blob: a05ec50f8004dd65f29c87579612389f93660187 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001
2The Basic Device Structure
3~~~~~~~~~~~~~~~~~~~~~~~~~~
4
5struct device {
6 struct list_head g_list;
7 struct list_head node;
8 struct list_head bus_list;
9 struct list_head driver_list;
10 struct list_head intf_list;
11 struct list_head children;
12 struct device * parent;
13
14 char name[DEVICE_NAME_SIZE];
15 char bus_id[BUS_ID_SIZE];
16
17 spinlock_t lock;
18 atomic_t refcount;
19
20 struct bus_type * bus;
21 struct driver_dir_entry dir;
22
23 u32 class_num;
24
25 struct device_driver *driver;
26 void *driver_data;
27 void *platform_data;
28
29 u32 current_state;
30 unsigned char *saved_state;
31
32 void (*release)(struct device * dev);
33};
34
35Fields
36~~~~~~
37g_list: Node in the global device list.
38
39node: Node in device's parent's children list.
40
41bus_list: Node in device's bus's devices list.
42
43driver_list: Node in device's driver's devices list.
44
45intf_list: List of intf_data. There is one structure allocated for
46 each interface that the device supports.
47
48children: List of child devices.
49
50parent: *** FIXME ***
51
52name: ASCII description of device.
53 Example: " 3Com Corporation 3c905 100BaseTX [Boomerang]"
54
55bus_id: ASCII representation of device's bus position. This
56 field should be a name unique across all devices on the
57 bus type the device belongs to.
58
59 Example: PCI bus_ids are in the form of
60 <bus number>:<slot number>.<function number>
61 This name is unique across all PCI devices in the system.
62
63lock: Spinlock for the device.
64
65refcount: Reference count on the device.
66
67bus: Pointer to struct bus_type that device belongs to.
68
69dir: Device's sysfs directory.
70
71class_num: Class-enumerated value of the device.
72
73driver: Pointer to struct device_driver that controls the device.
74
75driver_data: Driver-specific data.
76
77platform_data: Platform data specific to the device.
78
David Brownell4109aca2005-05-16 17:19:55 -070079 Example: for devices on custom boards, as typical of embedded
80 and SOC based hardware, Linux often uses platform_data to point
81 to board-specific structures describing devices and how they
82 are wired. That can include what ports are available, chip
83 variants, which GPIO pins act in what additional roles, and so
84 on. This shrinks the "Board Support Packages" (BSPs) and
85 minimizes board-specific #ifdefs in drivers.
86
Linus Torvalds1da177e2005-04-16 15:20:36 -070087current_state: Current power state of the device.
88
89saved_state: Pointer to saved state of the device. This is usable by
90 the device driver controlling the device.
91
92release: Callback to free the device after all references have
93 gone away. This should be set by the allocator of the
94 device (i.e. the bus driver that discovered the device).
95
96
97Programming Interface
98~~~~~~~~~~~~~~~~~~~~~
99The bus driver that discovers the device uses this to register the
100device with the core:
101
102int device_register(struct device * dev);
103
104The bus should initialize the following fields:
105
106 - parent
107 - name
108 - bus_id
109 - bus
110
111A device is removed from the core when its reference count goes to
1120. The reference count can be adjusted using:
113
114struct device * get_device(struct device * dev);
115void put_device(struct device * dev);
116
117get_device() will return a pointer to the struct device passed to it
118if the reference is not already 0 (if it's in the process of being
119removed already).
120
121A driver can access the lock in the device structure using:
122
123void lock_device(struct device * dev);
124void unlock_device(struct device * dev);
125
126
127Attributes
128~~~~~~~~~~
129struct device_attribute {
130 struct attribute attr;
131 ssize_t (*show)(struct device * dev, char * buf, size_t count, loff_t off);
132 ssize_t (*store)(struct device * dev, const char * buf, size_t count, loff_t off);
133};
134
135Attributes of devices can be exported via drivers using a simple
136procfs-like interface.
137
138Please see Documentation/filesystems/sysfs.txt for more information
139on how sysfs works.
140
141Attributes are declared using a macro called DEVICE_ATTR:
142
143#define DEVICE_ATTR(name,mode,show,store)
144
145Example:
146
147DEVICE_ATTR(power,0644,show_power,store_power);
148
149This declares a structure of type struct device_attribute named
150'dev_attr_power'. This can then be added and removed to the device's
151directory using:
152
153int device_create_file(struct device *device, struct device_attribute * entry);
154void device_remove_file(struct device * dev, struct device_attribute * attr);
155
156Example:
157
158device_create_file(dev,&dev_attr_power);
159device_remove_file(dev,&dev_attr_power);
160
161The file name will be 'power' with a mode of 0644 (-rw-r--r--).
162