blob: da2bc590286438fe7b000cea43e24baf4b6bb417 [file] [log] [blame]
Timur Tabi17467f22008-01-11 18:15:26 +01001/*
2 * Freescale DMA ALSA SoC PCM driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
6 * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
7 * under the terms of the GNU General Public License version 2. This
8 * program is licensed "as is" without any warranty of any kind, whether
9 * express or implied.
10 *
11 * This driver implements ASoC support for the Elo DMA controller, which is
12 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
13 * the PCM driver is what handles the DMA buffer.
14 */
15
16#include <linux/module.h>
17#include <linux/init.h>
18#include <linux/platform_device.h>
19#include <linux/dma-mapping.h>
20#include <linux/interrupt.h>
21#include <linux/delay.h>
22
Timur Tabi17467f22008-01-11 18:15:26 +010023#include <sound/core.h>
24#include <sound/pcm.h>
25#include <sound/pcm_params.h>
26#include <sound/soc.h>
27
28#include <asm/io.h>
29
30#include "fsl_dma.h"
31
32/*
33 * The formats that the DMA controller supports, which is anything
34 * that is 8, 16, or 32 bits.
35 */
36#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
37 SNDRV_PCM_FMTBIT_U8 | \
38 SNDRV_PCM_FMTBIT_S16_LE | \
39 SNDRV_PCM_FMTBIT_S16_BE | \
40 SNDRV_PCM_FMTBIT_U16_LE | \
41 SNDRV_PCM_FMTBIT_U16_BE | \
42 SNDRV_PCM_FMTBIT_S24_LE | \
43 SNDRV_PCM_FMTBIT_S24_BE | \
44 SNDRV_PCM_FMTBIT_U24_LE | \
45 SNDRV_PCM_FMTBIT_U24_BE | \
46 SNDRV_PCM_FMTBIT_S32_LE | \
47 SNDRV_PCM_FMTBIT_S32_BE | \
48 SNDRV_PCM_FMTBIT_U32_LE | \
49 SNDRV_PCM_FMTBIT_U32_BE)
50
51#define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
52 SNDRV_PCM_RATE_CONTINUOUS)
53
54/* DMA global data. This structure is used by fsl_dma_open() to determine
55 * which DMA channels to assign to a substream. Unfortunately, ASoC V1 does
56 * not allow the machine driver to provide this information to the PCM
57 * driver in advance, and there's no way to differentiate between the two
58 * DMA controllers. So for now, this driver only supports one SSI device
59 * using two DMA channels. We cannot support multiple DMA devices.
60 *
61 * ssi_stx_phys: bus address of SSI STX register
62 * ssi_srx_phys: bus address of SSI SRX register
63 * dma_channel: pointer to the DMA channel's registers
64 * irq: IRQ for this DMA channel
65 * assigned: set to 1 if that DMA channel is assigned to a substream
66 */
67static struct {
68 dma_addr_t ssi_stx_phys;
69 dma_addr_t ssi_srx_phys;
70 struct ccsr_dma_channel __iomem *dma_channel[2];
71 unsigned int irq[2];
72 unsigned int assigned[2];
73} dma_global_data;
74
75/*
76 * The number of DMA links to use. Two is the bare minimum, but if you
77 * have really small links you might need more.
78 */
79#define NUM_DMA_LINKS 2
80
81/** fsl_dma_private: p-substream DMA data
82 *
83 * Each substream has a 1-to-1 association with a DMA channel.
84 *
85 * The link[] array is first because it needs to be aligned on a 32-byte
86 * boundary, so putting it first will ensure alignment without padding the
87 * structure.
88 *
89 * @link[]: array of link descriptors
90 * @controller_id: which DMA controller (0, 1, ...)
91 * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
92 * @dma_channel: pointer to the DMA channel's registers
93 * @irq: IRQ for this DMA channel
94 * @substream: pointer to the substream object, needed by the ISR
95 * @ssi_sxx_phys: bus address of the STX or SRX register to use
96 * @ld_buf_phys: physical address of the LD buffer
97 * @current_link: index into link[] of the link currently being processed
98 * @dma_buf_phys: physical address of the DMA buffer
99 * @dma_buf_next: physical address of the next period to process
100 * @dma_buf_end: physical address of the byte after the end of the DMA
101 * @buffer period_size: the size of a single period
102 * @num_periods: the number of periods in the DMA buffer
103 */
104struct fsl_dma_private {
105 struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
106 unsigned int controller_id;
107 unsigned int channel_id;
108 struct ccsr_dma_channel __iomem *dma_channel;
109 unsigned int irq;
110 struct snd_pcm_substream *substream;
111 dma_addr_t ssi_sxx_phys;
112 dma_addr_t ld_buf_phys;
113 unsigned int current_link;
114 dma_addr_t dma_buf_phys;
115 dma_addr_t dma_buf_next;
116 dma_addr_t dma_buf_end;
117 size_t period_size;
118 unsigned int num_periods;
119};
120
121/**
122 * fsl_dma_hardare: define characteristics of the PCM hardware.
123 *
124 * The PCM hardware is the Freescale DMA controller. This structure defines
125 * the capabilities of that hardware.
126 *
127 * Since the sampling rate and data format are not controlled by the DMA
128 * controller, we specify no limits for those values. The only exception is
129 * period_bytes_min, which is set to a reasonably low value to prevent the
130 * DMA controller from generating too many interrupts per second.
131 *
132 * Since each link descriptor has a 32-bit byte count field, we set
133 * period_bytes_max to the largest 32-bit number. We also have no maximum
134 * number of periods.
135 */
136static const struct snd_pcm_hardware fsl_dma_hardware = {
137
Timur Tabi4052ce42008-01-17 17:44:49 +0100138 .info = SNDRV_PCM_INFO_INTERLEAVED |
139 SNDRV_PCM_INFO_MMAP |
140 SNDRV_PCM_INFO_MMAP_VALID,
Timur Tabi17467f22008-01-11 18:15:26 +0100141 .formats = FSLDMA_PCM_FORMATS,
142 .rates = FSLDMA_PCM_RATES,
143 .rate_min = 5512,
144 .rate_max = 192000,
145 .period_bytes_min = 512, /* A reasonable limit */
146 .period_bytes_max = (u32) -1,
147 .periods_min = NUM_DMA_LINKS,
148 .periods_max = (unsigned int) -1,
149 .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
150};
151
152/**
153 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
154 *
155 * This function should be called by the ISR whenever the DMA controller
156 * halts data transfer.
157 */
158static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
159{
160 unsigned long flags;
161
162 snd_pcm_stream_lock_irqsave(substream, flags);
163
164 if (snd_pcm_running(substream))
165 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
166
167 snd_pcm_stream_unlock_irqrestore(substream, flags);
168}
169
170/**
171 * fsl_dma_update_pointers - update LD pointers to point to the next period
172 *
173 * As each period is completed, this function changes the the link
174 * descriptor pointers for that period to point to the next period.
175 */
176static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
177{
178 struct fsl_dma_link_descriptor *link =
179 &dma_private->link[dma_private->current_link];
180
181 /* Update our link descriptors to point to the next period */
182 if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
183 link->source_addr =
184 cpu_to_be32(dma_private->dma_buf_next);
185 else
186 link->dest_addr =
187 cpu_to_be32(dma_private->dma_buf_next);
188
189 /* Update our variables for next time */
190 dma_private->dma_buf_next += dma_private->period_size;
191
192 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
193 dma_private->dma_buf_next = dma_private->dma_buf_phys;
194
195 if (++dma_private->current_link >= NUM_DMA_LINKS)
196 dma_private->current_link = 0;
197}
198
199/**
200 * fsl_dma_isr: interrupt handler for the DMA controller
201 *
202 * @irq: IRQ of the DMA channel
203 * @dev_id: pointer to the dma_private structure for this DMA channel
204 */
205static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
206{
207 struct fsl_dma_private *dma_private = dev_id;
208 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
209 irqreturn_t ret = IRQ_NONE;
210 u32 sr, sr2 = 0;
211
212 /* We got an interrupt, so read the status register to see what we
213 were interrupted for.
214 */
215 sr = in_be32(&dma_channel->sr);
216
217 if (sr & CCSR_DMA_SR_TE) {
218 dev_err(dma_private->substream->pcm->card->dev,
219 "DMA transmit error (controller=%u channel=%u irq=%u\n",
220 dma_private->controller_id,
221 dma_private->channel_id, irq);
222 fsl_dma_abort_stream(dma_private->substream);
223 sr2 |= CCSR_DMA_SR_TE;
224 ret = IRQ_HANDLED;
225 }
226
227 if (sr & CCSR_DMA_SR_CH)
228 ret = IRQ_HANDLED;
229
230 if (sr & CCSR_DMA_SR_PE) {
231 dev_err(dma_private->substream->pcm->card->dev,
232 "DMA%u programming error (channel=%u irq=%u)\n",
233 dma_private->controller_id,
234 dma_private->channel_id, irq);
235 fsl_dma_abort_stream(dma_private->substream);
236 sr2 |= CCSR_DMA_SR_PE;
237 ret = IRQ_HANDLED;
238 }
239
240 if (sr & CCSR_DMA_SR_EOLNI) {
241 sr2 |= CCSR_DMA_SR_EOLNI;
242 ret = IRQ_HANDLED;
243 }
244
245 if (sr & CCSR_DMA_SR_CB)
246 ret = IRQ_HANDLED;
247
248 if (sr & CCSR_DMA_SR_EOSI) {
249 struct snd_pcm_substream *substream = dma_private->substream;
250
251 /* Tell ALSA we completed a period. */
252 snd_pcm_period_elapsed(substream);
253
254 /*
255 * Update our link descriptors to point to the next period. We
256 * only need to do this if the number of periods is not equal to
257 * the number of links.
258 */
259 if (dma_private->num_periods != NUM_DMA_LINKS)
260 fsl_dma_update_pointers(dma_private);
261
262 sr2 |= CCSR_DMA_SR_EOSI;
263 ret = IRQ_HANDLED;
264 }
265
266 if (sr & CCSR_DMA_SR_EOLSI) {
267 sr2 |= CCSR_DMA_SR_EOLSI;
268 ret = IRQ_HANDLED;
269 }
270
271 /* Clear the bits that we set */
272 if (sr2)
273 out_be32(&dma_channel->sr, sr2);
274
275 return ret;
276}
277
278/**
279 * fsl_dma_new: initialize this PCM driver.
280 *
281 * This function is called when the codec driver calls snd_soc_new_pcms(),
282 * once for each .dai_link in the machine driver's snd_soc_machine
283 * structure.
284 */
Liam Girdwood8cf7b2b2008-07-07 16:08:00 +0100285static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
Timur Tabi17467f22008-01-11 18:15:26 +0100286 struct snd_pcm *pcm)
287{
288 static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
289 int ret;
290
291 if (!card->dev->dma_mask)
292 card->dev->dma_mask = &fsl_dma_dmamask;
293
294 if (!card->dev->coherent_dma_mask)
295 card->dev->coherent_dma_mask = fsl_dma_dmamask;
296
297 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
298 fsl_dma_hardware.buffer_bytes_max,
299 &pcm->streams[0].substream->dma_buffer);
300 if (ret) {
301 dev_err(card->dev,
302 "Can't allocate playback DMA buffer (size=%u)\n",
303 fsl_dma_hardware.buffer_bytes_max);
304 return -ENOMEM;
305 }
306
307 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
308 fsl_dma_hardware.buffer_bytes_max,
309 &pcm->streams[1].substream->dma_buffer);
310 if (ret) {
311 snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
312 dev_err(card->dev,
313 "Can't allocate capture DMA buffer (size=%u)\n",
314 fsl_dma_hardware.buffer_bytes_max);
315 return -ENOMEM;
316 }
317
318 return 0;
319}
320
321/**
322 * fsl_dma_open: open a new substream.
323 *
324 * Each substream has its own DMA buffer.
325 */
326static int fsl_dma_open(struct snd_pcm_substream *substream)
327{
328 struct snd_pcm_runtime *runtime = substream->runtime;
329 struct fsl_dma_private *dma_private;
330 dma_addr_t ld_buf_phys;
331 unsigned int channel;
332 int ret = 0;
333
334 /*
335 * Reject any DMA buffer whose size is not a multiple of the period
336 * size. We need to make sure that the DMA buffer can be evenly divided
337 * into periods.
338 */
339 ret = snd_pcm_hw_constraint_integer(runtime,
340 SNDRV_PCM_HW_PARAM_PERIODS);
341 if (ret < 0) {
342 dev_err(substream->pcm->card->dev, "invalid buffer size\n");
343 return ret;
344 }
345
346 channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
347
348 if (dma_global_data.assigned[channel]) {
349 dev_err(substream->pcm->card->dev,
350 "DMA channel already assigned\n");
351 return -EBUSY;
352 }
353
354 dma_private = dma_alloc_coherent(substream->pcm->dev,
355 sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
356 if (!dma_private) {
357 dev_err(substream->pcm->card->dev,
358 "can't allocate DMA private data\n");
359 return -ENOMEM;
360 }
361 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
362 dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
363 else
364 dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
365
366 dma_private->dma_channel = dma_global_data.dma_channel[channel];
367 dma_private->irq = dma_global_data.irq[channel];
368 dma_private->substream = substream;
369 dma_private->ld_buf_phys = ld_buf_phys;
370 dma_private->dma_buf_phys = substream->dma_buffer.addr;
371
372 /* We only support one DMA controller for now */
373 dma_private->controller_id = 0;
374 dma_private->channel_id = channel;
375
376 ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
377 if (ret) {
378 dev_err(substream->pcm->card->dev,
379 "can't register ISR for IRQ %u (ret=%i)\n",
380 dma_private->irq, ret);
381 dma_free_coherent(substream->pcm->dev,
382 sizeof(struct fsl_dma_private),
383 dma_private, dma_private->ld_buf_phys);
384 return ret;
385 }
386
387 dma_global_data.assigned[channel] = 1;
388
389 snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
390 snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
391 runtime->private_data = dma_private;
392
393 return 0;
394}
395
396/**
397 * fsl_dma_hw_params: allocate the DMA buffer and the DMA link descriptors.
398 *
399 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
400 * descriptors that ping-pong from one period to the next. For example, if
401 * there are six periods and two link descriptors, this is how they look
402 * before playback starts:
403 *
404 * The last link descriptor
405 * ____________ points back to the first
406 * | |
407 * V |
408 * ___ ___ |
409 * | |->| |->|
410 * |___| |___|
411 * | |
412 * | |
413 * V V
414 * _________________________________________
415 * | | | | | | | The DMA buffer is
416 * | | | | | | | divided into 6 parts
417 * |______|______|______|______|______|______|
418 *
419 * and here's how they look after the first period is finished playing:
420 *
421 * ____________
422 * | |
423 * V |
424 * ___ ___ |
425 * | |->| |->|
426 * |___| |___|
427 * | |
428 * |______________
429 * | |
430 * V V
431 * _________________________________________
432 * | | | | | | |
433 * | | | | | | |
434 * |______|______|______|______|______|______|
435 *
436 * The first link descriptor now points to the third period. The DMA
437 * controller is currently playing the second period. When it finishes, it
438 * will jump back to the first descriptor and play the third period.
439 *
440 * There are four reasons we do this:
441 *
442 * 1. The only way to get the DMA controller to automatically restart the
443 * transfer when it gets to the end of the buffer is to use chaining
444 * mode. Basic direct mode doesn't offer that feature.
445 * 2. We need to receive an interrupt at the end of every period. The DMA
446 * controller can generate an interrupt at the end of every link transfer
447 * (aka segment). Making each period into a DMA segment will give us the
448 * interrupts we need.
449 * 3. By creating only two link descriptors, regardless of the number of
450 * periods, we do not need to reallocate the link descriptors if the
451 * number of periods changes.
452 * 4. All of the audio data is still stored in a single, contiguous DMA
453 * buffer, which is what ALSA expects. We're just dividing it into
454 * contiguous parts, and creating a link descriptor for each one.
455 *
456 * Note that due to a quirk of the SSI's STX register, the target address
457 * for the DMA operations depends on the sample size. So we don't program
458 * the dest_addr (for playback -- source_addr for capture) fields in the
459 * link descriptors here. We do that in fsl_dma_prepare()
460 */
461static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
462 struct snd_pcm_hw_params *hw_params)
463{
464 struct snd_pcm_runtime *runtime = substream->runtime;
465 struct fsl_dma_private *dma_private = runtime->private_data;
466 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
467
468 dma_addr_t temp_addr; /* Pointer to next period */
469 u64 temp_link; /* Pointer to next link descriptor */
470 u32 mr; /* Temporary variable for MR register */
471
472 unsigned int i;
473
474 /* Get all the parameters we need */
475 size_t buffer_size = params_buffer_bytes(hw_params);
476 size_t period_size = params_period_bytes(hw_params);
477
478 /* Initialize our DMA tracking variables */
479 dma_private->period_size = period_size;
480 dma_private->num_periods = params_periods(hw_params);
481 dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
482 dma_private->dma_buf_next = dma_private->dma_buf_phys +
483 (NUM_DMA_LINKS * period_size);
484 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
485 dma_private->dma_buf_next = dma_private->dma_buf_phys;
486
487 /*
488 * Initialize each link descriptor.
489 *
490 * The actual address in STX0 (destination for playback, source for
491 * capture) is based on the sample size, but we don't know the sample
492 * size in this function, so we'll have to adjust that later. See
493 * comments in fsl_dma_prepare().
494 *
495 * The DMA controller does not have a cache, so the CPU does not
496 * need to tell it to flush its cache. However, the DMA
497 * controller does need to tell the CPU to flush its cache.
498 * That's what the SNOOP bit does.
499 *
500 * Also, even though the DMA controller supports 36-bit addressing, for
501 * simplicity we currently support only 32-bit addresses for the audio
502 * buffer itself.
503 */
504 temp_addr = substream->dma_buffer.addr;
505 temp_link = dma_private->ld_buf_phys +
506 sizeof(struct fsl_dma_link_descriptor);
507
508 for (i = 0; i < NUM_DMA_LINKS; i++) {
509 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
510
511 link->count = cpu_to_be32(period_size);
512 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
513 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
514 link->next = cpu_to_be64(temp_link);
515
516 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
517 link->source_addr = cpu_to_be32(temp_addr);
518 else
519 link->dest_addr = cpu_to_be32(temp_addr);
520
521 temp_addr += period_size;
522 temp_link += sizeof(struct fsl_dma_link_descriptor);
523 }
524 /* The last link descriptor points to the first */
525 dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
526
527 /* Tell the DMA controller where the first link descriptor is */
528 out_be32(&dma_channel->clndar,
529 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
530 out_be32(&dma_channel->eclndar,
531 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
532
533 /* The manual says the BCR must be clear before enabling EMP */
534 out_be32(&dma_channel->bcr, 0);
535
536 /*
537 * Program the mode register for interrupts, external master control,
538 * and source/destination hold. Also clear the Channel Abort bit.
539 */
540 mr = in_be32(&dma_channel->mr) &
541 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
542
543 /*
544 * We want External Master Start and External Master Pause enabled,
545 * because the SSI is controlling the DMA controller. We want the DMA
546 * controller to be set up in advance, and then we signal only the SSI
547 * to start transfering.
548 *
549 * We want End-Of-Segment Interrupts enabled, because this will generate
550 * an interrupt at the end of each segment (each link descriptor
551 * represents one segment). Each DMA segment is the same thing as an
552 * ALSA period, so this is how we get an interrupt at the end of every
553 * period.
554 *
555 * We want Error Interrupt enabled, so that we can get an error if
556 * the DMA controller is mis-programmed somehow.
557 */
558 mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
559 CCSR_DMA_MR_EMS_EN;
560
561 /* For playback, we want the destination address to be held. For
562 capture, set the source address to be held. */
563 mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
564 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
565
566 out_be32(&dma_channel->mr, mr);
567
568 return 0;
569}
570
571/**
572 * fsl_dma_prepare - prepare the DMA registers for playback.
573 *
574 * This function is called after the specifics of the audio data are known,
575 * i.e. snd_pcm_runtime is initialized.
576 *
577 * In this function, we finish programming the registers of the DMA
578 * controller that are dependent on the sample size.
579 *
580 * One of the drawbacks with big-endian is that when copying integers of
581 * different sizes to a fixed-sized register, the address to which the
582 * integer must be copied is dependent on the size of the integer.
583 *
584 * For example, if P is the address of a 32-bit register, and X is a 32-bit
585 * integer, then X should be copied to address P. However, if X is a 16-bit
586 * integer, then it should be copied to P+2. If X is an 8-bit register,
587 * then it should be copied to P+3.
588 *
589 * So for playback of 8-bit samples, the DMA controller must transfer single
590 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
591 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
592 *
593 * For 24-bit samples, the offset is 1 byte. However, the DMA controller
594 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
595 * and 8 bytes at a time). So we do not support packed 24-bit samples.
596 * 24-bit data must be padded to 32 bits.
597 */
598static int fsl_dma_prepare(struct snd_pcm_substream *substream)
599{
600 struct snd_pcm_runtime *runtime = substream->runtime;
601 struct fsl_dma_private *dma_private = runtime->private_data;
602 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
603 u32 mr;
604 unsigned int i;
605 dma_addr_t ssi_sxx_phys; /* Bus address of SSI STX register */
606 unsigned int frame_size; /* Number of bytes per frame */
607
608 ssi_sxx_phys = dma_private->ssi_sxx_phys;
609
610 mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
611 CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
612
613 switch (runtime->sample_bits) {
614 case 8:
615 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
616 ssi_sxx_phys += 3;
617 break;
618 case 16:
619 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
620 ssi_sxx_phys += 2;
621 break;
622 case 32:
623 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
624 break;
625 default:
626 dev_err(substream->pcm->card->dev,
627 "unsupported sample size %u\n", runtime->sample_bits);
628 return -EINVAL;
629 }
630
631 frame_size = runtime->frame_bits / 8;
632 /*
633 * BWC should always be a multiple of the frame size. BWC determines
634 * how many bytes are sent/received before the DMA controller checks the
635 * SSI to see if it needs to stop. For playback, the transmit FIFO can
636 * hold three frames, so we want to send two frames at a time. For
637 * capture, the receive FIFO is triggered when it contains one frame, so
638 * we want to receive one frame at a time.
639 */
640
641 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
642 mr |= CCSR_DMA_MR_BWC(2 * frame_size);
643 else
644 mr |= CCSR_DMA_MR_BWC(frame_size);
645
646 out_be32(&dma_channel->mr, mr);
647
648 /*
649 * Program the address of the DMA transfer to/from the SSI.
650 */
651 for (i = 0; i < NUM_DMA_LINKS; i++) {
652 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
653
654 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
655 link->dest_addr = cpu_to_be32(ssi_sxx_phys);
656 else
657 link->source_addr = cpu_to_be32(ssi_sxx_phys);
658 }
659
660 return 0;
661}
662
663/**
664 * fsl_dma_pointer: determine the current position of the DMA transfer
665 *
666 * This function is called by ALSA when ALSA wants to know where in the
667 * stream buffer the hardware currently is.
668 *
669 * For playback, the SAR register contains the physical address of the most
670 * recent DMA transfer. For capture, the value is in the DAR register.
671 *
672 * The base address of the buffer is stored in the source_addr field of the
673 * first link descriptor.
674 */
675static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
676{
677 struct snd_pcm_runtime *runtime = substream->runtime;
678 struct fsl_dma_private *dma_private = runtime->private_data;
679 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
680 dma_addr_t position;
681 snd_pcm_uframes_t frames;
682
683 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
684 position = in_be32(&dma_channel->sar);
685 else
686 position = in_be32(&dma_channel->dar);
687
688 frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
689
690 /*
691 * If the current address is just past the end of the buffer, wrap it
692 * around.
693 */
694 if (frames == runtime->buffer_size)
695 frames = 0;
696
697 return frames;
698}
699
700/**
701 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
702 *
703 * Release the resources allocated in fsl_dma_hw_params() and de-program the
704 * registers.
705 *
706 * This function can be called multiple times.
707 */
708static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
709{
710 struct snd_pcm_runtime *runtime = substream->runtime;
711 struct fsl_dma_private *dma_private = runtime->private_data;
712
713 if (dma_private) {
714 struct ccsr_dma_channel __iomem *dma_channel;
715
716 dma_channel = dma_private->dma_channel;
717
718 /* Stop the DMA */
719 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
720 out_be32(&dma_channel->mr, 0);
721
722 /* Reset all the other registers */
723 out_be32(&dma_channel->sr, -1);
724 out_be32(&dma_channel->clndar, 0);
725 out_be32(&dma_channel->eclndar, 0);
726 out_be32(&dma_channel->satr, 0);
727 out_be32(&dma_channel->sar, 0);
728 out_be32(&dma_channel->datr, 0);
729 out_be32(&dma_channel->dar, 0);
730 out_be32(&dma_channel->bcr, 0);
731 out_be32(&dma_channel->nlndar, 0);
732 out_be32(&dma_channel->enlndar, 0);
733 }
734
735 return 0;
736}
737
738/**
739 * fsl_dma_close: close the stream.
740 */
741static int fsl_dma_close(struct snd_pcm_substream *substream)
742{
743 struct snd_pcm_runtime *runtime = substream->runtime;
744 struct fsl_dma_private *dma_private = runtime->private_data;
745 int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
746
747 if (dma_private) {
748 if (dma_private->irq)
749 free_irq(dma_private->irq, dma_private);
750
751 if (dma_private->ld_buf_phys) {
752 dma_unmap_single(substream->pcm->dev,
753 dma_private->ld_buf_phys,
754 sizeof(dma_private->link), DMA_TO_DEVICE);
755 }
756
757 /* Deallocate the fsl_dma_private structure */
758 dma_free_coherent(substream->pcm->dev,
759 sizeof(struct fsl_dma_private),
760 dma_private, dma_private->ld_buf_phys);
761 substream->runtime->private_data = NULL;
762 }
763
764 dma_global_data.assigned[dir] = 0;
765
766 return 0;
767}
768
769/*
770 * Remove this PCM driver.
771 */
772static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
773{
774 struct snd_pcm_substream *substream;
775 unsigned int i;
776
777 for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
778 substream = pcm->streams[i].substream;
779 if (substream) {
780 snd_dma_free_pages(&substream->dma_buffer);
781 substream->dma_buffer.area = NULL;
782 substream->dma_buffer.addr = 0;
783 }
784 }
785}
786
787static struct snd_pcm_ops fsl_dma_ops = {
788 .open = fsl_dma_open,
789 .close = fsl_dma_close,
790 .ioctl = snd_pcm_lib_ioctl,
791 .hw_params = fsl_dma_hw_params,
792 .hw_free = fsl_dma_hw_free,
793 .prepare = fsl_dma_prepare,
794 .pointer = fsl_dma_pointer,
795};
796
797struct snd_soc_platform fsl_soc_platform = {
798 .name = "fsl-dma",
799 .pcm_ops = &fsl_dma_ops,
800 .pcm_new = fsl_dma_new,
801 .pcm_free = fsl_dma_free_dma_buffers,
802};
803EXPORT_SYMBOL_GPL(fsl_soc_platform);
804
805/**
806 * fsl_dma_configure: store the DMA parameters from the fabric driver.
807 *
808 * This function is called by the ASoC fabric driver to give us the DMA and
809 * SSI channel information.
810 *
811 * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
812 * data when a substream is created, so for now we need to store this data
813 * into a global variable. This means that we can only support one DMA
814 * controller, and hence only one SSI.
815 */
816int fsl_dma_configure(struct fsl_dma_info *dma_info)
817{
818 static int initialized;
819
820 /* We only support one DMA controller for now */
821 if (initialized)
822 return 0;
823
824 dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
825 dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
826 dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
827 dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
828 dma_global_data.irq[0] = dma_info->dma_irq[0];
829 dma_global_data.irq[1] = dma_info->dma_irq[1];
830 dma_global_data.assigned[0] = 0;
831 dma_global_data.assigned[1] = 0;
832
833 initialized = 1;
834 return 1;
835}
836EXPORT_SYMBOL_GPL(fsl_dma_configure);
837
838MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
839MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
840MODULE_LICENSE("GPL");