Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003 |
| 3 | * |
| 4 | * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org> |
| 5 | * Copyright (C) 2003 Red Hat <alan@redhat.com> |
| 6 | * |
| 7 | */ |
| 8 | |
| 9 | #include <linux/config.h> |
| 10 | #include <linux/module.h> |
| 11 | #include <linux/types.h> |
| 12 | #include <linux/string.h> |
| 13 | #include <linux/kernel.h> |
| 14 | #include <linux/timer.h> |
| 15 | #include <linux/mm.h> |
| 16 | #include <linux/interrupt.h> |
| 17 | #include <linux/major.h> |
| 18 | #include <linux/errno.h> |
| 19 | #include <linux/genhd.h> |
| 20 | #include <linux/blkpg.h> |
| 21 | #include <linux/slab.h> |
| 22 | #include <linux/pci.h> |
| 23 | #include <linux/delay.h> |
| 24 | #include <linux/hdreg.h> |
| 25 | #include <linux/ide.h> |
| 26 | #include <linux/bitops.h> |
| 27 | |
| 28 | #include <asm/byteorder.h> |
| 29 | #include <asm/irq.h> |
| 30 | #include <asm/uaccess.h> |
| 31 | #include <asm/io.h> |
| 32 | |
| 33 | /* |
| 34 | * Conventional PIO operations for ATA devices |
| 35 | */ |
| 36 | |
| 37 | static u8 ide_inb (unsigned long port) |
| 38 | { |
| 39 | return (u8) inb(port); |
| 40 | } |
| 41 | |
| 42 | static u16 ide_inw (unsigned long port) |
| 43 | { |
| 44 | return (u16) inw(port); |
| 45 | } |
| 46 | |
| 47 | static void ide_insw (unsigned long port, void *addr, u32 count) |
| 48 | { |
| 49 | insw(port, addr, count); |
| 50 | } |
| 51 | |
| 52 | static u32 ide_inl (unsigned long port) |
| 53 | { |
| 54 | return (u32) inl(port); |
| 55 | } |
| 56 | |
| 57 | static void ide_insl (unsigned long port, void *addr, u32 count) |
| 58 | { |
| 59 | insl(port, addr, count); |
| 60 | } |
| 61 | |
| 62 | static void ide_outb (u8 val, unsigned long port) |
| 63 | { |
| 64 | outb(val, port); |
| 65 | } |
| 66 | |
| 67 | static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port) |
| 68 | { |
| 69 | outb(addr, port); |
| 70 | } |
| 71 | |
| 72 | static void ide_outw (u16 val, unsigned long port) |
| 73 | { |
| 74 | outw(val, port); |
| 75 | } |
| 76 | |
| 77 | static void ide_outsw (unsigned long port, void *addr, u32 count) |
| 78 | { |
| 79 | outsw(port, addr, count); |
| 80 | } |
| 81 | |
| 82 | static void ide_outl (u32 val, unsigned long port) |
| 83 | { |
| 84 | outl(val, port); |
| 85 | } |
| 86 | |
| 87 | static void ide_outsl (unsigned long port, void *addr, u32 count) |
| 88 | { |
| 89 | outsl(port, addr, count); |
| 90 | } |
| 91 | |
| 92 | void default_hwif_iops (ide_hwif_t *hwif) |
| 93 | { |
| 94 | hwif->OUTB = ide_outb; |
| 95 | hwif->OUTBSYNC = ide_outbsync; |
| 96 | hwif->OUTW = ide_outw; |
| 97 | hwif->OUTL = ide_outl; |
| 98 | hwif->OUTSW = ide_outsw; |
| 99 | hwif->OUTSL = ide_outsl; |
| 100 | hwif->INB = ide_inb; |
| 101 | hwif->INW = ide_inw; |
| 102 | hwif->INL = ide_inl; |
| 103 | hwif->INSW = ide_insw; |
| 104 | hwif->INSL = ide_insl; |
| 105 | } |
| 106 | |
| 107 | EXPORT_SYMBOL(default_hwif_iops); |
| 108 | |
| 109 | /* |
| 110 | * MMIO operations, typically used for SATA controllers |
| 111 | */ |
| 112 | |
| 113 | static u8 ide_mm_inb (unsigned long port) |
| 114 | { |
| 115 | return (u8) readb((void __iomem *) port); |
| 116 | } |
| 117 | |
| 118 | static u16 ide_mm_inw (unsigned long port) |
| 119 | { |
| 120 | return (u16) readw((void __iomem *) port); |
| 121 | } |
| 122 | |
| 123 | static void ide_mm_insw (unsigned long port, void *addr, u32 count) |
| 124 | { |
| 125 | __ide_mm_insw((void __iomem *) port, addr, count); |
| 126 | } |
| 127 | |
| 128 | static u32 ide_mm_inl (unsigned long port) |
| 129 | { |
| 130 | return (u32) readl((void __iomem *) port); |
| 131 | } |
| 132 | |
| 133 | static void ide_mm_insl (unsigned long port, void *addr, u32 count) |
| 134 | { |
| 135 | __ide_mm_insl((void __iomem *) port, addr, count); |
| 136 | } |
| 137 | |
| 138 | static void ide_mm_outb (u8 value, unsigned long port) |
| 139 | { |
| 140 | writeb(value, (void __iomem *) port); |
| 141 | } |
| 142 | |
| 143 | static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port) |
| 144 | { |
| 145 | writeb(value, (void __iomem *) port); |
| 146 | } |
| 147 | |
| 148 | static void ide_mm_outw (u16 value, unsigned long port) |
| 149 | { |
| 150 | writew(value, (void __iomem *) port); |
| 151 | } |
| 152 | |
| 153 | static void ide_mm_outsw (unsigned long port, void *addr, u32 count) |
| 154 | { |
| 155 | __ide_mm_outsw((void __iomem *) port, addr, count); |
| 156 | } |
| 157 | |
| 158 | static void ide_mm_outl (u32 value, unsigned long port) |
| 159 | { |
| 160 | writel(value, (void __iomem *) port); |
| 161 | } |
| 162 | |
| 163 | static void ide_mm_outsl (unsigned long port, void *addr, u32 count) |
| 164 | { |
| 165 | __ide_mm_outsl((void __iomem *) port, addr, count); |
| 166 | } |
| 167 | |
| 168 | void default_hwif_mmiops (ide_hwif_t *hwif) |
| 169 | { |
| 170 | hwif->OUTB = ide_mm_outb; |
| 171 | /* Most systems will need to override OUTBSYNC, alas however |
| 172 | this one is controller specific! */ |
| 173 | hwif->OUTBSYNC = ide_mm_outbsync; |
| 174 | hwif->OUTW = ide_mm_outw; |
| 175 | hwif->OUTL = ide_mm_outl; |
| 176 | hwif->OUTSW = ide_mm_outsw; |
| 177 | hwif->OUTSL = ide_mm_outsl; |
| 178 | hwif->INB = ide_mm_inb; |
| 179 | hwif->INW = ide_mm_inw; |
| 180 | hwif->INL = ide_mm_inl; |
| 181 | hwif->INSW = ide_mm_insw; |
| 182 | hwif->INSL = ide_mm_insl; |
| 183 | } |
| 184 | |
| 185 | EXPORT_SYMBOL(default_hwif_mmiops); |
| 186 | |
| 187 | u32 ide_read_24 (ide_drive_t *drive) |
| 188 | { |
| 189 | u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG); |
| 190 | u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG); |
| 191 | u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG); |
| 192 | return (hcyl<<16)|(lcyl<<8)|sect; |
| 193 | } |
| 194 | |
| 195 | void SELECT_DRIVE (ide_drive_t *drive) |
| 196 | { |
| 197 | if (HWIF(drive)->selectproc) |
| 198 | HWIF(drive)->selectproc(drive); |
| 199 | HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG); |
| 200 | } |
| 201 | |
| 202 | EXPORT_SYMBOL(SELECT_DRIVE); |
| 203 | |
| 204 | void SELECT_INTERRUPT (ide_drive_t *drive) |
| 205 | { |
| 206 | if (HWIF(drive)->intrproc) |
| 207 | HWIF(drive)->intrproc(drive); |
| 208 | else |
| 209 | HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG); |
| 210 | } |
| 211 | |
| 212 | void SELECT_MASK (ide_drive_t *drive, int mask) |
| 213 | { |
| 214 | if (HWIF(drive)->maskproc) |
| 215 | HWIF(drive)->maskproc(drive, mask); |
| 216 | } |
| 217 | |
| 218 | void QUIRK_LIST (ide_drive_t *drive) |
| 219 | { |
| 220 | if (HWIF(drive)->quirkproc) |
| 221 | drive->quirk_list = HWIF(drive)->quirkproc(drive); |
| 222 | } |
| 223 | |
| 224 | /* |
| 225 | * Some localbus EIDE interfaces require a special access sequence |
| 226 | * when using 32-bit I/O instructions to transfer data. We call this |
| 227 | * the "vlb_sync" sequence, which consists of three successive reads |
| 228 | * of the sector count register location, with interrupts disabled |
| 229 | * to ensure that the reads all happen together. |
| 230 | */ |
| 231 | static void ata_vlb_sync(ide_drive_t *drive, unsigned long port) |
| 232 | { |
| 233 | (void) HWIF(drive)->INB(port); |
| 234 | (void) HWIF(drive)->INB(port); |
| 235 | (void) HWIF(drive)->INB(port); |
| 236 | } |
| 237 | |
| 238 | /* |
| 239 | * This is used for most PIO data transfers *from* the IDE interface |
| 240 | */ |
| 241 | static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount) |
| 242 | { |
| 243 | ide_hwif_t *hwif = HWIF(drive); |
| 244 | u8 io_32bit = drive->io_32bit; |
| 245 | |
| 246 | if (io_32bit) { |
| 247 | if (io_32bit & 2) { |
| 248 | unsigned long flags; |
| 249 | local_irq_save(flags); |
| 250 | ata_vlb_sync(drive, IDE_NSECTOR_REG); |
| 251 | hwif->INSL(IDE_DATA_REG, buffer, wcount); |
| 252 | local_irq_restore(flags); |
| 253 | } else |
| 254 | hwif->INSL(IDE_DATA_REG, buffer, wcount); |
| 255 | } else { |
| 256 | hwif->INSW(IDE_DATA_REG, buffer, wcount<<1); |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | /* |
| 261 | * This is used for most PIO data transfers *to* the IDE interface |
| 262 | */ |
| 263 | static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount) |
| 264 | { |
| 265 | ide_hwif_t *hwif = HWIF(drive); |
| 266 | u8 io_32bit = drive->io_32bit; |
| 267 | |
| 268 | if (io_32bit) { |
| 269 | if (io_32bit & 2) { |
| 270 | unsigned long flags; |
| 271 | local_irq_save(flags); |
| 272 | ata_vlb_sync(drive, IDE_NSECTOR_REG); |
| 273 | hwif->OUTSL(IDE_DATA_REG, buffer, wcount); |
| 274 | local_irq_restore(flags); |
| 275 | } else |
| 276 | hwif->OUTSL(IDE_DATA_REG, buffer, wcount); |
| 277 | } else { |
| 278 | hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1); |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | /* |
| 283 | * The following routines are mainly used by the ATAPI drivers. |
| 284 | * |
| 285 | * These routines will round up any request for an odd number of bytes, |
| 286 | * so if an odd bytecount is specified, be sure that there's at least one |
| 287 | * extra byte allocated for the buffer. |
| 288 | */ |
| 289 | |
| 290 | static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount) |
| 291 | { |
| 292 | ide_hwif_t *hwif = HWIF(drive); |
| 293 | |
| 294 | ++bytecount; |
| 295 | #if defined(CONFIG_ATARI) || defined(CONFIG_Q40) |
| 296 | if (MACH_IS_ATARI || MACH_IS_Q40) { |
| 297 | /* Atari has a byte-swapped IDE interface */ |
| 298 | insw_swapw(IDE_DATA_REG, buffer, bytecount / 2); |
| 299 | return; |
| 300 | } |
| 301 | #endif /* CONFIG_ATARI || CONFIG_Q40 */ |
| 302 | hwif->ata_input_data(drive, buffer, bytecount / 4); |
| 303 | if ((bytecount & 0x03) >= 2) |
| 304 | hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1); |
| 305 | } |
| 306 | |
| 307 | static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount) |
| 308 | { |
| 309 | ide_hwif_t *hwif = HWIF(drive); |
| 310 | |
| 311 | ++bytecount; |
| 312 | #if defined(CONFIG_ATARI) || defined(CONFIG_Q40) |
| 313 | if (MACH_IS_ATARI || MACH_IS_Q40) { |
| 314 | /* Atari has a byte-swapped IDE interface */ |
| 315 | outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2); |
| 316 | return; |
| 317 | } |
| 318 | #endif /* CONFIG_ATARI || CONFIG_Q40 */ |
| 319 | hwif->ata_output_data(drive, buffer, bytecount / 4); |
| 320 | if ((bytecount & 0x03) >= 2) |
| 321 | hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1); |
| 322 | } |
| 323 | |
| 324 | void default_hwif_transport(ide_hwif_t *hwif) |
| 325 | { |
| 326 | hwif->ata_input_data = ata_input_data; |
| 327 | hwif->ata_output_data = ata_output_data; |
| 328 | hwif->atapi_input_bytes = atapi_input_bytes; |
| 329 | hwif->atapi_output_bytes = atapi_output_bytes; |
| 330 | } |
| 331 | |
| 332 | EXPORT_SYMBOL(default_hwif_transport); |
| 333 | |
| 334 | /* |
| 335 | * Beginning of Taskfile OPCODE Library and feature sets. |
| 336 | */ |
| 337 | void ide_fix_driveid (struct hd_driveid *id) |
| 338 | { |
| 339 | #ifndef __LITTLE_ENDIAN |
| 340 | # ifdef __BIG_ENDIAN |
| 341 | int i; |
| 342 | u16 *stringcast; |
| 343 | |
| 344 | id->config = __le16_to_cpu(id->config); |
| 345 | id->cyls = __le16_to_cpu(id->cyls); |
| 346 | id->reserved2 = __le16_to_cpu(id->reserved2); |
| 347 | id->heads = __le16_to_cpu(id->heads); |
| 348 | id->track_bytes = __le16_to_cpu(id->track_bytes); |
| 349 | id->sector_bytes = __le16_to_cpu(id->sector_bytes); |
| 350 | id->sectors = __le16_to_cpu(id->sectors); |
| 351 | id->vendor0 = __le16_to_cpu(id->vendor0); |
| 352 | id->vendor1 = __le16_to_cpu(id->vendor1); |
| 353 | id->vendor2 = __le16_to_cpu(id->vendor2); |
| 354 | stringcast = (u16 *)&id->serial_no[0]; |
| 355 | for (i = 0; i < (20/2); i++) |
| 356 | stringcast[i] = __le16_to_cpu(stringcast[i]); |
| 357 | id->buf_type = __le16_to_cpu(id->buf_type); |
| 358 | id->buf_size = __le16_to_cpu(id->buf_size); |
| 359 | id->ecc_bytes = __le16_to_cpu(id->ecc_bytes); |
| 360 | stringcast = (u16 *)&id->fw_rev[0]; |
| 361 | for (i = 0; i < (8/2); i++) |
| 362 | stringcast[i] = __le16_to_cpu(stringcast[i]); |
| 363 | stringcast = (u16 *)&id->model[0]; |
| 364 | for (i = 0; i < (40/2); i++) |
| 365 | stringcast[i] = __le16_to_cpu(stringcast[i]); |
| 366 | id->dword_io = __le16_to_cpu(id->dword_io); |
| 367 | id->reserved50 = __le16_to_cpu(id->reserved50); |
| 368 | id->field_valid = __le16_to_cpu(id->field_valid); |
| 369 | id->cur_cyls = __le16_to_cpu(id->cur_cyls); |
| 370 | id->cur_heads = __le16_to_cpu(id->cur_heads); |
| 371 | id->cur_sectors = __le16_to_cpu(id->cur_sectors); |
| 372 | id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0); |
| 373 | id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1); |
| 374 | id->lba_capacity = __le32_to_cpu(id->lba_capacity); |
| 375 | id->dma_1word = __le16_to_cpu(id->dma_1word); |
| 376 | id->dma_mword = __le16_to_cpu(id->dma_mword); |
| 377 | id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes); |
| 378 | id->eide_dma_min = __le16_to_cpu(id->eide_dma_min); |
| 379 | id->eide_dma_time = __le16_to_cpu(id->eide_dma_time); |
| 380 | id->eide_pio = __le16_to_cpu(id->eide_pio); |
| 381 | id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy); |
| 382 | for (i = 0; i < 2; ++i) |
| 383 | id->words69_70[i] = __le16_to_cpu(id->words69_70[i]); |
| 384 | for (i = 0; i < 4; ++i) |
| 385 | id->words71_74[i] = __le16_to_cpu(id->words71_74[i]); |
| 386 | id->queue_depth = __le16_to_cpu(id->queue_depth); |
| 387 | for (i = 0; i < 4; ++i) |
| 388 | id->words76_79[i] = __le16_to_cpu(id->words76_79[i]); |
| 389 | id->major_rev_num = __le16_to_cpu(id->major_rev_num); |
| 390 | id->minor_rev_num = __le16_to_cpu(id->minor_rev_num); |
| 391 | id->command_set_1 = __le16_to_cpu(id->command_set_1); |
| 392 | id->command_set_2 = __le16_to_cpu(id->command_set_2); |
| 393 | id->cfsse = __le16_to_cpu(id->cfsse); |
| 394 | id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1); |
| 395 | id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2); |
| 396 | id->csf_default = __le16_to_cpu(id->csf_default); |
| 397 | id->dma_ultra = __le16_to_cpu(id->dma_ultra); |
| 398 | id->trseuc = __le16_to_cpu(id->trseuc); |
| 399 | id->trsEuc = __le16_to_cpu(id->trsEuc); |
| 400 | id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues); |
| 401 | id->mprc = __le16_to_cpu(id->mprc); |
| 402 | id->hw_config = __le16_to_cpu(id->hw_config); |
| 403 | id->acoustic = __le16_to_cpu(id->acoustic); |
| 404 | id->msrqs = __le16_to_cpu(id->msrqs); |
| 405 | id->sxfert = __le16_to_cpu(id->sxfert); |
| 406 | id->sal = __le16_to_cpu(id->sal); |
| 407 | id->spg = __le32_to_cpu(id->spg); |
| 408 | id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2); |
| 409 | for (i = 0; i < 22; i++) |
| 410 | id->words104_125[i] = __le16_to_cpu(id->words104_125[i]); |
| 411 | id->last_lun = __le16_to_cpu(id->last_lun); |
| 412 | id->word127 = __le16_to_cpu(id->word127); |
| 413 | id->dlf = __le16_to_cpu(id->dlf); |
| 414 | id->csfo = __le16_to_cpu(id->csfo); |
| 415 | for (i = 0; i < 26; i++) |
| 416 | id->words130_155[i] = __le16_to_cpu(id->words130_155[i]); |
| 417 | id->word156 = __le16_to_cpu(id->word156); |
| 418 | for (i = 0; i < 3; i++) |
| 419 | id->words157_159[i] = __le16_to_cpu(id->words157_159[i]); |
| 420 | id->cfa_power = __le16_to_cpu(id->cfa_power); |
| 421 | for (i = 0; i < 14; i++) |
| 422 | id->words161_175[i] = __le16_to_cpu(id->words161_175[i]); |
| 423 | for (i = 0; i < 31; i++) |
| 424 | id->words176_205[i] = __le16_to_cpu(id->words176_205[i]); |
| 425 | for (i = 0; i < 48; i++) |
| 426 | id->words206_254[i] = __le16_to_cpu(id->words206_254[i]); |
| 427 | id->integrity_word = __le16_to_cpu(id->integrity_word); |
| 428 | # else |
| 429 | # error "Please fix <asm/byteorder.h>" |
| 430 | # endif |
| 431 | #endif |
| 432 | } |
| 433 | |
| 434 | /* FIXME: exported for use by the USB storage (isd200.c) code only */ |
| 435 | EXPORT_SYMBOL(ide_fix_driveid); |
| 436 | |
| 437 | void ide_fixstring (u8 *s, const int bytecount, const int byteswap) |
| 438 | { |
| 439 | u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */ |
| 440 | |
| 441 | if (byteswap) { |
| 442 | /* convert from big-endian to host byte order */ |
| 443 | for (p = end ; p != s;) { |
| 444 | unsigned short *pp = (unsigned short *) (p -= 2); |
| 445 | *pp = ntohs(*pp); |
| 446 | } |
| 447 | } |
| 448 | /* strip leading blanks */ |
| 449 | while (s != end && *s == ' ') |
| 450 | ++s; |
| 451 | /* compress internal blanks and strip trailing blanks */ |
| 452 | while (s != end && *s) { |
| 453 | if (*s++ != ' ' || (s != end && *s && *s != ' ')) |
| 454 | *p++ = *(s-1); |
| 455 | } |
| 456 | /* wipe out trailing garbage */ |
| 457 | while (p != end) |
| 458 | *p++ = '\0'; |
| 459 | } |
| 460 | |
| 461 | EXPORT_SYMBOL(ide_fixstring); |
| 462 | |
| 463 | /* |
| 464 | * Needed for PCI irq sharing |
| 465 | */ |
| 466 | int drive_is_ready (ide_drive_t *drive) |
| 467 | { |
| 468 | ide_hwif_t *hwif = HWIF(drive); |
| 469 | u8 stat = 0; |
| 470 | |
| 471 | if (drive->waiting_for_dma) |
| 472 | return hwif->ide_dma_test_irq(drive); |
| 473 | |
| 474 | #if 0 |
| 475 | /* need to guarantee 400ns since last command was issued */ |
| 476 | udelay(1); |
| 477 | #endif |
| 478 | |
| 479 | #ifdef CONFIG_IDEPCI_SHARE_IRQ |
| 480 | /* |
| 481 | * We do a passive status test under shared PCI interrupts on |
| 482 | * cards that truly share the ATA side interrupt, but may also share |
| 483 | * an interrupt with another pci card/device. We make no assumptions |
| 484 | * about possible isa-pnp and pci-pnp issues yet. |
| 485 | */ |
| 486 | if (IDE_CONTROL_REG) |
| 487 | stat = hwif->INB(IDE_ALTSTATUS_REG); |
| 488 | else |
| 489 | #endif /* CONFIG_IDEPCI_SHARE_IRQ */ |
| 490 | /* Note: this may clear a pending IRQ!! */ |
| 491 | stat = hwif->INB(IDE_STATUS_REG); |
| 492 | |
| 493 | if (stat & BUSY_STAT) |
| 494 | /* drive busy: definitely not interrupting */ |
| 495 | return 0; |
| 496 | |
| 497 | /* drive ready: *might* be interrupting */ |
| 498 | return 1; |
| 499 | } |
| 500 | |
| 501 | EXPORT_SYMBOL(drive_is_ready); |
| 502 | |
| 503 | /* |
| 504 | * Global for All, and taken from ide-pmac.c. Can be called |
| 505 | * with spinlock held & IRQs disabled, so don't schedule ! |
| 506 | */ |
| 507 | int wait_for_ready (ide_drive_t *drive, int timeout) |
| 508 | { |
| 509 | ide_hwif_t *hwif = HWIF(drive); |
| 510 | u8 stat = 0; |
| 511 | |
| 512 | while(--timeout) { |
| 513 | stat = hwif->INB(IDE_STATUS_REG); |
| 514 | if (!(stat & BUSY_STAT)) { |
| 515 | if (drive->ready_stat == 0) |
| 516 | break; |
| 517 | else if ((stat & drive->ready_stat)||(stat & ERR_STAT)) |
| 518 | break; |
| 519 | } |
| 520 | mdelay(1); |
| 521 | } |
| 522 | if ((stat & ERR_STAT) || timeout <= 0) { |
| 523 | if (stat & ERR_STAT) { |
| 524 | printk(KERN_ERR "%s: wait_for_ready, " |
| 525 | "error status: %x\n", drive->name, stat); |
| 526 | } |
| 527 | return 1; |
| 528 | } |
| 529 | return 0; |
| 530 | } |
| 531 | |
| 532 | EXPORT_SYMBOL(wait_for_ready); |
| 533 | |
| 534 | /* |
| 535 | * This routine busy-waits for the drive status to be not "busy". |
| 536 | * It then checks the status for all of the "good" bits and none |
| 537 | * of the "bad" bits, and if all is okay it returns 0. All other |
| 538 | * cases return 1 after invoking ide_error() -- caller should just return. |
| 539 | * |
| 540 | * This routine should get fixed to not hog the cpu during extra long waits.. |
| 541 | * That could be done by busy-waiting for the first jiffy or two, and then |
| 542 | * setting a timer to wake up at half second intervals thereafter, |
| 543 | * until timeout is achieved, before timing out. |
| 544 | */ |
| 545 | int ide_wait_stat (ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout) |
| 546 | { |
| 547 | ide_hwif_t *hwif = HWIF(drive); |
| 548 | u8 stat; |
| 549 | int i; |
| 550 | unsigned long flags; |
| 551 | |
| 552 | /* bail early if we've exceeded max_failures */ |
| 553 | if (drive->max_failures && (drive->failures > drive->max_failures)) { |
| 554 | *startstop = ide_stopped; |
| 555 | return 1; |
| 556 | } |
| 557 | |
| 558 | udelay(1); /* spec allows drive 400ns to assert "BUSY" */ |
| 559 | if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) { |
| 560 | local_irq_set(flags); |
| 561 | timeout += jiffies; |
| 562 | while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) { |
| 563 | if (time_after(jiffies, timeout)) { |
| 564 | /* |
| 565 | * One last read after the timeout in case |
| 566 | * heavy interrupt load made us not make any |
| 567 | * progress during the timeout.. |
| 568 | */ |
| 569 | stat = hwif->INB(IDE_STATUS_REG); |
| 570 | if (!(stat & BUSY_STAT)) |
| 571 | break; |
| 572 | |
| 573 | local_irq_restore(flags); |
| 574 | *startstop = ide_error(drive, "status timeout", stat); |
| 575 | return 1; |
| 576 | } |
| 577 | } |
| 578 | local_irq_restore(flags); |
| 579 | } |
| 580 | /* |
| 581 | * Allow status to settle, then read it again. |
| 582 | * A few rare drives vastly violate the 400ns spec here, |
| 583 | * so we'll wait up to 10usec for a "good" status |
| 584 | * rather than expensively fail things immediately. |
| 585 | * This fix courtesy of Matthew Faupel & Niccolo Rigacci. |
| 586 | */ |
| 587 | for (i = 0; i < 10; i++) { |
| 588 | udelay(1); |
| 589 | if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) |
| 590 | return 0; |
| 591 | } |
| 592 | *startstop = ide_error(drive, "status error", stat); |
| 593 | return 1; |
| 594 | } |
| 595 | |
| 596 | EXPORT_SYMBOL(ide_wait_stat); |
| 597 | |
| 598 | /* |
| 599 | * All hosts that use the 80c ribbon must use! |
| 600 | * The name is derived from upper byte of word 93 and the 80c ribbon. |
| 601 | */ |
| 602 | u8 eighty_ninty_three (ide_drive_t *drive) |
| 603 | { |
| 604 | #if 0 |
| 605 | if (!HWIF(drive)->udma_four) |
| 606 | return 0; |
| 607 | |
| 608 | if (drive->id->major_rev_num) { |
| 609 | int hssbd = 0; |
| 610 | int i; |
| 611 | /* |
| 612 | * Determine highest Supported SPEC |
| 613 | */ |
| 614 | for (i=1; i<=15; i++) |
| 615 | if (drive->id->major_rev_num & (1<<i)) |
| 616 | hssbd++; |
| 617 | |
| 618 | switch (hssbd) { |
| 619 | case 7: |
| 620 | case 6: |
| 621 | case 5: |
| 622 | /* ATA-4 and older do not support above Ultra 33 */ |
| 623 | default: |
| 624 | return 0; |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | return ((u8) ( |
| 629 | #ifndef CONFIG_IDEDMA_IVB |
| 630 | (drive->id->hw_config & 0x4000) && |
| 631 | #endif /* CONFIG_IDEDMA_IVB */ |
| 632 | (drive->id->hw_config & 0x6000)) ? 1 : 0); |
| 633 | |
| 634 | #else |
| 635 | |
| 636 | return ((u8) ((HWIF(drive)->udma_four) && |
| 637 | #ifndef CONFIG_IDEDMA_IVB |
| 638 | (drive->id->hw_config & 0x4000) && |
| 639 | #endif /* CONFIG_IDEDMA_IVB */ |
| 640 | (drive->id->hw_config & 0x6000)) ? 1 : 0); |
| 641 | #endif |
| 642 | } |
| 643 | |
| 644 | EXPORT_SYMBOL(eighty_ninty_three); |
| 645 | |
| 646 | int ide_ata66_check (ide_drive_t *drive, ide_task_t *args) |
| 647 | { |
| 648 | if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) && |
| 649 | (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) && |
| 650 | (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) { |
| 651 | #ifndef CONFIG_IDEDMA_IVB |
| 652 | if ((drive->id->hw_config & 0x6000) == 0) { |
| 653 | #else /* !CONFIG_IDEDMA_IVB */ |
| 654 | if (((drive->id->hw_config & 0x2000) == 0) || |
| 655 | ((drive->id->hw_config & 0x4000) == 0)) { |
| 656 | #endif /* CONFIG_IDEDMA_IVB */ |
| 657 | printk("%s: Speed warnings UDMA 3/4/5 is not " |
| 658 | "functional.\n", drive->name); |
| 659 | return 1; |
| 660 | } |
| 661 | if (!HWIF(drive)->udma_four) { |
| 662 | printk("%s: Speed warnings UDMA 3/4/5 is not " |
| 663 | "functional.\n", |
| 664 | HWIF(drive)->name); |
| 665 | return 1; |
| 666 | } |
| 667 | } |
| 668 | return 0; |
| 669 | } |
| 670 | |
| 671 | /* |
| 672 | * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER. |
| 673 | * 1 : Safe to update drive->id DMA registers. |
| 674 | * 0 : OOPs not allowed. |
| 675 | */ |
| 676 | int set_transfer (ide_drive_t *drive, ide_task_t *args) |
| 677 | { |
| 678 | if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) && |
| 679 | (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) && |
| 680 | (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) && |
| 681 | (drive->id->dma_ultra || |
| 682 | drive->id->dma_mword || |
| 683 | drive->id->dma_1word)) |
| 684 | return 1; |
| 685 | |
| 686 | return 0; |
| 687 | } |
| 688 | |
| 689 | #ifdef CONFIG_BLK_DEV_IDEDMA |
| 690 | static u8 ide_auto_reduce_xfer (ide_drive_t *drive) |
| 691 | { |
| 692 | if (!drive->crc_count) |
| 693 | return drive->current_speed; |
| 694 | drive->crc_count = 0; |
| 695 | |
| 696 | switch(drive->current_speed) { |
| 697 | case XFER_UDMA_7: return XFER_UDMA_6; |
| 698 | case XFER_UDMA_6: return XFER_UDMA_5; |
| 699 | case XFER_UDMA_5: return XFER_UDMA_4; |
| 700 | case XFER_UDMA_4: return XFER_UDMA_3; |
| 701 | case XFER_UDMA_3: return XFER_UDMA_2; |
| 702 | case XFER_UDMA_2: return XFER_UDMA_1; |
| 703 | case XFER_UDMA_1: return XFER_UDMA_0; |
| 704 | /* |
| 705 | * OOPS we do not goto non Ultra DMA modes |
| 706 | * without iCRC's available we force |
| 707 | * the system to PIO and make the user |
| 708 | * invoke the ATA-1 ATA-2 DMA modes. |
| 709 | */ |
| 710 | case XFER_UDMA_0: |
| 711 | default: return XFER_PIO_4; |
| 712 | } |
| 713 | } |
| 714 | #endif /* CONFIG_BLK_DEV_IDEDMA */ |
| 715 | |
| 716 | /* |
| 717 | * Update the |
| 718 | */ |
| 719 | int ide_driveid_update (ide_drive_t *drive) |
| 720 | { |
| 721 | ide_hwif_t *hwif = HWIF(drive); |
| 722 | struct hd_driveid *id; |
| 723 | #if 0 |
| 724 | id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC); |
| 725 | if (!id) |
| 726 | return 0; |
| 727 | |
| 728 | taskfile_lib_get_identify(drive, (char *)&id); |
| 729 | |
| 730 | ide_fix_driveid(id); |
| 731 | if (id) { |
| 732 | drive->id->dma_ultra = id->dma_ultra; |
| 733 | drive->id->dma_mword = id->dma_mword; |
| 734 | drive->id->dma_1word = id->dma_1word; |
| 735 | /* anything more ? */ |
| 736 | kfree(id); |
| 737 | } |
| 738 | return 1; |
| 739 | #else |
| 740 | /* |
| 741 | * Re-read drive->id for possible DMA mode |
| 742 | * change (copied from ide-probe.c) |
| 743 | */ |
| 744 | unsigned long timeout, flags; |
| 745 | |
| 746 | SELECT_MASK(drive, 1); |
| 747 | if (IDE_CONTROL_REG) |
| 748 | hwif->OUTB(drive->ctl,IDE_CONTROL_REG); |
| 749 | msleep(50); |
| 750 | hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG); |
| 751 | timeout = jiffies + WAIT_WORSTCASE; |
| 752 | do { |
| 753 | if (time_after(jiffies, timeout)) { |
| 754 | SELECT_MASK(drive, 0); |
| 755 | return 0; /* drive timed-out */ |
| 756 | } |
| 757 | msleep(50); /* give drive a breather */ |
| 758 | } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT); |
| 759 | msleep(50); /* wait for IRQ and DRQ_STAT */ |
| 760 | if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) { |
| 761 | SELECT_MASK(drive, 0); |
| 762 | printk("%s: CHECK for good STATUS\n", drive->name); |
| 763 | return 0; |
| 764 | } |
| 765 | local_irq_save(flags); |
| 766 | SELECT_MASK(drive, 0); |
| 767 | id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC); |
| 768 | if (!id) { |
| 769 | local_irq_restore(flags); |
| 770 | return 0; |
| 771 | } |
| 772 | ata_input_data(drive, id, SECTOR_WORDS); |
| 773 | (void) hwif->INB(IDE_STATUS_REG); /* clear drive IRQ */ |
| 774 | local_irq_enable(); |
| 775 | local_irq_restore(flags); |
| 776 | ide_fix_driveid(id); |
| 777 | if (id) { |
| 778 | drive->id->dma_ultra = id->dma_ultra; |
| 779 | drive->id->dma_mword = id->dma_mword; |
| 780 | drive->id->dma_1word = id->dma_1word; |
| 781 | /* anything more ? */ |
| 782 | kfree(id); |
| 783 | } |
| 784 | |
| 785 | return 1; |
| 786 | #endif |
| 787 | } |
| 788 | |
| 789 | /* |
| 790 | * Similar to ide_wait_stat(), except it never calls ide_error internally. |
| 791 | * This is a kludge to handle the new ide_config_drive_speed() function, |
| 792 | * and should not otherwise be used anywhere. Eventually, the tuneproc's |
| 793 | * should be updated to return ide_startstop_t, in which case we can get |
| 794 | * rid of this abomination again. :) -ml |
| 795 | * |
| 796 | * It is gone.......... |
| 797 | * |
| 798 | * const char *msg == consider adding for verbose errors. |
| 799 | */ |
| 800 | int ide_config_drive_speed (ide_drive_t *drive, u8 speed) |
| 801 | { |
| 802 | ide_hwif_t *hwif = HWIF(drive); |
| 803 | int i, error = 1; |
| 804 | u8 stat; |
| 805 | |
| 806 | // while (HWGROUP(drive)->busy) |
| 807 | // msleep(50); |
| 808 | |
| 809 | #ifdef CONFIG_BLK_DEV_IDEDMA |
| 810 | if (hwif->ide_dma_check) /* check if host supports DMA */ |
| 811 | hwif->ide_dma_host_off(drive); |
| 812 | #endif |
| 813 | |
| 814 | /* |
| 815 | * Don't use ide_wait_cmd here - it will |
| 816 | * attempt to set_geometry and recalibrate, |
| 817 | * but for some reason these don't work at |
| 818 | * this point (lost interrupt). |
| 819 | */ |
| 820 | /* |
| 821 | * Select the drive, and issue the SETFEATURES command |
| 822 | */ |
| 823 | disable_irq_nosync(hwif->irq); |
| 824 | |
| 825 | /* |
| 826 | * FIXME: we race against the running IRQ here if |
| 827 | * this is called from non IRQ context. If we use |
| 828 | * disable_irq() we hang on the error path. Work |
| 829 | * is needed. |
| 830 | */ |
| 831 | |
| 832 | udelay(1); |
| 833 | SELECT_DRIVE(drive); |
| 834 | SELECT_MASK(drive, 0); |
| 835 | udelay(1); |
| 836 | if (IDE_CONTROL_REG) |
| 837 | hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG); |
| 838 | hwif->OUTB(speed, IDE_NSECTOR_REG); |
| 839 | hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG); |
| 840 | hwif->OUTB(WIN_SETFEATURES, IDE_COMMAND_REG); |
| 841 | if ((IDE_CONTROL_REG) && (drive->quirk_list == 2)) |
| 842 | hwif->OUTB(drive->ctl, IDE_CONTROL_REG); |
| 843 | udelay(1); |
| 844 | /* |
| 845 | * Wait for drive to become non-BUSY |
| 846 | */ |
| 847 | if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) { |
| 848 | unsigned long flags, timeout; |
| 849 | local_irq_set(flags); |
| 850 | timeout = jiffies + WAIT_CMD; |
| 851 | while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) { |
| 852 | if (time_after(jiffies, timeout)) |
| 853 | break; |
| 854 | } |
| 855 | local_irq_restore(flags); |
| 856 | } |
| 857 | |
| 858 | /* |
| 859 | * Allow status to settle, then read it again. |
| 860 | * A few rare drives vastly violate the 400ns spec here, |
| 861 | * so we'll wait up to 10usec for a "good" status |
| 862 | * rather than expensively fail things immediately. |
| 863 | * This fix courtesy of Matthew Faupel & Niccolo Rigacci. |
| 864 | */ |
| 865 | for (i = 0; i < 10; i++) { |
| 866 | udelay(1); |
| 867 | if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), DRIVE_READY, BUSY_STAT|DRQ_STAT|ERR_STAT)) { |
| 868 | error = 0; |
| 869 | break; |
| 870 | } |
| 871 | } |
| 872 | |
| 873 | SELECT_MASK(drive, 0); |
| 874 | |
| 875 | enable_irq(hwif->irq); |
| 876 | |
| 877 | if (error) { |
| 878 | (void) ide_dump_status(drive, "set_drive_speed_status", stat); |
| 879 | return error; |
| 880 | } |
| 881 | |
| 882 | drive->id->dma_ultra &= ~0xFF00; |
| 883 | drive->id->dma_mword &= ~0x0F00; |
| 884 | drive->id->dma_1word &= ~0x0F00; |
| 885 | |
| 886 | #ifdef CONFIG_BLK_DEV_IDEDMA |
| 887 | if (speed >= XFER_SW_DMA_0) |
| 888 | hwif->ide_dma_host_on(drive); |
| 889 | else if (hwif->ide_dma_check) /* check if host supports DMA */ |
| 890 | hwif->ide_dma_off_quietly(drive); |
| 891 | #endif |
| 892 | |
| 893 | switch(speed) { |
| 894 | case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break; |
| 895 | case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break; |
| 896 | case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break; |
| 897 | case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break; |
| 898 | case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break; |
| 899 | case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break; |
| 900 | case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break; |
| 901 | case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break; |
| 902 | case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break; |
| 903 | case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break; |
| 904 | case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break; |
| 905 | case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break; |
| 906 | case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break; |
| 907 | case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break; |
| 908 | default: break; |
| 909 | } |
| 910 | if (!drive->init_speed) |
| 911 | drive->init_speed = speed; |
| 912 | drive->current_speed = speed; |
| 913 | return error; |
| 914 | } |
| 915 | |
| 916 | EXPORT_SYMBOL(ide_config_drive_speed); |
| 917 | |
| 918 | |
| 919 | /* |
| 920 | * This should get invoked any time we exit the driver to |
| 921 | * wait for an interrupt response from a drive. handler() points |
| 922 | * at the appropriate code to handle the next interrupt, and a |
| 923 | * timer is started to prevent us from waiting forever in case |
| 924 | * something goes wrong (see the ide_timer_expiry() handler later on). |
| 925 | * |
| 926 | * See also ide_execute_command |
| 927 | */ |
| 928 | static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, |
| 929 | unsigned int timeout, ide_expiry_t *expiry) |
| 930 | { |
| 931 | ide_hwgroup_t *hwgroup = HWGROUP(drive); |
| 932 | |
| 933 | if (hwgroup->handler != NULL) { |
| 934 | printk(KERN_CRIT "%s: ide_set_handler: handler not null; " |
| 935 | "old=%p, new=%p\n", |
| 936 | drive->name, hwgroup->handler, handler); |
| 937 | } |
| 938 | hwgroup->handler = handler; |
| 939 | hwgroup->expiry = expiry; |
| 940 | hwgroup->timer.expires = jiffies + timeout; |
| 941 | add_timer(&hwgroup->timer); |
| 942 | } |
| 943 | |
| 944 | void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, |
| 945 | unsigned int timeout, ide_expiry_t *expiry) |
| 946 | { |
| 947 | unsigned long flags; |
| 948 | spin_lock_irqsave(&ide_lock, flags); |
| 949 | __ide_set_handler(drive, handler, timeout, expiry); |
| 950 | spin_unlock_irqrestore(&ide_lock, flags); |
| 951 | } |
| 952 | |
| 953 | EXPORT_SYMBOL(ide_set_handler); |
| 954 | |
| 955 | /** |
| 956 | * ide_execute_command - execute an IDE command |
| 957 | * @drive: IDE drive to issue the command against |
| 958 | * @command: command byte to write |
| 959 | * @handler: handler for next phase |
| 960 | * @timeout: timeout for command |
| 961 | * @expiry: handler to run on timeout |
| 962 | * |
| 963 | * Helper function to issue an IDE command. This handles the |
| 964 | * atomicity requirements, command timing and ensures that the |
| 965 | * handler and IRQ setup do not race. All IDE command kick off |
| 966 | * should go via this function or do equivalent locking. |
| 967 | */ |
| 968 | |
| 969 | void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry) |
| 970 | { |
| 971 | unsigned long flags; |
| 972 | ide_hwgroup_t *hwgroup = HWGROUP(drive); |
| 973 | ide_hwif_t *hwif = HWIF(drive); |
| 974 | |
| 975 | spin_lock_irqsave(&ide_lock, flags); |
| 976 | |
| 977 | if(hwgroup->handler) |
| 978 | BUG(); |
| 979 | hwgroup->handler = handler; |
| 980 | hwgroup->expiry = expiry; |
| 981 | hwgroup->timer.expires = jiffies + timeout; |
| 982 | add_timer(&hwgroup->timer); |
| 983 | hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG); |
| 984 | /* Drive takes 400nS to respond, we must avoid the IRQ being |
| 985 | serviced before that. |
| 986 | |
| 987 | FIXME: we could skip this delay with care on non shared |
| 988 | devices |
| 989 | */ |
| 990 | ndelay(400); |
| 991 | spin_unlock_irqrestore(&ide_lock, flags); |
| 992 | } |
| 993 | |
| 994 | EXPORT_SYMBOL(ide_execute_command); |
| 995 | |
| 996 | |
| 997 | /* needed below */ |
| 998 | static ide_startstop_t do_reset1 (ide_drive_t *, int); |
| 999 | |
| 1000 | /* |
| 1001 | * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms |
| 1002 | * during an atapi drive reset operation. If the drive has not yet responded, |
| 1003 | * and we have not yet hit our maximum waiting time, then the timer is restarted |
| 1004 | * for another 50ms. |
| 1005 | */ |
| 1006 | static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive) |
| 1007 | { |
| 1008 | ide_hwgroup_t *hwgroup = HWGROUP(drive); |
| 1009 | ide_hwif_t *hwif = HWIF(drive); |
| 1010 | u8 stat; |
| 1011 | |
| 1012 | SELECT_DRIVE(drive); |
| 1013 | udelay (10); |
| 1014 | |
| 1015 | if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) { |
| 1016 | printk("%s: ATAPI reset complete\n", drive->name); |
| 1017 | } else { |
| 1018 | if (time_before(jiffies, hwgroup->poll_timeout)) { |
| 1019 | if (HWGROUP(drive)->handler != NULL) |
| 1020 | BUG(); |
| 1021 | ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL); |
| 1022 | /* continue polling */ |
| 1023 | return ide_started; |
| 1024 | } |
| 1025 | /* end of polling */ |
| 1026 | hwgroup->polling = 0; |
| 1027 | printk("%s: ATAPI reset timed-out, status=0x%02x\n", |
| 1028 | drive->name, stat); |
| 1029 | /* do it the old fashioned way */ |
| 1030 | return do_reset1(drive, 1); |
| 1031 | } |
| 1032 | /* done polling */ |
| 1033 | hwgroup->polling = 0; |
| 1034 | return ide_stopped; |
| 1035 | } |
| 1036 | |
| 1037 | /* |
| 1038 | * reset_pollfunc() gets invoked to poll the interface for completion every 50ms |
| 1039 | * during an ide reset operation. If the drives have not yet responded, |
| 1040 | * and we have not yet hit our maximum waiting time, then the timer is restarted |
| 1041 | * for another 50ms. |
| 1042 | */ |
| 1043 | static ide_startstop_t reset_pollfunc (ide_drive_t *drive) |
| 1044 | { |
| 1045 | ide_hwgroup_t *hwgroup = HWGROUP(drive); |
| 1046 | ide_hwif_t *hwif = HWIF(drive); |
| 1047 | u8 tmp; |
| 1048 | |
| 1049 | if (hwif->reset_poll != NULL) { |
| 1050 | if (hwif->reset_poll(drive)) { |
| 1051 | printk(KERN_ERR "%s: host reset_poll failure for %s.\n", |
| 1052 | hwif->name, drive->name); |
| 1053 | return ide_stopped; |
| 1054 | } |
| 1055 | } |
| 1056 | |
| 1057 | if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) { |
| 1058 | if (time_before(jiffies, hwgroup->poll_timeout)) { |
| 1059 | if (HWGROUP(drive)->handler != NULL) |
| 1060 | BUG(); |
| 1061 | ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL); |
| 1062 | /* continue polling */ |
| 1063 | return ide_started; |
| 1064 | } |
| 1065 | printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp); |
| 1066 | drive->failures++; |
| 1067 | } else { |
| 1068 | printk("%s: reset: ", hwif->name); |
| 1069 | if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) { |
| 1070 | printk("success\n"); |
| 1071 | drive->failures = 0; |
| 1072 | } else { |
| 1073 | drive->failures++; |
| 1074 | printk("master: "); |
| 1075 | switch (tmp & 0x7f) { |
| 1076 | case 1: printk("passed"); |
| 1077 | break; |
| 1078 | case 2: printk("formatter device error"); |
| 1079 | break; |
| 1080 | case 3: printk("sector buffer error"); |
| 1081 | break; |
| 1082 | case 4: printk("ECC circuitry error"); |
| 1083 | break; |
| 1084 | case 5: printk("controlling MPU error"); |
| 1085 | break; |
| 1086 | default:printk("error (0x%02x?)", tmp); |
| 1087 | } |
| 1088 | if (tmp & 0x80) |
| 1089 | printk("; slave: failed"); |
| 1090 | printk("\n"); |
| 1091 | } |
| 1092 | } |
| 1093 | hwgroup->polling = 0; /* done polling */ |
| 1094 | return ide_stopped; |
| 1095 | } |
| 1096 | |
| 1097 | static void check_dma_crc(ide_drive_t *drive) |
| 1098 | { |
| 1099 | #ifdef CONFIG_BLK_DEV_IDEDMA |
| 1100 | if (drive->crc_count) { |
| 1101 | (void) HWIF(drive)->ide_dma_off_quietly(drive); |
| 1102 | ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive)); |
| 1103 | if (drive->current_speed >= XFER_SW_DMA_0) |
| 1104 | (void) HWIF(drive)->ide_dma_on(drive); |
| 1105 | } else |
| 1106 | (void)__ide_dma_off(drive); |
| 1107 | #endif |
| 1108 | } |
| 1109 | |
| 1110 | static void ide_disk_pre_reset(ide_drive_t *drive) |
| 1111 | { |
| 1112 | int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1; |
| 1113 | |
| 1114 | drive->special.all = 0; |
| 1115 | drive->special.b.set_geometry = legacy; |
| 1116 | drive->special.b.recalibrate = legacy; |
| 1117 | if (OK_TO_RESET_CONTROLLER) |
| 1118 | drive->mult_count = 0; |
| 1119 | if (!drive->keep_settings && !drive->using_dma) |
| 1120 | drive->mult_req = 0; |
| 1121 | if (drive->mult_req != drive->mult_count) |
| 1122 | drive->special.b.set_multmode = 1; |
| 1123 | } |
| 1124 | |
| 1125 | static void pre_reset(ide_drive_t *drive) |
| 1126 | { |
| 1127 | if (drive->media == ide_disk) |
| 1128 | ide_disk_pre_reset(drive); |
| 1129 | else |
| 1130 | drive->post_reset = 1; |
| 1131 | |
| 1132 | if (!drive->keep_settings) { |
| 1133 | if (drive->using_dma) { |
| 1134 | check_dma_crc(drive); |
| 1135 | } else { |
| 1136 | drive->unmask = 0; |
| 1137 | drive->io_32bit = 0; |
| 1138 | } |
| 1139 | return; |
| 1140 | } |
| 1141 | if (drive->using_dma) |
| 1142 | check_dma_crc(drive); |
| 1143 | |
| 1144 | if (HWIF(drive)->pre_reset != NULL) |
| 1145 | HWIF(drive)->pre_reset(drive); |
| 1146 | |
| 1147 | } |
| 1148 | |
| 1149 | /* |
| 1150 | * do_reset1() attempts to recover a confused drive by resetting it. |
| 1151 | * Unfortunately, resetting a disk drive actually resets all devices on |
| 1152 | * the same interface, so it can really be thought of as resetting the |
| 1153 | * interface rather than resetting the drive. |
| 1154 | * |
| 1155 | * ATAPI devices have their own reset mechanism which allows them to be |
| 1156 | * individually reset without clobbering other devices on the same interface. |
| 1157 | * |
| 1158 | * Unfortunately, the IDE interface does not generate an interrupt to let |
| 1159 | * us know when the reset operation has finished, so we must poll for this. |
| 1160 | * Equally poor, though, is the fact that this may a very long time to complete, |
| 1161 | * (up to 30 seconds worstcase). So, instead of busy-waiting here for it, |
| 1162 | * we set a timer to poll at 50ms intervals. |
| 1163 | */ |
| 1164 | static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi) |
| 1165 | { |
| 1166 | unsigned int unit; |
| 1167 | unsigned long flags; |
| 1168 | ide_hwif_t *hwif; |
| 1169 | ide_hwgroup_t *hwgroup; |
| 1170 | |
| 1171 | spin_lock_irqsave(&ide_lock, flags); |
| 1172 | hwif = HWIF(drive); |
| 1173 | hwgroup = HWGROUP(drive); |
| 1174 | |
| 1175 | /* We must not reset with running handlers */ |
| 1176 | if(hwgroup->handler != NULL) |
| 1177 | BUG(); |
| 1178 | |
| 1179 | /* For an ATAPI device, first try an ATAPI SRST. */ |
| 1180 | if (drive->media != ide_disk && !do_not_try_atapi) { |
| 1181 | pre_reset(drive); |
| 1182 | SELECT_DRIVE(drive); |
| 1183 | udelay (20); |
| 1184 | hwif->OUTB(WIN_SRST, IDE_COMMAND_REG); |
| 1185 | hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; |
| 1186 | hwgroup->polling = 1; |
| 1187 | __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL); |
| 1188 | spin_unlock_irqrestore(&ide_lock, flags); |
| 1189 | return ide_started; |
| 1190 | } |
| 1191 | |
| 1192 | /* |
| 1193 | * First, reset any device state data we were maintaining |
| 1194 | * for any of the drives on this interface. |
| 1195 | */ |
| 1196 | for (unit = 0; unit < MAX_DRIVES; ++unit) |
| 1197 | pre_reset(&hwif->drives[unit]); |
| 1198 | |
| 1199 | #if OK_TO_RESET_CONTROLLER |
| 1200 | if (!IDE_CONTROL_REG) { |
| 1201 | spin_unlock_irqrestore(&ide_lock, flags); |
| 1202 | return ide_stopped; |
| 1203 | } |
| 1204 | |
| 1205 | /* |
| 1206 | * Note that we also set nIEN while resetting the device, |
| 1207 | * to mask unwanted interrupts from the interface during the reset. |
| 1208 | * However, due to the design of PC hardware, this will cause an |
| 1209 | * immediate interrupt due to the edge transition it produces. |
| 1210 | * This single interrupt gives us a "fast poll" for drives that |
| 1211 | * recover from reset very quickly, saving us the first 50ms wait time. |
| 1212 | */ |
| 1213 | /* set SRST and nIEN */ |
| 1214 | hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG); |
| 1215 | /* more than enough time */ |
| 1216 | udelay(10); |
| 1217 | if (drive->quirk_list == 2) { |
| 1218 | /* clear SRST and nIEN */ |
| 1219 | hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG); |
| 1220 | } else { |
| 1221 | /* clear SRST, leave nIEN */ |
| 1222 | hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG); |
| 1223 | } |
| 1224 | /* more than enough time */ |
| 1225 | udelay(10); |
| 1226 | hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; |
| 1227 | hwgroup->polling = 1; |
| 1228 | __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL); |
| 1229 | |
| 1230 | /* |
| 1231 | * Some weird controller like resetting themselves to a strange |
| 1232 | * state when the disks are reset this way. At least, the Winbond |
| 1233 | * 553 documentation says that |
| 1234 | */ |
| 1235 | if (hwif->resetproc != NULL) { |
| 1236 | hwif->resetproc(drive); |
| 1237 | } |
| 1238 | |
| 1239 | #endif /* OK_TO_RESET_CONTROLLER */ |
| 1240 | |
| 1241 | spin_unlock_irqrestore(&ide_lock, flags); |
| 1242 | return ide_started; |
| 1243 | } |
| 1244 | |
| 1245 | /* |
| 1246 | * ide_do_reset() is the entry point to the drive/interface reset code. |
| 1247 | */ |
| 1248 | |
| 1249 | ide_startstop_t ide_do_reset (ide_drive_t *drive) |
| 1250 | { |
| 1251 | return do_reset1(drive, 0); |
| 1252 | } |
| 1253 | |
| 1254 | EXPORT_SYMBOL(ide_do_reset); |
| 1255 | |
| 1256 | /* |
| 1257 | * ide_wait_not_busy() waits for the currently selected device on the hwif |
| 1258 | * to report a non-busy status, see comments in probe_hwif(). |
| 1259 | */ |
| 1260 | int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout) |
| 1261 | { |
| 1262 | u8 stat = 0; |
| 1263 | |
| 1264 | while(timeout--) { |
| 1265 | /* |
| 1266 | * Turn this into a schedule() sleep once I'm sure |
| 1267 | * about locking issues (2.5 work ?). |
| 1268 | */ |
| 1269 | mdelay(1); |
| 1270 | stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); |
| 1271 | if ((stat & BUSY_STAT) == 0) |
| 1272 | return 0; |
| 1273 | /* |
| 1274 | * Assume a value of 0xff means nothing is connected to |
| 1275 | * the interface and it doesn't implement the pull-down |
| 1276 | * resistor on D7. |
| 1277 | */ |
| 1278 | if (stat == 0xff) |
| 1279 | return -ENODEV; |
| 1280 | } |
| 1281 | return -EBUSY; |
| 1282 | } |
| 1283 | |
| 1284 | EXPORT_SYMBOL_GPL(ide_wait_not_busy); |
| 1285 | |