Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | .file "wm_sqrt.S" |
| 2 | /*---------------------------------------------------------------------------+ |
| 3 | | wm_sqrt.S | |
| 4 | | | |
| 5 | | Fixed point arithmetic square root evaluation. | |
| 6 | | | |
| 7 | | Copyright (C) 1992,1993,1995,1997 | |
| 8 | | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, | |
| 9 | | Australia. E-mail billm@suburbia.net | |
| 10 | | | |
| 11 | | Call from C as: | |
| 12 | | int wm_sqrt(FPU_REG *n, unsigned int control_word) | |
| 13 | | | |
| 14 | +---------------------------------------------------------------------------*/ |
| 15 | |
| 16 | /*---------------------------------------------------------------------------+ |
| 17 | | wm_sqrt(FPU_REG *n, unsigned int control_word) | |
| 18 | | returns the square root of n in n. | |
| 19 | | | |
| 20 | | Use Newton's method to compute the square root of a number, which must | |
| 21 | | be in the range [1.0 .. 4.0), to 64 bits accuracy. | |
| 22 | | Does not check the sign or tag of the argument. | |
| 23 | | Sets the exponent, but not the sign or tag of the result. | |
| 24 | | | |
| 25 | | The guess is kept in %esi:%edi | |
| 26 | +---------------------------------------------------------------------------*/ |
| 27 | |
| 28 | #include "exception.h" |
| 29 | #include "fpu_emu.h" |
| 30 | |
| 31 | |
| 32 | #ifndef NON_REENTRANT_FPU |
| 33 | /* Local storage on the stack: */ |
| 34 | #define FPU_accum_3 -4(%ebp) /* ms word */ |
| 35 | #define FPU_accum_2 -8(%ebp) |
| 36 | #define FPU_accum_1 -12(%ebp) |
| 37 | #define FPU_accum_0 -16(%ebp) |
| 38 | |
| 39 | /* |
| 40 | * The de-normalised argument: |
| 41 | * sq_2 sq_1 sq_0 |
| 42 | * b b b b b b b ... b b b b b b .... b b b b 0 0 0 ... 0 |
| 43 | * ^ binary point here |
| 44 | */ |
| 45 | #define FPU_fsqrt_arg_2 -20(%ebp) /* ms word */ |
| 46 | #define FPU_fsqrt_arg_1 -24(%ebp) |
| 47 | #define FPU_fsqrt_arg_0 -28(%ebp) /* ls word, at most the ms bit is set */ |
| 48 | |
| 49 | #else |
| 50 | /* Local storage in a static area: */ |
| 51 | .data |
| 52 | .align 4,0 |
| 53 | FPU_accum_3: |
| 54 | .long 0 /* ms word */ |
| 55 | FPU_accum_2: |
| 56 | .long 0 |
| 57 | FPU_accum_1: |
| 58 | .long 0 |
| 59 | FPU_accum_0: |
| 60 | .long 0 |
| 61 | |
| 62 | /* The de-normalised argument: |
| 63 | sq_2 sq_1 sq_0 |
| 64 | b b b b b b b ... b b b b b b .... b b b b 0 0 0 ... 0 |
| 65 | ^ binary point here |
| 66 | */ |
| 67 | FPU_fsqrt_arg_2: |
| 68 | .long 0 /* ms word */ |
| 69 | FPU_fsqrt_arg_1: |
| 70 | .long 0 |
| 71 | FPU_fsqrt_arg_0: |
| 72 | .long 0 /* ls word, at most the ms bit is set */ |
| 73 | #endif /* NON_REENTRANT_FPU */ |
| 74 | |
| 75 | |
| 76 | .text |
| 77 | ENTRY(wm_sqrt) |
| 78 | pushl %ebp |
| 79 | movl %esp,%ebp |
| 80 | #ifndef NON_REENTRANT_FPU |
| 81 | subl $28,%esp |
| 82 | #endif /* NON_REENTRANT_FPU */ |
| 83 | pushl %esi |
| 84 | pushl %edi |
| 85 | pushl %ebx |
| 86 | |
| 87 | movl PARAM1,%esi |
| 88 | |
| 89 | movl SIGH(%esi),%eax |
| 90 | movl SIGL(%esi),%ecx |
| 91 | xorl %edx,%edx |
| 92 | |
| 93 | /* We use a rough linear estimate for the first guess.. */ |
| 94 | |
| 95 | cmpw EXP_BIAS,EXP(%esi) |
| 96 | jnz sqrt_arg_ge_2 |
| 97 | |
| 98 | shrl $1,%eax /* arg is in the range [1.0 .. 2.0) */ |
| 99 | rcrl $1,%ecx |
| 100 | rcrl $1,%edx |
| 101 | |
| 102 | sqrt_arg_ge_2: |
| 103 | /* From here on, n is never accessed directly again until it is |
| 104 | replaced by the answer. */ |
| 105 | |
| 106 | movl %eax,FPU_fsqrt_arg_2 /* ms word of n */ |
| 107 | movl %ecx,FPU_fsqrt_arg_1 |
| 108 | movl %edx,FPU_fsqrt_arg_0 |
| 109 | |
| 110 | /* Make a linear first estimate */ |
| 111 | shrl $1,%eax |
| 112 | addl $0x40000000,%eax |
| 113 | movl $0xaaaaaaaa,%ecx |
| 114 | mull %ecx |
| 115 | shll %edx /* max result was 7fff... */ |
| 116 | testl $0x80000000,%edx /* but min was 3fff... */ |
| 117 | jnz sqrt_prelim_no_adjust |
| 118 | |
| 119 | movl $0x80000000,%edx /* round up */ |
| 120 | |
| 121 | sqrt_prelim_no_adjust: |
| 122 | movl %edx,%esi /* Our first guess */ |
| 123 | |
| 124 | /* We have now computed (approx) (2 + x) / 3, which forms the basis |
| 125 | for a few iterations of Newton's method */ |
| 126 | |
| 127 | movl FPU_fsqrt_arg_2,%ecx /* ms word */ |
| 128 | |
| 129 | /* |
| 130 | * From our initial estimate, three iterations are enough to get us |
| 131 | * to 30 bits or so. This will then allow two iterations at better |
| 132 | * precision to complete the process. |
| 133 | */ |
| 134 | |
| 135 | /* Compute (g + n/g)/2 at each iteration (g is the guess). */ |
| 136 | shrl %ecx /* Doing this first will prevent a divide */ |
| 137 | /* overflow later. */ |
| 138 | |
| 139 | movl %ecx,%edx /* msw of the arg / 2 */ |
| 140 | divl %esi /* current estimate */ |
| 141 | shrl %esi /* divide by 2 */ |
| 142 | addl %eax,%esi /* the new estimate */ |
| 143 | |
| 144 | movl %ecx,%edx |
| 145 | divl %esi |
| 146 | shrl %esi |
| 147 | addl %eax,%esi |
| 148 | |
| 149 | movl %ecx,%edx |
| 150 | divl %esi |
| 151 | shrl %esi |
| 152 | addl %eax,%esi |
| 153 | |
| 154 | /* |
| 155 | * Now that an estimate accurate to about 30 bits has been obtained (in %esi), |
| 156 | * we improve it to 60 bits or so. |
| 157 | * |
| 158 | * The strategy from now on is to compute new estimates from |
| 159 | * guess := guess + (n - guess^2) / (2 * guess) |
| 160 | */ |
| 161 | |
| 162 | /* First, find the square of the guess */ |
| 163 | movl %esi,%eax |
| 164 | mull %esi |
| 165 | /* guess^2 now in %edx:%eax */ |
| 166 | |
| 167 | movl FPU_fsqrt_arg_1,%ecx |
| 168 | subl %ecx,%eax |
| 169 | movl FPU_fsqrt_arg_2,%ecx /* ms word of normalized n */ |
| 170 | sbbl %ecx,%edx |
| 171 | jnc sqrt_stage_2_positive |
| 172 | |
| 173 | /* Subtraction gives a negative result, |
| 174 | negate the result before division. */ |
| 175 | notl %edx |
| 176 | notl %eax |
| 177 | addl $1,%eax |
| 178 | adcl $0,%edx |
| 179 | |
| 180 | divl %esi |
| 181 | movl %eax,%ecx |
| 182 | |
| 183 | movl %edx,%eax |
| 184 | divl %esi |
| 185 | jmp sqrt_stage_2_finish |
| 186 | |
| 187 | sqrt_stage_2_positive: |
| 188 | divl %esi |
| 189 | movl %eax,%ecx |
| 190 | |
| 191 | movl %edx,%eax |
| 192 | divl %esi |
| 193 | |
| 194 | notl %ecx |
| 195 | notl %eax |
| 196 | addl $1,%eax |
| 197 | adcl $0,%ecx |
| 198 | |
| 199 | sqrt_stage_2_finish: |
| 200 | sarl $1,%ecx /* divide by 2 */ |
| 201 | rcrl $1,%eax |
| 202 | |
| 203 | /* Form the new estimate in %esi:%edi */ |
| 204 | movl %eax,%edi |
| 205 | addl %ecx,%esi |
| 206 | |
| 207 | jnz sqrt_stage_2_done /* result should be [1..2) */ |
| 208 | |
| 209 | #ifdef PARANOID |
| 210 | /* It should be possible to get here only if the arg is ffff....ffff */ |
| 211 | cmp $0xffffffff,FPU_fsqrt_arg_1 |
| 212 | jnz sqrt_stage_2_error |
| 213 | #endif /* PARANOID */ |
| 214 | |
| 215 | /* The best rounded result. */ |
| 216 | xorl %eax,%eax |
| 217 | decl %eax |
| 218 | movl %eax,%edi |
| 219 | movl %eax,%esi |
| 220 | movl $0x7fffffff,%eax |
| 221 | jmp sqrt_round_result |
| 222 | |
| 223 | #ifdef PARANOID |
| 224 | sqrt_stage_2_error: |
| 225 | pushl EX_INTERNAL|0x213 |
| 226 | call EXCEPTION |
| 227 | #endif /* PARANOID */ |
| 228 | |
| 229 | sqrt_stage_2_done: |
| 230 | |
| 231 | /* Now the square root has been computed to better than 60 bits. */ |
| 232 | |
| 233 | /* Find the square of the guess. */ |
| 234 | movl %edi,%eax /* ls word of guess */ |
| 235 | mull %edi |
| 236 | movl %edx,FPU_accum_1 |
| 237 | |
| 238 | movl %esi,%eax |
| 239 | mull %esi |
| 240 | movl %edx,FPU_accum_3 |
| 241 | movl %eax,FPU_accum_2 |
| 242 | |
| 243 | movl %edi,%eax |
| 244 | mull %esi |
| 245 | addl %eax,FPU_accum_1 |
| 246 | adcl %edx,FPU_accum_2 |
| 247 | adcl $0,FPU_accum_3 |
| 248 | |
| 249 | /* movl %esi,%eax */ |
| 250 | /* mull %edi */ |
| 251 | addl %eax,FPU_accum_1 |
| 252 | adcl %edx,FPU_accum_2 |
| 253 | adcl $0,FPU_accum_3 |
| 254 | |
| 255 | /* guess^2 now in FPU_accum_3:FPU_accum_2:FPU_accum_1 */ |
| 256 | |
| 257 | movl FPU_fsqrt_arg_0,%eax /* get normalized n */ |
| 258 | subl %eax,FPU_accum_1 |
| 259 | movl FPU_fsqrt_arg_1,%eax |
| 260 | sbbl %eax,FPU_accum_2 |
| 261 | movl FPU_fsqrt_arg_2,%eax /* ms word of normalized n */ |
| 262 | sbbl %eax,FPU_accum_3 |
| 263 | jnc sqrt_stage_3_positive |
| 264 | |
| 265 | /* Subtraction gives a negative result, |
| 266 | negate the result before division */ |
| 267 | notl FPU_accum_1 |
| 268 | notl FPU_accum_2 |
| 269 | notl FPU_accum_3 |
| 270 | addl $1,FPU_accum_1 |
| 271 | adcl $0,FPU_accum_2 |
| 272 | |
| 273 | #ifdef PARANOID |
| 274 | adcl $0,FPU_accum_3 /* This must be zero */ |
| 275 | jz sqrt_stage_3_no_error |
| 276 | |
| 277 | sqrt_stage_3_error: |
| 278 | pushl EX_INTERNAL|0x207 |
| 279 | call EXCEPTION |
| 280 | |
| 281 | sqrt_stage_3_no_error: |
| 282 | #endif /* PARANOID */ |
| 283 | |
| 284 | movl FPU_accum_2,%edx |
| 285 | movl FPU_accum_1,%eax |
| 286 | divl %esi |
| 287 | movl %eax,%ecx |
| 288 | |
| 289 | movl %edx,%eax |
| 290 | divl %esi |
| 291 | |
| 292 | sarl $1,%ecx /* divide by 2 */ |
| 293 | rcrl $1,%eax |
| 294 | |
| 295 | /* prepare to round the result */ |
| 296 | |
| 297 | addl %ecx,%edi |
| 298 | adcl $0,%esi |
| 299 | |
| 300 | jmp sqrt_stage_3_finished |
| 301 | |
| 302 | sqrt_stage_3_positive: |
| 303 | movl FPU_accum_2,%edx |
| 304 | movl FPU_accum_1,%eax |
| 305 | divl %esi |
| 306 | movl %eax,%ecx |
| 307 | |
| 308 | movl %edx,%eax |
| 309 | divl %esi |
| 310 | |
| 311 | sarl $1,%ecx /* divide by 2 */ |
| 312 | rcrl $1,%eax |
| 313 | |
| 314 | /* prepare to round the result */ |
| 315 | |
| 316 | notl %eax /* Negate the correction term */ |
| 317 | notl %ecx |
| 318 | addl $1,%eax |
| 319 | adcl $0,%ecx /* carry here ==> correction == 0 */ |
| 320 | adcl $0xffffffff,%esi |
| 321 | |
| 322 | addl %ecx,%edi |
| 323 | adcl $0,%esi |
| 324 | |
| 325 | sqrt_stage_3_finished: |
| 326 | |
| 327 | /* |
| 328 | * The result in %esi:%edi:%esi should be good to about 90 bits here, |
| 329 | * and the rounding information here does not have sufficient accuracy |
| 330 | * in a few rare cases. |
| 331 | */ |
| 332 | cmpl $0xffffffe0,%eax |
| 333 | ja sqrt_near_exact_x |
| 334 | |
| 335 | cmpl $0x00000020,%eax |
| 336 | jb sqrt_near_exact |
| 337 | |
| 338 | cmpl $0x7fffffe0,%eax |
| 339 | jb sqrt_round_result |
| 340 | |
| 341 | cmpl $0x80000020,%eax |
| 342 | jb sqrt_get_more_precision |
| 343 | |
| 344 | sqrt_round_result: |
| 345 | /* Set up for rounding operations */ |
| 346 | movl %eax,%edx |
| 347 | movl %esi,%eax |
| 348 | movl %edi,%ebx |
| 349 | movl PARAM1,%edi |
| 350 | movw EXP_BIAS,EXP(%edi) /* Result is in [1.0 .. 2.0) */ |
| 351 | jmp fpu_reg_round |
| 352 | |
| 353 | |
| 354 | sqrt_near_exact_x: |
| 355 | /* First, the estimate must be rounded up. */ |
| 356 | addl $1,%edi |
| 357 | adcl $0,%esi |
| 358 | |
| 359 | sqrt_near_exact: |
| 360 | /* |
| 361 | * This is an easy case because x^1/2 is monotonic. |
| 362 | * We need just find the square of our estimate, compare it |
| 363 | * with the argument, and deduce whether our estimate is |
| 364 | * above, below, or exact. We use the fact that the estimate |
| 365 | * is known to be accurate to about 90 bits. |
| 366 | */ |
| 367 | movl %edi,%eax /* ls word of guess */ |
| 368 | mull %edi |
| 369 | movl %edx,%ebx /* 2nd ls word of square */ |
| 370 | movl %eax,%ecx /* ls word of square */ |
| 371 | |
| 372 | movl %edi,%eax |
| 373 | mull %esi |
| 374 | addl %eax,%ebx |
| 375 | addl %eax,%ebx |
| 376 | |
| 377 | #ifdef PARANOID |
| 378 | cmp $0xffffffb0,%ebx |
| 379 | jb sqrt_near_exact_ok |
| 380 | |
| 381 | cmp $0x00000050,%ebx |
| 382 | ja sqrt_near_exact_ok |
| 383 | |
| 384 | pushl EX_INTERNAL|0x214 |
| 385 | call EXCEPTION |
| 386 | |
| 387 | sqrt_near_exact_ok: |
| 388 | #endif /* PARANOID */ |
| 389 | |
| 390 | or %ebx,%ebx |
| 391 | js sqrt_near_exact_small |
| 392 | |
| 393 | jnz sqrt_near_exact_large |
| 394 | |
| 395 | or %ebx,%edx |
| 396 | jnz sqrt_near_exact_large |
| 397 | |
| 398 | /* Our estimate is exactly the right answer */ |
| 399 | xorl %eax,%eax |
| 400 | jmp sqrt_round_result |
| 401 | |
| 402 | sqrt_near_exact_small: |
| 403 | /* Our estimate is too small */ |
| 404 | movl $0x000000ff,%eax |
| 405 | jmp sqrt_round_result |
| 406 | |
| 407 | sqrt_near_exact_large: |
| 408 | /* Our estimate is too large, we need to decrement it */ |
| 409 | subl $1,%edi |
| 410 | sbbl $0,%esi |
| 411 | movl $0xffffff00,%eax |
| 412 | jmp sqrt_round_result |
| 413 | |
| 414 | |
| 415 | sqrt_get_more_precision: |
| 416 | /* This case is almost the same as the above, except we start |
| 417 | with an extra bit of precision in the estimate. */ |
| 418 | stc /* The extra bit. */ |
| 419 | rcll $1,%edi /* Shift the estimate left one bit */ |
| 420 | rcll $1,%esi |
| 421 | |
| 422 | movl %edi,%eax /* ls word of guess */ |
| 423 | mull %edi |
| 424 | movl %edx,%ebx /* 2nd ls word of square */ |
| 425 | movl %eax,%ecx /* ls word of square */ |
| 426 | |
| 427 | movl %edi,%eax |
| 428 | mull %esi |
| 429 | addl %eax,%ebx |
| 430 | addl %eax,%ebx |
| 431 | |
| 432 | /* Put our estimate back to its original value */ |
| 433 | stc /* The ms bit. */ |
| 434 | rcrl $1,%esi /* Shift the estimate left one bit */ |
| 435 | rcrl $1,%edi |
| 436 | |
| 437 | #ifdef PARANOID |
| 438 | cmp $0xffffff60,%ebx |
| 439 | jb sqrt_more_prec_ok |
| 440 | |
| 441 | cmp $0x000000a0,%ebx |
| 442 | ja sqrt_more_prec_ok |
| 443 | |
| 444 | pushl EX_INTERNAL|0x215 |
| 445 | call EXCEPTION |
| 446 | |
| 447 | sqrt_more_prec_ok: |
| 448 | #endif /* PARANOID */ |
| 449 | |
| 450 | or %ebx,%ebx |
| 451 | js sqrt_more_prec_small |
| 452 | |
| 453 | jnz sqrt_more_prec_large |
| 454 | |
| 455 | or %ebx,%ecx |
| 456 | jnz sqrt_more_prec_large |
| 457 | |
| 458 | /* Our estimate is exactly the right answer */ |
| 459 | movl $0x80000000,%eax |
| 460 | jmp sqrt_round_result |
| 461 | |
| 462 | sqrt_more_prec_small: |
| 463 | /* Our estimate is too small */ |
| 464 | movl $0x800000ff,%eax |
| 465 | jmp sqrt_round_result |
| 466 | |
| 467 | sqrt_more_prec_large: |
| 468 | /* Our estimate is too large */ |
| 469 | movl $0x7fffff00,%eax |
| 470 | jmp sqrt_round_result |