Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /********************************************************************* |
| 2 | * |
| 3 | * Filename: irttp.c |
| 4 | * Version: 1.2 |
| 5 | * Description: Tiny Transport Protocol (TTP) implementation |
| 6 | * Status: Stable |
| 7 | * Author: Dag Brattli <dagb@cs.uit.no> |
| 8 | * Created at: Sun Aug 31 20:14:31 1997 |
| 9 | * Modified at: Wed Jan 5 11:31:27 2000 |
| 10 | * Modified by: Dag Brattli <dagb@cs.uit.no> |
| 11 | * |
| 12 | * Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>, |
| 13 | * All Rights Reserved. |
| 14 | * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com> |
| 15 | * |
| 16 | * This program is free software; you can redistribute it and/or |
| 17 | * modify it under the terms of the GNU General Public License as |
| 18 | * published by the Free Software Foundation; either version 2 of |
| 19 | * the License, or (at your option) any later version. |
| 20 | * |
| 21 | * Neither Dag Brattli nor University of Tromsø admit liability nor |
| 22 | * provide warranty for any of this software. This material is |
| 23 | * provided "AS-IS" and at no charge. |
| 24 | * |
| 25 | ********************************************************************/ |
| 26 | |
| 27 | #include <linux/config.h> |
| 28 | #include <linux/skbuff.h> |
| 29 | #include <linux/init.h> |
| 30 | #include <linux/seq_file.h> |
| 31 | |
| 32 | #include <asm/byteorder.h> |
| 33 | #include <asm/unaligned.h> |
| 34 | |
| 35 | #include <net/irda/irda.h> |
| 36 | #include <net/irda/irlap.h> |
| 37 | #include <net/irda/irlmp.h> |
| 38 | #include <net/irda/parameters.h> |
| 39 | #include <net/irda/irttp.h> |
| 40 | |
| 41 | static struct irttp_cb *irttp = NULL; |
| 42 | |
| 43 | static void __irttp_close_tsap(struct tsap_cb *self); |
| 44 | |
| 45 | static int irttp_data_indication(void *instance, void *sap, |
| 46 | struct sk_buff *skb); |
| 47 | static int irttp_udata_indication(void *instance, void *sap, |
| 48 | struct sk_buff *skb); |
| 49 | static void irttp_disconnect_indication(void *instance, void *sap, |
| 50 | LM_REASON reason, struct sk_buff *); |
| 51 | static void irttp_connect_indication(void *instance, void *sap, |
| 52 | struct qos_info *qos, __u32 max_sdu_size, |
| 53 | __u8 header_size, struct sk_buff *skb); |
| 54 | static void irttp_connect_confirm(void *instance, void *sap, |
| 55 | struct qos_info *qos, __u32 max_sdu_size, |
| 56 | __u8 header_size, struct sk_buff *skb); |
| 57 | static void irttp_run_tx_queue(struct tsap_cb *self); |
| 58 | static void irttp_run_rx_queue(struct tsap_cb *self); |
| 59 | |
| 60 | static void irttp_flush_queues(struct tsap_cb *self); |
| 61 | static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb); |
| 62 | static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self); |
| 63 | static void irttp_todo_expired(unsigned long data); |
| 64 | static int irttp_param_max_sdu_size(void *instance, irda_param_t *param, |
| 65 | int get); |
| 66 | |
| 67 | static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow); |
| 68 | static void irttp_status_indication(void *instance, |
| 69 | LINK_STATUS link, LOCK_STATUS lock); |
| 70 | |
| 71 | /* Information for parsing parameters in IrTTP */ |
| 72 | static pi_minor_info_t pi_minor_call_table[] = { |
| 73 | { NULL, 0 }, /* 0x00 */ |
| 74 | { irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */ |
| 75 | }; |
| 76 | static pi_major_info_t pi_major_call_table[] = {{ pi_minor_call_table, 2 }}; |
| 77 | static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 }; |
| 78 | |
| 79 | /************************ GLOBAL PROCEDURES ************************/ |
| 80 | |
| 81 | /* |
| 82 | * Function irttp_init (void) |
| 83 | * |
| 84 | * Initialize the IrTTP layer. Called by module initialization code |
| 85 | * |
| 86 | */ |
| 87 | int __init irttp_init(void) |
| 88 | { |
| 89 | /* Initialize the irttp structure. */ |
| 90 | if (irttp == NULL) { |
| 91 | irttp = kmalloc(sizeof(struct irttp_cb), GFP_KERNEL); |
| 92 | if (irttp == NULL) |
| 93 | return -ENOMEM; |
| 94 | } |
| 95 | memset(irttp, 0, sizeof(struct irttp_cb)); |
| 96 | |
| 97 | irttp->magic = TTP_MAGIC; |
| 98 | |
| 99 | irttp->tsaps = hashbin_new(HB_LOCK); |
| 100 | if (!irttp->tsaps) { |
| 101 | IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n", |
| 102 | __FUNCTION__); |
| 103 | return -ENOMEM; |
| 104 | } |
| 105 | |
| 106 | return 0; |
| 107 | } |
| 108 | |
| 109 | /* |
| 110 | * Function irttp_cleanup (void) |
| 111 | * |
| 112 | * Called by module destruction/cleanup code |
| 113 | * |
| 114 | */ |
| 115 | void __exit irttp_cleanup(void) |
| 116 | { |
| 117 | /* Check for main structure */ |
| 118 | IRDA_ASSERT(irttp != NULL, return;); |
| 119 | IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;); |
| 120 | |
| 121 | /* |
| 122 | * Delete hashbin and close all TSAP instances in it |
| 123 | */ |
| 124 | hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap); |
| 125 | |
| 126 | irttp->magic = 0; |
| 127 | |
| 128 | /* De-allocate main structure */ |
| 129 | kfree(irttp); |
| 130 | |
| 131 | irttp = NULL; |
| 132 | } |
| 133 | |
| 134 | /*************************** SUBROUTINES ***************************/ |
| 135 | |
| 136 | /* |
| 137 | * Function irttp_start_todo_timer (self, timeout) |
| 138 | * |
| 139 | * Start todo timer. |
| 140 | * |
| 141 | * Made it more effient and unsensitive to race conditions - Jean II |
| 142 | */ |
| 143 | static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout) |
| 144 | { |
| 145 | /* Set new value for timer */ |
| 146 | mod_timer(&self->todo_timer, jiffies + timeout); |
| 147 | } |
| 148 | |
| 149 | /* |
| 150 | * Function irttp_todo_expired (data) |
| 151 | * |
| 152 | * Todo timer has expired! |
| 153 | * |
| 154 | * One of the restriction of the timer is that it is run only on the timer |
| 155 | * interrupt which run every 10ms. This mean that even if you set the timer |
| 156 | * with a delay of 0, it may take up to 10ms before it's run. |
| 157 | * So, to minimise latency and keep cache fresh, we try to avoid using |
| 158 | * it as much as possible. |
| 159 | * Note : we can't use tasklets, because they can't be asynchronously |
| 160 | * killed (need user context), and we can't guarantee that here... |
| 161 | * Jean II |
| 162 | */ |
| 163 | static void irttp_todo_expired(unsigned long data) |
| 164 | { |
| 165 | struct tsap_cb *self = (struct tsap_cb *) data; |
| 166 | |
| 167 | /* Check that we still exist */ |
| 168 | if (!self || self->magic != TTP_TSAP_MAGIC) |
| 169 | return; |
| 170 | |
| 171 | IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__, self); |
| 172 | |
| 173 | /* Try to make some progress, especially on Tx side - Jean II */ |
| 174 | irttp_run_rx_queue(self); |
| 175 | irttp_run_tx_queue(self); |
| 176 | |
| 177 | /* Check if time for disconnect */ |
| 178 | if (test_bit(0, &self->disconnect_pend)) { |
| 179 | /* Check if it's possible to disconnect yet */ |
| 180 | if (skb_queue_empty(&self->tx_queue)) { |
| 181 | /* Make sure disconnect is not pending anymore */ |
| 182 | clear_bit(0, &self->disconnect_pend); /* FALSE */ |
| 183 | |
| 184 | /* Note : self->disconnect_skb may be NULL */ |
| 185 | irttp_disconnect_request(self, self->disconnect_skb, |
| 186 | P_NORMAL); |
| 187 | self->disconnect_skb = NULL; |
| 188 | } else { |
| 189 | /* Try again later */ |
| 190 | irttp_start_todo_timer(self, HZ/10); |
| 191 | |
| 192 | /* No reason to try and close now */ |
| 193 | return; |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | /* Check if it's closing time */ |
| 198 | if (self->close_pend) |
| 199 | /* Finish cleanup */ |
| 200 | irttp_close_tsap(self); |
| 201 | } |
| 202 | |
| 203 | /* |
| 204 | * Function irttp_flush_queues (self) |
| 205 | * |
| 206 | * Flushes (removes all frames) in transitt-buffer (tx_list) |
| 207 | */ |
| 208 | void irttp_flush_queues(struct tsap_cb *self) |
| 209 | { |
| 210 | struct sk_buff* skb; |
| 211 | |
| 212 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); |
| 213 | |
| 214 | IRDA_ASSERT(self != NULL, return;); |
| 215 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); |
| 216 | |
| 217 | /* Deallocate frames waiting to be sent */ |
| 218 | while ((skb = skb_dequeue(&self->tx_queue)) != NULL) |
| 219 | dev_kfree_skb(skb); |
| 220 | |
| 221 | /* Deallocate received frames */ |
| 222 | while ((skb = skb_dequeue(&self->rx_queue)) != NULL) |
| 223 | dev_kfree_skb(skb); |
| 224 | |
| 225 | /* Deallocate received fragments */ |
| 226 | while ((skb = skb_dequeue(&self->rx_fragments)) != NULL) |
| 227 | dev_kfree_skb(skb); |
| 228 | } |
| 229 | |
| 230 | /* |
| 231 | * Function irttp_reassemble (self) |
| 232 | * |
| 233 | * Makes a new (continuous) skb of all the fragments in the fragment |
| 234 | * queue |
| 235 | * |
| 236 | */ |
| 237 | static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self) |
| 238 | { |
| 239 | struct sk_buff *skb, *frag; |
| 240 | int n = 0; /* Fragment index */ |
| 241 | |
| 242 | IRDA_ASSERT(self != NULL, return NULL;); |
| 243 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;); |
| 244 | |
| 245 | IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __FUNCTION__, |
| 246 | self->rx_sdu_size); |
| 247 | |
| 248 | skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size); |
| 249 | if (!skb) |
| 250 | return NULL; |
| 251 | |
| 252 | /* |
| 253 | * Need to reserve space for TTP header in case this skb needs to |
| 254 | * be requeued in case delivery failes |
| 255 | */ |
| 256 | skb_reserve(skb, TTP_HEADER); |
| 257 | skb_put(skb, self->rx_sdu_size); |
| 258 | |
| 259 | /* |
| 260 | * Copy all fragments to a new buffer |
| 261 | */ |
| 262 | while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) { |
| 263 | memcpy(skb->data+n, frag->data, frag->len); |
| 264 | n += frag->len; |
| 265 | |
| 266 | dev_kfree_skb(frag); |
| 267 | } |
| 268 | |
| 269 | IRDA_DEBUG(2, |
| 270 | "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n", |
| 271 | __FUNCTION__, n, self->rx_sdu_size, self->rx_max_sdu_size); |
| 272 | /* Note : irttp_run_rx_queue() calculate self->rx_sdu_size |
| 273 | * by summing the size of all fragments, so we should always |
| 274 | * have n == self->rx_sdu_size, except in cases where we |
| 275 | * droped the last fragment (when self->rx_sdu_size exceed |
| 276 | * self->rx_max_sdu_size), where n < self->rx_sdu_size. |
| 277 | * Jean II */ |
| 278 | IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;); |
| 279 | |
| 280 | /* Set the new length */ |
| 281 | skb_trim(skb, n); |
| 282 | |
| 283 | self->rx_sdu_size = 0; |
| 284 | |
| 285 | return skb; |
| 286 | } |
| 287 | |
| 288 | /* |
| 289 | * Function irttp_fragment_skb (skb) |
| 290 | * |
| 291 | * Fragments a frame and queues all the fragments for transmission |
| 292 | * |
| 293 | */ |
| 294 | static inline void irttp_fragment_skb(struct tsap_cb *self, |
| 295 | struct sk_buff *skb) |
| 296 | { |
| 297 | struct sk_buff *frag; |
| 298 | __u8 *frame; |
| 299 | |
| 300 | IRDA_DEBUG(2, "%s()\n", __FUNCTION__); |
| 301 | |
| 302 | IRDA_ASSERT(self != NULL, return;); |
| 303 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); |
| 304 | IRDA_ASSERT(skb != NULL, return;); |
| 305 | |
| 306 | /* |
| 307 | * Split frame into a number of segments |
| 308 | */ |
| 309 | while (skb->len > self->max_seg_size) { |
| 310 | IRDA_DEBUG(2, "%s(), fragmenting ...\n", __FUNCTION__); |
| 311 | |
| 312 | /* Make new segment */ |
| 313 | frag = dev_alloc_skb(self->max_seg_size+self->max_header_size); |
| 314 | if (!frag) |
| 315 | return; |
| 316 | |
| 317 | skb_reserve(frag, self->max_header_size); |
| 318 | |
| 319 | /* Copy data from the original skb into this fragment. */ |
| 320 | memcpy(skb_put(frag, self->max_seg_size), skb->data, |
| 321 | self->max_seg_size); |
| 322 | |
| 323 | /* Insert TTP header, with the more bit set */ |
| 324 | frame = skb_push(frag, TTP_HEADER); |
| 325 | frame[0] = TTP_MORE; |
| 326 | |
| 327 | /* Hide the copied data from the original skb */ |
| 328 | skb_pull(skb, self->max_seg_size); |
| 329 | |
| 330 | /* Queue fragment */ |
| 331 | skb_queue_tail(&self->tx_queue, frag); |
| 332 | } |
| 333 | /* Queue what is left of the original skb */ |
| 334 | IRDA_DEBUG(2, "%s(), queuing last segment\n", __FUNCTION__); |
| 335 | |
| 336 | frame = skb_push(skb, TTP_HEADER); |
| 337 | frame[0] = 0x00; /* Clear more bit */ |
| 338 | |
| 339 | /* Queue fragment */ |
| 340 | skb_queue_tail(&self->tx_queue, skb); |
| 341 | } |
| 342 | |
| 343 | /* |
| 344 | * Function irttp_param_max_sdu_size (self, param) |
| 345 | * |
| 346 | * Handle the MaxSduSize parameter in the connect frames, this function |
| 347 | * will be called both when this parameter needs to be inserted into, and |
| 348 | * extracted from the connect frames |
| 349 | */ |
| 350 | static int irttp_param_max_sdu_size(void *instance, irda_param_t *param, |
| 351 | int get) |
| 352 | { |
| 353 | struct tsap_cb *self; |
| 354 | |
| 355 | self = (struct tsap_cb *) instance; |
| 356 | |
| 357 | IRDA_ASSERT(self != NULL, return -1;); |
| 358 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;); |
| 359 | |
| 360 | if (get) |
| 361 | param->pv.i = self->tx_max_sdu_size; |
| 362 | else |
| 363 | self->tx_max_sdu_size = param->pv.i; |
| 364 | |
| 365 | IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __FUNCTION__, param->pv.i); |
| 366 | |
| 367 | return 0; |
| 368 | } |
| 369 | |
| 370 | /*************************** CLIENT CALLS ***************************/ |
| 371 | /************************** LMP CALLBACKS **************************/ |
| 372 | /* Everything is happily mixed up. Waiting for next clean up - Jean II */ |
| 373 | |
| 374 | /* |
| 375 | * Function irttp_open_tsap (stsap, notify) |
| 376 | * |
| 377 | * Create TSAP connection endpoint, |
| 378 | */ |
| 379 | struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify) |
| 380 | { |
| 381 | struct tsap_cb *self; |
| 382 | struct lsap_cb *lsap; |
| 383 | notify_t ttp_notify; |
| 384 | |
| 385 | IRDA_ASSERT(irttp != NULL, return NULL;); |
| 386 | IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;); |
| 387 | |
| 388 | /* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to |
| 389 | * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well. |
| 390 | * JeanII */ |
| 391 | if((stsap_sel != LSAP_ANY) && |
| 392 | ((stsap_sel < 0x01) || (stsap_sel >= 0x70))) { |
| 393 | IRDA_DEBUG(0, "%s(), invalid tsap!\n", __FUNCTION__); |
| 394 | return NULL; |
| 395 | } |
| 396 | |
| 397 | self = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC); |
| 398 | if (self == NULL) { |
| 399 | IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __FUNCTION__); |
| 400 | return NULL; |
| 401 | } |
| 402 | memset(self, 0, sizeof(struct tsap_cb)); |
| 403 | spin_lock_init(&self->lock); |
| 404 | |
| 405 | /* Initialise todo timer */ |
| 406 | init_timer(&self->todo_timer); |
| 407 | self->todo_timer.data = (unsigned long) self; |
| 408 | self->todo_timer.function = &irttp_todo_expired; |
| 409 | |
| 410 | /* Initialize callbacks for IrLMP to use */ |
| 411 | irda_notify_init(&ttp_notify); |
| 412 | ttp_notify.connect_confirm = irttp_connect_confirm; |
| 413 | ttp_notify.connect_indication = irttp_connect_indication; |
| 414 | ttp_notify.disconnect_indication = irttp_disconnect_indication; |
| 415 | ttp_notify.data_indication = irttp_data_indication; |
| 416 | ttp_notify.udata_indication = irttp_udata_indication; |
| 417 | ttp_notify.flow_indication = irttp_flow_indication; |
| 418 | if(notify->status_indication != NULL) |
| 419 | ttp_notify.status_indication = irttp_status_indication; |
| 420 | ttp_notify.instance = self; |
| 421 | strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME); |
| 422 | |
| 423 | self->magic = TTP_TSAP_MAGIC; |
| 424 | self->connected = FALSE; |
| 425 | |
| 426 | skb_queue_head_init(&self->rx_queue); |
| 427 | skb_queue_head_init(&self->tx_queue); |
| 428 | skb_queue_head_init(&self->rx_fragments); |
| 429 | /* |
| 430 | * Create LSAP at IrLMP layer |
| 431 | */ |
| 432 | lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0); |
| 433 | if (lsap == NULL) { |
| 434 | IRDA_WARNING("%s: unable to allocate LSAP!!\n", __FUNCTION__); |
| 435 | return NULL; |
| 436 | } |
| 437 | |
| 438 | /* |
| 439 | * If user specified LSAP_ANY as source TSAP selector, then IrLMP |
| 440 | * will replace it with whatever source selector which is free, so |
| 441 | * the stsap_sel we have might not be valid anymore |
| 442 | */ |
| 443 | self->stsap_sel = lsap->slsap_sel; |
| 444 | IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __FUNCTION__, self->stsap_sel); |
| 445 | |
| 446 | self->notify = *notify; |
| 447 | self->lsap = lsap; |
| 448 | |
| 449 | hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL); |
| 450 | |
| 451 | if (credit > TTP_RX_MAX_CREDIT) |
| 452 | self->initial_credit = TTP_RX_MAX_CREDIT; |
| 453 | else |
| 454 | self->initial_credit = credit; |
| 455 | |
| 456 | return self; |
| 457 | } |
| 458 | EXPORT_SYMBOL(irttp_open_tsap); |
| 459 | |
| 460 | /* |
| 461 | * Function irttp_close (handle) |
| 462 | * |
| 463 | * Remove an instance of a TSAP. This function should only deal with the |
| 464 | * deallocation of the TSAP, and resetting of the TSAPs values; |
| 465 | * |
| 466 | */ |
| 467 | static void __irttp_close_tsap(struct tsap_cb *self) |
| 468 | { |
| 469 | /* First make sure we're connected. */ |
| 470 | IRDA_ASSERT(self != NULL, return;); |
| 471 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); |
| 472 | |
| 473 | irttp_flush_queues(self); |
| 474 | |
| 475 | del_timer(&self->todo_timer); |
| 476 | |
| 477 | /* This one won't be cleaned up if we are disconnect_pend + close_pend |
| 478 | * and we receive a disconnect_indication */ |
| 479 | if (self->disconnect_skb) |
| 480 | dev_kfree_skb(self->disconnect_skb); |
| 481 | |
| 482 | self->connected = FALSE; |
| 483 | self->magic = ~TTP_TSAP_MAGIC; |
| 484 | |
| 485 | kfree(self); |
| 486 | } |
| 487 | |
| 488 | /* |
| 489 | * Function irttp_close (self) |
| 490 | * |
| 491 | * Remove TSAP from list of all TSAPs and then deallocate all resources |
| 492 | * associated with this TSAP |
| 493 | * |
| 494 | * Note : because we *free* the tsap structure, it is the responsibility |
| 495 | * of the caller to make sure we are called only once and to deal with |
| 496 | * possible race conditions. - Jean II |
| 497 | */ |
| 498 | int irttp_close_tsap(struct tsap_cb *self) |
| 499 | { |
| 500 | struct tsap_cb *tsap; |
| 501 | |
| 502 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); |
| 503 | |
| 504 | IRDA_ASSERT(self != NULL, return -1;); |
| 505 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;); |
| 506 | |
| 507 | /* Make sure tsap has been disconnected */ |
| 508 | if (self->connected) { |
| 509 | /* Check if disconnect is not pending */ |
| 510 | if (!test_bit(0, &self->disconnect_pend)) { |
| 511 | IRDA_WARNING("%s: TSAP still connected!\n", |
| 512 | __FUNCTION__); |
| 513 | irttp_disconnect_request(self, NULL, P_NORMAL); |
| 514 | } |
| 515 | self->close_pend = TRUE; |
| 516 | irttp_start_todo_timer(self, HZ/10); |
| 517 | |
| 518 | return 0; /* Will be back! */ |
| 519 | } |
| 520 | |
| 521 | tsap = hashbin_remove(irttp->tsaps, (long) self, NULL); |
| 522 | |
| 523 | IRDA_ASSERT(tsap == self, return -1;); |
| 524 | |
| 525 | /* Close corresponding LSAP */ |
| 526 | if (self->lsap) { |
| 527 | irlmp_close_lsap(self->lsap); |
| 528 | self->lsap = NULL; |
| 529 | } |
| 530 | |
| 531 | __irttp_close_tsap(self); |
| 532 | |
| 533 | return 0; |
| 534 | } |
| 535 | EXPORT_SYMBOL(irttp_close_tsap); |
| 536 | |
| 537 | /* |
| 538 | * Function irttp_udata_request (self, skb) |
| 539 | * |
| 540 | * Send unreliable data on this TSAP |
| 541 | * |
| 542 | */ |
| 543 | int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb) |
| 544 | { |
| 545 | IRDA_ASSERT(self != NULL, return -1;); |
| 546 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;); |
| 547 | IRDA_ASSERT(skb != NULL, return -1;); |
| 548 | |
| 549 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); |
| 550 | |
| 551 | /* Check that nothing bad happens */ |
| 552 | if ((skb->len == 0) || (!self->connected)) { |
| 553 | IRDA_DEBUG(1, "%s(), No data, or not connected\n", |
| 554 | __FUNCTION__); |
| 555 | goto err; |
| 556 | } |
| 557 | |
| 558 | if (skb->len > self->max_seg_size) { |
| 559 | IRDA_DEBUG(1, "%s(), UData is to large for IrLAP!\n", |
| 560 | __FUNCTION__); |
| 561 | goto err; |
| 562 | } |
| 563 | |
| 564 | irlmp_udata_request(self->lsap, skb); |
| 565 | self->stats.tx_packets++; |
| 566 | |
| 567 | return 0; |
| 568 | |
| 569 | err: |
| 570 | dev_kfree_skb(skb); |
| 571 | return -1; |
| 572 | } |
| 573 | EXPORT_SYMBOL(irttp_udata_request); |
| 574 | |
| 575 | |
| 576 | /* |
| 577 | * Function irttp_data_request (handle, skb) |
| 578 | * |
| 579 | * Queue frame for transmission. If SAR is enabled, fragement the frame |
| 580 | * and queue the fragments for transmission |
| 581 | */ |
| 582 | int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb) |
| 583 | { |
| 584 | __u8 *frame; |
| 585 | int ret; |
| 586 | |
| 587 | IRDA_ASSERT(self != NULL, return -1;); |
| 588 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;); |
| 589 | IRDA_ASSERT(skb != NULL, return -1;); |
| 590 | |
| 591 | IRDA_DEBUG(2, "%s() : queue len = %d\n", __FUNCTION__, |
| 592 | skb_queue_len(&self->tx_queue)); |
| 593 | |
| 594 | /* Check that nothing bad happens */ |
| 595 | if ((skb->len == 0) || (!self->connected)) { |
| 596 | IRDA_WARNING("%s: No data, or not connected\n", __FUNCTION__); |
| 597 | ret = -ENOTCONN; |
| 598 | goto err; |
| 599 | } |
| 600 | |
| 601 | /* |
| 602 | * Check if SAR is disabled, and the frame is larger than what fits |
| 603 | * inside an IrLAP frame |
| 604 | */ |
| 605 | if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) { |
| 606 | IRDA_ERROR("%s: SAR disabled, and data is to large for IrLAP!\n", |
| 607 | __FUNCTION__); |
| 608 | ret = -EMSGSIZE; |
| 609 | goto err; |
| 610 | } |
| 611 | |
| 612 | /* |
| 613 | * Check if SAR is enabled, and the frame is larger than the |
| 614 | * TxMaxSduSize |
| 615 | */ |
| 616 | if ((self->tx_max_sdu_size != 0) && |
| 617 | (self->tx_max_sdu_size != TTP_SAR_UNBOUND) && |
| 618 | (skb->len > self->tx_max_sdu_size)) |
| 619 | { |
| 620 | IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n", |
| 621 | __FUNCTION__); |
| 622 | ret = -EMSGSIZE; |
| 623 | goto err; |
| 624 | } |
| 625 | /* |
| 626 | * Check if transmit queue is full |
| 627 | */ |
| 628 | if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) { |
| 629 | /* |
| 630 | * Give it a chance to empty itself |
| 631 | */ |
| 632 | irttp_run_tx_queue(self); |
| 633 | |
| 634 | /* Drop packet. This error code should trigger the caller |
| 635 | * to resend the data in the client code - Jean II */ |
| 636 | ret = -ENOBUFS; |
| 637 | goto err; |
| 638 | } |
| 639 | |
| 640 | /* Queue frame, or queue frame segments */ |
| 641 | if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) { |
| 642 | /* Queue frame */ |
| 643 | IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;); |
| 644 | frame = skb_push(skb, TTP_HEADER); |
| 645 | frame[0] = 0x00; /* Clear more bit */ |
| 646 | |
| 647 | skb_queue_tail(&self->tx_queue, skb); |
| 648 | } else { |
| 649 | /* |
| 650 | * Fragment the frame, this function will also queue the |
| 651 | * fragments, we don't care about the fact the transmit |
| 652 | * queue may be overfilled by all the segments for a little |
| 653 | * while |
| 654 | */ |
| 655 | irttp_fragment_skb(self, skb); |
| 656 | } |
| 657 | |
| 658 | /* Check if we can accept more data from client */ |
| 659 | if ((!self->tx_sdu_busy) && |
| 660 | (skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) { |
| 661 | /* Tx queue filling up, so stop client. */ |
| 662 | if (self->notify.flow_indication) { |
| 663 | self->notify.flow_indication(self->notify.instance, |
| 664 | self, FLOW_STOP); |
| 665 | } |
| 666 | /* self->tx_sdu_busy is the state of the client. |
| 667 | * Update state after notifying client to avoid |
| 668 | * race condition with irttp_flow_indication(). |
| 669 | * If the queue empty itself after our test but before |
| 670 | * we set the flag, we will fix ourselves below in |
| 671 | * irttp_run_tx_queue(). |
| 672 | * Jean II */ |
| 673 | self->tx_sdu_busy = TRUE; |
| 674 | } |
| 675 | |
| 676 | /* Try to make some progress */ |
| 677 | irttp_run_tx_queue(self); |
| 678 | |
| 679 | return 0; |
| 680 | |
| 681 | err: |
| 682 | dev_kfree_skb(skb); |
| 683 | return ret; |
| 684 | } |
| 685 | EXPORT_SYMBOL(irttp_data_request); |
| 686 | |
| 687 | /* |
| 688 | * Function irttp_run_tx_queue (self) |
| 689 | * |
| 690 | * Transmit packets queued for transmission (if possible) |
| 691 | * |
| 692 | */ |
| 693 | static void irttp_run_tx_queue(struct tsap_cb *self) |
| 694 | { |
| 695 | struct sk_buff *skb; |
| 696 | unsigned long flags; |
| 697 | int n; |
| 698 | |
| 699 | IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n", |
| 700 | __FUNCTION__, |
| 701 | self->send_credit, skb_queue_len(&self->tx_queue)); |
| 702 | |
| 703 | /* Get exclusive access to the tx queue, otherwise don't touch it */ |
| 704 | if (irda_lock(&self->tx_queue_lock) == FALSE) |
| 705 | return; |
| 706 | |
| 707 | /* Try to send out frames as long as we have credits |
| 708 | * and as long as LAP is not full. If LAP is full, it will |
| 709 | * poll us through irttp_flow_indication() - Jean II */ |
| 710 | while ((self->send_credit > 0) && |
| 711 | (!irlmp_lap_tx_queue_full(self->lsap)) && |
| 712 | (skb = skb_dequeue(&self->tx_queue))) |
| 713 | { |
| 714 | /* |
| 715 | * Since we can transmit and receive frames concurrently, |
| 716 | * the code below is a critical region and we must assure that |
| 717 | * nobody messes with the credits while we update them. |
| 718 | */ |
| 719 | spin_lock_irqsave(&self->lock, flags); |
| 720 | |
| 721 | n = self->avail_credit; |
| 722 | self->avail_credit = 0; |
| 723 | |
| 724 | /* Only room for 127 credits in frame */ |
| 725 | if (n > 127) { |
| 726 | self->avail_credit = n-127; |
| 727 | n = 127; |
| 728 | } |
| 729 | self->remote_credit += n; |
| 730 | self->send_credit--; |
| 731 | |
| 732 | spin_unlock_irqrestore(&self->lock, flags); |
| 733 | |
| 734 | /* |
| 735 | * More bit must be set by the data_request() or fragment() |
| 736 | * functions |
| 737 | */ |
| 738 | skb->data[0] |= (n & 0x7f); |
| 739 | |
| 740 | /* Detach from socket. |
| 741 | * The current skb has a reference to the socket that sent |
| 742 | * it (skb->sk). When we pass it to IrLMP, the skb will be |
| 743 | * stored in in IrLAP (self->wx_list). When we are within |
| 744 | * IrLAP, we lose the notion of socket, so we should not |
| 745 | * have a reference to a socket. So, we drop it here. |
| 746 | * |
| 747 | * Why does it matter ? |
| 748 | * When the skb is freed (kfree_skb), if it is associated |
| 749 | * with a socket, it release buffer space on the socket |
| 750 | * (through sock_wfree() and sock_def_write_space()). |
| 751 | * If the socket no longer exist, we may crash. Hard. |
| 752 | * When we close a socket, we make sure that associated packets |
| 753 | * in IrTTP are freed. However, we have no way to cancel |
| 754 | * the packet that we have passed to IrLAP. So, if a packet |
| 755 | * remains in IrLAP (retry on the link or else) after we |
| 756 | * close the socket, we are dead ! |
| 757 | * Jean II */ |
| 758 | if (skb->sk != NULL) { |
| 759 | /* IrSOCK application, IrOBEX, ... */ |
| 760 | skb_orphan(skb); |
| 761 | } |
| 762 | /* IrCOMM over IrTTP, IrLAN, ... */ |
| 763 | |
| 764 | /* Pass the skb to IrLMP - done */ |
| 765 | irlmp_data_request(self->lsap, skb); |
| 766 | self->stats.tx_packets++; |
| 767 | } |
| 768 | |
| 769 | /* Check if we can accept more frames from client. |
| 770 | * We don't want to wait until the todo timer to do that, and we |
| 771 | * can't use tasklets (grr...), so we are obliged to give control |
| 772 | * to client. That's ok, this test will be true not too often |
| 773 | * (max once per LAP window) and we are called from places |
| 774 | * where we can spend a bit of time doing stuff. - Jean II */ |
| 775 | if ((self->tx_sdu_busy) && |
| 776 | (skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) && |
| 777 | (!self->close_pend)) |
| 778 | { |
| 779 | if (self->notify.flow_indication) |
| 780 | self->notify.flow_indication(self->notify.instance, |
| 781 | self, FLOW_START); |
| 782 | |
| 783 | /* self->tx_sdu_busy is the state of the client. |
| 784 | * We don't really have a race here, but it's always safer |
| 785 | * to update our state after the client - Jean II */ |
| 786 | self->tx_sdu_busy = FALSE; |
| 787 | } |
| 788 | |
| 789 | /* Reset lock */ |
| 790 | self->tx_queue_lock = 0; |
| 791 | } |
| 792 | |
| 793 | /* |
| 794 | * Function irttp_give_credit (self) |
| 795 | * |
| 796 | * Send a dataless flowdata TTP-PDU and give available credit to peer |
| 797 | * TSAP |
| 798 | */ |
| 799 | static inline void irttp_give_credit(struct tsap_cb *self) |
| 800 | { |
| 801 | struct sk_buff *tx_skb = NULL; |
| 802 | unsigned long flags; |
| 803 | int n; |
| 804 | |
| 805 | IRDA_ASSERT(self != NULL, return;); |
| 806 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); |
| 807 | |
| 808 | IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", |
| 809 | __FUNCTION__, |
| 810 | self->send_credit, self->avail_credit, self->remote_credit); |
| 811 | |
| 812 | /* Give credit to peer */ |
| 813 | tx_skb = dev_alloc_skb(64); |
| 814 | if (!tx_skb) |
| 815 | return; |
| 816 | |
| 817 | /* Reserve space for LMP, and LAP header */ |
| 818 | skb_reserve(tx_skb, self->max_header_size); |
| 819 | |
| 820 | /* |
| 821 | * Since we can transmit and receive frames concurrently, |
| 822 | * the code below is a critical region and we must assure that |
| 823 | * nobody messes with the credits while we update them. |
| 824 | */ |
| 825 | spin_lock_irqsave(&self->lock, flags); |
| 826 | |
| 827 | n = self->avail_credit; |
| 828 | self->avail_credit = 0; |
| 829 | |
| 830 | /* Only space for 127 credits in frame */ |
| 831 | if (n > 127) { |
| 832 | self->avail_credit = n - 127; |
| 833 | n = 127; |
| 834 | } |
| 835 | self->remote_credit += n; |
| 836 | |
| 837 | spin_unlock_irqrestore(&self->lock, flags); |
| 838 | |
| 839 | skb_put(tx_skb, 1); |
| 840 | tx_skb->data[0] = (__u8) (n & 0x7f); |
| 841 | |
| 842 | irlmp_data_request(self->lsap, tx_skb); |
| 843 | self->stats.tx_packets++; |
| 844 | } |
| 845 | |
| 846 | /* |
| 847 | * Function irttp_udata_indication (instance, sap, skb) |
| 848 | * |
| 849 | * Received some unit-data (unreliable) |
| 850 | * |
| 851 | */ |
| 852 | static int irttp_udata_indication(void *instance, void *sap, |
| 853 | struct sk_buff *skb) |
| 854 | { |
| 855 | struct tsap_cb *self; |
| 856 | int err; |
| 857 | |
| 858 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); |
| 859 | |
| 860 | self = (struct tsap_cb *) instance; |
| 861 | |
| 862 | IRDA_ASSERT(self != NULL, return -1;); |
| 863 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;); |
| 864 | IRDA_ASSERT(skb != NULL, return -1;); |
| 865 | |
| 866 | self->stats.rx_packets++; |
| 867 | |
| 868 | /* Just pass data to layer above */ |
| 869 | if (self->notify.udata_indication) { |
| 870 | err = self->notify.udata_indication(self->notify.instance, |
| 871 | self,skb); |
| 872 | /* Same comment as in irttp_do_data_indication() */ |
| 873 | if (!err) |
| 874 | return 0; |
| 875 | } |
| 876 | /* Either no handler, or handler returns an error */ |
| 877 | dev_kfree_skb(skb); |
| 878 | |
| 879 | return 0; |
| 880 | } |
| 881 | |
| 882 | /* |
| 883 | * Function irttp_data_indication (instance, sap, skb) |
| 884 | * |
| 885 | * Receive segment from IrLMP. |
| 886 | * |
| 887 | */ |
| 888 | static int irttp_data_indication(void *instance, void *sap, |
| 889 | struct sk_buff *skb) |
| 890 | { |
| 891 | struct tsap_cb *self; |
| 892 | unsigned long flags; |
| 893 | int n; |
| 894 | |
| 895 | self = (struct tsap_cb *) instance; |
| 896 | |
| 897 | n = skb->data[0] & 0x7f; /* Extract the credits */ |
| 898 | |
| 899 | self->stats.rx_packets++; |
| 900 | |
| 901 | /* Deal with inbound credit |
| 902 | * Since we can transmit and receive frames concurrently, |
| 903 | * the code below is a critical region and we must assure that |
| 904 | * nobody messes with the credits while we update them. |
| 905 | */ |
| 906 | spin_lock_irqsave(&self->lock, flags); |
| 907 | self->send_credit += n; |
| 908 | if (skb->len > 1) |
| 909 | self->remote_credit--; |
| 910 | spin_unlock_irqrestore(&self->lock, flags); |
| 911 | |
| 912 | /* |
| 913 | * Data or dataless packet? Dataless frames contains only the |
| 914 | * TTP_HEADER. |
| 915 | */ |
| 916 | if (skb->len > 1) { |
| 917 | /* |
| 918 | * We don't remove the TTP header, since we must preserve the |
| 919 | * more bit, so the defragment routing knows what to do |
| 920 | */ |
| 921 | skb_queue_tail(&self->rx_queue, skb); |
| 922 | } else { |
| 923 | /* Dataless flowdata TTP-PDU */ |
| 924 | dev_kfree_skb(skb); |
| 925 | } |
| 926 | |
| 927 | |
| 928 | /* Push data to the higher layer. |
| 929 | * We do it synchronously because running the todo timer for each |
| 930 | * receive packet would be too much overhead and latency. |
| 931 | * By passing control to the higher layer, we run the risk that |
| 932 | * it may take time or grab a lock. Most often, the higher layer |
| 933 | * will only put packet in a queue. |
| 934 | * Anyway, packets are only dripping through the IrDA, so we can |
| 935 | * have time before the next packet. |
| 936 | * Further, we are run from NET_BH, so the worse that can happen is |
| 937 | * us missing the optimal time to send back the PF bit in LAP. |
| 938 | * Jean II */ |
| 939 | irttp_run_rx_queue(self); |
| 940 | |
| 941 | /* We now give credits to peer in irttp_run_rx_queue(). |
| 942 | * We need to send credit *NOW*, otherwise we are going |
| 943 | * to miss the next Tx window. The todo timer may take |
| 944 | * a while before it's run... - Jean II */ |
| 945 | |
| 946 | /* |
| 947 | * If the peer device has given us some credits and we didn't have |
| 948 | * anyone from before, then we need to shedule the tx queue. |
| 949 | * We need to do that because our Tx have stopped (so we may not |
| 950 | * get any LAP flow indication) and the user may be stopped as |
| 951 | * well. - Jean II |
| 952 | */ |
| 953 | if (self->send_credit == n) { |
| 954 | /* Restart pushing stuff to LAP */ |
| 955 | irttp_run_tx_queue(self); |
| 956 | /* Note : we don't want to schedule the todo timer |
| 957 | * because it has horrible latency. No tasklets |
| 958 | * because the tasklet API is broken. - Jean II */ |
| 959 | } |
| 960 | |
| 961 | return 0; |
| 962 | } |
| 963 | |
| 964 | /* |
| 965 | * Function irttp_status_indication (self, reason) |
| 966 | * |
| 967 | * Status_indication, just pass to the higher layer... |
| 968 | * |
| 969 | */ |
| 970 | static void irttp_status_indication(void *instance, |
| 971 | LINK_STATUS link, LOCK_STATUS lock) |
| 972 | { |
| 973 | struct tsap_cb *self; |
| 974 | |
| 975 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); |
| 976 | |
| 977 | self = (struct tsap_cb *) instance; |
| 978 | |
| 979 | IRDA_ASSERT(self != NULL, return;); |
| 980 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); |
| 981 | |
| 982 | /* Check if client has already closed the TSAP and gone away */ |
| 983 | if (self->close_pend) |
| 984 | return; |
| 985 | |
| 986 | /* |
| 987 | * Inform service user if he has requested it |
| 988 | */ |
| 989 | if (self->notify.status_indication != NULL) |
| 990 | self->notify.status_indication(self->notify.instance, |
| 991 | link, lock); |
| 992 | else |
| 993 | IRDA_DEBUG(2, "%s(), no handler\n", __FUNCTION__); |
| 994 | } |
| 995 | |
| 996 | /* |
| 997 | * Function irttp_flow_indication (self, reason) |
| 998 | * |
| 999 | * Flow_indication : IrLAP tells us to send more data. |
| 1000 | * |
| 1001 | */ |
| 1002 | static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow) |
| 1003 | { |
| 1004 | struct tsap_cb *self; |
| 1005 | |
| 1006 | self = (struct tsap_cb *) instance; |
| 1007 | |
| 1008 | IRDA_ASSERT(self != NULL, return;); |
| 1009 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); |
| 1010 | |
| 1011 | IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__, self); |
| 1012 | |
| 1013 | /* We are "polled" directly from LAP, and the LAP want to fill |
| 1014 | * its Tx window. We want to do our best to send it data, so that |
| 1015 | * we maximise the window. On the other hand, we want to limit the |
| 1016 | * amount of work here so that LAP doesn't hang forever waiting |
| 1017 | * for packets. - Jean II */ |
| 1018 | |
| 1019 | /* Try to send some packets. Currently, LAP calls us every time |
| 1020 | * there is one free slot, so we will send only one packet. |
| 1021 | * This allow the scheduler to do its round robin - Jean II */ |
| 1022 | irttp_run_tx_queue(self); |
| 1023 | |
| 1024 | /* Note regarding the interraction with higher layer. |
| 1025 | * irttp_run_tx_queue() may call the client when its queue |
| 1026 | * start to empty, via notify.flow_indication(). Initially. |
| 1027 | * I wanted this to happen in a tasklet, to avoid client |
| 1028 | * grabbing the CPU, but we can't use tasklets safely. And timer |
| 1029 | * is definitely too slow. |
| 1030 | * This will happen only once per LAP window, and usually at |
| 1031 | * the third packet (unless window is smaller). LAP is still |
| 1032 | * doing mtt and sending first packet so it's sort of OK |
| 1033 | * to do that. Jean II */ |
| 1034 | |
| 1035 | /* If we need to send disconnect. try to do it now */ |
| 1036 | if(self->disconnect_pend) |
| 1037 | irttp_start_todo_timer(self, 0); |
| 1038 | } |
| 1039 | |
| 1040 | /* |
| 1041 | * Function irttp_flow_request (self, command) |
| 1042 | * |
| 1043 | * This function could be used by the upper layers to tell IrTTP to stop |
| 1044 | * delivering frames if the receive queues are starting to get full, or |
| 1045 | * to tell IrTTP to start delivering frames again. |
| 1046 | */ |
| 1047 | void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow) |
| 1048 | { |
| 1049 | IRDA_DEBUG(1, "%s()\n", __FUNCTION__); |
| 1050 | |
| 1051 | IRDA_ASSERT(self != NULL, return;); |
| 1052 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); |
| 1053 | |
| 1054 | switch (flow) { |
| 1055 | case FLOW_STOP: |
| 1056 | IRDA_DEBUG(1, "%s(), flow stop\n", __FUNCTION__); |
| 1057 | self->rx_sdu_busy = TRUE; |
| 1058 | break; |
| 1059 | case FLOW_START: |
| 1060 | IRDA_DEBUG(1, "%s(), flow start\n", __FUNCTION__); |
| 1061 | self->rx_sdu_busy = FALSE; |
| 1062 | |
| 1063 | /* Client say he can accept more data, try to free our |
| 1064 | * queues ASAP - Jean II */ |
| 1065 | irttp_run_rx_queue(self); |
| 1066 | |
| 1067 | break; |
| 1068 | default: |
| 1069 | IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __FUNCTION__); |
| 1070 | } |
| 1071 | } |
| 1072 | EXPORT_SYMBOL(irttp_flow_request); |
| 1073 | |
| 1074 | /* |
| 1075 | * Function irttp_connect_request (self, dtsap_sel, daddr, qos) |
| 1076 | * |
| 1077 | * Try to connect to remote destination TSAP selector |
| 1078 | * |
| 1079 | */ |
| 1080 | int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel, |
| 1081 | __u32 saddr, __u32 daddr, |
| 1082 | struct qos_info *qos, __u32 max_sdu_size, |
| 1083 | struct sk_buff *userdata) |
| 1084 | { |
| 1085 | struct sk_buff *tx_skb; |
| 1086 | __u8 *frame; |
| 1087 | __u8 n; |
| 1088 | |
| 1089 | IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __FUNCTION__, max_sdu_size); |
| 1090 | |
| 1091 | IRDA_ASSERT(self != NULL, return -EBADR;); |
| 1092 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;); |
| 1093 | |
| 1094 | if (self->connected) { |
| 1095 | if(userdata) |
| 1096 | dev_kfree_skb(userdata); |
| 1097 | return -EISCONN; |
| 1098 | } |
| 1099 | |
| 1100 | /* Any userdata supplied? */ |
| 1101 | if (userdata == NULL) { |
| 1102 | tx_skb = dev_alloc_skb(64); |
| 1103 | if (!tx_skb) |
| 1104 | return -ENOMEM; |
| 1105 | |
| 1106 | /* Reserve space for MUX_CONTROL and LAP header */ |
| 1107 | skb_reserve(tx_skb, TTP_MAX_HEADER); |
| 1108 | } else { |
| 1109 | tx_skb = userdata; |
| 1110 | /* |
| 1111 | * Check that the client has reserved enough space for |
| 1112 | * headers |
| 1113 | */ |
| 1114 | IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER, |
| 1115 | { dev_kfree_skb(userdata); return -1; } ); |
| 1116 | } |
| 1117 | |
| 1118 | /* Initialize connection parameters */ |
| 1119 | self->connected = FALSE; |
| 1120 | self->avail_credit = 0; |
| 1121 | self->rx_max_sdu_size = max_sdu_size; |
| 1122 | self->rx_sdu_size = 0; |
| 1123 | self->rx_sdu_busy = FALSE; |
| 1124 | self->dtsap_sel = dtsap_sel; |
| 1125 | |
| 1126 | n = self->initial_credit; |
| 1127 | |
| 1128 | self->remote_credit = 0; |
| 1129 | self->send_credit = 0; |
| 1130 | |
| 1131 | /* |
| 1132 | * Give away max 127 credits for now |
| 1133 | */ |
| 1134 | if (n > 127) { |
| 1135 | self->avail_credit=n-127; |
| 1136 | n = 127; |
| 1137 | } |
| 1138 | |
| 1139 | self->remote_credit = n; |
| 1140 | |
| 1141 | /* SAR enabled? */ |
| 1142 | if (max_sdu_size > 0) { |
| 1143 | IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER), |
| 1144 | { dev_kfree_skb(tx_skb); return -1; } ); |
| 1145 | |
| 1146 | /* Insert SAR parameters */ |
| 1147 | frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER); |
| 1148 | |
| 1149 | frame[0] = TTP_PARAMETERS | n; |
| 1150 | frame[1] = 0x04; /* Length */ |
| 1151 | frame[2] = 0x01; /* MaxSduSize */ |
| 1152 | frame[3] = 0x02; /* Value length */ |
| 1153 | |
| 1154 | put_unaligned(cpu_to_be16((__u16) max_sdu_size), |
| 1155 | (__u16 *)(frame+4)); |
| 1156 | } else { |
| 1157 | /* Insert plain TTP header */ |
| 1158 | frame = skb_push(tx_skb, TTP_HEADER); |
| 1159 | |
| 1160 | /* Insert initial credit in frame */ |
| 1161 | frame[0] = n & 0x7f; |
| 1162 | } |
| 1163 | |
| 1164 | /* Connect with IrLMP. No QoS parameters for now */ |
| 1165 | return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos, |
| 1166 | tx_skb); |
| 1167 | } |
| 1168 | EXPORT_SYMBOL(irttp_connect_request); |
| 1169 | |
| 1170 | /* |
| 1171 | * Function irttp_connect_confirm (handle, qos, skb) |
| 1172 | * |
| 1173 | * Sevice user confirms TSAP connection with peer. |
| 1174 | * |
| 1175 | */ |
| 1176 | static void irttp_connect_confirm(void *instance, void *sap, |
| 1177 | struct qos_info *qos, __u32 max_seg_size, |
| 1178 | __u8 max_header_size, struct sk_buff *skb) |
| 1179 | { |
| 1180 | struct tsap_cb *self; |
| 1181 | int parameters; |
| 1182 | int ret; |
| 1183 | __u8 plen; |
| 1184 | __u8 n; |
| 1185 | |
| 1186 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); |
| 1187 | |
| 1188 | self = (struct tsap_cb *) instance; |
| 1189 | |
| 1190 | IRDA_ASSERT(self != NULL, return;); |
| 1191 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); |
| 1192 | IRDA_ASSERT(skb != NULL, return;); |
| 1193 | |
| 1194 | self->max_seg_size = max_seg_size - TTP_HEADER; |
| 1195 | self->max_header_size = max_header_size + TTP_HEADER; |
| 1196 | |
| 1197 | /* |
| 1198 | * Check if we have got some QoS parameters back! This should be the |
| 1199 | * negotiated QoS for the link. |
| 1200 | */ |
| 1201 | if (qos) { |
| 1202 | IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n", |
| 1203 | qos->baud_rate.bits); |
| 1204 | IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n", |
| 1205 | qos->baud_rate.value); |
| 1206 | } |
| 1207 | |
| 1208 | n = skb->data[0] & 0x7f; |
| 1209 | |
| 1210 | IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __FUNCTION__, n); |
| 1211 | |
| 1212 | self->send_credit = n; |
| 1213 | self->tx_max_sdu_size = 0; |
| 1214 | self->connected = TRUE; |
| 1215 | |
| 1216 | parameters = skb->data[0] & 0x80; |
| 1217 | |
| 1218 | IRDA_ASSERT(skb->len >= TTP_HEADER, return;); |
| 1219 | skb_pull(skb, TTP_HEADER); |
| 1220 | |
| 1221 | if (parameters) { |
| 1222 | plen = skb->data[0]; |
| 1223 | |
| 1224 | ret = irda_param_extract_all(self, skb->data+1, |
| 1225 | IRDA_MIN(skb->len-1, plen), |
| 1226 | ¶m_info); |
| 1227 | |
| 1228 | /* Any errors in the parameter list? */ |
| 1229 | if (ret < 0) { |
| 1230 | IRDA_WARNING("%s: error extracting parameters\n", |
| 1231 | __FUNCTION__); |
| 1232 | dev_kfree_skb(skb); |
| 1233 | |
| 1234 | /* Do not accept this connection attempt */ |
| 1235 | return; |
| 1236 | } |
| 1237 | /* Remove parameters */ |
| 1238 | skb_pull(skb, IRDA_MIN(skb->len, plen+1)); |
| 1239 | } |
| 1240 | |
| 1241 | IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__, |
| 1242 | self->send_credit, self->avail_credit, self->remote_credit); |
| 1243 | |
| 1244 | IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __FUNCTION__, |
| 1245 | self->tx_max_sdu_size); |
| 1246 | |
| 1247 | if (self->notify.connect_confirm) { |
| 1248 | self->notify.connect_confirm(self->notify.instance, self, qos, |
| 1249 | self->tx_max_sdu_size, |
| 1250 | self->max_header_size, skb); |
| 1251 | } else |
| 1252 | dev_kfree_skb(skb); |
| 1253 | } |
| 1254 | |
| 1255 | /* |
| 1256 | * Function irttp_connect_indication (handle, skb) |
| 1257 | * |
| 1258 | * Some other device is connecting to this TSAP |
| 1259 | * |
| 1260 | */ |
| 1261 | void irttp_connect_indication(void *instance, void *sap, struct qos_info *qos, |
| 1262 | __u32 max_seg_size, __u8 max_header_size, |
| 1263 | struct sk_buff *skb) |
| 1264 | { |
| 1265 | struct tsap_cb *self; |
| 1266 | struct lsap_cb *lsap; |
| 1267 | int parameters; |
| 1268 | int ret; |
| 1269 | __u8 plen; |
| 1270 | __u8 n; |
| 1271 | |
| 1272 | self = (struct tsap_cb *) instance; |
| 1273 | |
| 1274 | IRDA_ASSERT(self != NULL, return;); |
| 1275 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); |
| 1276 | IRDA_ASSERT(skb != NULL, return;); |
| 1277 | |
| 1278 | lsap = (struct lsap_cb *) sap; |
| 1279 | |
| 1280 | self->max_seg_size = max_seg_size - TTP_HEADER; |
| 1281 | self->max_header_size = max_header_size+TTP_HEADER; |
| 1282 | |
| 1283 | IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __FUNCTION__, self->stsap_sel); |
| 1284 | |
| 1285 | /* Need to update dtsap_sel if its equal to LSAP_ANY */ |
| 1286 | self->dtsap_sel = lsap->dlsap_sel; |
| 1287 | |
| 1288 | n = skb->data[0] & 0x7f; |
| 1289 | |
| 1290 | self->send_credit = n; |
| 1291 | self->tx_max_sdu_size = 0; |
| 1292 | |
| 1293 | parameters = skb->data[0] & 0x80; |
| 1294 | |
| 1295 | IRDA_ASSERT(skb->len >= TTP_HEADER, return;); |
| 1296 | skb_pull(skb, TTP_HEADER); |
| 1297 | |
| 1298 | if (parameters) { |
| 1299 | plen = skb->data[0]; |
| 1300 | |
| 1301 | ret = irda_param_extract_all(self, skb->data+1, |
| 1302 | IRDA_MIN(skb->len-1, plen), |
| 1303 | ¶m_info); |
| 1304 | |
| 1305 | /* Any errors in the parameter list? */ |
| 1306 | if (ret < 0) { |
| 1307 | IRDA_WARNING("%s: error extracting parameters\n", |
| 1308 | __FUNCTION__); |
| 1309 | dev_kfree_skb(skb); |
| 1310 | |
| 1311 | /* Do not accept this connection attempt */ |
| 1312 | return; |
| 1313 | } |
| 1314 | |
| 1315 | /* Remove parameters */ |
| 1316 | skb_pull(skb, IRDA_MIN(skb->len, plen+1)); |
| 1317 | } |
| 1318 | |
| 1319 | if (self->notify.connect_indication) { |
| 1320 | self->notify.connect_indication(self->notify.instance, self, |
| 1321 | qos, self->tx_max_sdu_size, |
| 1322 | self->max_header_size, skb); |
| 1323 | } else |
| 1324 | dev_kfree_skb(skb); |
| 1325 | } |
| 1326 | |
| 1327 | /* |
| 1328 | * Function irttp_connect_response (handle, userdata) |
| 1329 | * |
| 1330 | * Service user is accepting the connection, just pass it down to |
| 1331 | * IrLMP! |
| 1332 | * |
| 1333 | */ |
| 1334 | int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size, |
| 1335 | struct sk_buff *userdata) |
| 1336 | { |
| 1337 | struct sk_buff *tx_skb; |
| 1338 | __u8 *frame; |
| 1339 | int ret; |
| 1340 | __u8 n; |
| 1341 | |
| 1342 | IRDA_ASSERT(self != NULL, return -1;); |
| 1343 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;); |
| 1344 | |
| 1345 | IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __FUNCTION__, |
| 1346 | self->stsap_sel); |
| 1347 | |
| 1348 | /* Any userdata supplied? */ |
| 1349 | if (userdata == NULL) { |
| 1350 | tx_skb = dev_alloc_skb(64); |
| 1351 | if (!tx_skb) |
| 1352 | return -ENOMEM; |
| 1353 | |
| 1354 | /* Reserve space for MUX_CONTROL and LAP header */ |
| 1355 | skb_reserve(tx_skb, TTP_MAX_HEADER); |
| 1356 | } else { |
| 1357 | tx_skb = userdata; |
| 1358 | /* |
| 1359 | * Check that the client has reserved enough space for |
| 1360 | * headers |
| 1361 | */ |
| 1362 | IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER, |
| 1363 | { dev_kfree_skb(userdata); return -1; } ); |
| 1364 | } |
| 1365 | |
| 1366 | self->avail_credit = 0; |
| 1367 | self->remote_credit = 0; |
| 1368 | self->rx_max_sdu_size = max_sdu_size; |
| 1369 | self->rx_sdu_size = 0; |
| 1370 | self->rx_sdu_busy = FALSE; |
| 1371 | |
| 1372 | n = self->initial_credit; |
| 1373 | |
| 1374 | /* Frame has only space for max 127 credits (7 bits) */ |
| 1375 | if (n > 127) { |
| 1376 | self->avail_credit = n - 127; |
| 1377 | n = 127; |
| 1378 | } |
| 1379 | |
| 1380 | self->remote_credit = n; |
| 1381 | self->connected = TRUE; |
| 1382 | |
| 1383 | /* SAR enabled? */ |
| 1384 | if (max_sdu_size > 0) { |
| 1385 | IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER), |
| 1386 | { dev_kfree_skb(tx_skb); return -1; } ); |
| 1387 | |
| 1388 | /* Insert TTP header with SAR parameters */ |
| 1389 | frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER); |
| 1390 | |
| 1391 | frame[0] = TTP_PARAMETERS | n; |
| 1392 | frame[1] = 0x04; /* Length */ |
| 1393 | |
| 1394 | /* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1, */ |
| 1395 | /* TTP_SAR_HEADER, ¶m_info) */ |
| 1396 | |
| 1397 | frame[2] = 0x01; /* MaxSduSize */ |
| 1398 | frame[3] = 0x02; /* Value length */ |
| 1399 | |
| 1400 | put_unaligned(cpu_to_be16((__u16) max_sdu_size), |
| 1401 | (__u16 *)(frame+4)); |
| 1402 | } else { |
| 1403 | /* Insert TTP header */ |
| 1404 | frame = skb_push(tx_skb, TTP_HEADER); |
| 1405 | |
| 1406 | frame[0] = n & 0x7f; |
| 1407 | } |
| 1408 | |
| 1409 | ret = irlmp_connect_response(self->lsap, tx_skb); |
| 1410 | |
| 1411 | return ret; |
| 1412 | } |
| 1413 | EXPORT_SYMBOL(irttp_connect_response); |
| 1414 | |
| 1415 | /* |
| 1416 | * Function irttp_dup (self, instance) |
| 1417 | * |
| 1418 | * Duplicate TSAP, can be used by servers to confirm a connection on a |
| 1419 | * new TSAP so it can keep listening on the old one. |
| 1420 | */ |
| 1421 | struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance) |
| 1422 | { |
| 1423 | struct tsap_cb *new; |
| 1424 | unsigned long flags; |
| 1425 | |
| 1426 | IRDA_DEBUG(1, "%s()\n", __FUNCTION__); |
| 1427 | |
| 1428 | /* Protect our access to the old tsap instance */ |
| 1429 | spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags); |
| 1430 | |
| 1431 | /* Find the old instance */ |
| 1432 | if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) { |
| 1433 | IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __FUNCTION__); |
| 1434 | spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags); |
| 1435 | return NULL; |
| 1436 | } |
| 1437 | |
| 1438 | /* Allocate a new instance */ |
| 1439 | new = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC); |
| 1440 | if (!new) { |
| 1441 | IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __FUNCTION__); |
| 1442 | spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags); |
| 1443 | return NULL; |
| 1444 | } |
| 1445 | /* Dup */ |
| 1446 | memcpy(new, orig, sizeof(struct tsap_cb)); |
| 1447 | |
| 1448 | /* We don't need the old instance any more */ |
| 1449 | spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags); |
| 1450 | |
| 1451 | /* Try to dup the LSAP (may fail if we were too slow) */ |
| 1452 | new->lsap = irlmp_dup(orig->lsap, new); |
| 1453 | if (!new->lsap) { |
| 1454 | IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__); |
| 1455 | kfree(new); |
| 1456 | return NULL; |
| 1457 | } |
| 1458 | |
| 1459 | /* Not everything should be copied */ |
| 1460 | new->notify.instance = instance; |
| 1461 | init_timer(&new->todo_timer); |
| 1462 | |
| 1463 | skb_queue_head_init(&new->rx_queue); |
| 1464 | skb_queue_head_init(&new->tx_queue); |
| 1465 | skb_queue_head_init(&new->rx_fragments); |
| 1466 | |
| 1467 | /* This is locked */ |
| 1468 | hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL); |
| 1469 | |
| 1470 | return new; |
| 1471 | } |
| 1472 | EXPORT_SYMBOL(irttp_dup); |
| 1473 | |
| 1474 | /* |
| 1475 | * Function irttp_disconnect_request (self) |
| 1476 | * |
| 1477 | * Close this connection please! If priority is high, the queued data |
| 1478 | * segments, if any, will be deallocated first |
| 1479 | * |
| 1480 | */ |
| 1481 | int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata, |
| 1482 | int priority) |
| 1483 | { |
| 1484 | int ret; |
| 1485 | |
| 1486 | IRDA_ASSERT(self != NULL, return -1;); |
| 1487 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;); |
| 1488 | |
| 1489 | /* Already disconnected? */ |
| 1490 | if (!self->connected) { |
| 1491 | IRDA_DEBUG(4, "%s(), already disconnected!\n", __FUNCTION__); |
| 1492 | if (userdata) |
| 1493 | dev_kfree_skb(userdata); |
| 1494 | return -1; |
| 1495 | } |
| 1496 | |
| 1497 | /* Disconnect already pending ? |
| 1498 | * We need to use an atomic operation to prevent reentry. This |
| 1499 | * function may be called from various context, like user, timer |
| 1500 | * for following a disconnect_indication() (i.e. net_bh). |
| 1501 | * Jean II */ |
| 1502 | if(test_and_set_bit(0, &self->disconnect_pend)) { |
| 1503 | IRDA_DEBUG(0, "%s(), disconnect already pending\n", |
| 1504 | __FUNCTION__); |
| 1505 | if (userdata) |
| 1506 | dev_kfree_skb(userdata); |
| 1507 | |
| 1508 | /* Try to make some progress */ |
| 1509 | irttp_run_tx_queue(self); |
| 1510 | return -1; |
| 1511 | } |
| 1512 | |
| 1513 | /* |
| 1514 | * Check if there is still data segments in the transmit queue |
| 1515 | */ |
| 1516 | if (skb_queue_len(&self->tx_queue) > 0) { |
| 1517 | if (priority == P_HIGH) { |
| 1518 | /* |
| 1519 | * No need to send the queued data, if we are |
| 1520 | * disconnecting right now since the data will |
| 1521 | * not have any usable connection to be sent on |
| 1522 | */ |
| 1523 | IRDA_DEBUG(1, "%s(): High priority!!()\n", __FUNCTION__); |
| 1524 | irttp_flush_queues(self); |
| 1525 | } else if (priority == P_NORMAL) { |
| 1526 | /* |
| 1527 | * Must delay disconnect until after all data segments |
| 1528 | * have been sent and the tx_queue is empty |
| 1529 | */ |
| 1530 | /* We'll reuse this one later for the disconnect */ |
| 1531 | self->disconnect_skb = userdata; /* May be NULL */ |
| 1532 | |
| 1533 | irttp_run_tx_queue(self); |
| 1534 | |
| 1535 | irttp_start_todo_timer(self, HZ/10); |
| 1536 | return -1; |
| 1537 | } |
| 1538 | } |
| 1539 | /* Note : we don't need to check if self->rx_queue is full and the |
| 1540 | * state of self->rx_sdu_busy because the disconnect response will |
| 1541 | * be sent at the LMP level (so even if the peer has its Tx queue |
| 1542 | * full of data). - Jean II */ |
| 1543 | |
| 1544 | IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __FUNCTION__); |
| 1545 | self->connected = FALSE; |
| 1546 | |
| 1547 | if (!userdata) { |
| 1548 | struct sk_buff *tx_skb; |
| 1549 | tx_skb = dev_alloc_skb(64); |
| 1550 | if (!tx_skb) |
| 1551 | return -ENOMEM; |
| 1552 | |
| 1553 | /* |
| 1554 | * Reserve space for MUX and LAP header |
| 1555 | */ |
| 1556 | skb_reserve(tx_skb, TTP_MAX_HEADER); |
| 1557 | |
| 1558 | userdata = tx_skb; |
| 1559 | } |
| 1560 | ret = irlmp_disconnect_request(self->lsap, userdata); |
| 1561 | |
| 1562 | /* The disconnect is no longer pending */ |
| 1563 | clear_bit(0, &self->disconnect_pend); /* FALSE */ |
| 1564 | |
| 1565 | return ret; |
| 1566 | } |
| 1567 | EXPORT_SYMBOL(irttp_disconnect_request); |
| 1568 | |
| 1569 | /* |
| 1570 | * Function irttp_disconnect_indication (self, reason) |
| 1571 | * |
| 1572 | * Disconnect indication, TSAP disconnected by peer? |
| 1573 | * |
| 1574 | */ |
| 1575 | void irttp_disconnect_indication(void *instance, void *sap, LM_REASON reason, |
| 1576 | struct sk_buff *skb) |
| 1577 | { |
| 1578 | struct tsap_cb *self; |
| 1579 | |
| 1580 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); |
| 1581 | |
| 1582 | self = (struct tsap_cb *) instance; |
| 1583 | |
| 1584 | IRDA_ASSERT(self != NULL, return;); |
| 1585 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); |
| 1586 | |
| 1587 | /* Prevent higher layer to send more data */ |
| 1588 | self->connected = FALSE; |
| 1589 | |
| 1590 | /* Check if client has already tried to close the TSAP */ |
| 1591 | if (self->close_pend) { |
| 1592 | /* In this case, the higher layer is probably gone. Don't |
| 1593 | * bother it and clean up the remains - Jean II */ |
| 1594 | if (skb) |
| 1595 | dev_kfree_skb(skb); |
| 1596 | irttp_close_tsap(self); |
| 1597 | return; |
| 1598 | } |
| 1599 | |
| 1600 | /* If we are here, we assume that is the higher layer is still |
| 1601 | * waiting for the disconnect notification and able to process it, |
| 1602 | * even if he tried to disconnect. Otherwise, it would have already |
| 1603 | * attempted to close the tsap and self->close_pend would be TRUE. |
| 1604 | * Jean II */ |
| 1605 | |
| 1606 | /* No need to notify the client if has already tried to disconnect */ |
| 1607 | if(self->notify.disconnect_indication) |
| 1608 | self->notify.disconnect_indication(self->notify.instance, self, |
| 1609 | reason, skb); |
| 1610 | else |
| 1611 | if (skb) |
| 1612 | dev_kfree_skb(skb); |
| 1613 | } |
| 1614 | |
| 1615 | /* |
| 1616 | * Function irttp_do_data_indication (self, skb) |
| 1617 | * |
| 1618 | * Try to deliver reassembled skb to layer above, and requeue it if that |
| 1619 | * for some reason should fail. We mark rx sdu as busy to apply back |
| 1620 | * pressure is necessary. |
| 1621 | */ |
| 1622 | static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb) |
| 1623 | { |
| 1624 | int err; |
| 1625 | |
| 1626 | /* Check if client has already closed the TSAP and gone away */ |
| 1627 | if (self->close_pend) { |
| 1628 | dev_kfree_skb(skb); |
| 1629 | return; |
| 1630 | } |
| 1631 | |
| 1632 | err = self->notify.data_indication(self->notify.instance, self, skb); |
| 1633 | |
| 1634 | /* Usually the layer above will notify that it's input queue is |
| 1635 | * starting to get filled by using the flow request, but this may |
| 1636 | * be difficult, so it can instead just refuse to eat it and just |
| 1637 | * give an error back |
| 1638 | */ |
| 1639 | if (err) { |
| 1640 | IRDA_DEBUG(0, "%s() requeueing skb!\n", __FUNCTION__); |
| 1641 | |
| 1642 | /* Make sure we take a break */ |
| 1643 | self->rx_sdu_busy = TRUE; |
| 1644 | |
| 1645 | /* Need to push the header in again */ |
| 1646 | skb_push(skb, TTP_HEADER); |
| 1647 | skb->data[0] = 0x00; /* Make sure MORE bit is cleared */ |
| 1648 | |
| 1649 | /* Put skb back on queue */ |
| 1650 | skb_queue_head(&self->rx_queue, skb); |
| 1651 | } |
| 1652 | } |
| 1653 | |
| 1654 | /* |
| 1655 | * Function irttp_run_rx_queue (self) |
| 1656 | * |
| 1657 | * Check if we have any frames to be transmitted, or if we have any |
| 1658 | * available credit to give away. |
| 1659 | */ |
| 1660 | void irttp_run_rx_queue(struct tsap_cb *self) |
| 1661 | { |
| 1662 | struct sk_buff *skb; |
| 1663 | int more = 0; |
| 1664 | |
| 1665 | IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__, |
| 1666 | self->send_credit, self->avail_credit, self->remote_credit); |
| 1667 | |
| 1668 | /* Get exclusive access to the rx queue, otherwise don't touch it */ |
| 1669 | if (irda_lock(&self->rx_queue_lock) == FALSE) |
| 1670 | return; |
| 1671 | |
| 1672 | /* |
| 1673 | * Reassemble all frames in receive queue and deliver them |
| 1674 | */ |
| 1675 | while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) { |
| 1676 | /* This bit will tell us if it's the last fragment or not */ |
| 1677 | more = skb->data[0] & 0x80; |
| 1678 | |
| 1679 | /* Remove TTP header */ |
| 1680 | skb_pull(skb, TTP_HEADER); |
| 1681 | |
| 1682 | /* Add the length of the remaining data */ |
| 1683 | self->rx_sdu_size += skb->len; |
| 1684 | |
| 1685 | /* |
| 1686 | * If SAR is disabled, or user has requested no reassembly |
| 1687 | * of received fragments then we just deliver them |
| 1688 | * immediately. This can be requested by clients that |
| 1689 | * implements byte streams without any message boundaries |
| 1690 | */ |
| 1691 | if (self->rx_max_sdu_size == TTP_SAR_DISABLE) { |
| 1692 | irttp_do_data_indication(self, skb); |
| 1693 | self->rx_sdu_size = 0; |
| 1694 | |
| 1695 | continue; |
| 1696 | } |
| 1697 | |
| 1698 | /* Check if this is a fragment, and not the last fragment */ |
| 1699 | if (more) { |
| 1700 | /* |
| 1701 | * Queue the fragment if we still are within the |
| 1702 | * limits of the maximum size of the rx_sdu |
| 1703 | */ |
| 1704 | if (self->rx_sdu_size <= self->rx_max_sdu_size) { |
| 1705 | IRDA_DEBUG(4, "%s(), queueing frag\n", |
| 1706 | __FUNCTION__); |
| 1707 | skb_queue_tail(&self->rx_fragments, skb); |
| 1708 | } else { |
| 1709 | /* Free the part of the SDU that is too big */ |
| 1710 | dev_kfree_skb(skb); |
| 1711 | } |
| 1712 | continue; |
| 1713 | } |
| 1714 | /* |
| 1715 | * This is the last fragment, so time to reassemble! |
| 1716 | */ |
| 1717 | if ((self->rx_sdu_size <= self->rx_max_sdu_size) || |
| 1718 | (self->rx_max_sdu_size == TTP_SAR_UNBOUND)) |
| 1719 | { |
| 1720 | /* |
| 1721 | * A little optimizing. Only queue the fragment if |
| 1722 | * there are other fragments. Since if this is the |
| 1723 | * last and only fragment, there is no need to |
| 1724 | * reassemble :-) |
| 1725 | */ |
| 1726 | if (!skb_queue_empty(&self->rx_fragments)) { |
| 1727 | skb_queue_tail(&self->rx_fragments, |
| 1728 | skb); |
| 1729 | |
| 1730 | skb = irttp_reassemble_skb(self); |
| 1731 | } |
| 1732 | |
| 1733 | /* Now we can deliver the reassembled skb */ |
| 1734 | irttp_do_data_indication(self, skb); |
| 1735 | } else { |
| 1736 | IRDA_DEBUG(1, "%s(), Truncated frame\n", __FUNCTION__); |
| 1737 | |
| 1738 | /* Free the part of the SDU that is too big */ |
| 1739 | dev_kfree_skb(skb); |
| 1740 | |
| 1741 | /* Deliver only the valid but truncated part of SDU */ |
| 1742 | skb = irttp_reassemble_skb(self); |
| 1743 | |
| 1744 | irttp_do_data_indication(self, skb); |
| 1745 | } |
| 1746 | self->rx_sdu_size = 0; |
| 1747 | } |
| 1748 | |
| 1749 | /* |
| 1750 | * It's not trivial to keep track of how many credits are available |
| 1751 | * by incrementing at each packet, because delivery may fail |
| 1752 | * (irttp_do_data_indication() may requeue the frame) and because |
| 1753 | * we need to take care of fragmentation. |
| 1754 | * We want the other side to send up to initial_credit packets. |
| 1755 | * We have some frames in our queues, and we have already allowed it |
| 1756 | * to send remote_credit. |
| 1757 | * No need to spinlock, write is atomic and self correcting... |
| 1758 | * Jean II |
| 1759 | */ |
| 1760 | self->avail_credit = (self->initial_credit - |
| 1761 | (self->remote_credit + |
| 1762 | skb_queue_len(&self->rx_queue) + |
| 1763 | skb_queue_len(&self->rx_fragments))); |
| 1764 | |
| 1765 | /* Do we have too much credits to send to peer ? */ |
| 1766 | if ((self->remote_credit <= TTP_RX_MIN_CREDIT) && |
| 1767 | (self->avail_credit > 0)) { |
| 1768 | /* Send explicit credit frame */ |
| 1769 | irttp_give_credit(self); |
| 1770 | /* Note : do *NOT* check if tx_queue is non-empty, that |
| 1771 | * will produce deadlocks. I repeat : send a credit frame |
| 1772 | * even if we have something to send in our Tx queue. |
| 1773 | * If we have credits, it means that our Tx queue is blocked. |
| 1774 | * |
| 1775 | * Let's suppose the peer can't keep up with our Tx. He will |
| 1776 | * flow control us by not sending us any credits, and we |
| 1777 | * will stop Tx and start accumulating credits here. |
| 1778 | * Up to the point where the peer will stop its Tx queue, |
| 1779 | * for lack of credits. |
| 1780 | * Let's assume the peer application is single threaded. |
| 1781 | * It will block on Tx and never consume any Rx buffer. |
| 1782 | * Deadlock. Guaranteed. - Jean II |
| 1783 | */ |
| 1784 | } |
| 1785 | |
| 1786 | /* Reset lock */ |
| 1787 | self->rx_queue_lock = 0; |
| 1788 | } |
| 1789 | |
| 1790 | #ifdef CONFIG_PROC_FS |
| 1791 | struct irttp_iter_state { |
| 1792 | int id; |
| 1793 | }; |
| 1794 | |
| 1795 | static void *irttp_seq_start(struct seq_file *seq, loff_t *pos) |
| 1796 | { |
| 1797 | struct irttp_iter_state *iter = seq->private; |
| 1798 | struct tsap_cb *self; |
| 1799 | |
| 1800 | /* Protect our access to the tsap list */ |
| 1801 | spin_lock_irq(&irttp->tsaps->hb_spinlock); |
| 1802 | iter->id = 0; |
| 1803 | |
| 1804 | for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps); |
| 1805 | self != NULL; |
| 1806 | self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) { |
| 1807 | if (iter->id == *pos) |
| 1808 | break; |
| 1809 | ++iter->id; |
| 1810 | } |
| 1811 | |
| 1812 | return self; |
| 1813 | } |
| 1814 | |
| 1815 | static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| 1816 | { |
| 1817 | struct irttp_iter_state *iter = seq->private; |
| 1818 | |
| 1819 | ++*pos; |
| 1820 | ++iter->id; |
| 1821 | return (void *) hashbin_get_next(irttp->tsaps); |
| 1822 | } |
| 1823 | |
| 1824 | static void irttp_seq_stop(struct seq_file *seq, void *v) |
| 1825 | { |
| 1826 | spin_unlock_irq(&irttp->tsaps->hb_spinlock); |
| 1827 | } |
| 1828 | |
| 1829 | static int irttp_seq_show(struct seq_file *seq, void *v) |
| 1830 | { |
| 1831 | const struct irttp_iter_state *iter = seq->private; |
| 1832 | const struct tsap_cb *self = v; |
| 1833 | |
| 1834 | seq_printf(seq, "TSAP %d, ", iter->id); |
| 1835 | seq_printf(seq, "stsap_sel: %02x, ", |
| 1836 | self->stsap_sel); |
| 1837 | seq_printf(seq, "dtsap_sel: %02x\n", |
| 1838 | self->dtsap_sel); |
| 1839 | seq_printf(seq, " connected: %s, ", |
| 1840 | self->connected? "TRUE":"FALSE"); |
| 1841 | seq_printf(seq, "avail credit: %d, ", |
| 1842 | self->avail_credit); |
| 1843 | seq_printf(seq, "remote credit: %d, ", |
| 1844 | self->remote_credit); |
| 1845 | seq_printf(seq, "send credit: %d\n", |
| 1846 | self->send_credit); |
| 1847 | seq_printf(seq, " tx packets: %ld, ", |
| 1848 | self->stats.tx_packets); |
| 1849 | seq_printf(seq, "rx packets: %ld, ", |
| 1850 | self->stats.rx_packets); |
| 1851 | seq_printf(seq, "tx_queue len: %d ", |
| 1852 | skb_queue_len(&self->tx_queue)); |
| 1853 | seq_printf(seq, "rx_queue len: %d\n", |
| 1854 | skb_queue_len(&self->rx_queue)); |
| 1855 | seq_printf(seq, " tx_sdu_busy: %s, ", |
| 1856 | self->tx_sdu_busy? "TRUE":"FALSE"); |
| 1857 | seq_printf(seq, "rx_sdu_busy: %s\n", |
| 1858 | self->rx_sdu_busy? "TRUE":"FALSE"); |
| 1859 | seq_printf(seq, " max_seg_size: %d, ", |
| 1860 | self->max_seg_size); |
| 1861 | seq_printf(seq, "tx_max_sdu_size: %d, ", |
| 1862 | self->tx_max_sdu_size); |
| 1863 | seq_printf(seq, "rx_max_sdu_size: %d\n", |
| 1864 | self->rx_max_sdu_size); |
| 1865 | |
| 1866 | seq_printf(seq, " Used by (%s)\n\n", |
| 1867 | self->notify.name); |
| 1868 | return 0; |
| 1869 | } |
| 1870 | |
| 1871 | static struct seq_operations irttp_seq_ops = { |
| 1872 | .start = irttp_seq_start, |
| 1873 | .next = irttp_seq_next, |
| 1874 | .stop = irttp_seq_stop, |
| 1875 | .show = irttp_seq_show, |
| 1876 | }; |
| 1877 | |
| 1878 | static int irttp_seq_open(struct inode *inode, struct file *file) |
| 1879 | { |
| 1880 | struct seq_file *seq; |
| 1881 | int rc = -ENOMEM; |
| 1882 | struct irttp_iter_state *s; |
| 1883 | |
| 1884 | IRDA_ASSERT(irttp != NULL, return -EINVAL;); |
| 1885 | |
| 1886 | s = kmalloc(sizeof(*s), GFP_KERNEL); |
| 1887 | if (!s) |
| 1888 | goto out; |
| 1889 | |
| 1890 | rc = seq_open(file, &irttp_seq_ops); |
| 1891 | if (rc) |
| 1892 | goto out_kfree; |
| 1893 | |
| 1894 | seq = file->private_data; |
| 1895 | seq->private = s; |
| 1896 | memset(s, 0, sizeof(*s)); |
| 1897 | out: |
| 1898 | return rc; |
| 1899 | out_kfree: |
| 1900 | kfree(s); |
| 1901 | goto out; |
| 1902 | } |
| 1903 | |
| 1904 | struct file_operations irttp_seq_fops = { |
| 1905 | .owner = THIS_MODULE, |
| 1906 | .open = irttp_seq_open, |
| 1907 | .read = seq_read, |
| 1908 | .llseek = seq_lseek, |
| 1909 | .release = seq_release_private, |
| 1910 | }; |
| 1911 | |
| 1912 | #endif /* PROC_FS */ |