Ben Hutchings | 8e730c1 | 2009-11-29 15:14:45 +0000 | [diff] [blame^] | 1 | /**************************************************************************** |
| 2 | * Driver for Solarflare Solarstorm network controllers and boards |
| 3 | * Copyright 2005-2006 Fen Systems Ltd. |
| 4 | * Copyright 2006-2008 Solarflare Communications Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 as published |
| 8 | * by the Free Software Foundation, incorporated herein by reference. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/bitops.h> |
| 12 | #include <linux/delay.h> |
| 13 | #include <linux/pci.h> |
| 14 | #include <linux/module.h> |
| 15 | #include <linux/seq_file.h> |
| 16 | #include "net_driver.h" |
| 17 | #include "bitfield.h" |
| 18 | #include "efx.h" |
| 19 | #include "nic.h" |
| 20 | #include "regs.h" |
| 21 | #include "io.h" |
| 22 | #include "workarounds.h" |
| 23 | |
| 24 | /************************************************************************** |
| 25 | * |
| 26 | * Configurable values |
| 27 | * |
| 28 | ************************************************************************** |
| 29 | */ |
| 30 | |
| 31 | /* This is set to 16 for a good reason. In summary, if larger than |
| 32 | * 16, the descriptor cache holds more than a default socket |
| 33 | * buffer's worth of packets (for UDP we can only have at most one |
| 34 | * socket buffer's worth outstanding). This combined with the fact |
| 35 | * that we only get 1 TX event per descriptor cache means the NIC |
| 36 | * goes idle. |
| 37 | */ |
| 38 | #define TX_DC_ENTRIES 16 |
| 39 | #define TX_DC_ENTRIES_ORDER 1 |
| 40 | |
| 41 | #define RX_DC_ENTRIES 64 |
| 42 | #define RX_DC_ENTRIES_ORDER 3 |
| 43 | |
| 44 | /* RX FIFO XOFF watermark |
| 45 | * |
| 46 | * When the amount of the RX FIFO increases used increases past this |
| 47 | * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A) |
| 48 | * This also has an effect on RX/TX arbitration |
| 49 | */ |
| 50 | int efx_nic_rx_xoff_thresh = -1; |
| 51 | module_param_named(rx_xoff_thresh_bytes, efx_nic_rx_xoff_thresh, int, 0644); |
| 52 | MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold"); |
| 53 | |
| 54 | /* RX FIFO XON watermark |
| 55 | * |
| 56 | * When the amount of the RX FIFO used decreases below this |
| 57 | * watermark send XON. Only used if TX flow control is enabled (ethtool -A) |
| 58 | * This also has an effect on RX/TX arbitration |
| 59 | */ |
| 60 | int efx_nic_rx_xon_thresh = -1; |
| 61 | module_param_named(rx_xon_thresh_bytes, efx_nic_rx_xon_thresh, int, 0644); |
| 62 | MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold"); |
| 63 | |
| 64 | /* If EFX_MAX_INT_ERRORS internal errors occur within |
| 65 | * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and |
| 66 | * disable it. |
| 67 | */ |
| 68 | #define EFX_INT_ERROR_EXPIRE 3600 |
| 69 | #define EFX_MAX_INT_ERRORS 5 |
| 70 | |
| 71 | /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times |
| 72 | */ |
| 73 | #define EFX_FLUSH_INTERVAL 10 |
| 74 | #define EFX_FLUSH_POLL_COUNT 100 |
| 75 | |
| 76 | /* Size and alignment of special buffers (4KB) */ |
| 77 | #define EFX_BUF_SIZE 4096 |
| 78 | |
| 79 | /* Depth of RX flush request fifo */ |
| 80 | #define EFX_RX_FLUSH_COUNT 4 |
| 81 | |
| 82 | /************************************************************************** |
| 83 | * |
| 84 | * Solarstorm hardware access |
| 85 | * |
| 86 | **************************************************************************/ |
| 87 | |
| 88 | static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value, |
| 89 | unsigned int index) |
| 90 | { |
| 91 | efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base, |
| 92 | value, index); |
| 93 | } |
| 94 | |
| 95 | /* Read the current event from the event queue */ |
| 96 | static inline efx_qword_t *efx_event(struct efx_channel *channel, |
| 97 | unsigned int index) |
| 98 | { |
| 99 | return (((efx_qword_t *) (channel->eventq.addr)) + index); |
| 100 | } |
| 101 | |
| 102 | /* See if an event is present |
| 103 | * |
| 104 | * We check both the high and low dword of the event for all ones. We |
| 105 | * wrote all ones when we cleared the event, and no valid event can |
| 106 | * have all ones in either its high or low dwords. This approach is |
| 107 | * robust against reordering. |
| 108 | * |
| 109 | * Note that using a single 64-bit comparison is incorrect; even |
| 110 | * though the CPU read will be atomic, the DMA write may not be. |
| 111 | */ |
| 112 | static inline int efx_event_present(efx_qword_t *event) |
| 113 | { |
| 114 | return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) | |
| 115 | EFX_DWORD_IS_ALL_ONES(event->dword[1]))); |
| 116 | } |
| 117 | |
| 118 | static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b, |
| 119 | const efx_oword_t *mask) |
| 120 | { |
| 121 | return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) || |
| 122 | ((a->u64[1] ^ b->u64[1]) & mask->u64[1]); |
| 123 | } |
| 124 | |
| 125 | int efx_nic_test_registers(struct efx_nic *efx, |
| 126 | const struct efx_nic_register_test *regs, |
| 127 | size_t n_regs) |
| 128 | { |
| 129 | unsigned address = 0, i, j; |
| 130 | efx_oword_t mask, imask, original, reg, buf; |
| 131 | |
| 132 | /* Falcon should be in loopback to isolate the XMAC from the PHY */ |
| 133 | WARN_ON(!LOOPBACK_INTERNAL(efx)); |
| 134 | |
| 135 | for (i = 0; i < n_regs; ++i) { |
| 136 | address = regs[i].address; |
| 137 | mask = imask = regs[i].mask; |
| 138 | EFX_INVERT_OWORD(imask); |
| 139 | |
| 140 | efx_reado(efx, &original, address); |
| 141 | |
| 142 | /* bit sweep on and off */ |
| 143 | for (j = 0; j < 128; j++) { |
| 144 | if (!EFX_EXTRACT_OWORD32(mask, j, j)) |
| 145 | continue; |
| 146 | |
| 147 | /* Test this testable bit can be set in isolation */ |
| 148 | EFX_AND_OWORD(reg, original, mask); |
| 149 | EFX_SET_OWORD32(reg, j, j, 1); |
| 150 | |
| 151 | efx_writeo(efx, ®, address); |
| 152 | efx_reado(efx, &buf, address); |
| 153 | |
| 154 | if (efx_masked_compare_oword(®, &buf, &mask)) |
| 155 | goto fail; |
| 156 | |
| 157 | /* Test this testable bit can be cleared in isolation */ |
| 158 | EFX_OR_OWORD(reg, original, mask); |
| 159 | EFX_SET_OWORD32(reg, j, j, 0); |
| 160 | |
| 161 | efx_writeo(efx, ®, address); |
| 162 | efx_reado(efx, &buf, address); |
| 163 | |
| 164 | if (efx_masked_compare_oword(®, &buf, &mask)) |
| 165 | goto fail; |
| 166 | } |
| 167 | |
| 168 | efx_writeo(efx, &original, address); |
| 169 | } |
| 170 | |
| 171 | return 0; |
| 172 | |
| 173 | fail: |
| 174 | EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT |
| 175 | " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg), |
| 176 | EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask)); |
| 177 | return -EIO; |
| 178 | } |
| 179 | |
| 180 | /************************************************************************** |
| 181 | * |
| 182 | * Special buffer handling |
| 183 | * Special buffers are used for event queues and the TX and RX |
| 184 | * descriptor rings. |
| 185 | * |
| 186 | *************************************************************************/ |
| 187 | |
| 188 | /* |
| 189 | * Initialise a special buffer |
| 190 | * |
| 191 | * This will define a buffer (previously allocated via |
| 192 | * efx_alloc_special_buffer()) in the buffer table, allowing |
| 193 | * it to be used for event queues, descriptor rings etc. |
| 194 | */ |
| 195 | static void |
| 196 | efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) |
| 197 | { |
| 198 | efx_qword_t buf_desc; |
| 199 | int index; |
| 200 | dma_addr_t dma_addr; |
| 201 | int i; |
| 202 | |
| 203 | EFX_BUG_ON_PARANOID(!buffer->addr); |
| 204 | |
| 205 | /* Write buffer descriptors to NIC */ |
| 206 | for (i = 0; i < buffer->entries; i++) { |
| 207 | index = buffer->index + i; |
| 208 | dma_addr = buffer->dma_addr + (i * 4096); |
| 209 | EFX_LOG(efx, "mapping special buffer %d at %llx\n", |
| 210 | index, (unsigned long long)dma_addr); |
| 211 | EFX_POPULATE_QWORD_3(buf_desc, |
| 212 | FRF_AZ_BUF_ADR_REGION, 0, |
| 213 | FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12, |
| 214 | FRF_AZ_BUF_OWNER_ID_FBUF, 0); |
| 215 | efx_write_buf_tbl(efx, &buf_desc, index); |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | /* Unmaps a buffer and clears the buffer table entries */ |
| 220 | static void |
| 221 | efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) |
| 222 | { |
| 223 | efx_oword_t buf_tbl_upd; |
| 224 | unsigned int start = buffer->index; |
| 225 | unsigned int end = (buffer->index + buffer->entries - 1); |
| 226 | |
| 227 | if (!buffer->entries) |
| 228 | return; |
| 229 | |
| 230 | EFX_LOG(efx, "unmapping special buffers %d-%d\n", |
| 231 | buffer->index, buffer->index + buffer->entries - 1); |
| 232 | |
| 233 | EFX_POPULATE_OWORD_4(buf_tbl_upd, |
| 234 | FRF_AZ_BUF_UPD_CMD, 0, |
| 235 | FRF_AZ_BUF_CLR_CMD, 1, |
| 236 | FRF_AZ_BUF_CLR_END_ID, end, |
| 237 | FRF_AZ_BUF_CLR_START_ID, start); |
| 238 | efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD); |
| 239 | } |
| 240 | |
| 241 | /* |
| 242 | * Allocate a new special buffer |
| 243 | * |
| 244 | * This allocates memory for a new buffer, clears it and allocates a |
| 245 | * new buffer ID range. It does not write into the buffer table. |
| 246 | * |
| 247 | * This call will allocate 4KB buffers, since 8KB buffers can't be |
| 248 | * used for event queues and descriptor rings. |
| 249 | */ |
| 250 | static int efx_alloc_special_buffer(struct efx_nic *efx, |
| 251 | struct efx_special_buffer *buffer, |
| 252 | unsigned int len) |
| 253 | { |
| 254 | len = ALIGN(len, EFX_BUF_SIZE); |
| 255 | |
| 256 | buffer->addr = pci_alloc_consistent(efx->pci_dev, len, |
| 257 | &buffer->dma_addr); |
| 258 | if (!buffer->addr) |
| 259 | return -ENOMEM; |
| 260 | buffer->len = len; |
| 261 | buffer->entries = len / EFX_BUF_SIZE; |
| 262 | BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1)); |
| 263 | |
| 264 | /* All zeros is a potentially valid event so memset to 0xff */ |
| 265 | memset(buffer->addr, 0xff, len); |
| 266 | |
| 267 | /* Select new buffer ID */ |
| 268 | buffer->index = efx->next_buffer_table; |
| 269 | efx->next_buffer_table += buffer->entries; |
| 270 | |
| 271 | EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x " |
| 272 | "(virt %p phys %llx)\n", buffer->index, |
| 273 | buffer->index + buffer->entries - 1, |
| 274 | (u64)buffer->dma_addr, len, |
| 275 | buffer->addr, (u64)virt_to_phys(buffer->addr)); |
| 276 | |
| 277 | return 0; |
| 278 | } |
| 279 | |
| 280 | static void |
| 281 | efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) |
| 282 | { |
| 283 | if (!buffer->addr) |
| 284 | return; |
| 285 | |
| 286 | EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x " |
| 287 | "(virt %p phys %llx)\n", buffer->index, |
| 288 | buffer->index + buffer->entries - 1, |
| 289 | (u64)buffer->dma_addr, buffer->len, |
| 290 | buffer->addr, (u64)virt_to_phys(buffer->addr)); |
| 291 | |
| 292 | pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr, |
| 293 | buffer->dma_addr); |
| 294 | buffer->addr = NULL; |
| 295 | buffer->entries = 0; |
| 296 | } |
| 297 | |
| 298 | /************************************************************************** |
| 299 | * |
| 300 | * Generic buffer handling |
| 301 | * These buffers are used for interrupt status and MAC stats |
| 302 | * |
| 303 | **************************************************************************/ |
| 304 | |
| 305 | int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, |
| 306 | unsigned int len) |
| 307 | { |
| 308 | buffer->addr = pci_alloc_consistent(efx->pci_dev, len, |
| 309 | &buffer->dma_addr); |
| 310 | if (!buffer->addr) |
| 311 | return -ENOMEM; |
| 312 | buffer->len = len; |
| 313 | memset(buffer->addr, 0, len); |
| 314 | return 0; |
| 315 | } |
| 316 | |
| 317 | void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer) |
| 318 | { |
| 319 | if (buffer->addr) { |
| 320 | pci_free_consistent(efx->pci_dev, buffer->len, |
| 321 | buffer->addr, buffer->dma_addr); |
| 322 | buffer->addr = NULL; |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | /************************************************************************** |
| 327 | * |
| 328 | * TX path |
| 329 | * |
| 330 | **************************************************************************/ |
| 331 | |
| 332 | /* Returns a pointer to the specified transmit descriptor in the TX |
| 333 | * descriptor queue belonging to the specified channel. |
| 334 | */ |
| 335 | static inline efx_qword_t * |
| 336 | efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index) |
| 337 | { |
| 338 | return (((efx_qword_t *) (tx_queue->txd.addr)) + index); |
| 339 | } |
| 340 | |
| 341 | /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ |
| 342 | static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue) |
| 343 | { |
| 344 | unsigned write_ptr; |
| 345 | efx_dword_t reg; |
| 346 | |
| 347 | write_ptr = tx_queue->write_count & EFX_TXQ_MASK; |
| 348 | EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr); |
| 349 | efx_writed_page(tx_queue->efx, ®, |
| 350 | FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue); |
| 351 | } |
| 352 | |
| 353 | |
| 354 | /* For each entry inserted into the software descriptor ring, create a |
| 355 | * descriptor in the hardware TX descriptor ring (in host memory), and |
| 356 | * write a doorbell. |
| 357 | */ |
| 358 | void efx_nic_push_buffers(struct efx_tx_queue *tx_queue) |
| 359 | { |
| 360 | |
| 361 | struct efx_tx_buffer *buffer; |
| 362 | efx_qword_t *txd; |
| 363 | unsigned write_ptr; |
| 364 | |
| 365 | BUG_ON(tx_queue->write_count == tx_queue->insert_count); |
| 366 | |
| 367 | do { |
| 368 | write_ptr = tx_queue->write_count & EFX_TXQ_MASK; |
| 369 | buffer = &tx_queue->buffer[write_ptr]; |
| 370 | txd = efx_tx_desc(tx_queue, write_ptr); |
| 371 | ++tx_queue->write_count; |
| 372 | |
| 373 | /* Create TX descriptor ring entry */ |
| 374 | EFX_POPULATE_QWORD_4(*txd, |
| 375 | FSF_AZ_TX_KER_CONT, buffer->continuation, |
| 376 | FSF_AZ_TX_KER_BYTE_COUNT, buffer->len, |
| 377 | FSF_AZ_TX_KER_BUF_REGION, 0, |
| 378 | FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr); |
| 379 | } while (tx_queue->write_count != tx_queue->insert_count); |
| 380 | |
| 381 | wmb(); /* Ensure descriptors are written before they are fetched */ |
| 382 | efx_notify_tx_desc(tx_queue); |
| 383 | } |
| 384 | |
| 385 | /* Allocate hardware resources for a TX queue */ |
| 386 | int efx_nic_probe_tx(struct efx_tx_queue *tx_queue) |
| 387 | { |
| 388 | struct efx_nic *efx = tx_queue->efx; |
| 389 | BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 || |
| 390 | EFX_TXQ_SIZE & EFX_TXQ_MASK); |
| 391 | return efx_alloc_special_buffer(efx, &tx_queue->txd, |
| 392 | EFX_TXQ_SIZE * sizeof(efx_qword_t)); |
| 393 | } |
| 394 | |
| 395 | void efx_nic_init_tx(struct efx_tx_queue *tx_queue) |
| 396 | { |
| 397 | efx_oword_t tx_desc_ptr; |
| 398 | struct efx_nic *efx = tx_queue->efx; |
| 399 | |
| 400 | tx_queue->flushed = FLUSH_NONE; |
| 401 | |
| 402 | /* Pin TX descriptor ring */ |
| 403 | efx_init_special_buffer(efx, &tx_queue->txd); |
| 404 | |
| 405 | /* Push TX descriptor ring to card */ |
| 406 | EFX_POPULATE_OWORD_10(tx_desc_ptr, |
| 407 | FRF_AZ_TX_DESCQ_EN, 1, |
| 408 | FRF_AZ_TX_ISCSI_DDIG_EN, 0, |
| 409 | FRF_AZ_TX_ISCSI_HDIG_EN, 0, |
| 410 | FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index, |
| 411 | FRF_AZ_TX_DESCQ_EVQ_ID, |
| 412 | tx_queue->channel->channel, |
| 413 | FRF_AZ_TX_DESCQ_OWNER_ID, 0, |
| 414 | FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue, |
| 415 | FRF_AZ_TX_DESCQ_SIZE, |
| 416 | __ffs(tx_queue->txd.entries), |
| 417 | FRF_AZ_TX_DESCQ_TYPE, 0, |
| 418 | FRF_BZ_TX_NON_IP_DROP_DIS, 1); |
| 419 | |
| 420 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { |
| 421 | int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM; |
| 422 | EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum); |
| 423 | EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS, |
| 424 | !csum); |
| 425 | } |
| 426 | |
| 427 | efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, |
| 428 | tx_queue->queue); |
| 429 | |
| 430 | if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) { |
| 431 | efx_oword_t reg; |
| 432 | |
| 433 | /* Only 128 bits in this register */ |
| 434 | BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128); |
| 435 | |
| 436 | efx_reado(efx, ®, FR_AA_TX_CHKSM_CFG); |
| 437 | if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM) |
| 438 | clear_bit_le(tx_queue->queue, (void *)®); |
| 439 | else |
| 440 | set_bit_le(tx_queue->queue, (void *)®); |
| 441 | efx_writeo(efx, ®, FR_AA_TX_CHKSM_CFG); |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue) |
| 446 | { |
| 447 | struct efx_nic *efx = tx_queue->efx; |
| 448 | efx_oword_t tx_flush_descq; |
| 449 | |
| 450 | tx_queue->flushed = FLUSH_PENDING; |
| 451 | |
| 452 | /* Post a flush command */ |
| 453 | EFX_POPULATE_OWORD_2(tx_flush_descq, |
| 454 | FRF_AZ_TX_FLUSH_DESCQ_CMD, 1, |
| 455 | FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue); |
| 456 | efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ); |
| 457 | } |
| 458 | |
| 459 | void efx_nic_fini_tx(struct efx_tx_queue *tx_queue) |
| 460 | { |
| 461 | struct efx_nic *efx = tx_queue->efx; |
| 462 | efx_oword_t tx_desc_ptr; |
| 463 | |
| 464 | /* The queue should have been flushed */ |
| 465 | WARN_ON(tx_queue->flushed != FLUSH_DONE); |
| 466 | |
| 467 | /* Remove TX descriptor ring from card */ |
| 468 | EFX_ZERO_OWORD(tx_desc_ptr); |
| 469 | efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, |
| 470 | tx_queue->queue); |
| 471 | |
| 472 | /* Unpin TX descriptor ring */ |
| 473 | efx_fini_special_buffer(efx, &tx_queue->txd); |
| 474 | } |
| 475 | |
| 476 | /* Free buffers backing TX queue */ |
| 477 | void efx_nic_remove_tx(struct efx_tx_queue *tx_queue) |
| 478 | { |
| 479 | efx_free_special_buffer(tx_queue->efx, &tx_queue->txd); |
| 480 | } |
| 481 | |
| 482 | /************************************************************************** |
| 483 | * |
| 484 | * RX path |
| 485 | * |
| 486 | **************************************************************************/ |
| 487 | |
| 488 | /* Returns a pointer to the specified descriptor in the RX descriptor queue */ |
| 489 | static inline efx_qword_t * |
| 490 | efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index) |
| 491 | { |
| 492 | return (((efx_qword_t *) (rx_queue->rxd.addr)) + index); |
| 493 | } |
| 494 | |
| 495 | /* This creates an entry in the RX descriptor queue */ |
| 496 | static inline void |
| 497 | efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index) |
| 498 | { |
| 499 | struct efx_rx_buffer *rx_buf; |
| 500 | efx_qword_t *rxd; |
| 501 | |
| 502 | rxd = efx_rx_desc(rx_queue, index); |
| 503 | rx_buf = efx_rx_buffer(rx_queue, index); |
| 504 | EFX_POPULATE_QWORD_3(*rxd, |
| 505 | FSF_AZ_RX_KER_BUF_SIZE, |
| 506 | rx_buf->len - |
| 507 | rx_queue->efx->type->rx_buffer_padding, |
| 508 | FSF_AZ_RX_KER_BUF_REGION, 0, |
| 509 | FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); |
| 510 | } |
| 511 | |
| 512 | /* This writes to the RX_DESC_WPTR register for the specified receive |
| 513 | * descriptor ring. |
| 514 | */ |
| 515 | void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue) |
| 516 | { |
| 517 | efx_dword_t reg; |
| 518 | unsigned write_ptr; |
| 519 | |
| 520 | while (rx_queue->notified_count != rx_queue->added_count) { |
| 521 | efx_build_rx_desc(rx_queue, |
| 522 | rx_queue->notified_count & |
| 523 | EFX_RXQ_MASK); |
| 524 | ++rx_queue->notified_count; |
| 525 | } |
| 526 | |
| 527 | wmb(); |
| 528 | write_ptr = rx_queue->added_count & EFX_RXQ_MASK; |
| 529 | EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr); |
| 530 | efx_writed_page(rx_queue->efx, ®, |
| 531 | FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue); |
| 532 | } |
| 533 | |
| 534 | int efx_nic_probe_rx(struct efx_rx_queue *rx_queue) |
| 535 | { |
| 536 | struct efx_nic *efx = rx_queue->efx; |
| 537 | BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 || |
| 538 | EFX_RXQ_SIZE & EFX_RXQ_MASK); |
| 539 | return efx_alloc_special_buffer(efx, &rx_queue->rxd, |
| 540 | EFX_RXQ_SIZE * sizeof(efx_qword_t)); |
| 541 | } |
| 542 | |
| 543 | void efx_nic_init_rx(struct efx_rx_queue *rx_queue) |
| 544 | { |
| 545 | efx_oword_t rx_desc_ptr; |
| 546 | struct efx_nic *efx = rx_queue->efx; |
| 547 | bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0; |
| 548 | bool iscsi_digest_en = is_b0; |
| 549 | |
| 550 | EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n", |
| 551 | rx_queue->queue, rx_queue->rxd.index, |
| 552 | rx_queue->rxd.index + rx_queue->rxd.entries - 1); |
| 553 | |
| 554 | rx_queue->flushed = FLUSH_NONE; |
| 555 | |
| 556 | /* Pin RX descriptor ring */ |
| 557 | efx_init_special_buffer(efx, &rx_queue->rxd); |
| 558 | |
| 559 | /* Push RX descriptor ring to card */ |
| 560 | EFX_POPULATE_OWORD_10(rx_desc_ptr, |
| 561 | FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en, |
| 562 | FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en, |
| 563 | FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index, |
| 564 | FRF_AZ_RX_DESCQ_EVQ_ID, |
| 565 | rx_queue->channel->channel, |
| 566 | FRF_AZ_RX_DESCQ_OWNER_ID, 0, |
| 567 | FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue, |
| 568 | FRF_AZ_RX_DESCQ_SIZE, |
| 569 | __ffs(rx_queue->rxd.entries), |
| 570 | FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ , |
| 571 | /* For >=B0 this is scatter so disable */ |
| 572 | FRF_AZ_RX_DESCQ_JUMBO, !is_b0, |
| 573 | FRF_AZ_RX_DESCQ_EN, 1); |
| 574 | efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, |
| 575 | rx_queue->queue); |
| 576 | } |
| 577 | |
| 578 | static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue) |
| 579 | { |
| 580 | struct efx_nic *efx = rx_queue->efx; |
| 581 | efx_oword_t rx_flush_descq; |
| 582 | |
| 583 | rx_queue->flushed = FLUSH_PENDING; |
| 584 | |
| 585 | /* Post a flush command */ |
| 586 | EFX_POPULATE_OWORD_2(rx_flush_descq, |
| 587 | FRF_AZ_RX_FLUSH_DESCQ_CMD, 1, |
| 588 | FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue); |
| 589 | efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ); |
| 590 | } |
| 591 | |
| 592 | void efx_nic_fini_rx(struct efx_rx_queue *rx_queue) |
| 593 | { |
| 594 | efx_oword_t rx_desc_ptr; |
| 595 | struct efx_nic *efx = rx_queue->efx; |
| 596 | |
| 597 | /* The queue should already have been flushed */ |
| 598 | WARN_ON(rx_queue->flushed != FLUSH_DONE); |
| 599 | |
| 600 | /* Remove RX descriptor ring from card */ |
| 601 | EFX_ZERO_OWORD(rx_desc_ptr); |
| 602 | efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, |
| 603 | rx_queue->queue); |
| 604 | |
| 605 | /* Unpin RX descriptor ring */ |
| 606 | efx_fini_special_buffer(efx, &rx_queue->rxd); |
| 607 | } |
| 608 | |
| 609 | /* Free buffers backing RX queue */ |
| 610 | void efx_nic_remove_rx(struct efx_rx_queue *rx_queue) |
| 611 | { |
| 612 | efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd); |
| 613 | } |
| 614 | |
| 615 | /************************************************************************** |
| 616 | * |
| 617 | * Event queue processing |
| 618 | * Event queues are processed by per-channel tasklets. |
| 619 | * |
| 620 | **************************************************************************/ |
| 621 | |
| 622 | /* Update a channel's event queue's read pointer (RPTR) register |
| 623 | * |
| 624 | * This writes the EVQ_RPTR_REG register for the specified channel's |
| 625 | * event queue. |
| 626 | * |
| 627 | * Note that EVQ_RPTR_REG contains the index of the "last read" event, |
| 628 | * whereas channel->eventq_read_ptr contains the index of the "next to |
| 629 | * read" event. |
| 630 | */ |
| 631 | void efx_nic_eventq_read_ack(struct efx_channel *channel) |
| 632 | { |
| 633 | efx_dword_t reg; |
| 634 | struct efx_nic *efx = channel->efx; |
| 635 | |
| 636 | EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr); |
| 637 | efx_writed_table(efx, ®, efx->type->evq_rptr_tbl_base, |
| 638 | channel->channel); |
| 639 | } |
| 640 | |
| 641 | /* Use HW to insert a SW defined event */ |
| 642 | void efx_generate_event(struct efx_channel *channel, efx_qword_t *event) |
| 643 | { |
| 644 | efx_oword_t drv_ev_reg; |
| 645 | |
| 646 | BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 || |
| 647 | FRF_AZ_DRV_EV_DATA_WIDTH != 64); |
| 648 | drv_ev_reg.u32[0] = event->u32[0]; |
| 649 | drv_ev_reg.u32[1] = event->u32[1]; |
| 650 | drv_ev_reg.u32[2] = 0; |
| 651 | drv_ev_reg.u32[3] = 0; |
| 652 | EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel); |
| 653 | efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV); |
| 654 | } |
| 655 | |
| 656 | /* Handle a transmit completion event |
| 657 | * |
| 658 | * The NIC batches TX completion events; the message we receive is of |
| 659 | * the form "complete all TX events up to this index". |
| 660 | */ |
| 661 | static void |
| 662 | efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) |
| 663 | { |
| 664 | unsigned int tx_ev_desc_ptr; |
| 665 | unsigned int tx_ev_q_label; |
| 666 | struct efx_tx_queue *tx_queue; |
| 667 | struct efx_nic *efx = channel->efx; |
| 668 | |
| 669 | if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) { |
| 670 | /* Transmit completion */ |
| 671 | tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR); |
| 672 | tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); |
| 673 | tx_queue = &efx->tx_queue[tx_ev_q_label]; |
| 674 | channel->irq_mod_score += |
| 675 | (tx_ev_desc_ptr - tx_queue->read_count) & |
| 676 | EFX_TXQ_MASK; |
| 677 | efx_xmit_done(tx_queue, tx_ev_desc_ptr); |
| 678 | } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) { |
| 679 | /* Rewrite the FIFO write pointer */ |
| 680 | tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); |
| 681 | tx_queue = &efx->tx_queue[tx_ev_q_label]; |
| 682 | |
| 683 | if (efx_dev_registered(efx)) |
| 684 | netif_tx_lock(efx->net_dev); |
| 685 | efx_notify_tx_desc(tx_queue); |
| 686 | if (efx_dev_registered(efx)) |
| 687 | netif_tx_unlock(efx->net_dev); |
| 688 | } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) && |
| 689 | EFX_WORKAROUND_10727(efx)) { |
| 690 | efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); |
| 691 | } else { |
| 692 | EFX_ERR(efx, "channel %d unexpected TX event " |
| 693 | EFX_QWORD_FMT"\n", channel->channel, |
| 694 | EFX_QWORD_VAL(*event)); |
| 695 | } |
| 696 | } |
| 697 | |
| 698 | /* Detect errors included in the rx_evt_pkt_ok bit. */ |
| 699 | static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue, |
| 700 | const efx_qword_t *event, |
| 701 | bool *rx_ev_pkt_ok, |
| 702 | bool *discard) |
| 703 | { |
| 704 | struct efx_nic *efx = rx_queue->efx; |
| 705 | bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err; |
| 706 | bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err; |
| 707 | bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc; |
| 708 | bool rx_ev_other_err, rx_ev_pause_frm; |
| 709 | bool rx_ev_hdr_type, rx_ev_mcast_pkt; |
| 710 | unsigned rx_ev_pkt_type; |
| 711 | |
| 712 | rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); |
| 713 | rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); |
| 714 | rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC); |
| 715 | rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE); |
| 716 | rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event, |
| 717 | FSF_AZ_RX_EV_BUF_OWNER_ID_ERR); |
| 718 | rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event, |
| 719 | FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR); |
| 720 | rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event, |
| 721 | FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR); |
| 722 | rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR); |
| 723 | rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC); |
| 724 | rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ? |
| 725 | 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB)); |
| 726 | rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR); |
| 727 | |
| 728 | /* Every error apart from tobe_disc and pause_frm */ |
| 729 | rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err | |
| 730 | rx_ev_buf_owner_id_err | rx_ev_eth_crc_err | |
| 731 | rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err); |
| 732 | |
| 733 | /* Count errors that are not in MAC stats. Ignore expected |
| 734 | * checksum errors during self-test. */ |
| 735 | if (rx_ev_frm_trunc) |
| 736 | ++rx_queue->channel->n_rx_frm_trunc; |
| 737 | else if (rx_ev_tobe_disc) |
| 738 | ++rx_queue->channel->n_rx_tobe_disc; |
| 739 | else if (!efx->loopback_selftest) { |
| 740 | if (rx_ev_ip_hdr_chksum_err) |
| 741 | ++rx_queue->channel->n_rx_ip_hdr_chksum_err; |
| 742 | else if (rx_ev_tcp_udp_chksum_err) |
| 743 | ++rx_queue->channel->n_rx_tcp_udp_chksum_err; |
| 744 | } |
| 745 | |
| 746 | /* The frame must be discarded if any of these are true. */ |
| 747 | *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib | |
| 748 | rx_ev_tobe_disc | rx_ev_pause_frm); |
| 749 | |
| 750 | /* TOBE_DISC is expected on unicast mismatches; don't print out an |
| 751 | * error message. FRM_TRUNC indicates RXDP dropped the packet due |
| 752 | * to a FIFO overflow. |
| 753 | */ |
| 754 | #ifdef EFX_ENABLE_DEBUG |
| 755 | if (rx_ev_other_err) { |
| 756 | EFX_INFO_RL(efx, " RX queue %d unexpected RX event " |
| 757 | EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n", |
| 758 | rx_queue->queue, EFX_QWORD_VAL(*event), |
| 759 | rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "", |
| 760 | rx_ev_ip_hdr_chksum_err ? |
| 761 | " [IP_HDR_CHKSUM_ERR]" : "", |
| 762 | rx_ev_tcp_udp_chksum_err ? |
| 763 | " [TCP_UDP_CHKSUM_ERR]" : "", |
| 764 | rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "", |
| 765 | rx_ev_frm_trunc ? " [FRM_TRUNC]" : "", |
| 766 | rx_ev_drib_nib ? " [DRIB_NIB]" : "", |
| 767 | rx_ev_tobe_disc ? " [TOBE_DISC]" : "", |
| 768 | rx_ev_pause_frm ? " [PAUSE]" : ""); |
| 769 | } |
| 770 | #endif |
| 771 | } |
| 772 | |
| 773 | /* Handle receive events that are not in-order. */ |
| 774 | static void |
| 775 | efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index) |
| 776 | { |
| 777 | struct efx_nic *efx = rx_queue->efx; |
| 778 | unsigned expected, dropped; |
| 779 | |
| 780 | expected = rx_queue->removed_count & EFX_RXQ_MASK; |
| 781 | dropped = (index - expected) & EFX_RXQ_MASK; |
| 782 | EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n", |
| 783 | dropped, index, expected); |
| 784 | |
| 785 | efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ? |
| 786 | RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); |
| 787 | } |
| 788 | |
| 789 | /* Handle a packet received event |
| 790 | * |
| 791 | * The NIC gives a "discard" flag if it's a unicast packet with the |
| 792 | * wrong destination address |
| 793 | * Also "is multicast" and "matches multicast filter" flags can be used to |
| 794 | * discard non-matching multicast packets. |
| 795 | */ |
| 796 | static void |
| 797 | efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event) |
| 798 | { |
| 799 | unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt; |
| 800 | unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt; |
| 801 | unsigned expected_ptr; |
| 802 | bool rx_ev_pkt_ok, discard = false, checksummed; |
| 803 | struct efx_rx_queue *rx_queue; |
| 804 | struct efx_nic *efx = channel->efx; |
| 805 | |
| 806 | /* Basic packet information */ |
| 807 | rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT); |
| 808 | rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK); |
| 809 | rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); |
| 810 | WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT)); |
| 811 | WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1); |
| 812 | WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) != |
| 813 | channel->channel); |
| 814 | |
| 815 | rx_queue = &efx->rx_queue[channel->channel]; |
| 816 | |
| 817 | rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR); |
| 818 | expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK; |
| 819 | if (unlikely(rx_ev_desc_ptr != expected_ptr)) |
| 820 | efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr); |
| 821 | |
| 822 | if (likely(rx_ev_pkt_ok)) { |
| 823 | /* If packet is marked as OK and packet type is TCP/IP or |
| 824 | * UDP/IP, then we can rely on the hardware checksum. |
| 825 | */ |
| 826 | checksummed = |
| 827 | likely(efx->rx_checksum_enabled) && |
| 828 | (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP || |
| 829 | rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP); |
| 830 | } else { |
| 831 | efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard); |
| 832 | checksummed = false; |
| 833 | } |
| 834 | |
| 835 | /* Detect multicast packets that didn't match the filter */ |
| 836 | rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); |
| 837 | if (rx_ev_mcast_pkt) { |
| 838 | unsigned int rx_ev_mcast_hash_match = |
| 839 | EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH); |
| 840 | |
| 841 | if (unlikely(!rx_ev_mcast_hash_match)) { |
| 842 | ++channel->n_rx_mcast_mismatch; |
| 843 | discard = true; |
| 844 | } |
| 845 | } |
| 846 | |
| 847 | channel->irq_mod_score += 2; |
| 848 | |
| 849 | /* Handle received packet */ |
| 850 | efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, |
| 851 | checksummed, discard); |
| 852 | } |
| 853 | |
| 854 | /* Global events are basically PHY events */ |
| 855 | static void |
| 856 | efx_handle_global_event(struct efx_channel *channel, efx_qword_t *event) |
| 857 | { |
| 858 | struct efx_nic *efx = channel->efx; |
| 859 | bool handled = false; |
| 860 | |
| 861 | if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) || |
| 862 | EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) || |
| 863 | EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) { |
| 864 | /* Ignored */ |
| 865 | handled = true; |
| 866 | } |
| 867 | |
| 868 | if ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) && |
| 869 | EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) { |
| 870 | efx->xmac_poll_required = true; |
| 871 | handled = true; |
| 872 | } |
| 873 | |
| 874 | if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? |
| 875 | EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) : |
| 876 | EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) { |
| 877 | EFX_ERR(efx, "channel %d seen global RX_RESET " |
| 878 | "event. Resetting.\n", channel->channel); |
| 879 | |
| 880 | atomic_inc(&efx->rx_reset); |
| 881 | efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ? |
| 882 | RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); |
| 883 | handled = true; |
| 884 | } |
| 885 | |
| 886 | if (!handled) |
| 887 | EFX_ERR(efx, "channel %d unknown global event " |
| 888 | EFX_QWORD_FMT "\n", channel->channel, |
| 889 | EFX_QWORD_VAL(*event)); |
| 890 | } |
| 891 | |
| 892 | static void |
| 893 | efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) |
| 894 | { |
| 895 | struct efx_nic *efx = channel->efx; |
| 896 | unsigned int ev_sub_code; |
| 897 | unsigned int ev_sub_data; |
| 898 | |
| 899 | ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE); |
| 900 | ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); |
| 901 | |
| 902 | switch (ev_sub_code) { |
| 903 | case FSE_AZ_TX_DESCQ_FLS_DONE_EV: |
| 904 | EFX_TRACE(efx, "channel %d TXQ %d flushed\n", |
| 905 | channel->channel, ev_sub_data); |
| 906 | break; |
| 907 | case FSE_AZ_RX_DESCQ_FLS_DONE_EV: |
| 908 | EFX_TRACE(efx, "channel %d RXQ %d flushed\n", |
| 909 | channel->channel, ev_sub_data); |
| 910 | break; |
| 911 | case FSE_AZ_EVQ_INIT_DONE_EV: |
| 912 | EFX_LOG(efx, "channel %d EVQ %d initialised\n", |
| 913 | channel->channel, ev_sub_data); |
| 914 | break; |
| 915 | case FSE_AZ_SRM_UPD_DONE_EV: |
| 916 | EFX_TRACE(efx, "channel %d SRAM update done\n", |
| 917 | channel->channel); |
| 918 | break; |
| 919 | case FSE_AZ_WAKE_UP_EV: |
| 920 | EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n", |
| 921 | channel->channel, ev_sub_data); |
| 922 | break; |
| 923 | case FSE_AZ_TIMER_EV: |
| 924 | EFX_TRACE(efx, "channel %d RX queue %d timer expired\n", |
| 925 | channel->channel, ev_sub_data); |
| 926 | break; |
| 927 | case FSE_AA_RX_RECOVER_EV: |
| 928 | EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. " |
| 929 | "Resetting.\n", channel->channel); |
| 930 | atomic_inc(&efx->rx_reset); |
| 931 | efx_schedule_reset(efx, |
| 932 | EFX_WORKAROUND_6555(efx) ? |
| 933 | RESET_TYPE_RX_RECOVERY : |
| 934 | RESET_TYPE_DISABLE); |
| 935 | break; |
| 936 | case FSE_BZ_RX_DSC_ERROR_EV: |
| 937 | EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error." |
| 938 | " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data); |
| 939 | efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH); |
| 940 | break; |
| 941 | case FSE_BZ_TX_DSC_ERROR_EV: |
| 942 | EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error." |
| 943 | " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data); |
| 944 | efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); |
| 945 | break; |
| 946 | default: |
| 947 | EFX_TRACE(efx, "channel %d unknown driver event code %d " |
| 948 | "data %04x\n", channel->channel, ev_sub_code, |
| 949 | ev_sub_data); |
| 950 | break; |
| 951 | } |
| 952 | } |
| 953 | |
| 954 | int efx_nic_process_eventq(struct efx_channel *channel, int rx_quota) |
| 955 | { |
| 956 | unsigned int read_ptr; |
| 957 | efx_qword_t event, *p_event; |
| 958 | int ev_code; |
| 959 | int rx_packets = 0; |
| 960 | |
| 961 | read_ptr = channel->eventq_read_ptr; |
| 962 | |
| 963 | do { |
| 964 | p_event = efx_event(channel, read_ptr); |
| 965 | event = *p_event; |
| 966 | |
| 967 | if (!efx_event_present(&event)) |
| 968 | /* End of events */ |
| 969 | break; |
| 970 | |
| 971 | EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n", |
| 972 | channel->channel, EFX_QWORD_VAL(event)); |
| 973 | |
| 974 | /* Clear this event by marking it all ones */ |
| 975 | EFX_SET_QWORD(*p_event); |
| 976 | |
| 977 | ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE); |
| 978 | |
| 979 | switch (ev_code) { |
| 980 | case FSE_AZ_EV_CODE_RX_EV: |
| 981 | efx_handle_rx_event(channel, &event); |
| 982 | ++rx_packets; |
| 983 | break; |
| 984 | case FSE_AZ_EV_CODE_TX_EV: |
| 985 | efx_handle_tx_event(channel, &event); |
| 986 | break; |
| 987 | case FSE_AZ_EV_CODE_DRV_GEN_EV: |
| 988 | channel->eventq_magic = EFX_QWORD_FIELD( |
| 989 | event, FSF_AZ_DRV_GEN_EV_MAGIC); |
| 990 | EFX_LOG(channel->efx, "channel %d received generated " |
| 991 | "event "EFX_QWORD_FMT"\n", channel->channel, |
| 992 | EFX_QWORD_VAL(event)); |
| 993 | break; |
| 994 | case FSE_AZ_EV_CODE_GLOBAL_EV: |
| 995 | efx_handle_global_event(channel, &event); |
| 996 | break; |
| 997 | case FSE_AZ_EV_CODE_DRIVER_EV: |
| 998 | efx_handle_driver_event(channel, &event); |
| 999 | break; |
| 1000 | default: |
| 1001 | EFX_ERR(channel->efx, "channel %d unknown event type %d" |
| 1002 | " (data " EFX_QWORD_FMT ")\n", channel->channel, |
| 1003 | ev_code, EFX_QWORD_VAL(event)); |
| 1004 | } |
| 1005 | |
| 1006 | /* Increment read pointer */ |
| 1007 | read_ptr = (read_ptr + 1) & EFX_EVQ_MASK; |
| 1008 | |
| 1009 | } while (rx_packets < rx_quota); |
| 1010 | |
| 1011 | channel->eventq_read_ptr = read_ptr; |
| 1012 | return rx_packets; |
| 1013 | } |
| 1014 | |
| 1015 | |
| 1016 | /* Allocate buffer table entries for event queue */ |
| 1017 | int efx_nic_probe_eventq(struct efx_channel *channel) |
| 1018 | { |
| 1019 | struct efx_nic *efx = channel->efx; |
| 1020 | BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 || |
| 1021 | EFX_EVQ_SIZE & EFX_EVQ_MASK); |
| 1022 | return efx_alloc_special_buffer(efx, &channel->eventq, |
| 1023 | EFX_EVQ_SIZE * sizeof(efx_qword_t)); |
| 1024 | } |
| 1025 | |
| 1026 | void efx_nic_init_eventq(struct efx_channel *channel) |
| 1027 | { |
| 1028 | efx_oword_t evq_ptr; |
| 1029 | struct efx_nic *efx = channel->efx; |
| 1030 | |
| 1031 | EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n", |
| 1032 | channel->channel, channel->eventq.index, |
| 1033 | channel->eventq.index + channel->eventq.entries - 1); |
| 1034 | |
| 1035 | /* Pin event queue buffer */ |
| 1036 | efx_init_special_buffer(efx, &channel->eventq); |
| 1037 | |
| 1038 | /* Fill event queue with all ones (i.e. empty events) */ |
| 1039 | memset(channel->eventq.addr, 0xff, channel->eventq.len); |
| 1040 | |
| 1041 | /* Push event queue to card */ |
| 1042 | EFX_POPULATE_OWORD_3(evq_ptr, |
| 1043 | FRF_AZ_EVQ_EN, 1, |
| 1044 | FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries), |
| 1045 | FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index); |
| 1046 | efx_writeo_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base, |
| 1047 | channel->channel); |
| 1048 | |
| 1049 | efx->type->push_irq_moderation(channel); |
| 1050 | } |
| 1051 | |
| 1052 | void efx_nic_fini_eventq(struct efx_channel *channel) |
| 1053 | { |
| 1054 | efx_oword_t eventq_ptr; |
| 1055 | struct efx_nic *efx = channel->efx; |
| 1056 | |
| 1057 | /* Remove event queue from card */ |
| 1058 | EFX_ZERO_OWORD(eventq_ptr); |
| 1059 | efx_writeo_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base, |
| 1060 | channel->channel); |
| 1061 | |
| 1062 | /* Unpin event queue */ |
| 1063 | efx_fini_special_buffer(efx, &channel->eventq); |
| 1064 | } |
| 1065 | |
| 1066 | /* Free buffers backing event queue */ |
| 1067 | void efx_nic_remove_eventq(struct efx_channel *channel) |
| 1068 | { |
| 1069 | efx_free_special_buffer(channel->efx, &channel->eventq); |
| 1070 | } |
| 1071 | |
| 1072 | |
| 1073 | /* Generates a test event on the event queue. A subsequent call to |
| 1074 | * process_eventq() should pick up the event and place the value of |
| 1075 | * "magic" into channel->eventq_magic; |
| 1076 | */ |
| 1077 | void efx_nic_generate_test_event(struct efx_channel *channel, unsigned int magic) |
| 1078 | { |
| 1079 | efx_qword_t test_event; |
| 1080 | |
| 1081 | EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE, |
| 1082 | FSE_AZ_EV_CODE_DRV_GEN_EV, |
| 1083 | FSF_AZ_DRV_GEN_EV_MAGIC, magic); |
| 1084 | efx_generate_event(channel, &test_event); |
| 1085 | } |
| 1086 | |
| 1087 | /************************************************************************** |
| 1088 | * |
| 1089 | * Flush handling |
| 1090 | * |
| 1091 | **************************************************************************/ |
| 1092 | |
| 1093 | |
| 1094 | static void efx_poll_flush_events(struct efx_nic *efx) |
| 1095 | { |
| 1096 | struct efx_channel *channel = &efx->channel[0]; |
| 1097 | struct efx_tx_queue *tx_queue; |
| 1098 | struct efx_rx_queue *rx_queue; |
| 1099 | unsigned int read_ptr = channel->eventq_read_ptr; |
| 1100 | unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK; |
| 1101 | |
| 1102 | do { |
| 1103 | efx_qword_t *event = efx_event(channel, read_ptr); |
| 1104 | int ev_code, ev_sub_code, ev_queue; |
| 1105 | bool ev_failed; |
| 1106 | |
| 1107 | if (!efx_event_present(event)) |
| 1108 | break; |
| 1109 | |
| 1110 | ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE); |
| 1111 | ev_sub_code = EFX_QWORD_FIELD(*event, |
| 1112 | FSF_AZ_DRIVER_EV_SUBCODE); |
| 1113 | if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV && |
| 1114 | ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) { |
| 1115 | ev_queue = EFX_QWORD_FIELD(*event, |
| 1116 | FSF_AZ_DRIVER_EV_SUBDATA); |
| 1117 | if (ev_queue < EFX_TX_QUEUE_COUNT) { |
| 1118 | tx_queue = efx->tx_queue + ev_queue; |
| 1119 | tx_queue->flushed = FLUSH_DONE; |
| 1120 | } |
| 1121 | } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV && |
| 1122 | ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) { |
| 1123 | ev_queue = EFX_QWORD_FIELD( |
| 1124 | *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); |
| 1125 | ev_failed = EFX_QWORD_FIELD( |
| 1126 | *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); |
| 1127 | if (ev_queue < efx->n_rx_queues) { |
| 1128 | rx_queue = efx->rx_queue + ev_queue; |
| 1129 | rx_queue->flushed = |
| 1130 | ev_failed ? FLUSH_FAILED : FLUSH_DONE; |
| 1131 | } |
| 1132 | } |
| 1133 | |
| 1134 | /* We're about to destroy the queue anyway, so |
| 1135 | * it's ok to throw away every non-flush event */ |
| 1136 | EFX_SET_QWORD(*event); |
| 1137 | |
| 1138 | read_ptr = (read_ptr + 1) & EFX_EVQ_MASK; |
| 1139 | } while (read_ptr != end_ptr); |
| 1140 | |
| 1141 | channel->eventq_read_ptr = read_ptr; |
| 1142 | } |
| 1143 | |
| 1144 | /* Handle tx and rx flushes at the same time, since they run in |
| 1145 | * parallel in the hardware and there's no reason for us to |
| 1146 | * serialise them */ |
| 1147 | int efx_nic_flush_queues(struct efx_nic *efx) |
| 1148 | { |
| 1149 | struct efx_rx_queue *rx_queue; |
| 1150 | struct efx_tx_queue *tx_queue; |
| 1151 | int i, tx_pending, rx_pending; |
| 1152 | |
| 1153 | /* If necessary prepare the hardware for flushing */ |
| 1154 | efx->type->prepare_flush(efx); |
| 1155 | |
| 1156 | /* Flush all tx queues in parallel */ |
| 1157 | efx_for_each_tx_queue(tx_queue, efx) |
| 1158 | efx_flush_tx_queue(tx_queue); |
| 1159 | |
| 1160 | /* The hardware supports four concurrent rx flushes, each of which may |
| 1161 | * need to be retried if there is an outstanding descriptor fetch */ |
| 1162 | for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) { |
| 1163 | rx_pending = tx_pending = 0; |
| 1164 | efx_for_each_rx_queue(rx_queue, efx) { |
| 1165 | if (rx_queue->flushed == FLUSH_PENDING) |
| 1166 | ++rx_pending; |
| 1167 | } |
| 1168 | efx_for_each_rx_queue(rx_queue, efx) { |
| 1169 | if (rx_pending == EFX_RX_FLUSH_COUNT) |
| 1170 | break; |
| 1171 | if (rx_queue->flushed == FLUSH_FAILED || |
| 1172 | rx_queue->flushed == FLUSH_NONE) { |
| 1173 | efx_flush_rx_queue(rx_queue); |
| 1174 | ++rx_pending; |
| 1175 | } |
| 1176 | } |
| 1177 | efx_for_each_tx_queue(tx_queue, efx) { |
| 1178 | if (tx_queue->flushed != FLUSH_DONE) |
| 1179 | ++tx_pending; |
| 1180 | } |
| 1181 | |
| 1182 | if (rx_pending == 0 && tx_pending == 0) |
| 1183 | return 0; |
| 1184 | |
| 1185 | msleep(EFX_FLUSH_INTERVAL); |
| 1186 | efx_poll_flush_events(efx); |
| 1187 | } |
| 1188 | |
| 1189 | /* Mark the queues as all flushed. We're going to return failure |
| 1190 | * leading to a reset, or fake up success anyway */ |
| 1191 | efx_for_each_tx_queue(tx_queue, efx) { |
| 1192 | if (tx_queue->flushed != FLUSH_DONE) |
| 1193 | EFX_ERR(efx, "tx queue %d flush command timed out\n", |
| 1194 | tx_queue->queue); |
| 1195 | tx_queue->flushed = FLUSH_DONE; |
| 1196 | } |
| 1197 | efx_for_each_rx_queue(rx_queue, efx) { |
| 1198 | if (rx_queue->flushed != FLUSH_DONE) |
| 1199 | EFX_ERR(efx, "rx queue %d flush command timed out\n", |
| 1200 | rx_queue->queue); |
| 1201 | rx_queue->flushed = FLUSH_DONE; |
| 1202 | } |
| 1203 | |
| 1204 | if (EFX_WORKAROUND_7803(efx)) |
| 1205 | return 0; |
| 1206 | |
| 1207 | return -ETIMEDOUT; |
| 1208 | } |
| 1209 | |
| 1210 | /************************************************************************** |
| 1211 | * |
| 1212 | * Hardware interrupts |
| 1213 | * The hardware interrupt handler does very little work; all the event |
| 1214 | * queue processing is carried out by per-channel tasklets. |
| 1215 | * |
| 1216 | **************************************************************************/ |
| 1217 | |
| 1218 | /* Enable/disable/generate interrupts */ |
| 1219 | static inline void efx_nic_interrupts(struct efx_nic *efx, |
| 1220 | bool enabled, bool force) |
| 1221 | { |
| 1222 | efx_oword_t int_en_reg_ker; |
| 1223 | |
| 1224 | EFX_POPULATE_OWORD_2(int_en_reg_ker, |
| 1225 | FRF_AZ_KER_INT_KER, force, |
| 1226 | FRF_AZ_DRV_INT_EN_KER, enabled); |
| 1227 | efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER); |
| 1228 | } |
| 1229 | |
| 1230 | void efx_nic_enable_interrupts(struct efx_nic *efx) |
| 1231 | { |
| 1232 | struct efx_channel *channel; |
| 1233 | |
| 1234 | EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr)); |
| 1235 | wmb(); /* Ensure interrupt vector is clear before interrupts enabled */ |
| 1236 | |
| 1237 | /* Enable interrupts */ |
| 1238 | efx_nic_interrupts(efx, true, false); |
| 1239 | |
| 1240 | /* Force processing of all the channels to get the EVQ RPTRs up to |
| 1241 | date */ |
| 1242 | efx_for_each_channel(channel, efx) |
| 1243 | efx_schedule_channel(channel); |
| 1244 | } |
| 1245 | |
| 1246 | void efx_nic_disable_interrupts(struct efx_nic *efx) |
| 1247 | { |
| 1248 | /* Disable interrupts */ |
| 1249 | efx_nic_interrupts(efx, false, false); |
| 1250 | } |
| 1251 | |
| 1252 | /* Generate a test interrupt |
| 1253 | * Interrupt must already have been enabled, otherwise nasty things |
| 1254 | * may happen. |
| 1255 | */ |
| 1256 | void efx_nic_generate_interrupt(struct efx_nic *efx) |
| 1257 | { |
| 1258 | efx_nic_interrupts(efx, true, true); |
| 1259 | } |
| 1260 | |
| 1261 | /* Process a fatal interrupt |
| 1262 | * Disable bus mastering ASAP and schedule a reset |
| 1263 | */ |
| 1264 | irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx) |
| 1265 | { |
| 1266 | struct falcon_nic_data *nic_data = efx->nic_data; |
| 1267 | efx_oword_t *int_ker = efx->irq_status.addr; |
| 1268 | efx_oword_t fatal_intr; |
| 1269 | int error, mem_perr; |
| 1270 | |
| 1271 | efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER); |
| 1272 | error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR); |
| 1273 | |
| 1274 | EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status " |
| 1275 | EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker), |
| 1276 | EFX_OWORD_VAL(fatal_intr), |
| 1277 | error ? "disabling bus mastering" : "no recognised error"); |
| 1278 | if (error == 0) |
| 1279 | goto out; |
| 1280 | |
| 1281 | /* If this is a memory parity error dump which blocks are offending */ |
| 1282 | mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER); |
| 1283 | if (mem_perr) { |
| 1284 | efx_oword_t reg; |
| 1285 | efx_reado(efx, ®, FR_AZ_MEM_STAT); |
| 1286 | EFX_ERR(efx, "SYSTEM ERROR: memory parity error " |
| 1287 | EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg)); |
| 1288 | } |
| 1289 | |
| 1290 | /* Disable both devices */ |
| 1291 | pci_clear_master(efx->pci_dev); |
| 1292 | if (efx_nic_is_dual_func(efx)) |
| 1293 | pci_clear_master(nic_data->pci_dev2); |
| 1294 | efx_nic_disable_interrupts(efx); |
| 1295 | |
| 1296 | /* Count errors and reset or disable the NIC accordingly */ |
| 1297 | if (efx->int_error_count == 0 || |
| 1298 | time_after(jiffies, efx->int_error_expire)) { |
| 1299 | efx->int_error_count = 0; |
| 1300 | efx->int_error_expire = |
| 1301 | jiffies + EFX_INT_ERROR_EXPIRE * HZ; |
| 1302 | } |
| 1303 | if (++efx->int_error_count < EFX_MAX_INT_ERRORS) { |
| 1304 | EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n"); |
| 1305 | efx_schedule_reset(efx, RESET_TYPE_INT_ERROR); |
| 1306 | } else { |
| 1307 | EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen." |
| 1308 | "NIC will be disabled\n"); |
| 1309 | efx_schedule_reset(efx, RESET_TYPE_DISABLE); |
| 1310 | } |
| 1311 | out: |
| 1312 | return IRQ_HANDLED; |
| 1313 | } |
| 1314 | |
| 1315 | /* Handle a legacy interrupt |
| 1316 | * Acknowledges the interrupt and schedule event queue processing. |
| 1317 | */ |
| 1318 | static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id) |
| 1319 | { |
| 1320 | struct efx_nic *efx = dev_id; |
| 1321 | efx_oword_t *int_ker = efx->irq_status.addr; |
| 1322 | irqreturn_t result = IRQ_NONE; |
| 1323 | struct efx_channel *channel; |
| 1324 | efx_dword_t reg; |
| 1325 | u32 queues; |
| 1326 | int syserr; |
| 1327 | |
| 1328 | /* Read the ISR which also ACKs the interrupts */ |
| 1329 | efx_readd(efx, ®, FR_BZ_INT_ISR0); |
| 1330 | queues = EFX_EXTRACT_DWORD(reg, 0, 31); |
| 1331 | |
| 1332 | /* Check to see if we have a serious error condition */ |
| 1333 | syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); |
| 1334 | if (unlikely(syserr)) |
| 1335 | return efx_nic_fatal_interrupt(efx); |
| 1336 | |
| 1337 | /* Schedule processing of any interrupting queues */ |
| 1338 | efx_for_each_channel(channel, efx) { |
| 1339 | if ((queues & 1) || |
| 1340 | efx_event_present( |
| 1341 | efx_event(channel, channel->eventq_read_ptr))) { |
| 1342 | efx_schedule_channel(channel); |
| 1343 | result = IRQ_HANDLED; |
| 1344 | } |
| 1345 | queues >>= 1; |
| 1346 | } |
| 1347 | |
| 1348 | if (result == IRQ_HANDLED) { |
| 1349 | efx->last_irq_cpu = raw_smp_processor_id(); |
| 1350 | EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", |
| 1351 | irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); |
| 1352 | } |
| 1353 | |
| 1354 | return result; |
| 1355 | } |
| 1356 | |
| 1357 | /* Handle an MSI interrupt |
| 1358 | * |
| 1359 | * Handle an MSI hardware interrupt. This routine schedules event |
| 1360 | * queue processing. No interrupt acknowledgement cycle is necessary. |
| 1361 | * Also, we never need to check that the interrupt is for us, since |
| 1362 | * MSI interrupts cannot be shared. |
| 1363 | */ |
| 1364 | static irqreturn_t efx_msi_interrupt(int irq, void *dev_id) |
| 1365 | { |
| 1366 | struct efx_channel *channel = dev_id; |
| 1367 | struct efx_nic *efx = channel->efx; |
| 1368 | efx_oword_t *int_ker = efx->irq_status.addr; |
| 1369 | int syserr; |
| 1370 | |
| 1371 | efx->last_irq_cpu = raw_smp_processor_id(); |
| 1372 | EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", |
| 1373 | irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); |
| 1374 | |
| 1375 | /* Check to see if we have a serious error condition */ |
| 1376 | syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); |
| 1377 | if (unlikely(syserr)) |
| 1378 | return efx_nic_fatal_interrupt(efx); |
| 1379 | |
| 1380 | /* Schedule processing of the channel */ |
| 1381 | efx_schedule_channel(channel); |
| 1382 | |
| 1383 | return IRQ_HANDLED; |
| 1384 | } |
| 1385 | |
| 1386 | |
| 1387 | /* Setup RSS indirection table. |
| 1388 | * This maps from the hash value of the packet to RXQ |
| 1389 | */ |
| 1390 | static void efx_setup_rss_indir_table(struct efx_nic *efx) |
| 1391 | { |
| 1392 | int i = 0; |
| 1393 | unsigned long offset; |
| 1394 | efx_dword_t dword; |
| 1395 | |
| 1396 | if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) |
| 1397 | return; |
| 1398 | |
| 1399 | for (offset = FR_BZ_RX_INDIRECTION_TBL; |
| 1400 | offset < FR_BZ_RX_INDIRECTION_TBL + 0x800; |
| 1401 | offset += 0x10) { |
| 1402 | EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE, |
| 1403 | i % efx->n_rx_queues); |
| 1404 | efx_writed(efx, &dword, offset); |
| 1405 | i++; |
| 1406 | } |
| 1407 | } |
| 1408 | |
| 1409 | /* Hook interrupt handler(s) |
| 1410 | * Try MSI and then legacy interrupts. |
| 1411 | */ |
| 1412 | int efx_nic_init_interrupt(struct efx_nic *efx) |
| 1413 | { |
| 1414 | struct efx_channel *channel; |
| 1415 | int rc; |
| 1416 | |
| 1417 | if (!EFX_INT_MODE_USE_MSI(efx)) { |
| 1418 | irq_handler_t handler; |
| 1419 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) |
| 1420 | handler = efx_legacy_interrupt; |
| 1421 | else |
| 1422 | handler = falcon_legacy_interrupt_a1; |
| 1423 | |
| 1424 | rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED, |
| 1425 | efx->name, efx); |
| 1426 | if (rc) { |
| 1427 | EFX_ERR(efx, "failed to hook legacy IRQ %d\n", |
| 1428 | efx->pci_dev->irq); |
| 1429 | goto fail1; |
| 1430 | } |
| 1431 | return 0; |
| 1432 | } |
| 1433 | |
| 1434 | /* Hook MSI or MSI-X interrupt */ |
| 1435 | efx_for_each_channel(channel, efx) { |
| 1436 | rc = request_irq(channel->irq, efx_msi_interrupt, |
| 1437 | IRQF_PROBE_SHARED, /* Not shared */ |
| 1438 | channel->name, channel); |
| 1439 | if (rc) { |
| 1440 | EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq); |
| 1441 | goto fail2; |
| 1442 | } |
| 1443 | } |
| 1444 | |
| 1445 | return 0; |
| 1446 | |
| 1447 | fail2: |
| 1448 | efx_for_each_channel(channel, efx) |
| 1449 | free_irq(channel->irq, channel); |
| 1450 | fail1: |
| 1451 | return rc; |
| 1452 | } |
| 1453 | |
| 1454 | void efx_nic_fini_interrupt(struct efx_nic *efx) |
| 1455 | { |
| 1456 | struct efx_channel *channel; |
| 1457 | efx_oword_t reg; |
| 1458 | |
| 1459 | /* Disable MSI/MSI-X interrupts */ |
| 1460 | efx_for_each_channel(channel, efx) { |
| 1461 | if (channel->irq) |
| 1462 | free_irq(channel->irq, channel); |
| 1463 | } |
| 1464 | |
| 1465 | /* ACK legacy interrupt */ |
| 1466 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) |
| 1467 | efx_reado(efx, ®, FR_BZ_INT_ISR0); |
| 1468 | else |
| 1469 | falcon_irq_ack_a1(efx); |
| 1470 | |
| 1471 | /* Disable legacy interrupt */ |
| 1472 | if (efx->legacy_irq) |
| 1473 | free_irq(efx->legacy_irq, efx); |
| 1474 | } |
| 1475 | |
| 1476 | u32 efx_nic_fpga_ver(struct efx_nic *efx) |
| 1477 | { |
| 1478 | efx_oword_t altera_build; |
| 1479 | efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD); |
| 1480 | return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER); |
| 1481 | } |
| 1482 | |
| 1483 | void efx_nic_init_common(struct efx_nic *efx) |
| 1484 | { |
| 1485 | efx_oword_t temp; |
| 1486 | |
| 1487 | /* Set positions of descriptor caches in SRAM. */ |
| 1488 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, |
| 1489 | efx->type->tx_dc_base / 8); |
| 1490 | efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG); |
| 1491 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, |
| 1492 | efx->type->rx_dc_base / 8); |
| 1493 | efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG); |
| 1494 | |
| 1495 | /* Set TX descriptor cache size. */ |
| 1496 | BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER)); |
| 1497 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER); |
| 1498 | efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG); |
| 1499 | |
| 1500 | /* Set RX descriptor cache size. Set low watermark to size-8, as |
| 1501 | * this allows most efficient prefetching. |
| 1502 | */ |
| 1503 | BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER)); |
| 1504 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER); |
| 1505 | efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG); |
| 1506 | EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8); |
| 1507 | efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM); |
| 1508 | |
| 1509 | /* Program INT_KER address */ |
| 1510 | EFX_POPULATE_OWORD_2(temp, |
| 1511 | FRF_AZ_NORM_INT_VEC_DIS_KER, |
| 1512 | EFX_INT_MODE_USE_MSI(efx), |
| 1513 | FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr); |
| 1514 | efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER); |
| 1515 | |
| 1516 | /* Enable all the genuinely fatal interrupts. (They are still |
| 1517 | * masked by the overall interrupt mask, controlled by |
| 1518 | * falcon_interrupts()). |
| 1519 | * |
| 1520 | * Note: All other fatal interrupts are enabled |
| 1521 | */ |
| 1522 | EFX_POPULATE_OWORD_3(temp, |
| 1523 | FRF_AZ_ILL_ADR_INT_KER_EN, 1, |
| 1524 | FRF_AZ_RBUF_OWN_INT_KER_EN, 1, |
| 1525 | FRF_AZ_TBUF_OWN_INT_KER_EN, 1); |
| 1526 | EFX_INVERT_OWORD(temp); |
| 1527 | efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER); |
| 1528 | |
| 1529 | efx_setup_rss_indir_table(efx); |
| 1530 | |
| 1531 | /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be |
| 1532 | * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q. |
| 1533 | */ |
| 1534 | efx_reado(efx, &temp, FR_AZ_TX_RESERVED); |
| 1535 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe); |
| 1536 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1); |
| 1537 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1); |
| 1538 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0); |
| 1539 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1); |
| 1540 | /* Enable SW_EV to inherit in char driver - assume harmless here */ |
| 1541 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1); |
| 1542 | /* Prefetch threshold 2 => fetch when descriptor cache half empty */ |
| 1543 | EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2); |
| 1544 | /* Squash TX of packets of 16 bytes or less */ |
| 1545 | if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) |
| 1546 | EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1); |
| 1547 | efx_writeo(efx, &temp, FR_AZ_TX_RESERVED); |
| 1548 | } |