SUPPORTED_Autoneg) {
1069 lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
1070 if (fc) {
1071 lc->advertising |= ADVERTISED_Asym_Pause;
1072 if (fc & PAUSE_RX)
1073 lc->advertising |= ADVERTISED_Pause;
1074 }
1075 phy->ops->advertise(phy, lc->advertising);
1076
1077 if (lc->autoneg == AUTONEG_DISABLE) {
1078 lc->speed = lc->requested_speed;
1079 lc->duplex = lc->requested_duplex;
1080 lc->fc = (unsigned char)fc;
1081 t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
1082 fc);
1083 /* Also disables autoneg */
1084 phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
1085 phy->ops->reset(phy, 0);
1086 } else
1087 phy->ops->autoneg_enable(phy);
1088 } else {
1089 t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
1090 lc->fc = (unsigned char)fc;
1091 phy->ops->reset(phy, 0);
1092 }
1093 return 0;
1094}
1095
1096/**
1097 * t3_set_vlan_accel - control HW VLAN extraction
1098 * @adapter: the adapter
1099 * @ports: bitmap of adapter ports to operate on
1100 * @on: enable (1) or disable (0) HW VLAN extraction
1101 *
1102 * Enables or disables HW extraction of VLAN tags for the given port.
1103 */
1104void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
1105{
1106 t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
1107 ports << S_VLANEXTRACTIONENABLE,
1108 on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
1109}
1110
1111struct intr_info {
1112 unsigned int mask; /* bits to check in interrupt status */
1113 const char *msg; /* message to print or NULL */
1114 short stat_idx; /* stat counter to increment or -1 */
1115 unsigned short fatal:1; /* whether the condition reported is fatal */
1116};
1117
1118/**
1119 * t3_handle_intr_status - table driven interrupt handler
1120 * @adapter: the adapter that generated the interrupt
1121 * @reg: the interrupt status register to process
1122 * @mask: a mask to apply to the interrupt status
1123 * @acts: table of interrupt actions
1124 * @stats: statistics counters tracking interrupt occurences
1125 *
1126 * A table driven interrupt handler that applies a set of masks to an
1127 * interrupt status word and performs the corresponding actions if the
1128 * interrupts described by the mask have occured. The actions include
1129 * optionally printing a warning or alert message, and optionally
1130 * incrementing a stat counter. The table is terminated by an entry
1131 * specifying mask 0. Returns the number of fatal interrupt conditions.
1132 */
1133static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
1134 unsigned int mask,
1135 const struct intr_info *acts,
1136 unsigned long *stats)
1137{
1138 int fatal = 0;
1139 unsigned int status = t3_read_reg(adapter, reg) & mask;
1140
1141 for (; acts->mask; ++acts) {
1142 if (!(status & acts->mask))
1143 continue;
1144 if (acts->fatal) {
1145 fatal++;
1146 CH_ALERT(adapter, "%s (0x%x)\n",
1147 acts->msg, status & acts->mask);
1148 } else if (acts->msg)
1149 CH_WARN(adapter, "%s (0x%x)\n",
1150 acts->msg, status & acts->mask);
1151 if (acts->stat_idx >= 0)
1152 stats[acts->stat_idx]++;
1153 }
1154 if (status) /* clear processed interrupts */
1155 t3_write_reg(adapter, reg, status);
1156 return fatal;
1157}
1158
1159#define SGE_INTR_MASK (F_RSPQDISABLED)
1160#define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
1161 F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
1162 F_NFASRCHFAIL)
1163#define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
1164#define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
1165 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
1166 F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW)
1167#define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
1168 F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
1169 F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
1170 F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
1171 V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
1172 V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
1173#define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
1174 F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
1175 /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
1176 V_BISTERR(M_BISTERR) | F_PEXERR)
1177#define ULPRX_INTR_MASK F_PARERR
1178#define ULPTX_INTR_MASK 0
1179#define CPLSW_INTR_MASK (F_TP_FRAMING_ERROR | \
1180 F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
1181 F_ZERO_SWITCH_ERROR)
1182#define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
1183 F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
1184 F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
1185 F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT)
1186#define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
1187 V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
1188 V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
1189#define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
1190 V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
1191 V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
1192#define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
1193 V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
1194 V_RXTPPARERRENB(M_RXTPPARERRENB) | \
1195 V_MCAPARERRENB(M_MCAPARERRENB))
1196#define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
1197 F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
1198 F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
1199 F_MPS0 | F_CPL_SWITCH)
1200
1201/*
1202 * Interrupt handler for the PCIX1 module.
1203 */
1204static void pci_intr_handler(struct adapter *adapter)
1205{
1206 static const struct intr_info pcix1_intr_info[] = {
Divy Le Ray4d22de32007-01-18 22:04:14 -05001207 {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
1208 {F_SIGTARABT, "PCI signaled target abort", -1, 1},
1209 {F_RCVTARABT, "PCI received target abort", -1, 1},
1210 {F_RCVMSTABT, "PCI received master abort", -1, 1},
1211 {F_SIGSYSERR, "PCI signaled system error", -1, 1},
1212 {F_DETPARERR, "PCI detected parity error", -1, 1},
1213 {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
1214 {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
1215 {F_RCVSPLCMPERR, "PCI received split completion error", -1,
1216 1},
1217 {F_DETCORECCERR, "PCI correctable ECC error",
1218 STAT_PCI_CORR_ECC, 0},
1219 {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
1220 {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
1221 {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
1222 1},
1223 {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
1224 1},
1225 {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
1226 1},
1227 {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
1228 "error", -1, 1},
1229 {0}
1230 };
1231
1232 if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
1233 pcix1_intr_info, adapter->irq_stats))
1234 t3_fatal_err(adapter);
1235}
1236
1237/*
1238 * Interrupt handler for the PCIE module.
1239 */
1240static void pcie_intr_handler(struct adapter *adapter)
1241{
1242 static const struct intr_info pcie_intr_info[] = {
Divy Le Rayb5a44bc2007-01-30 19:44:01 -08001243 {F_PEXERR, "PCI PEX error", -1, 1},
Divy Le Ray4d22de32007-01-18 22:04:14 -05001244 {F_UNXSPLCPLERRR,
1245 "PCI unexpected split completion DMA read error", -1, 1},
1246 {F_UNXSPLCPLERRC,
1247 "PCI unexpected split completion DMA command error", -1, 1},
1248 {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
1249 {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
1250 {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
1251 {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
1252 {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
1253 "PCI MSI-X table/PBA parity error", -1, 1},
1254 {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
1255 {0}
1256 };
1257
1258 if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
1259 pcie_intr_info, adapter->irq_stats))
1260 t3_fatal_err(adapter);
1261}
1262
1263/*
1264 * TP interrupt handler.
1265 */
1266static void tp_intr_handler(struct adapter *adapter)
1267{
1268 static const struct intr_info tp_intr_info[] = {
1269 {0xffffff, "TP parity error", -1, 1},
1270 {0x1000000, "TP out of Rx pages", -1, 1},
1271 {0x2000000, "TP out of Tx pages", -1, 1},
1272 {0}
1273 };
1274
1275 if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
1276 tp_intr_info, NULL))
1277 t3_fatal_err(adapter);
1278}
1279
1280/*
1281 * CIM interrupt handler.
1282 */
1283static void cim_intr_handler(struct adapter *adapter)
1284{
1285 static const struct intr_info cim_intr_info[] = {
1286 {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
1287 {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
1288 {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
1289 {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
1290 {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
1291 {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
1292 {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
1293 {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
1294 {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
1295 {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
1296 {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
1297 {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
1298 {0}
1299 };
1300
1301 if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
1302 cim_intr_info, NULL))
1303 t3_fatal_err(adapter);
1304}
1305
1306/*
1307 * ULP RX interrupt handler.
1308 */
1309static void ulprx_intr_handler(struct adapter *adapter)
1310{
1311 static const struct intr_info ulprx_intr_info[] = {
1312 {F_PARERR, "ULP RX parity error", -1, 1},
1313 {0}
1314 };
1315
1316 if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
1317 ulprx_intr_info, NULL))
1318 t3_fatal_err(adapter);
1319}
1320
1321/*
1322 * ULP TX interrupt handler.
1323 */
1324static void ulptx_intr_handler(struct adapter *adapter)
1325{
1326 static const struct intr_info ulptx_intr_info[] = {
1327 {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
1328 STAT_ULP_CH0_PBL_OOB, 0},
1329 {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
1330 STAT_ULP_CH1_PBL_OOB, 0},
1331 {0}
1332 };
1333
1334 if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
1335 ulptx_intr_info, adapter->irq_stats))
1336 t3_fatal_err(adapter);
1337}
1338
1339#define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
1340 F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
1341 F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
1342 F_ICSPI1_TX_FRAMING_ERROR)
1343#define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
1344 F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
1345 F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
1346 F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
1347
1348/*
1349 * PM TX interrupt handler.
1350 */
1351static void pmtx_intr_handler(struct adapter *adapter)
1352{
1353 static const struct intr_info pmtx_intr_info[] = {
1354 {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
1355 {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
1356 {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
1357 {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
1358 "PMTX ispi parity error", -1, 1},
1359 {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
1360 "PMTX ospi parity error", -1, 1},
1361 {0}
1362 };
1363
1364 if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
1365 pmtx_intr_info, NULL))
1366 t3_fatal_err(adapter);
1367}
1368
1369#define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
1370 F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
1371 F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
1372 F_IESPI1_TX_FRAMING_ERROR)
1373#define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
1374 F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
1375 F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
1376 F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
1377
1378/*
1379 * PM RX interrupt handler.
1380 */
1381static void pmrx_intr_handler(struct adapter *adapter)
1382{
1383 static const struct intr_info pmrx_intr_info[] = {
1384 {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
1385 {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
1386 {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
1387 {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
1388 "PMRX ispi parity error", -1, 1},
1389 {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
1390 "PMRX ospi parity error", -1, 1},
1391 {0}
1392 };
1393
1394 if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
1395 pmrx_intr_info, NULL))
1396 t3_fatal_err(adapter);
1397}
1398
1399/*
1400 * CPL switch interrupt handler.
1401 */
1402static void cplsw_intr_handler(struct adapter *adapter)
1403{
1404 static const struct intr_info cplsw_intr_info[] = {
1405/* { F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1 }, */
1406 {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
1407 {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
1408 {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
1409 {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
1410 {0}
1411 };
1412
1413 if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
1414 cplsw_intr_info, NULL))
1415 t3_fatal_err(adapter);
1416}
1417
1418/*
1419 * MPS interrupt handler.
1420 */
1421static void mps_intr_handler(struct adapter *adapter)
1422{
1423 static const struct intr_info mps_intr_info[] = {
1424 {0x1ff, "MPS parity error", -1, 1},
1425 {0}
1426 };
1427
1428 if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
1429 mps_intr_info, NULL))
1430 t3_fatal_err(adapter);
1431}
1432
1433#define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
1434
1435/*
1436 * MC7 interrupt handler.
1437 */
1438static void mc7_intr_handler(struct mc7 *mc7)
1439{
1440 struct adapter *adapter = mc7->adapter;
1441 u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
1442
1443 if (cause & F_CE) {
1444 mc7->stats.corr_err++;
1445 CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
1446 "data 0x%x 0x%x 0x%x\n", mc7->name,
1447 t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
1448 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
1449 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
1450 t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
1451 }
1452
1453 if (cause & F_UE) {
1454 mc7->stats.uncorr_err++;
1455 CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
1456 "data 0x%x 0x%x 0x%x\n", mc7->name,
1457 t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
1458 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
1459 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
1460 t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
1461 }
1462
1463 if (G_PE(cause)) {
1464 mc7->stats.parity_err++;
1465 CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
1466 mc7->name, G_PE(cause));
1467 }
1468
1469 if (cause & F_AE) {
1470 u32 addr = 0;
1471
1472 if (adapter->params.rev > 0)
1473 addr = t3_read_reg(adapter,
1474 mc7->offset + A_MC7_ERR_ADDR);
1475 mc7->stats.addr_err++;
1476 CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
1477 mc7->name, addr);
1478 }
1479
1480 if (cause & MC7_INTR_FATAL)
1481 t3_fatal_err(adapter);
1482
1483 t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
1484}
1485
1486#define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
1487 V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
1488/*
1489 * XGMAC interrupt handler.
1490 */
1491static int mac_intr_handler(struct adapter *adap, unsigned int idx)
1492{
1493 struct cmac *mac = &adap2pinfo(adap, idx)->mac;
1494 u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset);
1495
1496 if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
1497 mac->stats.tx_fifo_parity_err++;
1498 CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
1499 }
1500 if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
1501 mac->stats.rx_fifo_parity_err++;
1502 CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
1503 }
1504 if (cause & F_TXFIFO_UNDERRUN)
1505 mac->stats.tx_fifo_urun++;
1506 if (cause & F_RXFIFO_OVERFLOW)
1507 mac->stats.rx_fifo_ovfl++;
1508 if (cause & V_SERDES_LOS(M_SERDES_LOS))
1509 mac->stats.serdes_signal_loss++;
1510 if (cause & F_XAUIPCSCTCERR)
1511 mac->stats.xaui_pcs_ctc_err++;
1512 if (cause & F_XAUIPCSALIGNCHANGE)
1513 mac->stats.xaui_pcs_align_change++;
1514
1515 t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
1516 if (cause & XGM_INTR_FATAL)
1517 t3_fatal_err(adap);
1518 return cause != 0;
1519}
1520
1521/*
1522 * Interrupt handler for PHY events.
1523 */
1524int t3_phy_intr_handler(struct adapter *adapter)
1525{
Divy Le Ray1ca03cb2007-04-17 11:06:36 -07001526 u32 mask, gpi = adapter_info(adapter)->gpio_intr;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001527 u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
1528
1529 for_each_port(adapter, i) {
Divy Le Ray1ca03cb2007-04-17 11:06:36 -07001530 struct port_info *p = adap2pinfo(adapter, i);
1531
1532 mask = gpi - (gpi & (gpi - 1));
1533 gpi -= mask;
1534
1535 if (!(p->port_type->caps & SUPPORTED_IRQ))
1536 continue;
1537
1538 if (cause & mask) {
1539 int phy_cause = p->phy.ops->intr_handler(&p->phy);
Divy Le Ray4d22de32007-01-18 22:04:14 -05001540
1541 if (phy_cause & cphy_cause_link_change)
1542 t3_link_changed(adapter, i);
1543 if (phy_cause & cphy_cause_fifo_error)
Divy Le Ray1ca03cb2007-04-17 11:06:36 -07001544 p->phy.fifo_errors++;
Divy Le Ray4d22de32007-01-18 22:04:14 -05001545 }
1546 }
1547
1548 t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
1549 return 0;
1550}
1551
1552/*
1553 * T3 slow path (non-data) interrupt handler.
1554 */
1555int t3_slow_intr_handler(struct adapter *adapter)
1556{
1557 u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
1558
1559 cause &= adapter->slow_intr_mask;
1560 if (!cause)
1561 return 0;
1562 if (cause & F_PCIM0) {
1563 if (is_pcie(adapter))
1564 pcie_intr_handler(adapter);
1565 else
1566 pci_intr_handler(adapter);
1567 }
1568 if (cause & F_SGE3)
1569 t3_sge_err_intr_handler(adapter);
1570 if (cause & F_MC7_PMRX)
1571 mc7_intr_handler(&adapter->pmrx);
1572 if (cause & F_MC7_PMTX)
1573 mc7_intr_handler(&adapter->pmtx);
1574 if (cause & F_MC7_CM)
1575 mc7_intr_handler(&adapter->cm);
1576 if (cause & F_CIM)
1577 cim_intr_handler(adapter);
1578 if (cause & F_TP1)
1579 tp_intr_handler(adapter);
1580 if (cause & F_ULP2_RX)
1581 ulprx_intr_handler(adapter);
1582 if (cause & F_ULP2_TX)
1583 ulptx_intr_handler(adapter);
1584 if (cause & F_PM1_RX)
1585 pmrx_intr_handler(adapter);
1586 if (cause & F_PM1_TX)
1587 pmtx_intr_handler(adapter);
1588 if (cause & F_CPL_SWITCH)
1589 cplsw_intr_handler(adapter);
1590 if (cause & F_MPS0)
1591 mps_intr_handler(adapter);
1592 if (cause & F_MC5A)
1593 t3_mc5_intr_handler(&adapter->mc5);
1594 if (cause & F_XGMAC0_0)
1595 mac_intr_handler(adapter, 0);
1596 if (cause & F_XGMAC0_1)
1597 mac_intr_handler(adapter, 1);
1598 if (cause & F_T3DBG)
1599 t3_os_ext_intr_handler(adapter);
1600
1601 /* Clear the interrupts just processed. */
1602 t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
1603 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
1604 return 1;
1605}
1606
1607/**
1608 * t3_intr_enable - enable interrupts
1609 * @adapter: the adapter whose interrupts should be enabled
1610 *
1611 * Enable interrupts by setting the interrupt enable registers of the
1612 * various HW modules and then enabling the top-level interrupt
1613 * concentrator.
1614 */
1615void t3_intr_enable(struct adapter *adapter)
1616{
1617 static const struct addr_val_pair intr_en_avp[] = {
1618 {A_SG_INT_ENABLE, SGE_INTR_MASK},
1619 {A_MC7_INT_ENABLE, MC7_INTR_MASK},
1620 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
1621 MC7_INTR_MASK},
1622 {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
1623 MC7_INTR_MASK},
1624 {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
1625 {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
1626 {A_TP_INT_ENABLE, 0x3bfffff},
1627 {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
1628 {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
1629 {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
1630 {A_MPS_INT_ENABLE, MPS_INTR_MASK},
1631 };
1632
1633 adapter->slow_intr_mask = PL_INTR_MASK;
1634
1635 t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
1636
1637 if (adapter->params.rev > 0) {
1638 t3_write_reg(adapter, A_CPL_INTR_ENABLE,
1639 CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
1640 t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
1641 ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
1642 F_PBL_BOUND_ERR_CH1);
1643 } else {
1644 t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
1645 t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
1646 }
1647
1648 t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW,
1649 adapter_info(adapter)->gpio_intr);
1650 t3_write_reg(adapter, A_T3DBG_INT_ENABLE,
1651 adapter_info(adapter)->gpio_intr);
1652 if (is_pcie(adapter))
1653 t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
1654 else
1655 t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
1656 t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
1657 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
1658}
1659
1660/**
1661 * t3_intr_disable - disable a card's interrupts
1662 * @adapter: the adapter whose interrupts should be disabled
1663 *
1664 * Disable interrupts. We only disable the top-level interrupt
1665 * concentrator and the SGE data interrupts.
1666 */
1667void t3_intr_disable(struct adapter *adapter)
1668{
1669 t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
1670 t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
1671 adapter->slow_intr_mask = 0;
1672}
1673
1674/**
1675 * t3_intr_clear - clear all interrupts
1676 * @adapter: the adapter whose interrupts should be cleared
1677 *
1678 * Clears all interrupts.
1679 */
1680void t3_intr_clear(struct adapter *adapter)
1681{
1682 static const unsigned int cause_reg_addr[] = {
1683 A_SG_INT_CAUSE,
1684 A_SG_RSPQ_FL_STATUS,
1685 A_PCIX_INT_CAUSE,
1686 A_MC7_INT_CAUSE,
1687 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
1688 A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
1689 A_CIM_HOST_INT_CAUSE,
1690 A_TP_INT_CAUSE,
1691 A_MC5_DB_INT_CAUSE,
1692 A_ULPRX_INT_CAUSE,
1693 A_ULPTX_INT_CAUSE,
1694 A_CPL_INTR_CAUSE,
1695 A_PM1_TX_INT_CAUSE,
1696 A_PM1_RX_INT_CAUSE,
1697 A_MPS_INT_CAUSE,
1698 A_T3DBG_INT_CAUSE,
1699 };
1700 unsigned int i;
1701
1702 /* Clear PHY and MAC interrupts for each port. */
1703 for_each_port(adapter, i)
1704 t3_port_intr_clear(adapter, i);
1705
1706 for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
1707 t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
1708
1709 t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
1710 t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
1711}
1712
1713/**
1714 * t3_port_intr_enable - enable port-specific interrupts
1715 * @adapter: associated adapter
1716 * @idx: index of port whose interrupts should be enabled
1717 *
1718 * Enable port-specific (i.e., MAC and PHY) interrupts for the given
1719 * adapter port.
1720 */
1721void t3_port_intr_enable(struct adapter *adapter, int idx)
1722{
1723 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
1724
1725 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
1726 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
1727 phy->ops->intr_enable(phy);
1728}
1729
1730/**
1731 * t3_port_intr_disable - disable port-specific interrupts
1732 * @adapter: associated adapter
1733 * @idx: index of port whose interrupts should be disabled
1734 *
1735 * Disable port-specific (i.e., MAC and PHY) interrupts for the given
1736 * adapter port.
1737 */
1738void t3_port_intr_disable(struct adapter *adapter, int idx)
1739{
1740 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
1741
1742 t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
1743 t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
1744 phy->ops->intr_disable(phy);
1745}
1746
1747/**
1748 * t3_port_intr_clear - clear port-specific interrupts
1749 * @adapter: associated adapter
1750 * @idx: index of port whose interrupts to clear
1751 *
1752 * Clear port-specific (i.e., MAC and PHY) interrupts for the given
1753 * adapter port.
1754 */
1755void t3_port_intr_clear(struct adapter *adapter, int idx)
1756{
1757 struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
1758
1759 t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
1760 t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
1761 phy->ops->intr_clear(phy);
1762}
1763
1764/**
1765 * t3_sge_write_context - write an SGE context
1766 * @adapter: the adapter
1767 * @id: the context id
1768 * @type: the context type
1769 *
1770 * Program an SGE context with the values already loaded in the
1771 * CONTEXT_DATA? registers.
1772 */
1773static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
1774 unsigned int type)
1775{
1776 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
1777 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
1778 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
1779 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
1780 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
1781 V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
1782 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
1783 0, 5, 1);
1784}
1785
1786/**
1787 * t3_sge_init_ecntxt - initialize an SGE egress context
1788 * @adapter: the adapter to configure
1789 * @id: the context id
1790 * @gts_enable: whether to enable GTS for the context
1791 * @type: the egress context type
1792 * @respq: associated response queue
1793 * @base_addr: base address of queue
1794 * @size: number of queue entries
1795 * @token: uP token
1796 * @gen: initial generation value for the context
1797 * @cidx: consumer pointer
1798 *
1799 * Initialize an SGE egress context and make it ready for use. If the
1800 * platform allows concurrent context operations, the caller is
1801 * responsible for appropriate locking.
1802 */
1803int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
1804 enum sge_context_type type, int respq, u64 base_addr,
1805 unsigned int size, unsigned int token, int gen,
1806 unsigned int cidx)
1807{
1808 unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
1809
1810 if (base_addr & 0xfff) /* must be 4K aligned */
1811 return -EINVAL;
1812 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
1813 return -EBUSY;
1814
1815 base_addr >>= 12;
1816 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
1817 V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
1818 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
1819 V_EC_BASE_LO(base_addr & 0xffff));
1820 base_addr >>= 16;
1821 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
1822 base_addr >>= 32;
1823 t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
1824 V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
1825 V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
1826 F_EC_VALID);
1827 return t3_sge_write_context(adapter, id, F_EGRESS);
1828}
1829
1830/**
1831 * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
1832 * @adapter: the adapter to configure
1833 * @id: the context id
1834 * @gts_enable: whether to enable GTS for the context
1835 * @base_addr: base address of queue
1836 * @size: number of queue entries
1837 * @bsize: size of each buffer for this queue
1838 * @cong_thres: threshold to signal congestion to upstream producers
1839 * @gen: initial generation value for the context
1840 * @cidx: consumer pointer
1841 *
1842 * Initialize an SGE free list context and make it ready for use. The
1843 * caller is responsible for ensuring only one context operation occurs
1844 * at a time.
1845 */
1846int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
1847 int gts_enable, u64 base_addr, unsigned int size,
1848 unsigned int bsize, unsigned int cong_thres, int gen,
1849 unsigned int cidx)
1850{
1851 if (base_addr & 0xfff) /* must be 4K aligned */
1852 return -EINVAL;
1853 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
1854 return -EBUSY;
1855
1856 base_addr >>= 12;
1857 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
1858 base_addr >>= 32;
1859 t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
1860 V_FL_BASE_HI((u32) base_addr) |
1861 V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
1862 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
1863 V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
1864 V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
1865 t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
1866 V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
1867 V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
1868 return t3_sge_write_context(adapter, id, F_FREELIST);
1869}
1870
1871/**
1872 * t3_sge_init_rspcntxt - initialize an SGE response queue context
1873 * @adapter: the adapter to configure
1874 * @id: the context id
1875 * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
1876 * @base_addr: base address of queue
1877 * @size: number of queue entries
1878 * @fl_thres: threshold for selecting the normal or jumbo free list
1879 * @gen: initial generation value for the context
1880 * @cidx: consumer pointer
1881 *
1882 * Initialize an SGE response queue context and make it ready for use.
1883 * The caller is responsible for ensuring only one context operation
1884 * occurs at a time.
1885 */
1886int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
1887 int irq_vec_idx, u64 base_addr, unsigned int size,
1888 unsigned int fl_thres, int gen, unsigned int cidx)
1889{
1890 unsigned int intr = 0;
1891
1892 if (base_addr & 0xfff) /* must be 4K aligned */
1893 return -EINVAL;
1894 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
1895 return -EBUSY;
1896
1897 base_addr >>= 12;
1898 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
1899 V_CQ_INDEX(cidx));
1900 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
1901 base_addr >>= 32;
1902 if (irq_vec_idx >= 0)
1903 intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
1904 t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
1905 V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
1906 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
1907 return t3_sge_write_context(adapter, id, F_RESPONSEQ);
1908}
1909
1910/**
1911 * t3_sge_init_cqcntxt - initialize an SGE completion queue context
1912 * @adapter: the adapter to configure
1913 * @id: the context id
1914 * @base_addr: base address of queue
1915 * @size: number of queue entries
1916 * @rspq: response queue for async notifications
1917 * @ovfl_mode: CQ overflow mode
1918 * @credits: completion queue credits
1919 * @credit_thres: the credit threshold
1920 *
1921 * Initialize an SGE completion queue context and make it ready for use.
1922 * The caller is responsible for ensuring only one context operation
1923 * occurs at a time.
1924 */
1925int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
1926 unsigned int size, int rspq, int ovfl_mode,
1927 unsigned int credits, unsigned int credit_thres)
1928{
1929 if (base_addr & 0xfff) /* must be 4K aligned */
1930 return -EINVAL;
1931 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
1932 return -EBUSY;
1933
1934 base_addr >>= 12;
1935 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
1936 t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
1937 base_addr >>= 32;
1938 t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
1939 V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
1940 V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode));
1941 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
1942 V_CQ_CREDIT_THRES(credit_thres));
1943 return t3_sge_write_context(adapter, id, F_CQ);
1944}
1945
1946/**
1947 * t3_sge_enable_ecntxt - enable/disable an SGE egress context
1948 * @adapter: the adapter
1949 * @id: the egress context id
1950 * @enable: enable (1) or disable (0) the context
1951 *
1952 * Enable or disable an SGE egress context. The caller is responsible for
1953 * ensuring only one context operation occurs at a time.
1954 */
1955int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
1956{
1957 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
1958 return -EBUSY;
1959
1960 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
1961 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
1962 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
1963 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
1964 t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
1965 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
1966 V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
1967 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
1968 0, 5, 1);
1969}
1970
1971/**
1972 * t3_sge_disable_fl - disable an SGE free-buffer list
1973 * @adapter: the adapter
1974 * @id: the free list context id
1975 *
1976 * Disable an SGE free-buffer list. The caller is responsible for
1977 * ensuring only one context operation occurs at a time.
1978 */
1979int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
1980{
1981 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
1982 return -EBUSY;
1983
1984 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
1985 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
1986 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
1987 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
1988 t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
1989 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
1990 V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
1991 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
1992 0, 5, 1);
1993}
1994
1995/**
1996 * t3_sge_disable_rspcntxt - disable an SGE response queue
1997 * @adapter: the adapter
1998 * @id: the response queue context id
1999 *
2000 * Disable an SGE response queue. The caller is responsible for
2001 * ensuring only one context operation occurs at a time.
2002 */
2003int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
2004{
2005 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2006 return -EBUSY;
2007
2008 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
2009 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2010 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2011 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2012 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
2013 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2014 V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
2015 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2016 0, 5, 1);
2017}
2018
2019/**
2020 * t3_sge_disable_cqcntxt - disable an SGE completion queue
2021 * @adapter: the adapter
2022 * @id: the completion queue context id
2023 *
2024 * Disable an SGE completion queue. The caller is responsible for
2025 * ensuring only one context operation occurs at a time.
2026 */
2027int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
2028{
2029 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2030 return -EBUSY;
2031
2032 t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
2033 t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
2034 t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
2035 t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
2036 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
2037 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2038 V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
2039 return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2040 0, 5, 1);
2041}
2042
2043/**
2044 * t3_sge_cqcntxt_op - perform an operation on a completion queue context
2045 * @adapter: the adapter
2046 * @id: the context id
2047 * @op: the operation to perform
2048 *
2049 * Perform the selected operation on an SGE completion queue context.
2050 * The caller is responsible for ensuring only one context operation
2051 * occurs at a time.
2052 */
2053int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
2054 unsigned int credits)
2055{
2056 u32 val;
2057
2058 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2059 return -EBUSY;
2060
2061 t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
2062 t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
2063 V_CONTEXT(id) | F_CQ);
2064 if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
2065 0, 5, 1, &val))
2066 return -EIO;
2067
2068 if (op >= 2 && op < 7) {
2069 if (adapter->params.rev > 0)
2070 return G_CQ_INDEX(val);
2071
2072 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2073 V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
2074 if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
2075 F_CONTEXT_CMD_BUSY, 0, 5, 1))
2076 return -EIO;
2077 return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
2078 }
2079 return 0;
2080}
2081
2082/**
2083 * t3_sge_read_context - read an SGE context
2084 * @type: the context type
2085 * @adapter: the adapter
2086 * @id: the context id
2087 * @data: holds the retrieved context
2088 *
2089 * Read an SGE egress context. The caller is responsible for ensuring
2090 * only one context operation occurs at a time.
2091 */
2092static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
2093 unsigned int id, u32 data[4])
2094{
2095 if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
2096 return -EBUSY;
2097
2098 t3_write_reg(adapter, A_SG_CONTEXT_CMD,
2099 V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
2100 if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
2101 5, 1))
2102 return -EIO;
2103 data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
2104 data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
2105 data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
2106 data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
2107 return 0;
2108}
2109
2110/**
2111 * t3_sge_read_ecntxt - read an SGE egress context
2112 * @adapter: the adapter
2113 * @id: the context id
2114 * @data: holds the retrieved context
2115 *
2116 * Read an SGE egress context. The caller is responsible for ensuring
2117 * only one context operation occurs at a time.
2118 */
2119int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
2120{
2121 if (id >= 65536)
2122 return -EINVAL;
2123 return t3_sge_read_context(F_EGRESS, adapter, id, data);
2124}
2125
2126/**
2127 * t3_sge_read_cq - read an SGE CQ context
2128 * @adapter: the adapter
2129 * @id: the context id
2130 * @data: holds the retrieved context
2131 *
2132 * Read an SGE CQ context. The caller is responsible for ensuring
2133 * only one context operation occurs at a time.
2134 */
2135int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
2136{
2137 if (id >= 65536)
2138 return -EINVAL;
2139 return t3_sge_read_context(F_CQ, adapter, id, data);
2140}
2141
2142/**
2143 * t3_sge_read_fl - read an SGE free-list context
2144 * @adapter: the adapter
2145 * @id: the context id
2146 * @data: holds the retrieved context
2147 *
2148 * Read an SGE free-list context. The caller is responsible for ensuring
2149 * only one context operation occurs at a time.
2150 */
2151int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
2152{
2153 if (id >= SGE_QSETS * 2)
2154 return -EINVAL;
2155 return t3_sge_read_context(F_FREELIST, adapter, id, data);
2156}
2157
2158/**
2159 * t3_sge_read_rspq - read an SGE response queue context
2160 * @adapter: the adapter
2161 * @id: the context id
2162 * @data: holds the retrieved context
2163 *
2164 * Read an SGE response queue context. The caller is responsible for
2165 * ensuring only one context operation occurs at a time.
2166 */
2167int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
2168{
2169 if (id >= SGE_QSETS)
2170 return -EINVAL;
2171 return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
2172}
2173
2174/**
2175 * t3_config_rss - configure Rx packet steering
2176 * @adapter: the adapter
2177 * @rss_config: RSS settings (written to TP_RSS_CONFIG)
2178 * @cpus: values for the CPU lookup table (0xff terminated)
2179 * @rspq: values for the response queue lookup table (0xffff terminated)
2180 *
2181 * Programs the receive packet steering logic. @cpus and @rspq provide
2182 * the values for the CPU and response queue lookup tables. If they
2183 * provide fewer values than the size of the tables the supplied values
2184 * are used repeatedly until the tables are fully populated.
2185 */
2186void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
2187 const u8 * cpus, const u16 *rspq)
2188{
2189 int i, j, cpu_idx = 0, q_idx = 0;
2190
2191 if (cpus)
2192 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2193 u32 val = i << 16;
2194
2195 for (j = 0; j < 2; ++j) {
2196 val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
2197 if (cpus[cpu_idx] == 0xff)
2198 cpu_idx = 0;
2199 }
2200 t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
2201 }
2202
2203 if (rspq)
2204 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2205 t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
2206 (i << 16) | rspq[q_idx++]);
2207 if (rspq[q_idx] == 0xffff)
2208 q_idx = 0;
2209 }
2210
2211 t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
2212}
2213
2214/**
2215 * t3_read_rss - read the contents of the RSS tables
2216 * @adapter: the adapter
2217 * @lkup: holds the contents of the RSS lookup table
2218 * @map: holds the contents of the RSS map table
2219 *
2220 * Reads the contents of the receive packet steering tables.
2221 */
2222int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
2223{
2224 int i;
2225 u32 val;
2226
2227 if (lkup)
2228 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2229 t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
2230 0xffff0000 | i);
2231 val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
2232 if (!(val & 0x80000000))
2233 return -EAGAIN;
2234 *lkup++ = val;
2235 *lkup++ = (val >> 8);
2236 }
2237
2238 if (map)
2239 for (i = 0; i < RSS_TABLE_SIZE; ++i) {
2240 t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
2241 0xffff0000 | i);
2242 val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
2243 if (!(val & 0x80000000))
2244 return -EAGAIN;
2245 *map++ = val;
2246 }
2247 return 0;
2248}
2249
2250/**
2251 * t3_tp_set_offload_mode - put TP in NIC/offload mode
2252 * @adap: the adapter
2253 * @enable: 1 to select offload mode, 0 for regular NIC
2254 *
2255 * Switches TP to NIC/offload mode.
2256 */
2257void t3_tp_set_offload_mode(struct adapter *adap, int enable)
2258{
2259 if (is_offload(adap) || !enable)
2260 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
2261 V_NICMODE(!enable));
2262}
2263
2264/**
2265 * pm_num_pages - calculate the number of pages of the payload memory
2266 * @mem_size: the size of the payload memory
2267 * @pg_size: the size of each payload memory page
2268 *
2269 * Calculate the number of pages, each of the given size, that fit in a
2270 * memory of the specified size, respecting the HW requirement that the
2271 * number of pages must be a multiple of 24.
2272 */
2273static inline unsigned int pm_num_pages(unsigned int mem_size,
2274 unsigned int pg_size)
2275{
2276 unsigned int n = mem_size / pg_size;
2277
2278 return n - n % 24;
2279}
2280
2281#define mem_region(adap, start, size, reg) \
2282 t3_write_reg((adap), A_ ## reg, (start)); \
2283 start += size
2284
2285/*
2286 * partition_mem - partition memory and configure TP memory settings
2287 * @adap: the adapter
2288 * @p: the TP parameters
2289 *
2290 * Partitions context and payload memory and configures TP's memory
2291 * registers.
2292 */
2293static void partition_mem(struct adapter *adap, const struct tp_params *p)
2294{
2295 unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
2296 unsigned int timers = 0, timers_shift = 22;
2297
2298 if (adap->params.rev > 0) {
2299 if (tids <= 16 * 1024) {
2300 timers = 1;
2301 timers_shift = 16;
2302 } else if (tids <= 64 * 1024) {
2303 timers = 2;
2304 timers_shift = 18;
2305 } else if (tids <= 256 * 1024) {
2306 timers = 3;
2307 timers_shift = 20;
2308 }
2309 }
2310
2311 t3_write_reg(adap, A_TP_PMM_SIZE,
2312 p->chan_rx_size | (p->chan_tx_size >> 16));
2313
2314 t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
2315 t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
2316 t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
2317 t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
2318 V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
2319
2320 t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
2321 t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
2322 t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
2323
2324 pstructs = p->rx_num_pgs + p->tx_num_pgs;
2325 /* Add a bit of headroom and make multiple of 24 */
2326 pstructs += 48;
2327 pstructs -= pstructs % 24;
2328 t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
2329
2330 m = tids * TCB_SIZE;
2331 mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
2332 mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
2333 t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
2334 m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
2335 mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
2336 mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
2337 mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
2338 mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
2339
2340 m = (m + 4095) & ~0xfff;
2341 t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
2342 t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
2343
2344 tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
2345 m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
2346 adap->params.mc5.nfilters - adap->params.mc5.nroutes;
2347 if (tids < m)
2348 adap->params.mc5.nservers += m - tids;
2349}
2350
2351static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
2352 u32 val)
2353{
2354 t3_write_reg(adap, A_TP_PIO_ADDR, addr);
2355 t3_write_reg(adap, A_TP_PIO_DATA, val);
2356}
2357
2358static void tp_config(struct adapter *adap, const struct tp_params *p)
2359{
Divy Le Ray4d22de32007-01-18 22:04:14 -05002360 t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
2361 F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
2362 F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
2363 t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
2364 F_MTUENABLE | V_WINDOWSCALEMODE(1) |
Divy Le Ray8a9fab22007-05-30 21:10:52 -07002365 V_TIMESTAMPSMODE(0) | V_SACKMODE(1) | V_SACKRX(1));
Divy Le Ray4d22de32007-01-18 22:04:14 -05002366 t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
2367 V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
2368 V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) |
2369 F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
2370 t3_set_reg_field(adap, A_TP_IN_CONFIG, F_IPV6ENABLE | F_NICMODE,
2371 F_IPV6ENABLE | F_NICMODE);
2372 t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
2373 t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
Divy Le Ray8a9fab22007-05-30 21:10:52 -07002374 t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
2375 adap->params.rev > 0 ? F_ENABLEESND :
2376 F_T3A_ENABLEESND);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002377
Divy Le Ray3b1d3072007-01-30 19:44:07 -08002378 t3_set_reg_field(adap, A_TP_PC_CONFIG,
Divy Le Ray8a9fab22007-05-30 21:10:52 -07002379 F_ENABLEEPCMDAFULL,
2380 F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
2381 F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
Divy Le Ray3b1d3072007-01-30 19:44:07 -08002382 t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL, 0);
Divy Le Ray8a9fab22007-05-30 21:10:52 -07002383 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
2384 t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
2385
Divy Le Ray4d22de32007-01-18 22:04:14 -05002386 if (adap->params.rev > 0) {
2387 tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
2388 t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
2389 F_TXPACEAUTO);
2390 t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
2391 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
2392 } else
2393 t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
2394
Divy Le Ray8a9fab22007-05-30 21:10:52 -07002395 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
2396 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
2397 t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
2398 t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002399}
2400
2401/* Desired TP timer resolution in usec */
2402#define TP_TMR_RES 50
2403
2404/* TCP timer values in ms */
2405#define TP_DACK_TIMER 50
2406#define TP_RTO_MIN 250
2407
2408/**
2409 * tp_set_timers - set TP timing parameters
2410 * @adap: the adapter to set
2411 * @core_clk: the core clock frequency in Hz
2412 *
2413 * Set TP's timing parameters, such as the various timer resolutions and
2414 * the TCP timer values.
2415 */
2416static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
2417{
2418 unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
2419 unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
2420 unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
2421 unsigned int tps = core_clk >> tre;
2422
2423 t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
2424 V_DELAYEDACKRESOLUTION(dack_re) |
2425 V_TIMESTAMPRESOLUTION(tstamp_re));
2426 t3_write_reg(adap, A_TP_DACK_TIMER,
2427 (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
2428 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
2429 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
2430 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
2431 t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
2432 t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
2433 V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
2434 V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
2435 V_KEEPALIVEMAX(9));
2436
2437#define SECONDS * tps
2438
2439 t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
2440 t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
2441 t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
2442 t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
2443 t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
2444 t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
2445 t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
2446 t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
2447 t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
2448
2449#undef SECONDS
2450}
2451
2452/**
2453 * t3_tp_set_coalescing_size - set receive coalescing size
2454 * @adap: the adapter
2455 * @size: the receive coalescing size
2456 * @psh: whether a set PSH bit should deliver coalesced data
2457 *
2458 * Set the receive coalescing size and PSH bit handling.
2459 */
2460int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
2461{
2462 u32 val;
2463
2464 if (size > MAX_RX_COALESCING_LEN)
2465 return -EINVAL;
2466
2467 val = t3_read_reg(adap, A_TP_PARA_REG3);
2468 val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
2469
2470 if (size) {
2471 val |= F_RXCOALESCEENABLE;
2472 if (psh)
2473 val |= F_RXCOALESCEPSHEN;
Divy Le Ray8a9fab22007-05-30 21:10:52 -07002474 size = min(MAX_RX_COALESCING_LEN, size);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002475 t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
2476 V_MAXRXDATA(MAX_RX_COALESCING_LEN));
2477 }
2478 t3_write_reg(adap, A_TP_PARA_REG3, val);
2479 return 0;
2480}
2481
2482/**
2483 * t3_tp_set_max_rxsize - set the max receive size
2484 * @adap: the adapter
2485 * @size: the max receive size
2486 *
2487 * Set TP's max receive size. This is the limit that applies when
2488 * receive coalescing is disabled.
2489 */
2490void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
2491{
2492 t3_write_reg(adap, A_TP_PARA_REG7,
2493 V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
2494}
2495
2496static void __devinit init_mtus(unsigned short mtus[])
2497{
2498 /*
2499 * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
2500 * it can accomodate max size TCP/IP headers when SACK and timestamps
2501 * are enabled and still have at least 8 bytes of payload.
2502 */
Divy Le Ray8a9fab22007-05-30 21:10:52 -07002503 mtus[1] = 88;
2504 mtus[1] = 88;
2505 mtus[2] = 256;
2506 mtus[3] = 512;
2507 mtus[4] = 576;
Divy Le Ray4d22de32007-01-18 22:04:14 -05002508 mtus[5] = 1024;
2509 mtus[6] = 1280;
2510 mtus[7] = 1492;
2511 mtus[8] = 1500;
2512 mtus[9] = 2002;
2513 mtus[10] = 2048;
2514 mtus[11] = 4096;
2515 mtus[12] = 4352;
2516 mtus[13] = 8192;
2517 mtus[14] = 9000;
2518 mtus[15] = 9600;
2519}
2520
2521/*
2522 * Initial congestion control parameters.
2523 */
2524static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
2525{
2526 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
2527 a[9] = 2;
2528 a[10] = 3;
2529 a[11] = 4;
2530 a[12] = 5;
2531 a[13] = 6;
2532 a[14] = 7;
2533 a[15] = 8;
2534 a[16] = 9;
2535 a[17] = 10;
2536 a[18] = 14;
2537 a[19] = 17;
2538 a[20] = 21;
2539 a[21] = 25;
2540 a[22] = 30;
2541 a[23] = 35;
2542 a[24] = 45;
2543 a[25] = 60;
2544 a[26] = 80;
2545 a[27] = 100;
2546 a[28] = 200;
2547 a[29] = 300;
2548 a[30] = 400;
2549 a[31] = 500;
2550
2551 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
2552 b[9] = b[10] = 1;
2553 b[11] = b[12] = 2;
2554 b[13] = b[14] = b[15] = b[16] = 3;
2555 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
2556 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
2557 b[28] = b[29] = 6;
2558 b[30] = b[31] = 7;
2559}
2560
2561/* The minimum additive increment value for the congestion control table */
2562#define CC_MIN_INCR 2U
2563
2564/**
2565 * t3_load_mtus - write the MTU and congestion control HW tables
2566 * @adap: the adapter
2567 * @mtus: the unrestricted values for the MTU table
2568 * @alphs: the values for the congestion control alpha parameter
2569 * @beta: the values for the congestion control beta parameter
2570 * @mtu_cap: the maximum permitted effective MTU
2571 *
2572 * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
2573 * Update the high-speed congestion control table with the supplied alpha,
2574 * beta, and MTUs.
2575 */
2576void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
2577 unsigned short alpha[NCCTRL_WIN],
2578 unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
2579{
2580 static const unsigned int avg_pkts[NCCTRL_WIN] = {
2581 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
2582 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
2583 28672, 40960, 57344, 81920, 114688, 163840, 229376
2584 };
2585
2586 unsigned int i, w;
2587
2588 for (i = 0; i < NMTUS; ++i) {
2589 unsigned int mtu = min(mtus[i], mtu_cap);
2590 unsigned int log2 = fls(mtu);
2591
2592 if (!(mtu & ((1 << log2) >> 2))) /* round */
2593 log2--;
2594 t3_write_reg(adap, A_TP_MTU_TABLE,
2595 (i << 24) | (log2 << 16) | mtu);
2596
2597 for (w = 0; w < NCCTRL_WIN; ++w) {
2598 unsigned int inc;
2599
2600 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
2601 CC_MIN_INCR);
2602
2603 t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
2604 (w << 16) | (beta[w] << 13) | inc);
2605 }
2606 }
2607}
2608
2609/**
2610 * t3_read_hw_mtus - returns the values in the HW MTU table
2611 * @adap: the adapter
2612 * @mtus: where to store the HW MTU values
2613 *
2614 * Reads the HW MTU table.
2615 */
2616void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
2617{
2618 int i;
2619
2620 for (i = 0; i < NMTUS; ++i) {
2621 unsigned int val;
2622
2623 t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
2624 val = t3_read_reg(adap, A_TP_MTU_TABLE);
2625 mtus[i] = val & 0x3fff;
2626 }
2627}
2628
2629/**
2630 * t3_get_cong_cntl_tab - reads the congestion control table
2631 * @adap: the adapter
2632 * @incr: where to store the alpha values
2633 *
2634 * Reads the additive increments programmed into the HW congestion
2635 * control table.
2636 */
2637void t3_get_cong_cntl_tab(struct adapter *adap,
2638 unsigned short incr[NMTUS][NCCTRL_WIN])
2639{
2640 unsigned int mtu, w;
2641
2642 for (mtu = 0; mtu < NMTUS; ++mtu)
2643 for (w = 0; w < NCCTRL_WIN; ++w) {
2644 t3_write_reg(adap, A_TP_CCTRL_TABLE,
2645 0xffff0000 | (mtu << 5) | w);
2646 incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
2647 0x1fff;
2648 }
2649}
2650
2651/**
2652 * t3_tp_get_mib_stats - read TP's MIB counters
2653 * @adap: the adapter
2654 * @tps: holds the returned counter values
2655 *
2656 * Returns the values of TP's MIB counters.
2657 */
2658void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
2659{
2660 t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
2661 sizeof(*tps) / sizeof(u32), 0);
2662}
2663
2664#define ulp_region(adap, name, start, len) \
2665 t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
2666 t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
2667 (start) + (len) - 1); \
2668 start += len
2669
2670#define ulptx_region(adap, name, start, len) \
2671 t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
2672 t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
2673 (start) + (len) - 1)
2674
2675static void ulp_config(struct adapter *adap, const struct tp_params *p)
2676{
2677 unsigned int m = p->chan_rx_size;
2678
2679 ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
2680 ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
2681 ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
2682 ulp_region(adap, STAG, m, p->chan_rx_size / 4);
2683 ulp_region(adap, RQ, m, p->chan_rx_size / 4);
2684 ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
2685 ulp_region(adap, PBL, m, p->chan_rx_size / 4);
2686 t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
2687}
2688
2689void t3_config_trace_filter(struct adapter *adapter,
2690 const struct trace_params *tp, int filter_index,
2691 int invert, int enable)
2692{
2693 u32 addr, key[4], mask[4];
2694
2695 key[0] = tp->sport | (tp->sip << 16);
2696 key[1] = (tp->sip >> 16) | (tp->dport << 16);
2697 key[2] = tp->dip;
2698 key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
2699
2700 mask[0] = tp->sport_mask | (tp->sip_mask << 16);
2701 mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
2702 mask[2] = tp->dip_mask;
2703 mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
2704
2705 if (invert)
2706 key[3] |= (1 << 29);
2707 if (enable)
2708 key[3] |= (1 << 28);
2709
2710 addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
2711 tp_wr_indirect(adapter, addr++, key[0]);
2712 tp_wr_indirect(adapter, addr++, mask[0]);
2713 tp_wr_indirect(adapter, addr++, key[1]);
2714 tp_wr_indirect(adapter, addr++, mask[1]);
2715 tp_wr_indirect(adapter, addr++, key[2]);
2716 tp_wr_indirect(adapter, addr++, mask[2]);
2717 tp_wr_indirect(adapter, addr++, key[3]);
2718 tp_wr_indirect(adapter, addr, mask[3]);
2719 t3_read_reg(adapter, A_TP_PIO_DATA);
2720}
2721
2722/**
2723 * t3_config_sched - configure a HW traffic scheduler
2724 * @adap: the adapter
2725 * @kbps: target rate in Kbps
2726 * @sched: the scheduler index
2727 *
2728 * Configure a HW scheduler for the target rate
2729 */
2730int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
2731{
2732 unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
2733 unsigned int clk = adap->params.vpd.cclk * 1000;
2734 unsigned int selected_cpt = 0, selected_bpt = 0;
2735
2736 if (kbps > 0) {
2737 kbps *= 125; /* -> bytes */
2738 for (cpt = 1; cpt <= 255; cpt++) {
2739 tps = clk / cpt;
2740 bpt = (kbps + tps / 2) / tps;
2741 if (bpt > 0 && bpt <= 255) {
2742 v = bpt * tps;
2743 delta = v >= kbps ? v - kbps : kbps - v;
2744 if (delta <= mindelta) {
2745 mindelta = delta;
2746 selected_cpt = cpt;
2747 selected_bpt = bpt;
2748 }
2749 } else if (selected_cpt)
2750 break;
2751 }
2752 if (!selected_cpt)
2753 return -EINVAL;
2754 }
2755 t3_write_reg(adap, A_TP_TM_PIO_ADDR,
2756 A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
2757 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
2758 if (sched & 1)
2759 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
2760 else
2761 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
2762 t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
2763 return 0;
2764}
2765
2766static int tp_init(struct adapter *adap, const struct tp_params *p)
2767{
2768 int busy = 0;
2769
2770 tp_config(adap, p);
2771 t3_set_vlan_accel(adap, 3, 0);
2772
2773 if (is_offload(adap)) {
2774 tp_set_timers(adap, adap->params.vpd.cclk * 1000);
2775 t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
2776 busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
2777 0, 1000, 5);
2778 if (busy)
2779 CH_ERR(adap, "TP initialization timed out\n");
2780 }
2781
2782 if (!busy)
2783 t3_write_reg(adap, A_TP_RESET, F_TPRESET);
2784 return busy;
2785}
2786
2787int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
2788{
2789 if (port_mask & ~((1 << adap->params.nports) - 1))
2790 return -EINVAL;
2791 t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
2792 port_mask << S_PORT0ACTIVE);
2793 return 0;
2794}
2795
2796/*
2797 * Perform the bits of HW initialization that are dependent on the number
2798 * of available ports.
2799 */
2800static void init_hw_for_avail_ports(struct adapter *adap, int nports)
2801{
2802 int i;
2803
2804 if (nports == 1) {
2805 t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
2806 t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
2807 t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN |
2808 F_PORT0ACTIVE | F_ENFORCEPKT);
Divy Le Ray8a9fab22007-05-30 21:10:52 -07002809 t3_write_reg(adap, A_PM1_TX_CFG, 0xffffffff);
Divy Le Ray4d22de32007-01-18 22:04:14 -05002810 } else {
2811 t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
2812 t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
2813 t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
2814 V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
2815 t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
2816 F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
2817 F_ENFORCEPKT);
2818 t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
2819 t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
2820 t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
2821 V_TX_MOD_QUEUE_REQ_MAP(0xaa));
2822 for (i = 0; i < 16; i++)
2823 t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
2824 (i << 16) | 0x1010);
2825 }
2826}
2827
2828static int calibrate_xgm(struct adapter *adapter)
2829{
2830 if (uses_xaui(adapter)) {
2831 unsigned int v, i;
2832
2833 for (i = 0; i < 5; ++i) {
2834 t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
2835 t3_read_reg(adapter, A_XGM_XAUI_IMP);
2836 msleep(1);
2837 v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
2838 if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
2839 t3_write_reg(adapter, A_XGM_XAUI_IMP,
2840 V_XAUIIMP(G_CALIMP(v) >> 2));
2841 return 0;
2842 }
2843 }
2844 CH_ERR(adapter, "MAC calibration failed\n");
2845 return -1;
2846 } else {
2847 t3_write_reg(adapter, A_XGM_RGMII_IMP,
2848 V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
2849 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
2850 F_XGM_IMPSETUPDATE);
2851 }
2852 return 0;
2853}
2854
2855static void calibrate_xgm_t3b(struct adapter *adapter)
2856{
2857 if (!uses_xaui(adapter)) {
2858 t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
2859 F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
2860 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
2861 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
2862 F_XGM_IMPSETUPDATE);
2863 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
2864 0);
2865 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
2866 t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
2867 }
2868}
2869
2870struct mc7_timing_params {
2871 unsigned char ActToPreDly;
2872 unsigned char ActToRdWrDly;
2873 unsigned char PreCyc;
2874 unsigned char RefCyc[5];
2875 unsigned char BkCyc;
2876 unsigned char WrToRdDly;
2877 unsigned char RdToWrDly;
2878};
2879
2880/*
2881 * Write a value to a register and check that the write completed. These
2882 * writes normally complete in a cycle or two, so one read should suffice.
2883 * The very first read exists to flush the posted write to the device.
2884 */
2885static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
2886{
2887 t3_write_reg(adapter, addr, val);
2888 t3_read_reg(adapter, addr); /* flush */
2889 if (!(t3_read_reg(adapter, addr) & F_BUSY))
2890 return 0;
2891 CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
2892 return -EIO;
2893}
2894
2895static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
2896{
2897 static const unsigned int mc7_mode[] = {
2898 0x632, 0x642, 0x652, 0x432, 0x442
2899 };
2900 static const struct mc7_timing_params mc7_timings[] = {
2901 {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
2902 {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
2903 {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
2904 {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
2905 {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
2906 };
2907
2908 u32 val;
2909 unsigned int width, density, slow, attempts;
2910 struct adapter *adapter = mc7->adapter;
2911 const struct mc7_timing_params *p = &mc7_timings[mem_type];
2912
Divy Le Ray8ac3ba62007-03-31 00:23:19 -07002913 if (!mc7->size)
2914 return 0;
2915
Divy Le Ray4d22de32007-01-18 22:04:14 -05002916 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
2917 slow = val & F_SLOW;
2918 width = G_WIDTH(val);
2919 density = G_DEN(val);
2920
2921 t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
2922 val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
2923 msleep(1);
2924
2925 if (!slow) {
2926 t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
2927 t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
2928 msleep(1);
2929 if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
2930 (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
2931 CH_ERR(adapter, "%s MC7 calibration timed out\n",
2932 mc7->name);
2933 goto out_fail;
2934 }
2935 }
2936
2937 t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
2938 V_ACTTOPREDLY(p->ActToPreDly) |
2939 V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
2940 V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
2941 V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
2942
2943 t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
2944 val | F_CLKEN | F_TERM150);
2945 t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
2946
2947 if (!slow)
2948 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
2949 F_DLLENB);
2950 udelay(1);
2951
2952 val = slow ? 3 : 6;
2953 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
2954 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
2955 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
2956 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
2957 goto out_fail;
2958
2959 if (!slow) {
2960 t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
2961 t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
2962 udelay(5);
2963 }
2964
2965 if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
2966 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
2967 wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
2968 wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
2969 mc7_mode[mem_type]) ||
2970 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
2971 wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
2972 goto out_fail;
2973
2974 /* clock value is in KHz */
2975 mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
2976 mc7_clock /= 1000000; /* KHz->MHz, ns->us */
2977
2978 t3_write_reg(adapter, mc7->offset + A_MC7_REF,
2979 F_PERREFEN | V_PREREFDIV(mc7_clock));
2980 t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
2981
2982 t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
2983 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
2984 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
2985 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
2986 (mc7->size << width) - 1);
2987 t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
2988 t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
2989
2990 attempts = 50;
2991 do {
2992 msleep(250);
2993 val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
2994 } while ((val & F_BUSY) && --attempts);
2995 if (val & F_BUSY) {
2996 CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
2997 goto out_fail;
2998 }
2999
3000 /* Enable normal memory accesses. */
3001 t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
3002 return 0;
3003
3004out_fail:
3005 return -1;
3006}
3007
3008static void config_pcie(struct adapter *adap)
3009{
3010 static const u16 ack_lat[4][6] = {
3011 {237, 416, 559, 1071, 2095, 4143},
3012 {128, 217, 289, 545, 1057, 2081},
3013 {73, 118, 154, 282, 538, 1050},
3014 {67, 107, 86, 150, 278, 534}
3015 };
3016 static const u16 rpl_tmr[4][6] = {
3017 {711, 1248, 1677, 3213, 6285, 12429},
3018 {384, 651, 867, 1635, 3171, 6243},
3019 {219, 354, 462, 846, 1614, 3150},
3020 {201, 321, 258, 450, 834, 1602}
3021 };
3022
3023 u16 val;
3024 unsigned int log2_width, pldsize;
3025 unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
3026
3027 pci_read_config_word(adap->pdev,
3028 adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
3029 &val);
3030 pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
3031 pci_read_config_word(adap->pdev,
3032 adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
3033 &val);
3034
3035 fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
3036 fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
3037 G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
3038 log2_width = fls(adap->params.pci.width) - 1;
3039 acklat = ack_lat[log2_width][pldsize];
3040 if (val & 1) /* check LOsEnable */
3041 acklat += fst_trn_tx * 4;
3042 rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
3043
3044 if (adap->params.rev == 0)
3045 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
3046 V_T3A_ACKLAT(M_T3A_ACKLAT),
3047 V_T3A_ACKLAT(acklat));
3048 else
3049 t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
3050 V_ACKLAT(acklat));
3051
3052 t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
3053 V_REPLAYLMT(rpllmt));
3054
3055 t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
3056 t3_set_reg_field(adap, A_PCIE_CFG, F_PCIE_CLIDECEN, F_PCIE_CLIDECEN);
3057}
3058
3059/*
3060 * Initialize and configure T3 HW modules. This performs the
3061 * initialization steps that need to be done once after a card is reset.
3062 * MAC and PHY initialization is handled separarely whenever a port is enabled.
3063 *
3064 * fw_params are passed to FW and their value is platform dependent. Only the
3065 * top 8 bits are available for use, the rest must be 0.
3066 */
3067int t3_init_hw(struct adapter *adapter, u32 fw_params)
3068{
3069 int err = -EIO, attempts = 100;
3070 const struct vpd_params *vpd = &adapter->params.vpd;
3071
3072 if (adapter->params.rev > 0)
3073 calibrate_xgm_t3b(adapter);
3074 else if (calibrate_xgm(adapter))
3075 goto out_err;
3076
3077 if (vpd->mclk) {
3078 partition_mem(adapter, &adapter->params.tp);
3079
3080 if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
3081 mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
3082 mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
3083 t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
3084 adapter->params.mc5.nfilters,
3085 adapter->params.mc5.nroutes))
3086 goto out_err;
3087 }
3088
3089 if (tp_init(adapter, &adapter->params.tp))
3090 goto out_err;
3091
3092 t3_tp_set_coalescing_size(adapter,
3093 min(adapter->params.sge.max_pkt_size,
3094 MAX_RX_COALESCING_LEN), 1);
3095 t3_tp_set_max_rxsize(adapter,
3096 min(adapter->params.sge.max_pkt_size, 16384U));
3097 ulp_config(adapter, &adapter->params.tp);
3098
3099 if (is_pcie(adapter))
3100 config_pcie(adapter);
3101 else
3102 t3_set_reg_field(adapter, A_PCIX_CFG, 0, F_CLIDECEN);
3103
Divy Le Ray8a9fab22007-05-30 21:10:52 -07003104 t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
Divy Le Ray4d22de32007-01-18 22:04:14 -05003105 init_hw_for_avail_ports(adapter, adapter->params.nports);
3106 t3_sge_init(adapter, &adapter->params.sge);
3107
3108 t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
3109 t3_write_reg(adapter, A_CIM_BOOT_CFG,
3110 V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
3111 t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
3112
3113 do { /* wait for uP to initialize */
3114 msleep(20);
3115 } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
Divy Le Ray8ac3ba62007-03-31 00:23:19 -07003116 if (!attempts) {
3117 CH_ERR(adapter, "uP initialization timed out\n");
Divy Le Ray4d22de32007-01-18 22:04:14 -05003118 goto out_err;
Divy Le Ray8ac3ba62007-03-31 00:23:19 -07003119 }
Divy Le Ray4d22de32007-01-18 22:04:14 -05003120
3121 err = 0;
3122out_err:
3123 return err;
3124}
3125
3126/**
3127 * get_pci_mode - determine a card's PCI mode
3128 * @adapter: the adapter
3129 * @p: where to store the PCI settings
3130 *
3131 * Determines a card's PCI mode and associated parameters, such as speed
3132 * and width.
3133 */
3134static void __devinit get_pci_mode(struct adapter *adapter,
3135 struct pci_params *p)
3136{
3137 static unsigned short speed_map[] = { 33, 66, 100, 133 };
3138 u32 pci_mode, pcie_cap;
3139
3140 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
3141 if (pcie_cap) {
3142 u16 val;
3143
3144 p->variant = PCI_VARIANT_PCIE;
3145 p->pcie_cap_addr = pcie_cap;
3146 pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
3147 &val);
3148 p->width = (val >> 4) & 0x3f;
3149 return;
3150 }
3151
3152 pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
3153 p->speed = speed_map[G_PCLKRANGE(pci_mode)];
3154 p->width = (pci_mode & F_64BIT) ? 64 : 32;
3155 pci_mode = G_PCIXINITPAT(pci_mode);
3156 if (pci_mode == 0)
3157 p->variant = PCI_VARIANT_PCI;
3158 else if (pci_mode < 4)
3159 p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
3160 else if (pci_mode < 8)
3161 p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
3162 else
3163 p->variant = PCI_VARIANT_PCIX_266_MODE2;
3164}
3165
3166/**
3167 * init_link_config - initialize a link's SW state
3168 * @lc: structure holding the link state
3169 * @ai: information about the current card
3170 *
3171 * Initializes the SW state maintained for each link, including the link's
3172 * capabilities and default speed/duplex/flow-control/autonegotiation
3173 * settings.
3174 */
3175static void __devinit init_link_config(struct link_config *lc,
3176 unsigned int caps)
3177{
3178 lc->supported = caps;
3179 lc->requested_speed = lc->speed = SPEED_INVALID;
3180 lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
3181 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
3182 if (lc->supported & SUPPORTED_Autoneg) {
3183 lc->advertising = lc->supported;
3184 lc->autoneg = AUTONEG_ENABLE;
3185 lc->requested_fc |= PAUSE_AUTONEG;
3186 } else {
3187 lc->advertising = 0;
3188 lc->autoneg = AUTONEG_DISABLE;
3189 }
3190}
3191
3192/**
3193 * mc7_calc_size - calculate MC7 memory size
3194 * @cfg: the MC7 configuration
3195 *
3196 * Calculates the size of an MC7 memory in bytes from the value of its
3197 * configuration register.
3198 */
3199static unsigned int __devinit mc7_calc_size(u32 cfg)
3200{
3201 unsigned int width = G_WIDTH(cfg);
3202 unsigned int banks = !!(cfg & F_BKS) + 1;
3203 unsigned int org = !!(cfg & F_ORG) + 1;
3204 unsigned int density = G_DEN(cfg);
3205 unsigned int MBs = ((256 << density) * banks) / (org << width);
3206
3207 return MBs << 20;
3208}
3209
3210static void __devinit mc7_prep(struct adapter *adapter, struct mc7 *mc7,
3211 unsigned int base_addr, const char *name)
3212{
3213 u32 cfg;
3214
3215 mc7->adapter = adapter;
3216 mc7->name = name;
3217 mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
3218 cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
Divy Le Ray8ac3ba62007-03-31 00:23:19 -07003219 mc7->size = mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
Divy Le Ray4d22de32007-01-18 22:04:14 -05003220 mc7->width = G_WIDTH(cfg);
3221}
3222
3223void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
3224{
3225 mac->adapter = adapter;
3226 mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
3227 mac->nucast = 1;
3228
3229 if (adapter->params.rev == 0 && uses_xaui(adapter)) {
3230 t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
3231 is_10G(adapter) ? 0x2901c04 : 0x2301c04);
3232 t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
3233 F_ENRGMII, 0);
3234 }
3235}
3236
3237void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
3238{
3239 u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
3240
3241 mi1_init(adapter, ai);
3242 t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
3243 V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
3244 t3_write_reg(adapter, A_T3DBG_GPIO_EN,
3245 ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
Divy Le Ray8ac3ba62007-03-31 00:23:19 -07003246 t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
Divy Le Ray4d22de32007-01-18 22:04:14 -05003247
3248 if (adapter->params.rev == 0 || !uses_xaui(adapter))
3249 val |= F_ENRGMII;
3250
3251 /* Enable MAC clocks so we can access the registers */
3252 t3_write_reg(adapter, A_XGM_PORT_CFG, val);
3253 t3_read_reg(adapter, A_XGM_PORT_CFG);
3254
3255 val |= F_CLKDIVRESET_;
3256 t3_write_reg(adapter, A_XGM_PORT_CFG, val);
3257 t3_read_reg(adapter, A_XGM_PORT_CFG);
3258 t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
3259 t3_read_reg(adapter, A_XGM_PORT_CFG);
3260}
3261
3262/*
Divy Le Raye4d08352007-03-18 13:10:17 -07003263 * Reset the adapter.
3264 * Older PCIe cards lose their config space during reset, PCI-X
Divy Le Ray4d22de32007-01-18 22:04:14 -05003265 * ones don't.
3266 */
3267int t3_reset_adapter(struct adapter *adapter)
3268{
Divy Le Raye4d08352007-03-18 13:10:17 -07003269 int i, save_and_restore_pcie =
3270 adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
Divy Le Ray4d22de32007-01-18 22:04:14 -05003271 uint16_t devid = 0;
3272
Divy Le Raye4d08352007-03-18 13:10:17 -07003273 if (save_and_restore_pcie)
Divy Le Ray4d22de32007-01-18 22:04:14 -05003274 pci_save_state(adapter->pdev);
3275 t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
3276
3277 /*
3278 * Delay. Give Some time to device to reset fully.
3279 * XXX The delay time should be modified.
3280 */
3281 for (i = 0; i < 10; i++) {
3282 msleep(50);
3283 pci_read_config_word(adapter->pdev, 0x00, &devid);
3284 if (devid == 0x1425)
3285 break;
3286 }
3287
3288 if (devid != 0x1425)
3289 return -1;
3290
Divy Le Raye4d08352007-03-18 13:10:17 -07003291 if (save_and_restore_pcie)
Divy Le Ray4d22de32007-01-18 22:04:14 -05003292 pci_restore_state(adapter->pdev);
3293 return 0;
3294}
3295
3296/*
3297 * Initialize adapter SW state for the various HW modules, set initial values
3298 * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
3299 * interface.
3300 */
3301int __devinit t3_prep_adapter(struct adapter *adapter,
3302 const struct adapter_info *ai, int reset)
3303{
3304 int ret;
3305 unsigned int i, j = 0;
3306
3307 get_pci_mode(adapter, &adapter->params.pci);
3308
3309 adapter->params.info = ai;
3310 adapter->params.nports = ai->nports;
3311 adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
3312 adapter->params.linkpoll_period = 0;
3313 adapter->params.stats_update_period = is_10G(adapter) ?
3314 MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
3315 adapter->params.pci.vpd_cap_addr =
3316 pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
3317 ret = get_vpd_params(adapter, &adapter->params.vpd);
3318 if (ret < 0)
3319 return ret;
3320
3321 if (reset && t3_reset_adapter(adapter))
3322 return -1;
3323
3324 t3_sge_prep(adapter, &adapter->params.sge);
3325
3326 if (adapter->params.vpd.mclk) {
3327 struct tp_params *p = &adapter->params.tp;
3328
3329 mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
3330 mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
3331 mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
3332
3333 p->nchan = ai->nports;
3334 p->pmrx_size = t3_mc7_size(&adapter->pmrx);
3335 p->pmtx_size = t3_mc7_size(&adapter->pmtx);
3336 p->cm_size = t3_mc7_size(&adapter->cm);
3337 p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
3338 p->chan_tx_size = p->pmtx_size / p->nchan;
3339 p->rx_pg_size = 64 * 1024;
3340 p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
3341 p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
3342 p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
3343 p->ntimer_qs = p->cm_size >= (128 << 20) ||
3344 adapter->params.rev > 0 ? 12 : 6;
Divy Le Ray8ac3ba62007-03-31 00:23:19 -07003345 }
Divy Le Ray4d22de32007-01-18 22:04:14 -05003346
Divy Le Ray8ac3ba62007-03-31 00:23:19 -07003347 adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
3348 t3_mc7_size(&adapter->pmtx) &&
3349 t3_mc7_size(&adapter->cm);
3350
3351 if (is_offload(adapter)) {
Divy Le Ray4d22de32007-01-18 22:04:14 -05003352 adapter->params.mc5.nservers = DEFAULT_NSERVERS;
3353 adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
3354 DEFAULT_NFILTERS : 0;
3355 adapter->params.mc5.nroutes = 0;
3356 t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
3357
3358 init_mtus(adapter->params.mtus);
3359 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
3360 }
3361
3362 early_hw_init(adapter, ai);
3363
3364 for_each_port(adapter, i) {
3365 u8 hw_addr[6];
3366 struct port_info *p = adap2pinfo(adapter, i);
3367
3368 while (!adapter->params.vpd.port_type[j])
3369 ++j;
3370
3371 p->port_type = &port_types[adapter->params.vpd.port_type[j]];
3372 p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
3373 ai->mdio_ops);
3374 mac_prep(&p->mac, adapter, j);
3375 ++j;
3376
3377 /*
3378 * The VPD EEPROM stores the base Ethernet address for the
3379 * card. A port's address is derived from the base by adding
3380 * the port's index to the base's low octet.
3381 */
3382 memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
3383 hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
3384
3385 memcpy(adapter->port[i]->dev_addr, hw_addr,
3386 ETH_ALEN);
3387 memcpy(adapter->port[i]->perm_addr, hw_addr,
3388 ETH_ALEN);
3389 init_link_config(&p->link_config, p->port_type->caps);
3390 p->phy.ops->power_down(&p->phy, 1);
3391 if (!(p->port_type->caps & SUPPORTED_IRQ))
3392 adapter->params.linkpoll_period = 10;
3393 }
3394
3395 return 0;
3396}
3397
3398void t3_led_ready(struct adapter *adapter)
3399{
3400 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
3401 F_GPIO0_OUT_VAL);
3402}