Anatolij Gustschin | 12458ea | 2009-12-11 21:24:44 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2006-2009 DENX Software Engineering. |
| 3 | * |
| 4 | * Author: Yuri Tikhonov <yur@emcraft.com> |
| 5 | * |
| 6 | * Further porting to arch/powerpc by |
| 7 | * Anatolij Gustschin <agust@denx.de> |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify it |
| 10 | * under the terms of the GNU General Public License as published by the Free |
| 11 | * Software Foundation; either version 2 of the License, or (at your option) |
| 12 | * any later version. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 15 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 16 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 17 | * more details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License along with |
| 20 | * this program; if not, write to the Free Software Foundation, Inc., 59 |
| 21 | * Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 22 | * |
| 23 | * The full GNU General Public License is included in this distribution in the |
| 24 | * file called COPYING. |
| 25 | */ |
| 26 | |
| 27 | /* |
| 28 | * This driver supports the asynchrounous DMA copy and RAID engines available |
| 29 | * on the AMCC PPC440SPe Processors. |
| 30 | * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x) |
| 31 | * ADMA driver written by D.Williams. |
| 32 | */ |
| 33 | |
| 34 | #include <linux/init.h> |
| 35 | #include <linux/module.h> |
| 36 | #include <linux/async_tx.h> |
| 37 | #include <linux/delay.h> |
| 38 | #include <linux/dma-mapping.h> |
| 39 | #include <linux/spinlock.h> |
| 40 | #include <linux/interrupt.h> |
Tejun Heo | 5a0e3ad | 2010-03-24 17:04:11 +0900 | [diff] [blame] | 41 | #include <linux/slab.h> |
Anatolij Gustschin | 12458ea | 2009-12-11 21:24:44 -0700 | [diff] [blame] | 42 | #include <linux/uaccess.h> |
| 43 | #include <linux/proc_fs.h> |
| 44 | #include <linux/of.h> |
| 45 | #include <linux/of_platform.h> |
| 46 | #include <asm/dcr.h> |
| 47 | #include <asm/dcr-regs.h> |
| 48 | #include "adma.h" |
| 49 | |
| 50 | enum ppc_adma_init_code { |
| 51 | PPC_ADMA_INIT_OK = 0, |
| 52 | PPC_ADMA_INIT_MEMRES, |
| 53 | PPC_ADMA_INIT_MEMREG, |
| 54 | PPC_ADMA_INIT_ALLOC, |
| 55 | PPC_ADMA_INIT_COHERENT, |
| 56 | PPC_ADMA_INIT_CHANNEL, |
| 57 | PPC_ADMA_INIT_IRQ1, |
| 58 | PPC_ADMA_INIT_IRQ2, |
| 59 | PPC_ADMA_INIT_REGISTER |
| 60 | }; |
| 61 | |
| 62 | static char *ppc_adma_errors[] = { |
| 63 | [PPC_ADMA_INIT_OK] = "ok", |
| 64 | [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource", |
| 65 | [PPC_ADMA_INIT_MEMREG] = "failed to request memory region", |
| 66 | [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev " |
| 67 | "structure", |
| 68 | [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for " |
| 69 | "hardware descriptors", |
| 70 | [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel", |
| 71 | [PPC_ADMA_INIT_IRQ1] = "failed to request first irq", |
| 72 | [PPC_ADMA_INIT_IRQ2] = "failed to request second irq", |
| 73 | [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device", |
| 74 | }; |
| 75 | |
| 76 | static enum ppc_adma_init_code |
| 77 | ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM]; |
| 78 | |
| 79 | struct ppc_dma_chan_ref { |
| 80 | struct dma_chan *chan; |
| 81 | struct list_head node; |
| 82 | }; |
| 83 | |
| 84 | /* The list of channels exported by ppc440spe ADMA */ |
| 85 | struct list_head |
| 86 | ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list); |
| 87 | |
| 88 | /* This flag is set when want to refetch the xor chain in the interrupt |
| 89 | * handler |
| 90 | */ |
| 91 | static u32 do_xor_refetch; |
| 92 | |
| 93 | /* Pointer to DMA0, DMA1 CP/CS FIFO */ |
| 94 | static void *ppc440spe_dma_fifo_buf; |
| 95 | |
| 96 | /* Pointers to last submitted to DMA0, DMA1 CDBs */ |
| 97 | static struct ppc440spe_adma_desc_slot *chan_last_sub[3]; |
| 98 | static struct ppc440spe_adma_desc_slot *chan_first_cdb[3]; |
| 99 | |
| 100 | /* Pointer to last linked and submitted xor CB */ |
| 101 | static struct ppc440spe_adma_desc_slot *xor_last_linked; |
| 102 | static struct ppc440spe_adma_desc_slot *xor_last_submit; |
| 103 | |
| 104 | /* This array is used in data-check operations for storing a pattern */ |
| 105 | static char ppc440spe_qword[16]; |
| 106 | |
| 107 | static atomic_t ppc440spe_adma_err_irq_ref; |
| 108 | static dcr_host_t ppc440spe_mq_dcr_host; |
| 109 | static unsigned int ppc440spe_mq_dcr_len; |
| 110 | |
| 111 | /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up |
| 112 | * the block size in transactions, then we do not allow to activate more than |
| 113 | * only one RXOR transactions simultaneously. So use this var to store |
| 114 | * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is |
| 115 | * set) or not (PPC440SPE_RXOR_RUN is clear). |
| 116 | */ |
| 117 | static unsigned long ppc440spe_rxor_state; |
| 118 | |
| 119 | /* These are used in enable & check routines |
| 120 | */ |
| 121 | static u32 ppc440spe_r6_enabled; |
| 122 | static struct ppc440spe_adma_chan *ppc440spe_r6_tchan; |
| 123 | static struct completion ppc440spe_r6_test_comp; |
| 124 | |
| 125 | static int ppc440spe_adma_dma2rxor_prep_src( |
| 126 | struct ppc440spe_adma_desc_slot *desc, |
| 127 | struct ppc440spe_rxor *cursor, int index, |
| 128 | int src_cnt, u32 addr); |
| 129 | static void ppc440spe_adma_dma2rxor_set_src( |
| 130 | struct ppc440spe_adma_desc_slot *desc, |
| 131 | int index, dma_addr_t addr); |
| 132 | static void ppc440spe_adma_dma2rxor_set_mult( |
| 133 | struct ppc440spe_adma_desc_slot *desc, |
| 134 | int index, u8 mult); |
| 135 | |
| 136 | #ifdef ADMA_LL_DEBUG |
| 137 | #define ADMA_LL_DBG(x) ({ if (1) x; 0; }) |
| 138 | #else |
| 139 | #define ADMA_LL_DBG(x) ({ if (0) x; 0; }) |
| 140 | #endif |
| 141 | |
| 142 | static void print_cb(struct ppc440spe_adma_chan *chan, void *block) |
| 143 | { |
| 144 | struct dma_cdb *cdb; |
| 145 | struct xor_cb *cb; |
| 146 | int i; |
| 147 | |
| 148 | switch (chan->device->id) { |
| 149 | case 0: |
| 150 | case 1: |
| 151 | cdb = block; |
| 152 | |
| 153 | pr_debug("CDB at %p [%d]:\n" |
| 154 | "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n" |
| 155 | "\t sg1u 0x%08x sg1l 0x%08x\n" |
| 156 | "\t sg2u 0x%08x sg2l 0x%08x\n" |
| 157 | "\t sg3u 0x%08x sg3l 0x%08x\n", |
| 158 | cdb, chan->device->id, |
| 159 | cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt), |
| 160 | le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l), |
| 161 | le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l), |
| 162 | le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l) |
| 163 | ); |
| 164 | break; |
| 165 | case 2: |
| 166 | cb = block; |
| 167 | |
| 168 | pr_debug("CB at %p [%d]:\n" |
| 169 | "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n" |
| 170 | "\t cbtah 0x%08x cbtal 0x%08x\n" |
| 171 | "\t cblah 0x%08x cblal 0x%08x\n", |
| 172 | cb, chan->device->id, |
| 173 | cb->cbc, cb->cbbc, cb->cbs, |
| 174 | cb->cbtah, cb->cbtal, |
| 175 | cb->cblah, cb->cblal); |
| 176 | for (i = 0; i < 16; i++) { |
| 177 | if (i && !cb->ops[i].h && !cb->ops[i].l) |
| 178 | continue; |
| 179 | pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n", |
| 180 | i, cb->ops[i].h, cb->ops[i].l); |
| 181 | } |
| 182 | break; |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | static void print_cb_list(struct ppc440spe_adma_chan *chan, |
| 187 | struct ppc440spe_adma_desc_slot *iter) |
| 188 | { |
| 189 | for (; iter; iter = iter->hw_next) |
| 190 | print_cb(chan, iter->hw_desc); |
| 191 | } |
| 192 | |
| 193 | static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src, |
| 194 | unsigned int src_cnt) |
| 195 | { |
| 196 | int i; |
| 197 | |
| 198 | pr_debug("\n%s(%d):\nsrc: ", __func__, id); |
| 199 | for (i = 0; i < src_cnt; i++) |
| 200 | pr_debug("\t0x%016llx ", src[i]); |
| 201 | pr_debug("dst:\n\t0x%016llx\n", dst); |
| 202 | } |
| 203 | |
| 204 | static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src, |
| 205 | unsigned int src_cnt) |
| 206 | { |
| 207 | int i; |
| 208 | |
| 209 | pr_debug("\n%s(%d):\nsrc: ", __func__, id); |
| 210 | for (i = 0; i < src_cnt; i++) |
| 211 | pr_debug("\t0x%016llx ", src[i]); |
| 212 | pr_debug("dst: "); |
| 213 | for (i = 0; i < 2; i++) |
| 214 | pr_debug("\t0x%016llx ", dst[i]); |
| 215 | } |
| 216 | |
| 217 | static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src, |
| 218 | unsigned int src_cnt, |
| 219 | const unsigned char *scf) |
| 220 | { |
| 221 | int i; |
| 222 | |
| 223 | pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id); |
| 224 | if (scf) { |
| 225 | for (i = 0; i < src_cnt; i++) |
| 226 | pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]); |
| 227 | } else { |
| 228 | for (i = 0; i < src_cnt; i++) |
| 229 | pr_debug("\t0x%016llx(no) ", src[i]); |
| 230 | } |
| 231 | |
| 232 | pr_debug("dst: "); |
| 233 | for (i = 0; i < 2; i++) |
| 234 | pr_debug("\t0x%016llx ", src[src_cnt + i]); |
| 235 | } |
| 236 | |
| 237 | /****************************************************************************** |
| 238 | * Command (Descriptor) Blocks low-level routines |
| 239 | ******************************************************************************/ |
| 240 | /** |
| 241 | * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT |
| 242 | * pseudo operation |
| 243 | */ |
| 244 | static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc, |
| 245 | struct ppc440spe_adma_chan *chan) |
| 246 | { |
| 247 | struct xor_cb *p; |
| 248 | |
| 249 | switch (chan->device->id) { |
| 250 | case PPC440SPE_XOR_ID: |
| 251 | p = desc->hw_desc; |
| 252 | memset(desc->hw_desc, 0, sizeof(struct xor_cb)); |
| 253 | /* NOP with Command Block Complete Enable */ |
| 254 | p->cbc = XOR_CBCR_CBCE_BIT; |
| 255 | break; |
| 256 | case PPC440SPE_DMA0_ID: |
| 257 | case PPC440SPE_DMA1_ID: |
| 258 | memset(desc->hw_desc, 0, sizeof(struct dma_cdb)); |
| 259 | /* NOP with interrupt */ |
| 260 | set_bit(PPC440SPE_DESC_INT, &desc->flags); |
| 261 | break; |
| 262 | default: |
| 263 | printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id, |
| 264 | __func__); |
| 265 | break; |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | /** |
| 270 | * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR |
| 271 | * pseudo operation |
| 272 | */ |
| 273 | static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc) |
| 274 | { |
| 275 | memset(desc->hw_desc, 0, sizeof(struct xor_cb)); |
| 276 | desc->hw_next = NULL; |
| 277 | desc->src_cnt = 0; |
| 278 | desc->dst_cnt = 1; |
| 279 | } |
| 280 | |
| 281 | /** |
| 282 | * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation |
| 283 | */ |
| 284 | static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc, |
| 285 | int src_cnt, unsigned long flags) |
| 286 | { |
| 287 | struct xor_cb *hw_desc = desc->hw_desc; |
| 288 | |
| 289 | memset(desc->hw_desc, 0, sizeof(struct xor_cb)); |
| 290 | desc->hw_next = NULL; |
| 291 | desc->src_cnt = src_cnt; |
| 292 | desc->dst_cnt = 1; |
| 293 | |
| 294 | hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt; |
| 295 | if (flags & DMA_PREP_INTERRUPT) |
| 296 | /* Enable interrupt on completion */ |
| 297 | hw_desc->cbc |= XOR_CBCR_CBCE_BIT; |
| 298 | } |
| 299 | |
| 300 | /** |
| 301 | * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ |
| 302 | * operation in DMA2 controller |
| 303 | */ |
| 304 | static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc, |
| 305 | int dst_cnt, int src_cnt, unsigned long flags) |
| 306 | { |
| 307 | struct xor_cb *hw_desc = desc->hw_desc; |
| 308 | |
| 309 | memset(desc->hw_desc, 0, sizeof(struct xor_cb)); |
| 310 | desc->hw_next = NULL; |
| 311 | desc->src_cnt = src_cnt; |
| 312 | desc->dst_cnt = dst_cnt; |
| 313 | memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags)); |
| 314 | desc->descs_per_op = 0; |
| 315 | |
| 316 | hw_desc->cbc = XOR_CBCR_TGT_BIT; |
| 317 | if (flags & DMA_PREP_INTERRUPT) |
| 318 | /* Enable interrupt on completion */ |
| 319 | hw_desc->cbc |= XOR_CBCR_CBCE_BIT; |
| 320 | } |
| 321 | |
| 322 | #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE |
| 323 | #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1) |
| 324 | #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1) |
| 325 | |
| 326 | /** |
| 327 | * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation |
| 328 | * with DMA0/1 |
| 329 | */ |
| 330 | static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc, |
| 331 | int dst_cnt, int src_cnt, unsigned long flags, |
| 332 | unsigned long op) |
| 333 | { |
| 334 | struct dma_cdb *hw_desc; |
| 335 | struct ppc440spe_adma_desc_slot *iter; |
| 336 | u8 dopc; |
| 337 | |
| 338 | /* Common initialization of a PQ descriptors chain */ |
| 339 | set_bits(op, &desc->flags); |
| 340 | desc->src_cnt = src_cnt; |
| 341 | desc->dst_cnt = dst_cnt; |
| 342 | |
| 343 | /* WXOR MULTICAST if both P and Q are being computed |
| 344 | * MV_SG1_SG2 if Q only |
| 345 | */ |
| 346 | dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ? |
| 347 | DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2; |
| 348 | |
| 349 | list_for_each_entry(iter, &desc->group_list, chain_node) { |
| 350 | hw_desc = iter->hw_desc; |
| 351 | memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); |
| 352 | |
| 353 | if (likely(!list_is_last(&iter->chain_node, |
| 354 | &desc->group_list))) { |
| 355 | /* set 'next' pointer */ |
| 356 | iter->hw_next = list_entry(iter->chain_node.next, |
| 357 | struct ppc440spe_adma_desc_slot, chain_node); |
| 358 | clear_bit(PPC440SPE_DESC_INT, &iter->flags); |
| 359 | } else { |
| 360 | /* this is the last descriptor. |
| 361 | * this slot will be pasted from ADMA level |
| 362 | * each time it wants to configure parameters |
| 363 | * of the transaction (src, dst, ...) |
| 364 | */ |
| 365 | iter->hw_next = NULL; |
| 366 | if (flags & DMA_PREP_INTERRUPT) |
| 367 | set_bit(PPC440SPE_DESC_INT, &iter->flags); |
| 368 | else |
| 369 | clear_bit(PPC440SPE_DESC_INT, &iter->flags); |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | /* Set OPS depending on WXOR/RXOR type of operation */ |
| 374 | if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) { |
| 375 | /* This is a WXOR only chain: |
| 376 | * - first descriptors are for zeroing destinations |
| 377 | * if PPC440SPE_ZERO_P/Q set; |
| 378 | * - descriptors remained are for GF-XOR operations. |
| 379 | */ |
| 380 | iter = list_first_entry(&desc->group_list, |
| 381 | struct ppc440spe_adma_desc_slot, |
| 382 | chain_node); |
| 383 | |
| 384 | if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) { |
| 385 | hw_desc = iter->hw_desc; |
| 386 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| 387 | iter = list_first_entry(&iter->chain_node, |
| 388 | struct ppc440spe_adma_desc_slot, |
| 389 | chain_node); |
| 390 | } |
| 391 | |
| 392 | if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) { |
| 393 | hw_desc = iter->hw_desc; |
| 394 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| 395 | iter = list_first_entry(&iter->chain_node, |
| 396 | struct ppc440spe_adma_desc_slot, |
| 397 | chain_node); |
| 398 | } |
| 399 | |
| 400 | list_for_each_entry_from(iter, &desc->group_list, chain_node) { |
| 401 | hw_desc = iter->hw_desc; |
| 402 | hw_desc->opc = dopc; |
| 403 | } |
| 404 | } else { |
| 405 | /* This is either RXOR-only or mixed RXOR/WXOR */ |
| 406 | |
| 407 | /* The first 1 or 2 slots in chain are always RXOR, |
| 408 | * if need to calculate P & Q, then there are two |
| 409 | * RXOR slots; if only P or only Q, then there is one |
| 410 | */ |
| 411 | iter = list_first_entry(&desc->group_list, |
| 412 | struct ppc440spe_adma_desc_slot, |
| 413 | chain_node); |
| 414 | hw_desc = iter->hw_desc; |
| 415 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| 416 | |
| 417 | if (desc->dst_cnt == DMA_DEST_MAX_NUM) { |
| 418 | iter = list_first_entry(&iter->chain_node, |
| 419 | struct ppc440spe_adma_desc_slot, |
| 420 | chain_node); |
| 421 | hw_desc = iter->hw_desc; |
| 422 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| 423 | } |
| 424 | |
| 425 | /* The remaining descs (if any) are WXORs */ |
| 426 | if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) { |
| 427 | iter = list_first_entry(&iter->chain_node, |
| 428 | struct ppc440spe_adma_desc_slot, |
| 429 | chain_node); |
| 430 | list_for_each_entry_from(iter, &desc->group_list, |
| 431 | chain_node) { |
| 432 | hw_desc = iter->hw_desc; |
| 433 | hw_desc->opc = dopc; |
| 434 | } |
| 435 | } |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | /** |
| 440 | * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor |
| 441 | * for PQ_ZERO_SUM operation |
| 442 | */ |
| 443 | static void ppc440spe_desc_init_dma01pqzero_sum( |
| 444 | struct ppc440spe_adma_desc_slot *desc, |
| 445 | int dst_cnt, int src_cnt) |
| 446 | { |
| 447 | struct dma_cdb *hw_desc; |
| 448 | struct ppc440spe_adma_desc_slot *iter; |
| 449 | int i = 0; |
| 450 | u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST : |
| 451 | DMA_CDB_OPC_MV_SG1_SG2; |
| 452 | /* |
| 453 | * Initialize starting from 2nd or 3rd descriptor dependent |
| 454 | * on dst_cnt. First one or two slots are for cloning P |
| 455 | * and/or Q to chan->pdest and/or chan->qdest as we have |
| 456 | * to preserve original P/Q. |
| 457 | */ |
| 458 | iter = list_first_entry(&desc->group_list, |
| 459 | struct ppc440spe_adma_desc_slot, chain_node); |
| 460 | iter = list_entry(iter->chain_node.next, |
| 461 | struct ppc440spe_adma_desc_slot, chain_node); |
| 462 | |
| 463 | if (dst_cnt > 1) { |
| 464 | iter = list_entry(iter->chain_node.next, |
| 465 | struct ppc440spe_adma_desc_slot, chain_node); |
| 466 | } |
| 467 | /* initialize each source descriptor in chain */ |
| 468 | list_for_each_entry_from(iter, &desc->group_list, chain_node) { |
| 469 | hw_desc = iter->hw_desc; |
| 470 | memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); |
| 471 | iter->src_cnt = 0; |
| 472 | iter->dst_cnt = 0; |
| 473 | |
| 474 | /* This is a ZERO_SUM operation: |
| 475 | * - <src_cnt> descriptors starting from 2nd or 3rd |
| 476 | * descriptor are for GF-XOR operations; |
| 477 | * - remaining <dst_cnt> descriptors are for checking the result |
| 478 | */ |
| 479 | if (i++ < src_cnt) |
| 480 | /* MV_SG1_SG2 if only Q is being verified |
| 481 | * MULTICAST if both P and Q are being verified |
| 482 | */ |
| 483 | hw_desc->opc = dopc; |
| 484 | else |
| 485 | /* DMA_CDB_OPC_DCHECK128 operation */ |
| 486 | hw_desc->opc = DMA_CDB_OPC_DCHECK128; |
| 487 | |
| 488 | if (likely(!list_is_last(&iter->chain_node, |
| 489 | &desc->group_list))) { |
| 490 | /* set 'next' pointer */ |
| 491 | iter->hw_next = list_entry(iter->chain_node.next, |
| 492 | struct ppc440spe_adma_desc_slot, |
| 493 | chain_node); |
| 494 | } else { |
| 495 | /* this is the last descriptor. |
| 496 | * this slot will be pasted from ADMA level |
| 497 | * each time it wants to configure parameters |
| 498 | * of the transaction (src, dst, ...) |
| 499 | */ |
| 500 | iter->hw_next = NULL; |
| 501 | /* always enable interrupt generation since we get |
| 502 | * the status of pqzero from the handler |
| 503 | */ |
| 504 | set_bit(PPC440SPE_DESC_INT, &iter->flags); |
| 505 | } |
| 506 | } |
| 507 | desc->src_cnt = src_cnt; |
| 508 | desc->dst_cnt = dst_cnt; |
| 509 | } |
| 510 | |
| 511 | /** |
| 512 | * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation |
| 513 | */ |
| 514 | static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc, |
| 515 | unsigned long flags) |
| 516 | { |
| 517 | struct dma_cdb *hw_desc = desc->hw_desc; |
| 518 | |
| 519 | memset(desc->hw_desc, 0, sizeof(struct dma_cdb)); |
| 520 | desc->hw_next = NULL; |
| 521 | desc->src_cnt = 1; |
| 522 | desc->dst_cnt = 1; |
| 523 | |
| 524 | if (flags & DMA_PREP_INTERRUPT) |
| 525 | set_bit(PPC440SPE_DESC_INT, &desc->flags); |
| 526 | else |
| 527 | clear_bit(PPC440SPE_DESC_INT, &desc->flags); |
| 528 | |
| 529 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| 530 | } |
| 531 | |
| 532 | /** |
| 533 | * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation |
| 534 | */ |
| 535 | static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc, |
| 536 | int value, unsigned long flags) |
| 537 | { |
| 538 | struct dma_cdb *hw_desc = desc->hw_desc; |
| 539 | |
| 540 | memset(desc->hw_desc, 0, sizeof(struct dma_cdb)); |
| 541 | desc->hw_next = NULL; |
| 542 | desc->src_cnt = 1; |
| 543 | desc->dst_cnt = 1; |
| 544 | |
| 545 | if (flags & DMA_PREP_INTERRUPT) |
| 546 | set_bit(PPC440SPE_DESC_INT, &desc->flags); |
| 547 | else |
| 548 | clear_bit(PPC440SPE_DESC_INT, &desc->flags); |
| 549 | |
| 550 | hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value); |
| 551 | hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value); |
| 552 | hw_desc->opc = DMA_CDB_OPC_DFILL128; |
| 553 | } |
| 554 | |
| 555 | /** |
| 556 | * ppc440spe_desc_set_src_addr - set source address into the descriptor |
| 557 | */ |
| 558 | static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc, |
| 559 | struct ppc440spe_adma_chan *chan, |
| 560 | int src_idx, dma_addr_t addrh, |
| 561 | dma_addr_t addrl) |
| 562 | { |
| 563 | struct dma_cdb *dma_hw_desc; |
| 564 | struct xor_cb *xor_hw_desc; |
| 565 | phys_addr_t addr64, tmplow, tmphi; |
| 566 | |
| 567 | switch (chan->device->id) { |
| 568 | case PPC440SPE_DMA0_ID: |
| 569 | case PPC440SPE_DMA1_ID: |
| 570 | if (!addrh) { |
| 571 | addr64 = addrl; |
| 572 | tmphi = (addr64 >> 32); |
| 573 | tmplow = (addr64 & 0xFFFFFFFF); |
| 574 | } else { |
| 575 | tmphi = addrh; |
| 576 | tmplow = addrl; |
| 577 | } |
| 578 | dma_hw_desc = desc->hw_desc; |
| 579 | dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow); |
| 580 | dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi); |
| 581 | break; |
| 582 | case PPC440SPE_XOR_ID: |
| 583 | xor_hw_desc = desc->hw_desc; |
| 584 | xor_hw_desc->ops[src_idx].l = addrl; |
| 585 | xor_hw_desc->ops[src_idx].h |= addrh; |
| 586 | break; |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | /** |
| 591 | * ppc440spe_desc_set_src_mult - set source address mult into the descriptor |
| 592 | */ |
| 593 | static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc, |
| 594 | struct ppc440spe_adma_chan *chan, u32 mult_index, |
| 595 | int sg_index, unsigned char mult_value) |
| 596 | { |
| 597 | struct dma_cdb *dma_hw_desc; |
| 598 | struct xor_cb *xor_hw_desc; |
| 599 | u32 *psgu; |
| 600 | |
| 601 | switch (chan->device->id) { |
| 602 | case PPC440SPE_DMA0_ID: |
| 603 | case PPC440SPE_DMA1_ID: |
| 604 | dma_hw_desc = desc->hw_desc; |
| 605 | |
| 606 | switch (sg_index) { |
| 607 | /* for RXOR operations set multiplier |
| 608 | * into source cued address |
| 609 | */ |
| 610 | case DMA_CDB_SG_SRC: |
| 611 | psgu = &dma_hw_desc->sg1u; |
| 612 | break; |
| 613 | /* for WXOR operations set multiplier |
| 614 | * into destination cued address(es) |
| 615 | */ |
| 616 | case DMA_CDB_SG_DST1: |
| 617 | psgu = &dma_hw_desc->sg2u; |
| 618 | break; |
| 619 | case DMA_CDB_SG_DST2: |
| 620 | psgu = &dma_hw_desc->sg3u; |
| 621 | break; |
| 622 | default: |
| 623 | BUG(); |
| 624 | } |
| 625 | |
| 626 | *psgu |= cpu_to_le32(mult_value << mult_index); |
| 627 | break; |
| 628 | case PPC440SPE_XOR_ID: |
| 629 | xor_hw_desc = desc->hw_desc; |
| 630 | break; |
| 631 | default: |
| 632 | BUG(); |
| 633 | } |
| 634 | } |
| 635 | |
| 636 | /** |
| 637 | * ppc440spe_desc_set_dest_addr - set destination address into the descriptor |
| 638 | */ |
| 639 | static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc, |
| 640 | struct ppc440spe_adma_chan *chan, |
| 641 | dma_addr_t addrh, dma_addr_t addrl, |
| 642 | u32 dst_idx) |
| 643 | { |
| 644 | struct dma_cdb *dma_hw_desc; |
| 645 | struct xor_cb *xor_hw_desc; |
| 646 | phys_addr_t addr64, tmphi, tmplow; |
| 647 | u32 *psgu, *psgl; |
| 648 | |
| 649 | switch (chan->device->id) { |
| 650 | case PPC440SPE_DMA0_ID: |
| 651 | case PPC440SPE_DMA1_ID: |
| 652 | if (!addrh) { |
| 653 | addr64 = addrl; |
| 654 | tmphi = (addr64 >> 32); |
| 655 | tmplow = (addr64 & 0xFFFFFFFF); |
| 656 | } else { |
| 657 | tmphi = addrh; |
| 658 | tmplow = addrl; |
| 659 | } |
| 660 | dma_hw_desc = desc->hw_desc; |
| 661 | |
| 662 | psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u; |
| 663 | psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l; |
| 664 | |
| 665 | *psgl = cpu_to_le32((u32)tmplow); |
| 666 | *psgu |= cpu_to_le32((u32)tmphi); |
| 667 | break; |
| 668 | case PPC440SPE_XOR_ID: |
| 669 | xor_hw_desc = desc->hw_desc; |
| 670 | xor_hw_desc->cbtal = addrl; |
| 671 | xor_hw_desc->cbtah |= addrh; |
| 672 | break; |
| 673 | } |
| 674 | } |
| 675 | |
| 676 | /** |
| 677 | * ppc440spe_desc_set_byte_count - set number of data bytes involved |
| 678 | * into the operation |
| 679 | */ |
| 680 | static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc, |
| 681 | struct ppc440spe_adma_chan *chan, |
| 682 | u32 byte_count) |
| 683 | { |
| 684 | struct dma_cdb *dma_hw_desc; |
| 685 | struct xor_cb *xor_hw_desc; |
| 686 | |
| 687 | switch (chan->device->id) { |
| 688 | case PPC440SPE_DMA0_ID: |
| 689 | case PPC440SPE_DMA1_ID: |
| 690 | dma_hw_desc = desc->hw_desc; |
| 691 | dma_hw_desc->cnt = cpu_to_le32(byte_count); |
| 692 | break; |
| 693 | case PPC440SPE_XOR_ID: |
| 694 | xor_hw_desc = desc->hw_desc; |
| 695 | xor_hw_desc->cbbc = byte_count; |
| 696 | break; |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | /** |
| 701 | * ppc440spe_desc_set_rxor_block_size - set RXOR block size |
| 702 | */ |
| 703 | static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count) |
| 704 | { |
| 705 | /* assume that byte_count is aligned on the 512-boundary; |
| 706 | * thus write it directly to the register (bits 23:31 are |
| 707 | * reserved there). |
| 708 | */ |
| 709 | dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count); |
| 710 | } |
| 711 | |
| 712 | /** |
| 713 | * ppc440spe_desc_set_dcheck - set CHECK pattern |
| 714 | */ |
| 715 | static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc, |
| 716 | struct ppc440spe_adma_chan *chan, u8 *qword) |
| 717 | { |
| 718 | struct dma_cdb *dma_hw_desc; |
| 719 | |
| 720 | switch (chan->device->id) { |
| 721 | case PPC440SPE_DMA0_ID: |
| 722 | case PPC440SPE_DMA1_ID: |
| 723 | dma_hw_desc = desc->hw_desc; |
| 724 | iowrite32(qword[0], &dma_hw_desc->sg3l); |
| 725 | iowrite32(qword[4], &dma_hw_desc->sg3u); |
| 726 | iowrite32(qword[8], &dma_hw_desc->sg2l); |
| 727 | iowrite32(qword[12], &dma_hw_desc->sg2u); |
| 728 | break; |
| 729 | default: |
| 730 | BUG(); |
| 731 | } |
| 732 | } |
| 733 | |
| 734 | /** |
| 735 | * ppc440spe_xor_set_link - set link address in xor CB |
| 736 | */ |
| 737 | static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc, |
| 738 | struct ppc440spe_adma_desc_slot *next_desc) |
| 739 | { |
| 740 | struct xor_cb *xor_hw_desc = prev_desc->hw_desc; |
| 741 | |
| 742 | if (unlikely(!next_desc || !(next_desc->phys))) { |
| 743 | printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n", |
| 744 | __func__, next_desc, |
| 745 | next_desc ? next_desc->phys : 0); |
| 746 | BUG(); |
| 747 | } |
| 748 | |
| 749 | xor_hw_desc->cbs = 0; |
| 750 | xor_hw_desc->cblal = next_desc->phys; |
| 751 | xor_hw_desc->cblah = 0; |
| 752 | xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT; |
| 753 | } |
| 754 | |
| 755 | /** |
| 756 | * ppc440spe_desc_set_link - set the address of descriptor following this |
| 757 | * descriptor in chain |
| 758 | */ |
| 759 | static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan, |
| 760 | struct ppc440spe_adma_desc_slot *prev_desc, |
| 761 | struct ppc440spe_adma_desc_slot *next_desc) |
| 762 | { |
| 763 | unsigned long flags; |
| 764 | struct ppc440spe_adma_desc_slot *tail = next_desc; |
| 765 | |
| 766 | if (unlikely(!prev_desc || !next_desc || |
| 767 | (prev_desc->hw_next && prev_desc->hw_next != next_desc))) { |
| 768 | /* If previous next is overwritten something is wrong. |
| 769 | * though we may refetch from append to initiate list |
| 770 | * processing; in this case - it's ok. |
| 771 | */ |
| 772 | printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; " |
| 773 | "prev->hw_next=0x%p\n", __func__, prev_desc, |
| 774 | next_desc, prev_desc ? prev_desc->hw_next : 0); |
| 775 | BUG(); |
| 776 | } |
| 777 | |
| 778 | local_irq_save(flags); |
| 779 | |
| 780 | /* do s/w chaining both for DMA and XOR descriptors */ |
| 781 | prev_desc->hw_next = next_desc; |
| 782 | |
| 783 | switch (chan->device->id) { |
| 784 | case PPC440SPE_DMA0_ID: |
| 785 | case PPC440SPE_DMA1_ID: |
| 786 | break; |
| 787 | case PPC440SPE_XOR_ID: |
| 788 | /* bind descriptor to the chain */ |
| 789 | while (tail->hw_next) |
| 790 | tail = tail->hw_next; |
| 791 | xor_last_linked = tail; |
| 792 | |
| 793 | if (prev_desc == xor_last_submit) |
| 794 | /* do not link to the last submitted CB */ |
| 795 | break; |
| 796 | ppc440spe_xor_set_link(prev_desc, next_desc); |
| 797 | break; |
| 798 | } |
| 799 | |
| 800 | local_irq_restore(flags); |
| 801 | } |
| 802 | |
| 803 | /** |
| 804 | * ppc440spe_desc_get_src_addr - extract the source address from the descriptor |
| 805 | */ |
| 806 | static u32 ppc440spe_desc_get_src_addr(struct ppc440spe_adma_desc_slot *desc, |
| 807 | struct ppc440spe_adma_chan *chan, int src_idx) |
| 808 | { |
| 809 | struct dma_cdb *dma_hw_desc; |
| 810 | struct xor_cb *xor_hw_desc; |
| 811 | |
| 812 | switch (chan->device->id) { |
| 813 | case PPC440SPE_DMA0_ID: |
| 814 | case PPC440SPE_DMA1_ID: |
| 815 | dma_hw_desc = desc->hw_desc; |
| 816 | /* May have 0, 1, 2, or 3 sources */ |
| 817 | switch (dma_hw_desc->opc) { |
| 818 | case DMA_CDB_OPC_NO_OP: |
| 819 | case DMA_CDB_OPC_DFILL128: |
| 820 | return 0; |
| 821 | case DMA_CDB_OPC_DCHECK128: |
| 822 | if (unlikely(src_idx)) { |
| 823 | printk(KERN_ERR "%s: try to get %d source for" |
| 824 | " DCHECK128\n", __func__, src_idx); |
| 825 | BUG(); |
| 826 | } |
| 827 | return le32_to_cpu(dma_hw_desc->sg1l); |
| 828 | case DMA_CDB_OPC_MULTICAST: |
| 829 | case DMA_CDB_OPC_MV_SG1_SG2: |
| 830 | if (unlikely(src_idx > 2)) { |
| 831 | printk(KERN_ERR "%s: try to get %d source from" |
| 832 | " DMA descr\n", __func__, src_idx); |
| 833 | BUG(); |
| 834 | } |
| 835 | if (src_idx) { |
| 836 | if (le32_to_cpu(dma_hw_desc->sg1u) & |
| 837 | DMA_CUED_XOR_WIN_MSK) { |
| 838 | u8 region; |
| 839 | |
| 840 | if (src_idx == 1) |
| 841 | return le32_to_cpu( |
| 842 | dma_hw_desc->sg1l) + |
| 843 | desc->unmap_len; |
| 844 | |
| 845 | region = (le32_to_cpu( |
| 846 | dma_hw_desc->sg1u)) >> |
| 847 | DMA_CUED_REGION_OFF; |
| 848 | |
| 849 | region &= DMA_CUED_REGION_MSK; |
| 850 | switch (region) { |
| 851 | case DMA_RXOR123: |
| 852 | return le32_to_cpu( |
| 853 | dma_hw_desc->sg1l) + |
| 854 | (desc->unmap_len << 1); |
| 855 | case DMA_RXOR124: |
| 856 | return le32_to_cpu( |
| 857 | dma_hw_desc->sg1l) + |
| 858 | (desc->unmap_len * 3); |
| 859 | case DMA_RXOR125: |
| 860 | return le32_to_cpu( |
| 861 | dma_hw_desc->sg1l) + |
| 862 | (desc->unmap_len << 2); |
| 863 | default: |
| 864 | printk(KERN_ERR |
| 865 | "%s: try to" |
| 866 | " get src3 for region %02x" |
| 867 | "PPC440SPE_DESC_RXOR12?\n", |
| 868 | __func__, region); |
| 869 | BUG(); |
| 870 | } |
| 871 | } else { |
| 872 | printk(KERN_ERR |
| 873 | "%s: try to get %d" |
| 874 | " source for non-cued descr\n", |
| 875 | __func__, src_idx); |
| 876 | BUG(); |
| 877 | } |
| 878 | } |
| 879 | return le32_to_cpu(dma_hw_desc->sg1l); |
| 880 | default: |
| 881 | printk(KERN_ERR "%s: unknown OPC 0x%02x\n", |
| 882 | __func__, dma_hw_desc->opc); |
| 883 | BUG(); |
| 884 | } |
| 885 | return le32_to_cpu(dma_hw_desc->sg1l); |
| 886 | case PPC440SPE_XOR_ID: |
| 887 | /* May have up to 16 sources */ |
| 888 | xor_hw_desc = desc->hw_desc; |
| 889 | return xor_hw_desc->ops[src_idx].l; |
| 890 | } |
| 891 | return 0; |
| 892 | } |
| 893 | |
| 894 | /** |
| 895 | * ppc440spe_desc_get_dest_addr - extract the destination address from the |
| 896 | * descriptor |
| 897 | */ |
| 898 | static u32 ppc440spe_desc_get_dest_addr(struct ppc440spe_adma_desc_slot *desc, |
| 899 | struct ppc440spe_adma_chan *chan, int idx) |
| 900 | { |
| 901 | struct dma_cdb *dma_hw_desc; |
| 902 | struct xor_cb *xor_hw_desc; |
| 903 | |
| 904 | switch (chan->device->id) { |
| 905 | case PPC440SPE_DMA0_ID: |
| 906 | case PPC440SPE_DMA1_ID: |
| 907 | dma_hw_desc = desc->hw_desc; |
| 908 | |
| 909 | if (likely(!idx)) |
| 910 | return le32_to_cpu(dma_hw_desc->sg2l); |
| 911 | return le32_to_cpu(dma_hw_desc->sg3l); |
| 912 | case PPC440SPE_XOR_ID: |
| 913 | xor_hw_desc = desc->hw_desc; |
| 914 | return xor_hw_desc->cbtal; |
| 915 | } |
| 916 | return 0; |
| 917 | } |
| 918 | |
| 919 | /** |
| 920 | * ppc440spe_desc_get_src_num - extract the number of source addresses from |
| 921 | * the descriptor |
| 922 | */ |
| 923 | static u32 ppc440spe_desc_get_src_num(struct ppc440spe_adma_desc_slot *desc, |
| 924 | struct ppc440spe_adma_chan *chan) |
| 925 | { |
| 926 | struct dma_cdb *dma_hw_desc; |
| 927 | struct xor_cb *xor_hw_desc; |
| 928 | |
| 929 | switch (chan->device->id) { |
| 930 | case PPC440SPE_DMA0_ID: |
| 931 | case PPC440SPE_DMA1_ID: |
| 932 | dma_hw_desc = desc->hw_desc; |
| 933 | |
| 934 | switch (dma_hw_desc->opc) { |
| 935 | case DMA_CDB_OPC_NO_OP: |
| 936 | case DMA_CDB_OPC_DFILL128: |
| 937 | return 0; |
| 938 | case DMA_CDB_OPC_DCHECK128: |
| 939 | return 1; |
| 940 | case DMA_CDB_OPC_MV_SG1_SG2: |
| 941 | case DMA_CDB_OPC_MULTICAST: |
| 942 | /* |
| 943 | * Only for RXOR operations we have more than |
| 944 | * one source |
| 945 | */ |
| 946 | if (le32_to_cpu(dma_hw_desc->sg1u) & |
| 947 | DMA_CUED_XOR_WIN_MSK) { |
| 948 | /* RXOR op, there are 2 or 3 sources */ |
| 949 | if (((le32_to_cpu(dma_hw_desc->sg1u) >> |
| 950 | DMA_CUED_REGION_OFF) & |
| 951 | DMA_CUED_REGION_MSK) == DMA_RXOR12) { |
| 952 | /* RXOR 1-2 */ |
| 953 | return 2; |
| 954 | } else { |
| 955 | /* RXOR 1-2-3/1-2-4/1-2-5 */ |
| 956 | return 3; |
| 957 | } |
| 958 | } |
| 959 | return 1; |
| 960 | default: |
| 961 | printk(KERN_ERR "%s: unknown OPC 0x%02x\n", |
| 962 | __func__, dma_hw_desc->opc); |
| 963 | BUG(); |
| 964 | } |
| 965 | case PPC440SPE_XOR_ID: |
| 966 | /* up to 16 sources */ |
| 967 | xor_hw_desc = desc->hw_desc; |
| 968 | return xor_hw_desc->cbc & XOR_CDCR_OAC_MSK; |
| 969 | default: |
| 970 | BUG(); |
| 971 | } |
| 972 | return 0; |
| 973 | } |
| 974 | |
| 975 | /** |
| 976 | * ppc440spe_desc_get_dst_num - get the number of destination addresses in |
| 977 | * this descriptor |
| 978 | */ |
| 979 | static u32 ppc440spe_desc_get_dst_num(struct ppc440spe_adma_desc_slot *desc, |
| 980 | struct ppc440spe_adma_chan *chan) |
| 981 | { |
| 982 | struct dma_cdb *dma_hw_desc; |
| 983 | |
| 984 | switch (chan->device->id) { |
| 985 | case PPC440SPE_DMA0_ID: |
| 986 | case PPC440SPE_DMA1_ID: |
| 987 | /* May be 1 or 2 destinations */ |
| 988 | dma_hw_desc = desc->hw_desc; |
| 989 | switch (dma_hw_desc->opc) { |
| 990 | case DMA_CDB_OPC_NO_OP: |
| 991 | case DMA_CDB_OPC_DCHECK128: |
| 992 | return 0; |
| 993 | case DMA_CDB_OPC_MV_SG1_SG2: |
| 994 | case DMA_CDB_OPC_DFILL128: |
| 995 | return 1; |
| 996 | case DMA_CDB_OPC_MULTICAST: |
| 997 | if (desc->dst_cnt == 2) |
| 998 | return 2; |
| 999 | else |
| 1000 | return 1; |
| 1001 | default: |
| 1002 | printk(KERN_ERR "%s: unknown OPC 0x%02x\n", |
| 1003 | __func__, dma_hw_desc->opc); |
| 1004 | BUG(); |
| 1005 | } |
| 1006 | case PPC440SPE_XOR_ID: |
| 1007 | /* Always only 1 destination */ |
| 1008 | return 1; |
| 1009 | default: |
| 1010 | BUG(); |
| 1011 | } |
| 1012 | return 0; |
| 1013 | } |
| 1014 | |
| 1015 | /** |
| 1016 | * ppc440spe_desc_get_link - get the address of the descriptor that |
| 1017 | * follows this one |
| 1018 | */ |
| 1019 | static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc, |
| 1020 | struct ppc440spe_adma_chan *chan) |
| 1021 | { |
| 1022 | if (!desc->hw_next) |
| 1023 | return 0; |
| 1024 | |
| 1025 | return desc->hw_next->phys; |
| 1026 | } |
| 1027 | |
| 1028 | /** |
| 1029 | * ppc440spe_desc_is_aligned - check alignment |
| 1030 | */ |
| 1031 | static inline int ppc440spe_desc_is_aligned( |
| 1032 | struct ppc440spe_adma_desc_slot *desc, int num_slots) |
| 1033 | { |
| 1034 | return (desc->idx & (num_slots - 1)) ? 0 : 1; |
| 1035 | } |
| 1036 | |
| 1037 | /** |
| 1038 | * ppc440spe_chan_xor_slot_count - get the number of slots necessary for |
| 1039 | * XOR operation |
| 1040 | */ |
| 1041 | static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt, |
| 1042 | int *slots_per_op) |
| 1043 | { |
| 1044 | int slot_cnt; |
| 1045 | |
| 1046 | /* each XOR descriptor provides up to 16 source operands */ |
| 1047 | slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS; |
| 1048 | |
| 1049 | if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT)) |
| 1050 | return slot_cnt; |
| 1051 | |
| 1052 | printk(KERN_ERR "%s: len %d > max %d !!\n", |
| 1053 | __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT); |
| 1054 | BUG(); |
| 1055 | return slot_cnt; |
| 1056 | } |
| 1057 | |
| 1058 | /** |
| 1059 | * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for |
| 1060 | * DMA2 PQ operation |
| 1061 | */ |
| 1062 | static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs, |
| 1063 | int src_cnt, size_t len) |
| 1064 | { |
| 1065 | signed long long order = 0; |
| 1066 | int state = 0; |
| 1067 | int addr_count = 0; |
| 1068 | int i; |
| 1069 | for (i = 1; i < src_cnt; i++) { |
| 1070 | dma_addr_t cur_addr = srcs[i]; |
| 1071 | dma_addr_t old_addr = srcs[i-1]; |
| 1072 | switch (state) { |
| 1073 | case 0: |
| 1074 | if (cur_addr == old_addr + len) { |
| 1075 | /* direct RXOR */ |
| 1076 | order = 1; |
| 1077 | state = 1; |
| 1078 | if (i == src_cnt-1) |
| 1079 | addr_count++; |
| 1080 | } else if (old_addr == cur_addr + len) { |
| 1081 | /* reverse RXOR */ |
| 1082 | order = -1; |
| 1083 | state = 1; |
| 1084 | if (i == src_cnt-1) |
| 1085 | addr_count++; |
| 1086 | } else { |
| 1087 | state = 3; |
| 1088 | } |
| 1089 | break; |
| 1090 | case 1: |
| 1091 | if (i == src_cnt-2 || (order == -1 |
| 1092 | && cur_addr != old_addr - len)) { |
| 1093 | order = 0; |
| 1094 | state = 0; |
| 1095 | addr_count++; |
| 1096 | } else if (cur_addr == old_addr + len*order) { |
| 1097 | state = 2; |
| 1098 | if (i == src_cnt-1) |
| 1099 | addr_count++; |
| 1100 | } else if (cur_addr == old_addr + 2*len) { |
| 1101 | state = 2; |
| 1102 | if (i == src_cnt-1) |
| 1103 | addr_count++; |
| 1104 | } else if (cur_addr == old_addr + 3*len) { |
| 1105 | state = 2; |
| 1106 | if (i == src_cnt-1) |
| 1107 | addr_count++; |
| 1108 | } else { |
| 1109 | order = 0; |
| 1110 | state = 0; |
| 1111 | addr_count++; |
| 1112 | } |
| 1113 | break; |
| 1114 | case 2: |
| 1115 | order = 0; |
| 1116 | state = 0; |
| 1117 | addr_count++; |
| 1118 | break; |
| 1119 | } |
| 1120 | if (state == 3) |
| 1121 | break; |
| 1122 | } |
| 1123 | if (src_cnt <= 1 || (state != 1 && state != 2)) { |
| 1124 | pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n", |
| 1125 | __func__, src_cnt, state, addr_count, order); |
| 1126 | for (i = 0; i < src_cnt; i++) |
| 1127 | pr_err("\t[%d] 0x%llx \n", i, srcs[i]); |
| 1128 | BUG(); |
| 1129 | } |
| 1130 | |
| 1131 | return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS; |
| 1132 | } |
| 1133 | |
| 1134 | |
| 1135 | /****************************************************************************** |
| 1136 | * ADMA channel low-level routines |
| 1137 | ******************************************************************************/ |
| 1138 | |
| 1139 | static u32 |
| 1140 | ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan); |
| 1141 | static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan); |
| 1142 | |
| 1143 | /** |
| 1144 | * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine |
| 1145 | */ |
| 1146 | static void ppc440spe_adma_device_clear_eot_status( |
| 1147 | struct ppc440spe_adma_chan *chan) |
| 1148 | { |
| 1149 | struct dma_regs *dma_reg; |
| 1150 | struct xor_regs *xor_reg; |
| 1151 | u8 *p = chan->device->dma_desc_pool_virt; |
| 1152 | struct dma_cdb *cdb; |
| 1153 | u32 rv, i; |
| 1154 | |
| 1155 | switch (chan->device->id) { |
| 1156 | case PPC440SPE_DMA0_ID: |
| 1157 | case PPC440SPE_DMA1_ID: |
| 1158 | /* read FIFO to ack */ |
| 1159 | dma_reg = chan->device->dma_reg; |
| 1160 | while ((rv = ioread32(&dma_reg->csfpl))) { |
| 1161 | i = rv & DMA_CDB_ADDR_MSK; |
| 1162 | cdb = (struct dma_cdb *)&p[i - |
| 1163 | (u32)chan->device->dma_desc_pool]; |
| 1164 | |
| 1165 | /* Clear opcode to ack. This is necessary for |
| 1166 | * ZeroSum operations only |
| 1167 | */ |
| 1168 | cdb->opc = 0; |
| 1169 | |
| 1170 | if (test_bit(PPC440SPE_RXOR_RUN, |
| 1171 | &ppc440spe_rxor_state)) { |
| 1172 | /* probably this is a completed RXOR op, |
| 1173 | * get pointer to CDB using the fact that |
| 1174 | * physical and virtual addresses of CDB |
| 1175 | * in pools have the same offsets |
| 1176 | */ |
| 1177 | if (le32_to_cpu(cdb->sg1u) & |
| 1178 | DMA_CUED_XOR_BASE) { |
| 1179 | /* this is a RXOR */ |
| 1180 | clear_bit(PPC440SPE_RXOR_RUN, |
| 1181 | &ppc440spe_rxor_state); |
| 1182 | } |
| 1183 | } |
| 1184 | |
| 1185 | if (rv & DMA_CDB_STATUS_MSK) { |
| 1186 | /* ZeroSum check failed |
| 1187 | */ |
| 1188 | struct ppc440spe_adma_desc_slot *iter; |
| 1189 | dma_addr_t phys = rv & ~DMA_CDB_MSK; |
| 1190 | |
| 1191 | /* |
| 1192 | * Update the status of corresponding |
| 1193 | * descriptor. |
| 1194 | */ |
| 1195 | list_for_each_entry(iter, &chan->chain, |
| 1196 | chain_node) { |
| 1197 | if (iter->phys == phys) |
| 1198 | break; |
| 1199 | } |
| 1200 | /* |
| 1201 | * if cannot find the corresponding |
| 1202 | * slot it's a bug |
| 1203 | */ |
| 1204 | BUG_ON(&iter->chain_node == &chan->chain); |
| 1205 | |
| 1206 | if (iter->xor_check_result) { |
| 1207 | if (test_bit(PPC440SPE_DESC_PCHECK, |
| 1208 | &iter->flags)) { |
| 1209 | *iter->xor_check_result |= |
| 1210 | SUM_CHECK_P_RESULT; |
| 1211 | } else |
| 1212 | if (test_bit(PPC440SPE_DESC_QCHECK, |
| 1213 | &iter->flags)) { |
| 1214 | *iter->xor_check_result |= |
| 1215 | SUM_CHECK_Q_RESULT; |
| 1216 | } else |
| 1217 | BUG(); |
| 1218 | } |
| 1219 | } |
| 1220 | } |
| 1221 | |
| 1222 | rv = ioread32(&dma_reg->dsts); |
| 1223 | if (rv) { |
| 1224 | pr_err("DMA%d err status: 0x%x\n", |
| 1225 | chan->device->id, rv); |
| 1226 | /* write back to clear */ |
| 1227 | iowrite32(rv, &dma_reg->dsts); |
| 1228 | } |
| 1229 | break; |
| 1230 | case PPC440SPE_XOR_ID: |
| 1231 | /* reset status bits to ack */ |
| 1232 | xor_reg = chan->device->xor_reg; |
| 1233 | rv = ioread32be(&xor_reg->sr); |
| 1234 | iowrite32be(rv, &xor_reg->sr); |
| 1235 | |
| 1236 | if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) { |
| 1237 | if (rv & XOR_IE_RPTIE_BIT) { |
| 1238 | /* Read PLB Timeout Error. |
| 1239 | * Try to resubmit the CB |
| 1240 | */ |
| 1241 | u32 val = ioread32be(&xor_reg->ccbalr); |
| 1242 | |
| 1243 | iowrite32be(val, &xor_reg->cblalr); |
| 1244 | |
| 1245 | val = ioread32be(&xor_reg->crsr); |
| 1246 | iowrite32be(val | XOR_CRSR_XAE_BIT, |
| 1247 | &xor_reg->crsr); |
| 1248 | } else |
| 1249 | pr_err("XOR ERR 0x%x status\n", rv); |
| 1250 | break; |
| 1251 | } |
| 1252 | |
| 1253 | /* if the XORcore is idle, but there are unprocessed CBs |
| 1254 | * then refetch the s/w chain here |
| 1255 | */ |
| 1256 | if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) && |
| 1257 | do_xor_refetch) |
| 1258 | ppc440spe_chan_append(chan); |
| 1259 | break; |
| 1260 | } |
| 1261 | } |
| 1262 | |
| 1263 | /** |
| 1264 | * ppc440spe_chan_is_busy - get the channel status |
| 1265 | */ |
| 1266 | static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan) |
| 1267 | { |
| 1268 | struct dma_regs *dma_reg; |
| 1269 | struct xor_regs *xor_reg; |
| 1270 | int busy = 0; |
| 1271 | |
| 1272 | switch (chan->device->id) { |
| 1273 | case PPC440SPE_DMA0_ID: |
| 1274 | case PPC440SPE_DMA1_ID: |
| 1275 | dma_reg = chan->device->dma_reg; |
| 1276 | /* if command FIFO's head and tail pointers are equal and |
| 1277 | * status tail is the same as command, then channel is free |
| 1278 | */ |
| 1279 | if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) || |
| 1280 | ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp)) |
| 1281 | busy = 1; |
| 1282 | break; |
| 1283 | case PPC440SPE_XOR_ID: |
| 1284 | /* use the special status bit for the XORcore |
| 1285 | */ |
| 1286 | xor_reg = chan->device->xor_reg; |
| 1287 | busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0; |
| 1288 | break; |
| 1289 | } |
| 1290 | |
| 1291 | return busy; |
| 1292 | } |
| 1293 | |
| 1294 | /** |
| 1295 | * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain |
| 1296 | */ |
| 1297 | static void ppc440spe_chan_set_first_xor_descriptor( |
| 1298 | struct ppc440spe_adma_chan *chan, |
| 1299 | struct ppc440spe_adma_desc_slot *next_desc) |
| 1300 | { |
| 1301 | struct xor_regs *xor_reg = chan->device->xor_reg; |
| 1302 | |
| 1303 | if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) |
| 1304 | printk(KERN_INFO "%s: Warn: XORcore is running " |
| 1305 | "when try to set the first CDB!\n", |
| 1306 | __func__); |
| 1307 | |
| 1308 | xor_last_submit = xor_last_linked = next_desc; |
| 1309 | |
| 1310 | iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr); |
| 1311 | |
| 1312 | iowrite32be(next_desc->phys, &xor_reg->cblalr); |
| 1313 | iowrite32be(0, &xor_reg->cblahr); |
| 1314 | iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT, |
| 1315 | &xor_reg->cbcr); |
| 1316 | |
| 1317 | chan->hw_chain_inited = 1; |
| 1318 | } |
| 1319 | |
| 1320 | /** |
| 1321 | * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO. |
| 1322 | * called with irqs disabled |
| 1323 | */ |
| 1324 | static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan, |
| 1325 | struct ppc440spe_adma_desc_slot *desc) |
| 1326 | { |
| 1327 | u32 pcdb; |
| 1328 | struct dma_regs *dma_reg = chan->device->dma_reg; |
| 1329 | |
| 1330 | pcdb = desc->phys; |
| 1331 | if (!test_bit(PPC440SPE_DESC_INT, &desc->flags)) |
| 1332 | pcdb |= DMA_CDB_NO_INT; |
| 1333 | |
| 1334 | chan_last_sub[chan->device->id] = desc; |
| 1335 | |
| 1336 | ADMA_LL_DBG(print_cb(chan, desc->hw_desc)); |
| 1337 | |
| 1338 | iowrite32(pcdb, &dma_reg->cpfpl); |
| 1339 | } |
| 1340 | |
| 1341 | /** |
| 1342 | * ppc440spe_chan_append - update the h/w chain in the channel |
| 1343 | */ |
| 1344 | static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan) |
| 1345 | { |
| 1346 | struct xor_regs *xor_reg; |
| 1347 | struct ppc440spe_adma_desc_slot *iter; |
| 1348 | struct xor_cb *xcb; |
| 1349 | u32 cur_desc; |
| 1350 | unsigned long flags; |
| 1351 | |
| 1352 | local_irq_save(flags); |
| 1353 | |
| 1354 | switch (chan->device->id) { |
| 1355 | case PPC440SPE_DMA0_ID: |
| 1356 | case PPC440SPE_DMA1_ID: |
| 1357 | cur_desc = ppc440spe_chan_get_current_descriptor(chan); |
| 1358 | |
| 1359 | if (likely(cur_desc)) { |
| 1360 | iter = chan_last_sub[chan->device->id]; |
| 1361 | BUG_ON(!iter); |
| 1362 | } else { |
| 1363 | /* first peer */ |
| 1364 | iter = chan_first_cdb[chan->device->id]; |
| 1365 | BUG_ON(!iter); |
| 1366 | ppc440spe_dma_put_desc(chan, iter); |
| 1367 | chan->hw_chain_inited = 1; |
| 1368 | } |
| 1369 | |
| 1370 | /* is there something new to append */ |
| 1371 | if (!iter->hw_next) |
| 1372 | break; |
| 1373 | |
| 1374 | /* flush descriptors from the s/w queue to fifo */ |
| 1375 | list_for_each_entry_continue(iter, &chan->chain, chain_node) { |
| 1376 | ppc440spe_dma_put_desc(chan, iter); |
| 1377 | if (!iter->hw_next) |
| 1378 | break; |
| 1379 | } |
| 1380 | break; |
| 1381 | case PPC440SPE_XOR_ID: |
| 1382 | /* update h/w links and refetch */ |
| 1383 | if (!xor_last_submit->hw_next) |
| 1384 | break; |
| 1385 | |
| 1386 | xor_reg = chan->device->xor_reg; |
| 1387 | /* the last linked CDB has to generate an interrupt |
| 1388 | * that we'd be able to append the next lists to h/w |
| 1389 | * regardless of the XOR engine state at the moment of |
| 1390 | * appending of these next lists |
| 1391 | */ |
| 1392 | xcb = xor_last_linked->hw_desc; |
| 1393 | xcb->cbc |= XOR_CBCR_CBCE_BIT; |
| 1394 | |
| 1395 | if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) { |
| 1396 | /* XORcore is idle. Refetch now */ |
| 1397 | do_xor_refetch = 0; |
| 1398 | ppc440spe_xor_set_link(xor_last_submit, |
| 1399 | xor_last_submit->hw_next); |
| 1400 | |
| 1401 | ADMA_LL_DBG(print_cb_list(chan, |
| 1402 | xor_last_submit->hw_next)); |
| 1403 | |
| 1404 | xor_last_submit = xor_last_linked; |
| 1405 | iowrite32be(ioread32be(&xor_reg->crsr) | |
| 1406 | XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT, |
| 1407 | &xor_reg->crsr); |
| 1408 | } else { |
| 1409 | /* XORcore is running. Refetch later in the handler */ |
| 1410 | do_xor_refetch = 1; |
| 1411 | } |
| 1412 | |
| 1413 | break; |
| 1414 | } |
| 1415 | |
| 1416 | local_irq_restore(flags); |
| 1417 | } |
| 1418 | |
| 1419 | /** |
| 1420 | * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor |
| 1421 | */ |
| 1422 | static u32 |
| 1423 | ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan) |
| 1424 | { |
| 1425 | struct dma_regs *dma_reg; |
| 1426 | struct xor_regs *xor_reg; |
| 1427 | |
| 1428 | if (unlikely(!chan->hw_chain_inited)) |
| 1429 | /* h/w descriptor chain is not initialized yet */ |
| 1430 | return 0; |
| 1431 | |
| 1432 | switch (chan->device->id) { |
| 1433 | case PPC440SPE_DMA0_ID: |
| 1434 | case PPC440SPE_DMA1_ID: |
| 1435 | dma_reg = chan->device->dma_reg; |
| 1436 | return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK); |
| 1437 | case PPC440SPE_XOR_ID: |
| 1438 | xor_reg = chan->device->xor_reg; |
| 1439 | return ioread32be(&xor_reg->ccbalr); |
| 1440 | } |
| 1441 | return 0; |
| 1442 | } |
| 1443 | |
| 1444 | /** |
| 1445 | * ppc440spe_chan_run - enable the channel |
| 1446 | */ |
| 1447 | static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan) |
| 1448 | { |
| 1449 | struct xor_regs *xor_reg; |
| 1450 | |
| 1451 | switch (chan->device->id) { |
| 1452 | case PPC440SPE_DMA0_ID: |
| 1453 | case PPC440SPE_DMA1_ID: |
| 1454 | /* DMAs are always enabled, do nothing */ |
| 1455 | break; |
| 1456 | case PPC440SPE_XOR_ID: |
| 1457 | /* drain write buffer */ |
| 1458 | xor_reg = chan->device->xor_reg; |
| 1459 | |
| 1460 | /* fetch descriptor pointed to in <link> */ |
| 1461 | iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT, |
| 1462 | &xor_reg->crsr); |
| 1463 | break; |
| 1464 | } |
| 1465 | } |
| 1466 | |
| 1467 | /****************************************************************************** |
| 1468 | * ADMA device level |
| 1469 | ******************************************************************************/ |
| 1470 | |
| 1471 | static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan); |
| 1472 | static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan); |
| 1473 | |
| 1474 | static dma_cookie_t |
| 1475 | ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx); |
| 1476 | |
| 1477 | static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx, |
| 1478 | dma_addr_t addr, int index); |
| 1479 | static void |
| 1480 | ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx, |
| 1481 | dma_addr_t addr, int index); |
| 1482 | |
| 1483 | static void |
| 1484 | ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx, |
| 1485 | dma_addr_t *paddr, unsigned long flags); |
| 1486 | static void |
| 1487 | ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx, |
| 1488 | dma_addr_t addr, int index); |
| 1489 | static void |
| 1490 | ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx, |
| 1491 | unsigned char mult, int index, int dst_pos); |
| 1492 | static void |
| 1493 | ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx, |
| 1494 | dma_addr_t paddr, dma_addr_t qaddr); |
| 1495 | |
| 1496 | static struct page *ppc440spe_rxor_srcs[32]; |
| 1497 | |
| 1498 | /** |
| 1499 | * ppc440spe_can_rxor - check if the operands may be processed with RXOR |
| 1500 | */ |
| 1501 | static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len) |
| 1502 | { |
| 1503 | int i, order = 0, state = 0; |
| 1504 | int idx = 0; |
| 1505 | |
| 1506 | if (unlikely(!(src_cnt > 1))) |
| 1507 | return 0; |
| 1508 | |
| 1509 | BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs)); |
| 1510 | |
| 1511 | /* Skip holes in the source list before checking */ |
| 1512 | for (i = 0; i < src_cnt; i++) { |
| 1513 | if (!srcs[i]) |
| 1514 | continue; |
| 1515 | ppc440spe_rxor_srcs[idx++] = srcs[i]; |
| 1516 | } |
| 1517 | src_cnt = idx; |
| 1518 | |
| 1519 | for (i = 1; i < src_cnt; i++) { |
| 1520 | char *cur_addr = page_address(ppc440spe_rxor_srcs[i]); |
| 1521 | char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]); |
| 1522 | |
| 1523 | switch (state) { |
| 1524 | case 0: |
| 1525 | if (cur_addr == old_addr + len) { |
| 1526 | /* direct RXOR */ |
| 1527 | order = 1; |
| 1528 | state = 1; |
| 1529 | } else if (old_addr == cur_addr + len) { |
| 1530 | /* reverse RXOR */ |
| 1531 | order = -1; |
| 1532 | state = 1; |
| 1533 | } else |
| 1534 | goto out; |
| 1535 | break; |
| 1536 | case 1: |
| 1537 | if ((i == src_cnt - 2) || |
| 1538 | (order == -1 && cur_addr != old_addr - len)) { |
| 1539 | order = 0; |
| 1540 | state = 0; |
| 1541 | } else if ((cur_addr == old_addr + len * order) || |
| 1542 | (cur_addr == old_addr + 2 * len) || |
| 1543 | (cur_addr == old_addr + 3 * len)) { |
| 1544 | state = 2; |
| 1545 | } else { |
| 1546 | order = 0; |
| 1547 | state = 0; |
| 1548 | } |
| 1549 | break; |
| 1550 | case 2: |
| 1551 | order = 0; |
| 1552 | state = 0; |
| 1553 | break; |
| 1554 | } |
| 1555 | } |
| 1556 | |
| 1557 | out: |
| 1558 | if (state == 1 || state == 2) |
| 1559 | return 1; |
| 1560 | |
| 1561 | return 0; |
| 1562 | } |
| 1563 | |
| 1564 | /** |
| 1565 | * ppc440spe_adma_device_estimate - estimate the efficiency of processing |
| 1566 | * the operation given on this channel. It's assumed that 'chan' is |
| 1567 | * capable to process 'cap' type of operation. |
| 1568 | * @chan: channel to use |
| 1569 | * @cap: type of transaction |
| 1570 | * @dst_lst: array of destination pointers |
| 1571 | * @dst_cnt: number of destination operands |
| 1572 | * @src_lst: array of source pointers |
| 1573 | * @src_cnt: number of source operands |
| 1574 | * @src_sz: size of each source operand |
| 1575 | */ |
| 1576 | static int ppc440spe_adma_estimate(struct dma_chan *chan, |
| 1577 | enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt, |
| 1578 | struct page **src_lst, int src_cnt, size_t src_sz) |
| 1579 | { |
| 1580 | int ef = 1; |
| 1581 | |
| 1582 | if (cap == DMA_PQ || cap == DMA_PQ_VAL) { |
| 1583 | /* If RAID-6 capabilities were not activated don't try |
| 1584 | * to use them |
| 1585 | */ |
| 1586 | if (unlikely(!ppc440spe_r6_enabled)) |
| 1587 | return -1; |
| 1588 | } |
| 1589 | /* In the current implementation of ppc440spe ADMA driver it |
| 1590 | * makes sense to pick out only pq case, because it may be |
| 1591 | * processed: |
| 1592 | * (1) either using Biskup method on DMA2; |
| 1593 | * (2) or on DMA0/1. |
| 1594 | * Thus we give a favour to (1) if the sources are suitable; |
| 1595 | * else let it be processed on one of the DMA0/1 engines. |
| 1596 | * In the sum_product case where destination is also the |
| 1597 | * source process it on DMA0/1 only. |
| 1598 | */ |
| 1599 | if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) { |
| 1600 | |
| 1601 | if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1]) |
| 1602 | ef = 0; /* sum_product case, process on DMA0/1 */ |
| 1603 | else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz)) |
| 1604 | ef = 3; /* override (DMA0/1 + idle) */ |
| 1605 | else |
| 1606 | ef = 0; /* can't process on DMA2 if !rxor */ |
| 1607 | } |
| 1608 | |
| 1609 | /* channel idleness increases the priority */ |
| 1610 | if (likely(ef) && |
| 1611 | !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan))) |
| 1612 | ef++; |
| 1613 | |
| 1614 | return ef; |
| 1615 | } |
| 1616 | |
| 1617 | struct dma_chan * |
| 1618 | ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap, |
| 1619 | struct page **dst_lst, int dst_cnt, struct page **src_lst, |
| 1620 | int src_cnt, size_t src_sz) |
| 1621 | { |
| 1622 | struct dma_chan *best_chan = NULL; |
| 1623 | struct ppc_dma_chan_ref *ref; |
| 1624 | int best_rank = -1; |
| 1625 | |
| 1626 | if (unlikely(!src_sz)) |
| 1627 | return NULL; |
| 1628 | if (src_sz > PAGE_SIZE) { |
| 1629 | /* |
| 1630 | * should a user of the api ever pass > PAGE_SIZE requests |
| 1631 | * we sort out cases where temporary page-sized buffers |
| 1632 | * are used. |
| 1633 | */ |
| 1634 | switch (cap) { |
| 1635 | case DMA_PQ: |
| 1636 | if (src_cnt == 1 && dst_lst[1] == src_lst[0]) |
| 1637 | return NULL; |
| 1638 | if (src_cnt == 2 && dst_lst[1] == src_lst[1]) |
| 1639 | return NULL; |
| 1640 | break; |
| 1641 | case DMA_PQ_VAL: |
| 1642 | case DMA_XOR_VAL: |
| 1643 | return NULL; |
| 1644 | default: |
| 1645 | break; |
| 1646 | } |
| 1647 | } |
| 1648 | |
| 1649 | list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) { |
| 1650 | if (dma_has_cap(cap, ref->chan->device->cap_mask)) { |
| 1651 | int rank; |
| 1652 | |
| 1653 | rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst, |
| 1654 | dst_cnt, src_lst, src_cnt, src_sz); |
| 1655 | if (rank > best_rank) { |
| 1656 | best_rank = rank; |
| 1657 | best_chan = ref->chan; |
| 1658 | } |
| 1659 | } |
| 1660 | } |
| 1661 | |
| 1662 | return best_chan; |
| 1663 | } |
| 1664 | EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel); |
| 1665 | |
| 1666 | /** |
| 1667 | * ppc440spe_get_group_entry - get group entry with index idx |
| 1668 | * @tdesc: is the last allocated slot in the group. |
| 1669 | */ |
| 1670 | static struct ppc440spe_adma_desc_slot * |
| 1671 | ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx) |
| 1672 | { |
| 1673 | struct ppc440spe_adma_desc_slot *iter = tdesc->group_head; |
| 1674 | int i = 0; |
| 1675 | |
| 1676 | if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) { |
| 1677 | printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n", |
| 1678 | __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt); |
| 1679 | BUG(); |
| 1680 | } |
| 1681 | |
| 1682 | list_for_each_entry(iter, &tdesc->group_list, chain_node) { |
| 1683 | if (i++ == entry_idx) |
| 1684 | break; |
| 1685 | } |
| 1686 | return iter; |
| 1687 | } |
| 1688 | |
| 1689 | /** |
| 1690 | * ppc440spe_adma_free_slots - flags descriptor slots for reuse |
| 1691 | * @slot: Slot to free |
| 1692 | * Caller must hold &ppc440spe_chan->lock while calling this function |
| 1693 | */ |
| 1694 | static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot, |
| 1695 | struct ppc440spe_adma_chan *chan) |
| 1696 | { |
| 1697 | int stride = slot->slots_per_op; |
| 1698 | |
| 1699 | while (stride--) { |
| 1700 | slot->slots_per_op = 0; |
| 1701 | slot = list_entry(slot->slot_node.next, |
| 1702 | struct ppc440spe_adma_desc_slot, |
| 1703 | slot_node); |
| 1704 | } |
| 1705 | } |
| 1706 | |
| 1707 | static void ppc440spe_adma_unmap(struct ppc440spe_adma_chan *chan, |
| 1708 | struct ppc440spe_adma_desc_slot *desc) |
| 1709 | { |
| 1710 | u32 src_cnt, dst_cnt; |
| 1711 | dma_addr_t addr; |
| 1712 | |
| 1713 | /* |
| 1714 | * get the number of sources & destination |
| 1715 | * included in this descriptor and unmap |
| 1716 | * them all |
| 1717 | */ |
| 1718 | src_cnt = ppc440spe_desc_get_src_num(desc, chan); |
| 1719 | dst_cnt = ppc440spe_desc_get_dst_num(desc, chan); |
| 1720 | |
| 1721 | /* unmap destinations */ |
| 1722 | if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) { |
| 1723 | while (dst_cnt--) { |
| 1724 | addr = ppc440spe_desc_get_dest_addr( |
| 1725 | desc, chan, dst_cnt); |
| 1726 | dma_unmap_page(chan->device->dev, |
| 1727 | addr, desc->unmap_len, |
| 1728 | DMA_FROM_DEVICE); |
| 1729 | } |
| 1730 | } |
| 1731 | |
| 1732 | /* unmap sources */ |
| 1733 | if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) { |
| 1734 | while (src_cnt--) { |
| 1735 | addr = ppc440spe_desc_get_src_addr( |
| 1736 | desc, chan, src_cnt); |
| 1737 | dma_unmap_page(chan->device->dev, |
| 1738 | addr, desc->unmap_len, |
| 1739 | DMA_TO_DEVICE); |
| 1740 | } |
| 1741 | } |
| 1742 | } |
| 1743 | |
| 1744 | /** |
| 1745 | * ppc440spe_adma_run_tx_complete_actions - call functions to be called |
| 1746 | * upon completion |
| 1747 | */ |
| 1748 | static dma_cookie_t ppc440spe_adma_run_tx_complete_actions( |
| 1749 | struct ppc440spe_adma_desc_slot *desc, |
| 1750 | struct ppc440spe_adma_chan *chan, |
| 1751 | dma_cookie_t cookie) |
| 1752 | { |
| 1753 | int i; |
| 1754 | |
| 1755 | BUG_ON(desc->async_tx.cookie < 0); |
| 1756 | if (desc->async_tx.cookie > 0) { |
| 1757 | cookie = desc->async_tx.cookie; |
| 1758 | desc->async_tx.cookie = 0; |
| 1759 | |
| 1760 | /* call the callback (must not sleep or submit new |
| 1761 | * operations to this channel) |
| 1762 | */ |
| 1763 | if (desc->async_tx.callback) |
| 1764 | desc->async_tx.callback( |
| 1765 | desc->async_tx.callback_param); |
| 1766 | |
| 1767 | /* unmap dma addresses |
| 1768 | * (unmap_single vs unmap_page?) |
| 1769 | * |
| 1770 | * actually, ppc's dma_unmap_page() functions are empty, so |
| 1771 | * the following code is just for the sake of completeness |
| 1772 | */ |
| 1773 | if (chan && chan->needs_unmap && desc->group_head && |
| 1774 | desc->unmap_len) { |
| 1775 | struct ppc440spe_adma_desc_slot *unmap = |
| 1776 | desc->group_head; |
| 1777 | /* assume 1 slot per op always */ |
| 1778 | u32 slot_count = unmap->slot_cnt; |
| 1779 | |
| 1780 | /* Run through the group list and unmap addresses */ |
| 1781 | for (i = 0; i < slot_count; i++) { |
| 1782 | BUG_ON(!unmap); |
| 1783 | ppc440spe_adma_unmap(chan, unmap); |
| 1784 | unmap = unmap->hw_next; |
| 1785 | } |
| 1786 | } |
| 1787 | } |
| 1788 | |
| 1789 | /* run dependent operations */ |
| 1790 | dma_run_dependencies(&desc->async_tx); |
| 1791 | |
| 1792 | return cookie; |
| 1793 | } |
| 1794 | |
| 1795 | /** |
| 1796 | * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set) |
| 1797 | */ |
| 1798 | static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc, |
| 1799 | struct ppc440spe_adma_chan *chan) |
| 1800 | { |
| 1801 | /* the client is allowed to attach dependent operations |
| 1802 | * until 'ack' is set |
| 1803 | */ |
| 1804 | if (!async_tx_test_ack(&desc->async_tx)) |
| 1805 | return 0; |
| 1806 | |
| 1807 | /* leave the last descriptor in the chain |
| 1808 | * so we can append to it |
| 1809 | */ |
| 1810 | if (list_is_last(&desc->chain_node, &chan->chain) || |
| 1811 | desc->phys == ppc440spe_chan_get_current_descriptor(chan)) |
| 1812 | return 1; |
| 1813 | |
| 1814 | if (chan->device->id != PPC440SPE_XOR_ID) { |
| 1815 | /* our DMA interrupt handler clears opc field of |
| 1816 | * each processed descriptor. For all types of |
| 1817 | * operations except for ZeroSum we do not actually |
| 1818 | * need ack from the interrupt handler. ZeroSum is a |
| 1819 | * special case since the result of this operation |
| 1820 | * is available from the handler only, so if we see |
| 1821 | * such type of descriptor (which is unprocessed yet) |
| 1822 | * then leave it in chain. |
| 1823 | */ |
| 1824 | struct dma_cdb *cdb = desc->hw_desc; |
| 1825 | if (cdb->opc == DMA_CDB_OPC_DCHECK128) |
| 1826 | return 1; |
| 1827 | } |
| 1828 | |
| 1829 | dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n", |
| 1830 | desc->phys, desc->idx, desc->slots_per_op); |
| 1831 | |
| 1832 | list_del(&desc->chain_node); |
| 1833 | ppc440spe_adma_free_slots(desc, chan); |
| 1834 | return 0; |
| 1835 | } |
| 1836 | |
| 1837 | /** |
| 1838 | * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine |
| 1839 | * which runs through the channel CDBs list until reach the descriptor |
| 1840 | * currently processed. When routine determines that all CDBs of group |
| 1841 | * are completed then corresponding callbacks (if any) are called and slots |
| 1842 | * are freed. |
| 1843 | */ |
| 1844 | static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan) |
| 1845 | { |
| 1846 | struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL; |
| 1847 | dma_cookie_t cookie = 0; |
| 1848 | u32 current_desc = ppc440spe_chan_get_current_descriptor(chan); |
| 1849 | int busy = ppc440spe_chan_is_busy(chan); |
| 1850 | int seen_current = 0, slot_cnt = 0, slots_per_op = 0; |
| 1851 | |
| 1852 | dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n", |
| 1853 | chan->device->id, __func__); |
| 1854 | |
| 1855 | if (!current_desc) { |
| 1856 | /* There were no transactions yet, so |
| 1857 | * nothing to clean |
| 1858 | */ |
| 1859 | return; |
| 1860 | } |
| 1861 | |
| 1862 | /* free completed slots from the chain starting with |
| 1863 | * the oldest descriptor |
| 1864 | */ |
| 1865 | list_for_each_entry_safe(iter, _iter, &chan->chain, |
| 1866 | chain_node) { |
| 1867 | dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d " |
| 1868 | "busy: %d this_desc: %#llx next_desc: %#x " |
| 1869 | "cur: %#x ack: %d\n", |
| 1870 | iter->async_tx.cookie, iter->idx, busy, iter->phys, |
| 1871 | ppc440spe_desc_get_link(iter, chan), current_desc, |
| 1872 | async_tx_test_ack(&iter->async_tx)); |
| 1873 | prefetch(_iter); |
| 1874 | prefetch(&_iter->async_tx); |
| 1875 | |
| 1876 | /* do not advance past the current descriptor loaded into the |
| 1877 | * hardware channel,subsequent descriptors are either in process |
| 1878 | * or have not been submitted |
| 1879 | */ |
| 1880 | if (seen_current) |
| 1881 | break; |
| 1882 | |
| 1883 | /* stop the search if we reach the current descriptor and the |
| 1884 | * channel is busy, or if it appears that the current descriptor |
| 1885 | * needs to be re-read (i.e. has been appended to) |
| 1886 | */ |
| 1887 | if (iter->phys == current_desc) { |
| 1888 | BUG_ON(seen_current++); |
| 1889 | if (busy || ppc440spe_desc_get_link(iter, chan)) { |
| 1890 | /* not all descriptors of the group have |
| 1891 | * been completed; exit. |
| 1892 | */ |
| 1893 | break; |
| 1894 | } |
| 1895 | } |
| 1896 | |
| 1897 | /* detect the start of a group transaction */ |
| 1898 | if (!slot_cnt && !slots_per_op) { |
| 1899 | slot_cnt = iter->slot_cnt; |
| 1900 | slots_per_op = iter->slots_per_op; |
| 1901 | if (slot_cnt <= slots_per_op) { |
| 1902 | slot_cnt = 0; |
| 1903 | slots_per_op = 0; |
| 1904 | } |
| 1905 | } |
| 1906 | |
| 1907 | if (slot_cnt) { |
| 1908 | if (!group_start) |
| 1909 | group_start = iter; |
| 1910 | slot_cnt -= slots_per_op; |
| 1911 | } |
| 1912 | |
| 1913 | /* all the members of a group are complete */ |
| 1914 | if (slots_per_op != 0 && slot_cnt == 0) { |
| 1915 | struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter; |
| 1916 | int end_of_chain = 0; |
| 1917 | |
| 1918 | /* clean up the group */ |
| 1919 | slot_cnt = group_start->slot_cnt; |
| 1920 | grp_iter = group_start; |
| 1921 | list_for_each_entry_safe_from(grp_iter, _grp_iter, |
| 1922 | &chan->chain, chain_node) { |
| 1923 | |
| 1924 | cookie = ppc440spe_adma_run_tx_complete_actions( |
| 1925 | grp_iter, chan, cookie); |
| 1926 | |
| 1927 | slot_cnt -= slots_per_op; |
| 1928 | end_of_chain = ppc440spe_adma_clean_slot( |
| 1929 | grp_iter, chan); |
| 1930 | if (end_of_chain && slot_cnt) { |
| 1931 | /* Should wait for ZeroSum completion */ |
| 1932 | if (cookie > 0) |
| 1933 | chan->completed_cookie = cookie; |
| 1934 | return; |
| 1935 | } |
| 1936 | |
| 1937 | if (slot_cnt == 0 || end_of_chain) |
| 1938 | break; |
| 1939 | } |
| 1940 | |
| 1941 | /* the group should be complete at this point */ |
| 1942 | BUG_ON(slot_cnt); |
| 1943 | |
| 1944 | slots_per_op = 0; |
| 1945 | group_start = NULL; |
| 1946 | if (end_of_chain) |
| 1947 | break; |
| 1948 | else |
| 1949 | continue; |
| 1950 | } else if (slots_per_op) /* wait for group completion */ |
| 1951 | continue; |
| 1952 | |
| 1953 | cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan, |
| 1954 | cookie); |
| 1955 | |
| 1956 | if (ppc440spe_adma_clean_slot(iter, chan)) |
| 1957 | break; |
| 1958 | } |
| 1959 | |
| 1960 | BUG_ON(!seen_current); |
| 1961 | |
| 1962 | if (cookie > 0) { |
| 1963 | chan->completed_cookie = cookie; |
| 1964 | pr_debug("\tcompleted cookie %d\n", cookie); |
| 1965 | } |
| 1966 | |
| 1967 | } |
| 1968 | |
| 1969 | /** |
| 1970 | * ppc440spe_adma_tasklet - clean up watch-dog initiator |
| 1971 | */ |
| 1972 | static void ppc440spe_adma_tasklet(unsigned long data) |
| 1973 | { |
| 1974 | struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data; |
| 1975 | |
| 1976 | spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING); |
| 1977 | __ppc440spe_adma_slot_cleanup(chan); |
| 1978 | spin_unlock(&chan->lock); |
| 1979 | } |
| 1980 | |
| 1981 | /** |
| 1982 | * ppc440spe_adma_slot_cleanup - clean up scheduled initiator |
| 1983 | */ |
| 1984 | static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan) |
| 1985 | { |
| 1986 | spin_lock_bh(&chan->lock); |
| 1987 | __ppc440spe_adma_slot_cleanup(chan); |
| 1988 | spin_unlock_bh(&chan->lock); |
| 1989 | } |
| 1990 | |
| 1991 | /** |
| 1992 | * ppc440spe_adma_alloc_slots - allocate free slots (if any) |
| 1993 | */ |
| 1994 | static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots( |
| 1995 | struct ppc440spe_adma_chan *chan, int num_slots, |
| 1996 | int slots_per_op) |
| 1997 | { |
| 1998 | struct ppc440spe_adma_desc_slot *iter = NULL, *_iter; |
| 1999 | struct ppc440spe_adma_desc_slot *alloc_start = NULL; |
| 2000 | struct list_head chain = LIST_HEAD_INIT(chain); |
| 2001 | int slots_found, retry = 0; |
| 2002 | |
| 2003 | |
| 2004 | BUG_ON(!num_slots || !slots_per_op); |
| 2005 | /* start search from the last allocated descrtiptor |
| 2006 | * if a contiguous allocation can not be found start searching |
| 2007 | * from the beginning of the list |
| 2008 | */ |
| 2009 | retry: |
| 2010 | slots_found = 0; |
| 2011 | if (retry == 0) |
| 2012 | iter = chan->last_used; |
| 2013 | else |
| 2014 | iter = list_entry(&chan->all_slots, |
| 2015 | struct ppc440spe_adma_desc_slot, |
| 2016 | slot_node); |
| 2017 | list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots, |
| 2018 | slot_node) { |
| 2019 | prefetch(_iter); |
| 2020 | prefetch(&_iter->async_tx); |
| 2021 | if (iter->slots_per_op) { |
| 2022 | slots_found = 0; |
| 2023 | continue; |
| 2024 | } |
| 2025 | |
| 2026 | /* start the allocation if the slot is correctly aligned */ |
| 2027 | if (!slots_found++) |
| 2028 | alloc_start = iter; |
| 2029 | |
| 2030 | if (slots_found == num_slots) { |
| 2031 | struct ppc440spe_adma_desc_slot *alloc_tail = NULL; |
| 2032 | struct ppc440spe_adma_desc_slot *last_used = NULL; |
| 2033 | |
| 2034 | iter = alloc_start; |
| 2035 | while (num_slots) { |
| 2036 | int i; |
| 2037 | /* pre-ack all but the last descriptor */ |
| 2038 | if (num_slots != slots_per_op) |
| 2039 | async_tx_ack(&iter->async_tx); |
| 2040 | |
| 2041 | list_add_tail(&iter->chain_node, &chain); |
| 2042 | alloc_tail = iter; |
| 2043 | iter->async_tx.cookie = 0; |
| 2044 | iter->hw_next = NULL; |
| 2045 | iter->flags = 0; |
| 2046 | iter->slot_cnt = num_slots; |
| 2047 | iter->xor_check_result = NULL; |
| 2048 | for (i = 0; i < slots_per_op; i++) { |
| 2049 | iter->slots_per_op = slots_per_op - i; |
| 2050 | last_used = iter; |
| 2051 | iter = list_entry(iter->slot_node.next, |
| 2052 | struct ppc440spe_adma_desc_slot, |
| 2053 | slot_node); |
| 2054 | } |
| 2055 | num_slots -= slots_per_op; |
| 2056 | } |
| 2057 | alloc_tail->group_head = alloc_start; |
| 2058 | alloc_tail->async_tx.cookie = -EBUSY; |
| 2059 | list_splice(&chain, &alloc_tail->group_list); |
| 2060 | chan->last_used = last_used; |
| 2061 | return alloc_tail; |
| 2062 | } |
| 2063 | } |
| 2064 | if (!retry++) |
| 2065 | goto retry; |
| 2066 | |
| 2067 | /* try to free some slots if the allocation fails */ |
| 2068 | tasklet_schedule(&chan->irq_tasklet); |
| 2069 | return NULL; |
| 2070 | } |
| 2071 | |
| 2072 | /** |
| 2073 | * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots |
| 2074 | */ |
| 2075 | static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan) |
| 2076 | { |
| 2077 | struct ppc440spe_adma_chan *ppc440spe_chan; |
| 2078 | struct ppc440spe_adma_desc_slot *slot = NULL; |
| 2079 | char *hw_desc; |
| 2080 | int i, db_sz; |
| 2081 | int init; |
| 2082 | |
| 2083 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| 2084 | init = ppc440spe_chan->slots_allocated ? 0 : 1; |
| 2085 | chan->chan_id = ppc440spe_chan->device->id; |
| 2086 | |
| 2087 | /* Allocate descriptor slots */ |
| 2088 | i = ppc440spe_chan->slots_allocated; |
| 2089 | if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID) |
| 2090 | db_sz = sizeof(struct dma_cdb); |
| 2091 | else |
| 2092 | db_sz = sizeof(struct xor_cb); |
| 2093 | |
| 2094 | for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) { |
| 2095 | slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot), |
| 2096 | GFP_KERNEL); |
| 2097 | if (!slot) { |
| 2098 | printk(KERN_INFO "SPE ADMA Channel only initialized" |
| 2099 | " %d descriptor slots", i--); |
| 2100 | break; |
| 2101 | } |
| 2102 | |
| 2103 | hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt; |
| 2104 | slot->hw_desc = (void *) &hw_desc[i * db_sz]; |
| 2105 | dma_async_tx_descriptor_init(&slot->async_tx, chan); |
| 2106 | slot->async_tx.tx_submit = ppc440spe_adma_tx_submit; |
| 2107 | INIT_LIST_HEAD(&slot->chain_node); |
| 2108 | INIT_LIST_HEAD(&slot->slot_node); |
| 2109 | INIT_LIST_HEAD(&slot->group_list); |
| 2110 | slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz; |
| 2111 | slot->idx = i; |
| 2112 | |
| 2113 | spin_lock_bh(&ppc440spe_chan->lock); |
| 2114 | ppc440spe_chan->slots_allocated++; |
| 2115 | list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots); |
| 2116 | spin_unlock_bh(&ppc440spe_chan->lock); |
| 2117 | } |
| 2118 | |
| 2119 | if (i && !ppc440spe_chan->last_used) { |
| 2120 | ppc440spe_chan->last_used = |
| 2121 | list_entry(ppc440spe_chan->all_slots.next, |
| 2122 | struct ppc440spe_adma_desc_slot, |
| 2123 | slot_node); |
| 2124 | } |
| 2125 | |
| 2126 | dev_dbg(ppc440spe_chan->device->common.dev, |
| 2127 | "ppc440spe adma%d: allocated %d descriptor slots\n", |
| 2128 | ppc440spe_chan->device->id, i); |
| 2129 | |
| 2130 | /* initialize the channel and the chain with a null operation */ |
| 2131 | if (init) { |
| 2132 | switch (ppc440spe_chan->device->id) { |
| 2133 | case PPC440SPE_DMA0_ID: |
| 2134 | case PPC440SPE_DMA1_ID: |
| 2135 | ppc440spe_chan->hw_chain_inited = 0; |
| 2136 | /* Use WXOR for self-testing */ |
| 2137 | if (!ppc440spe_r6_tchan) |
| 2138 | ppc440spe_r6_tchan = ppc440spe_chan; |
| 2139 | break; |
| 2140 | case PPC440SPE_XOR_ID: |
| 2141 | ppc440spe_chan_start_null_xor(ppc440spe_chan); |
| 2142 | break; |
| 2143 | default: |
| 2144 | BUG(); |
| 2145 | } |
| 2146 | ppc440spe_chan->needs_unmap = 1; |
| 2147 | } |
| 2148 | |
| 2149 | return (i > 0) ? i : -ENOMEM; |
| 2150 | } |
| 2151 | |
| 2152 | /** |
| 2153 | * ppc440spe_desc_assign_cookie - assign a cookie |
| 2154 | */ |
| 2155 | static dma_cookie_t ppc440spe_desc_assign_cookie( |
| 2156 | struct ppc440spe_adma_chan *chan, |
| 2157 | struct ppc440spe_adma_desc_slot *desc) |
| 2158 | { |
| 2159 | dma_cookie_t cookie = chan->common.cookie; |
| 2160 | |
| 2161 | cookie++; |
| 2162 | if (cookie < 0) |
| 2163 | cookie = 1; |
| 2164 | chan->common.cookie = desc->async_tx.cookie = cookie; |
| 2165 | return cookie; |
| 2166 | } |
| 2167 | |
| 2168 | /** |
| 2169 | * ppc440spe_rxor_set_region_data - |
| 2170 | */ |
| 2171 | static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc, |
| 2172 | u8 xor_arg_no, u32 mask) |
| 2173 | { |
| 2174 | struct xor_cb *xcb = desc->hw_desc; |
| 2175 | |
| 2176 | xcb->ops[xor_arg_no].h |= mask; |
| 2177 | } |
| 2178 | |
| 2179 | /** |
| 2180 | * ppc440spe_rxor_set_src - |
| 2181 | */ |
| 2182 | static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc, |
| 2183 | u8 xor_arg_no, dma_addr_t addr) |
| 2184 | { |
| 2185 | struct xor_cb *xcb = desc->hw_desc; |
| 2186 | |
| 2187 | xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE; |
| 2188 | xcb->ops[xor_arg_no].l = addr; |
| 2189 | } |
| 2190 | |
| 2191 | /** |
| 2192 | * ppc440spe_rxor_set_mult - |
| 2193 | */ |
| 2194 | static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc, |
| 2195 | u8 xor_arg_no, u8 idx, u8 mult) |
| 2196 | { |
| 2197 | struct xor_cb *xcb = desc->hw_desc; |
| 2198 | |
| 2199 | xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8); |
| 2200 | } |
| 2201 | |
| 2202 | /** |
| 2203 | * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold |
| 2204 | * has been achieved |
| 2205 | */ |
| 2206 | static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan) |
| 2207 | { |
| 2208 | dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n", |
| 2209 | chan->device->id, chan->pending); |
| 2210 | |
| 2211 | if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) { |
| 2212 | chan->pending = 0; |
| 2213 | ppc440spe_chan_append(chan); |
| 2214 | } |
| 2215 | } |
| 2216 | |
| 2217 | /** |
| 2218 | * ppc440spe_adma_tx_submit - submit new descriptor group to the channel |
| 2219 | * (it's not necessary that descriptors will be submitted to the h/w |
| 2220 | * chains too right now) |
| 2221 | */ |
| 2222 | static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx) |
| 2223 | { |
| 2224 | struct ppc440spe_adma_desc_slot *sw_desc; |
| 2225 | struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan); |
| 2226 | struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail; |
| 2227 | int slot_cnt; |
| 2228 | int slots_per_op; |
| 2229 | dma_cookie_t cookie; |
| 2230 | |
| 2231 | sw_desc = tx_to_ppc440spe_adma_slot(tx); |
| 2232 | |
| 2233 | group_start = sw_desc->group_head; |
| 2234 | slot_cnt = group_start->slot_cnt; |
| 2235 | slots_per_op = group_start->slots_per_op; |
| 2236 | |
| 2237 | spin_lock_bh(&chan->lock); |
| 2238 | |
| 2239 | cookie = ppc440spe_desc_assign_cookie(chan, sw_desc); |
| 2240 | |
| 2241 | if (unlikely(list_empty(&chan->chain))) { |
| 2242 | /* first peer */ |
| 2243 | list_splice_init(&sw_desc->group_list, &chan->chain); |
| 2244 | chan_first_cdb[chan->device->id] = group_start; |
| 2245 | } else { |
| 2246 | /* isn't first peer, bind CDBs to chain */ |
| 2247 | old_chain_tail = list_entry(chan->chain.prev, |
| 2248 | struct ppc440spe_adma_desc_slot, |
| 2249 | chain_node); |
| 2250 | list_splice_init(&sw_desc->group_list, |
| 2251 | &old_chain_tail->chain_node); |
| 2252 | /* fix up the hardware chain */ |
| 2253 | ppc440spe_desc_set_link(chan, old_chain_tail, group_start); |
| 2254 | } |
| 2255 | |
| 2256 | /* increment the pending count by the number of operations */ |
| 2257 | chan->pending += slot_cnt / slots_per_op; |
| 2258 | ppc440spe_adma_check_threshold(chan); |
| 2259 | spin_unlock_bh(&chan->lock); |
| 2260 | |
| 2261 | dev_dbg(chan->device->common.dev, |
| 2262 | "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n", |
| 2263 | chan->device->id, __func__, |
| 2264 | sw_desc->async_tx.cookie, sw_desc->idx, sw_desc); |
| 2265 | |
| 2266 | return cookie; |
| 2267 | } |
| 2268 | |
| 2269 | /** |
| 2270 | * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation |
| 2271 | */ |
| 2272 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt( |
| 2273 | struct dma_chan *chan, unsigned long flags) |
| 2274 | { |
| 2275 | struct ppc440spe_adma_chan *ppc440spe_chan; |
| 2276 | struct ppc440spe_adma_desc_slot *sw_desc, *group_start; |
| 2277 | int slot_cnt, slots_per_op; |
| 2278 | |
| 2279 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| 2280 | |
| 2281 | dev_dbg(ppc440spe_chan->device->common.dev, |
| 2282 | "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id, |
| 2283 | __func__); |
| 2284 | |
| 2285 | spin_lock_bh(&ppc440spe_chan->lock); |
| 2286 | slot_cnt = slots_per_op = 1; |
| 2287 | sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, |
| 2288 | slots_per_op); |
| 2289 | if (sw_desc) { |
| 2290 | group_start = sw_desc->group_head; |
| 2291 | ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan); |
| 2292 | group_start->unmap_len = 0; |
| 2293 | sw_desc->async_tx.flags = flags; |
| 2294 | } |
| 2295 | spin_unlock_bh(&ppc440spe_chan->lock); |
| 2296 | |
| 2297 | return sw_desc ? &sw_desc->async_tx : NULL; |
| 2298 | } |
| 2299 | |
| 2300 | /** |
| 2301 | * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation |
| 2302 | */ |
| 2303 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy( |
| 2304 | struct dma_chan *chan, dma_addr_t dma_dest, |
| 2305 | dma_addr_t dma_src, size_t len, unsigned long flags) |
| 2306 | { |
| 2307 | struct ppc440spe_adma_chan *ppc440spe_chan; |
| 2308 | struct ppc440spe_adma_desc_slot *sw_desc, *group_start; |
| 2309 | int slot_cnt, slots_per_op; |
| 2310 | |
| 2311 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| 2312 | |
| 2313 | if (unlikely(!len)) |
| 2314 | return NULL; |
| 2315 | |
| 2316 | BUG_ON(unlikely(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT)); |
| 2317 | |
| 2318 | spin_lock_bh(&ppc440spe_chan->lock); |
| 2319 | |
| 2320 | dev_dbg(ppc440spe_chan->device->common.dev, |
| 2321 | "ppc440spe adma%d: %s len: %u int_en %d\n", |
| 2322 | ppc440spe_chan->device->id, __func__, len, |
| 2323 | flags & DMA_PREP_INTERRUPT ? 1 : 0); |
| 2324 | slot_cnt = slots_per_op = 1; |
| 2325 | sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, |
| 2326 | slots_per_op); |
| 2327 | if (sw_desc) { |
| 2328 | group_start = sw_desc->group_head; |
| 2329 | ppc440spe_desc_init_memcpy(group_start, flags); |
| 2330 | ppc440spe_adma_set_dest(group_start, dma_dest, 0); |
| 2331 | ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0); |
| 2332 | ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len); |
| 2333 | sw_desc->unmap_len = len; |
| 2334 | sw_desc->async_tx.flags = flags; |
| 2335 | } |
| 2336 | spin_unlock_bh(&ppc440spe_chan->lock); |
| 2337 | |
| 2338 | return sw_desc ? &sw_desc->async_tx : NULL; |
| 2339 | } |
| 2340 | |
| 2341 | /** |
| 2342 | * ppc440spe_adma_prep_dma_memset - prepare CDB for a MEMSET operation |
| 2343 | */ |
| 2344 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memset( |
| 2345 | struct dma_chan *chan, dma_addr_t dma_dest, int value, |
| 2346 | size_t len, unsigned long flags) |
| 2347 | { |
| 2348 | struct ppc440spe_adma_chan *ppc440spe_chan; |
| 2349 | struct ppc440spe_adma_desc_slot *sw_desc, *group_start; |
| 2350 | int slot_cnt, slots_per_op; |
| 2351 | |
| 2352 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| 2353 | |
| 2354 | if (unlikely(!len)) |
| 2355 | return NULL; |
| 2356 | |
| 2357 | BUG_ON(unlikely(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT)); |
| 2358 | |
| 2359 | spin_lock_bh(&ppc440spe_chan->lock); |
| 2360 | |
| 2361 | dev_dbg(ppc440spe_chan->device->common.dev, |
| 2362 | "ppc440spe adma%d: %s cal: %u len: %u int_en %d\n", |
| 2363 | ppc440spe_chan->device->id, __func__, value, len, |
| 2364 | flags & DMA_PREP_INTERRUPT ? 1 : 0); |
| 2365 | |
| 2366 | slot_cnt = slots_per_op = 1; |
| 2367 | sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, |
| 2368 | slots_per_op); |
| 2369 | if (sw_desc) { |
| 2370 | group_start = sw_desc->group_head; |
| 2371 | ppc440spe_desc_init_memset(group_start, value, flags); |
| 2372 | ppc440spe_adma_set_dest(group_start, dma_dest, 0); |
| 2373 | ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len); |
| 2374 | sw_desc->unmap_len = len; |
| 2375 | sw_desc->async_tx.flags = flags; |
| 2376 | } |
| 2377 | spin_unlock_bh(&ppc440spe_chan->lock); |
| 2378 | |
| 2379 | return sw_desc ? &sw_desc->async_tx : NULL; |
| 2380 | } |
| 2381 | |
| 2382 | /** |
| 2383 | * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation |
| 2384 | */ |
| 2385 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor( |
| 2386 | struct dma_chan *chan, dma_addr_t dma_dest, |
| 2387 | dma_addr_t *dma_src, u32 src_cnt, size_t len, |
| 2388 | unsigned long flags) |
| 2389 | { |
| 2390 | struct ppc440spe_adma_chan *ppc440spe_chan; |
| 2391 | struct ppc440spe_adma_desc_slot *sw_desc, *group_start; |
| 2392 | int slot_cnt, slots_per_op; |
| 2393 | |
| 2394 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| 2395 | |
| 2396 | ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id, |
| 2397 | dma_dest, dma_src, src_cnt)); |
| 2398 | if (unlikely(!len)) |
| 2399 | return NULL; |
| 2400 | BUG_ON(unlikely(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT)); |
| 2401 | |
| 2402 | dev_dbg(ppc440spe_chan->device->common.dev, |
| 2403 | "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n", |
| 2404 | ppc440spe_chan->device->id, __func__, src_cnt, len, |
| 2405 | flags & DMA_PREP_INTERRUPT ? 1 : 0); |
| 2406 | |
| 2407 | spin_lock_bh(&ppc440spe_chan->lock); |
| 2408 | slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op); |
| 2409 | sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, |
| 2410 | slots_per_op); |
| 2411 | if (sw_desc) { |
| 2412 | group_start = sw_desc->group_head; |
| 2413 | ppc440spe_desc_init_xor(group_start, src_cnt, flags); |
| 2414 | ppc440spe_adma_set_dest(group_start, dma_dest, 0); |
| 2415 | while (src_cnt--) |
| 2416 | ppc440spe_adma_memcpy_xor_set_src(group_start, |
| 2417 | dma_src[src_cnt], src_cnt); |
| 2418 | ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len); |
| 2419 | sw_desc->unmap_len = len; |
| 2420 | sw_desc->async_tx.flags = flags; |
| 2421 | } |
| 2422 | spin_unlock_bh(&ppc440spe_chan->lock); |
| 2423 | |
| 2424 | return sw_desc ? &sw_desc->async_tx : NULL; |
| 2425 | } |
| 2426 | |
| 2427 | static inline void |
| 2428 | ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc, |
| 2429 | int src_cnt); |
| 2430 | static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor); |
| 2431 | |
| 2432 | /** |
| 2433 | * ppc440spe_adma_init_dma2rxor_slot - |
| 2434 | */ |
| 2435 | static void ppc440spe_adma_init_dma2rxor_slot( |
| 2436 | struct ppc440spe_adma_desc_slot *desc, |
| 2437 | dma_addr_t *src, int src_cnt) |
| 2438 | { |
| 2439 | int i; |
| 2440 | |
| 2441 | /* initialize CDB */ |
| 2442 | for (i = 0; i < src_cnt; i++) { |
| 2443 | ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i, |
| 2444 | desc->src_cnt, (u32)src[i]); |
| 2445 | } |
| 2446 | } |
| 2447 | |
| 2448 | /** |
| 2449 | * ppc440spe_dma01_prep_mult - |
| 2450 | * for Q operation where destination is also the source |
| 2451 | */ |
| 2452 | static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult( |
| 2453 | struct ppc440spe_adma_chan *ppc440spe_chan, |
| 2454 | dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, |
| 2455 | const unsigned char *scf, size_t len, unsigned long flags) |
| 2456 | { |
| 2457 | struct ppc440spe_adma_desc_slot *sw_desc = NULL; |
| 2458 | unsigned long op = 0; |
| 2459 | int slot_cnt; |
| 2460 | |
| 2461 | set_bit(PPC440SPE_DESC_WXOR, &op); |
| 2462 | slot_cnt = 2; |
| 2463 | |
| 2464 | spin_lock_bh(&ppc440spe_chan->lock); |
| 2465 | |
| 2466 | /* use WXOR, each descriptor occupies one slot */ |
| 2467 | sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); |
| 2468 | if (sw_desc) { |
| 2469 | struct ppc440spe_adma_chan *chan; |
| 2470 | struct ppc440spe_adma_desc_slot *iter; |
| 2471 | struct dma_cdb *hw_desc; |
| 2472 | |
| 2473 | chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); |
| 2474 | set_bits(op, &sw_desc->flags); |
| 2475 | sw_desc->src_cnt = src_cnt; |
| 2476 | sw_desc->dst_cnt = dst_cnt; |
| 2477 | /* First descriptor, zero data in the destination and copy it |
| 2478 | * to q page using MULTICAST transfer. |
| 2479 | */ |
| 2480 | iter = list_first_entry(&sw_desc->group_list, |
| 2481 | struct ppc440spe_adma_desc_slot, |
| 2482 | chain_node); |
| 2483 | memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); |
| 2484 | /* set 'next' pointer */ |
| 2485 | iter->hw_next = list_entry(iter->chain_node.next, |
| 2486 | struct ppc440spe_adma_desc_slot, |
| 2487 | chain_node); |
| 2488 | clear_bit(PPC440SPE_DESC_INT, &iter->flags); |
| 2489 | hw_desc = iter->hw_desc; |
| 2490 | hw_desc->opc = DMA_CDB_OPC_MULTICAST; |
| 2491 | |
| 2492 | ppc440spe_desc_set_dest_addr(iter, chan, |
| 2493 | DMA_CUED_XOR_BASE, dst[0], 0); |
| 2494 | ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1); |
| 2495 | ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, |
| 2496 | src[0]); |
| 2497 | ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); |
| 2498 | iter->unmap_len = len; |
| 2499 | |
| 2500 | /* |
| 2501 | * Second descriptor, multiply data from the q page |
| 2502 | * and store the result in real destination. |
| 2503 | */ |
| 2504 | iter = list_first_entry(&iter->chain_node, |
| 2505 | struct ppc440spe_adma_desc_slot, |
| 2506 | chain_node); |
| 2507 | memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); |
| 2508 | iter->hw_next = NULL; |
| 2509 | if (flags & DMA_PREP_INTERRUPT) |
| 2510 | set_bit(PPC440SPE_DESC_INT, &iter->flags); |
| 2511 | else |
| 2512 | clear_bit(PPC440SPE_DESC_INT, &iter->flags); |
| 2513 | |
| 2514 | hw_desc = iter->hw_desc; |
| 2515 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| 2516 | ppc440spe_desc_set_src_addr(iter, chan, 0, |
| 2517 | DMA_CUED_XOR_HB, dst[1]); |
| 2518 | ppc440spe_desc_set_dest_addr(iter, chan, |
| 2519 | DMA_CUED_XOR_BASE, dst[0], 0); |
| 2520 | |
| 2521 | ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, |
| 2522 | DMA_CDB_SG_DST1, scf[0]); |
| 2523 | ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); |
| 2524 | iter->unmap_len = len; |
| 2525 | sw_desc->async_tx.flags = flags; |
| 2526 | } |
| 2527 | |
| 2528 | spin_unlock_bh(&ppc440spe_chan->lock); |
| 2529 | |
| 2530 | return sw_desc; |
| 2531 | } |
| 2532 | |
| 2533 | /** |
| 2534 | * ppc440spe_dma01_prep_sum_product - |
| 2535 | * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also |
| 2536 | * the source. |
| 2537 | */ |
| 2538 | static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product( |
| 2539 | struct ppc440spe_adma_chan *ppc440spe_chan, |
| 2540 | dma_addr_t *dst, dma_addr_t *src, int src_cnt, |
| 2541 | const unsigned char *scf, size_t len, unsigned long flags) |
| 2542 | { |
| 2543 | struct ppc440spe_adma_desc_slot *sw_desc = NULL; |
| 2544 | unsigned long op = 0; |
| 2545 | int slot_cnt; |
| 2546 | |
| 2547 | set_bit(PPC440SPE_DESC_WXOR, &op); |
| 2548 | slot_cnt = 3; |
| 2549 | |
| 2550 | spin_lock_bh(&ppc440spe_chan->lock); |
| 2551 | |
| 2552 | /* WXOR, each descriptor occupies one slot */ |
| 2553 | sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); |
| 2554 | if (sw_desc) { |
| 2555 | struct ppc440spe_adma_chan *chan; |
| 2556 | struct ppc440spe_adma_desc_slot *iter; |
| 2557 | struct dma_cdb *hw_desc; |
| 2558 | |
| 2559 | chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); |
| 2560 | set_bits(op, &sw_desc->flags); |
| 2561 | sw_desc->src_cnt = src_cnt; |
| 2562 | sw_desc->dst_cnt = 1; |
| 2563 | /* 1st descriptor, src[1] data to q page and zero destination */ |
| 2564 | iter = list_first_entry(&sw_desc->group_list, |
| 2565 | struct ppc440spe_adma_desc_slot, |
| 2566 | chain_node); |
| 2567 | memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); |
| 2568 | iter->hw_next = list_entry(iter->chain_node.next, |
| 2569 | struct ppc440spe_adma_desc_slot, |
| 2570 | chain_node); |
| 2571 | clear_bit(PPC440SPE_DESC_INT, &iter->flags); |
| 2572 | hw_desc = iter->hw_desc; |
| 2573 | hw_desc->opc = DMA_CDB_OPC_MULTICAST; |
| 2574 | |
| 2575 | ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, |
| 2576 | *dst, 0); |
| 2577 | ppc440spe_desc_set_dest_addr(iter, chan, 0, |
| 2578 | ppc440spe_chan->qdest, 1); |
| 2579 | ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, |
| 2580 | src[1]); |
| 2581 | ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); |
| 2582 | iter->unmap_len = len; |
| 2583 | |
| 2584 | /* 2nd descriptor, multiply src[1] data and store the |
| 2585 | * result in destination */ |
| 2586 | iter = list_first_entry(&iter->chain_node, |
| 2587 | struct ppc440spe_adma_desc_slot, |
| 2588 | chain_node); |
| 2589 | memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); |
| 2590 | /* set 'next' pointer */ |
| 2591 | iter->hw_next = list_entry(iter->chain_node.next, |
| 2592 | struct ppc440spe_adma_desc_slot, |
| 2593 | chain_node); |
| 2594 | if (flags & DMA_PREP_INTERRUPT) |
| 2595 | set_bit(PPC440SPE_DESC_INT, &iter->flags); |
| 2596 | else |
| 2597 | clear_bit(PPC440SPE_DESC_INT, &iter->flags); |
| 2598 | |
| 2599 | hw_desc = iter->hw_desc; |
| 2600 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| 2601 | ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, |
| 2602 | ppc440spe_chan->qdest); |
| 2603 | ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, |
| 2604 | *dst, 0); |
| 2605 | ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, |
| 2606 | DMA_CDB_SG_DST1, scf[1]); |
| 2607 | ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); |
| 2608 | iter->unmap_len = len; |
| 2609 | |
| 2610 | /* |
| 2611 | * 3rd descriptor, multiply src[0] data and xor it |
| 2612 | * with destination |
| 2613 | */ |
| 2614 | iter = list_first_entry(&iter->chain_node, |
| 2615 | struct ppc440spe_adma_desc_slot, |
| 2616 | chain_node); |
| 2617 | memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); |
| 2618 | iter->hw_next = NULL; |
| 2619 | if (flags & DMA_PREP_INTERRUPT) |
| 2620 | set_bit(PPC440SPE_DESC_INT, &iter->flags); |
| 2621 | else |
| 2622 | clear_bit(PPC440SPE_DESC_INT, &iter->flags); |
| 2623 | |
| 2624 | hw_desc = iter->hw_desc; |
| 2625 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| 2626 | ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, |
| 2627 | src[0]); |
| 2628 | ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, |
| 2629 | *dst, 0); |
| 2630 | ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, |
| 2631 | DMA_CDB_SG_DST1, scf[0]); |
| 2632 | ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len); |
| 2633 | iter->unmap_len = len; |
| 2634 | sw_desc->async_tx.flags = flags; |
| 2635 | } |
| 2636 | |
| 2637 | spin_unlock_bh(&ppc440spe_chan->lock); |
| 2638 | |
| 2639 | return sw_desc; |
| 2640 | } |
| 2641 | |
| 2642 | static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq( |
| 2643 | struct ppc440spe_adma_chan *ppc440spe_chan, |
| 2644 | dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, |
| 2645 | const unsigned char *scf, size_t len, unsigned long flags) |
| 2646 | { |
| 2647 | int slot_cnt; |
| 2648 | struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter; |
| 2649 | unsigned long op = 0; |
| 2650 | unsigned char mult = 1; |
| 2651 | |
| 2652 | pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n", |
| 2653 | __func__, dst_cnt, src_cnt, len); |
| 2654 | /* select operations WXOR/RXOR depending on the |
| 2655 | * source addresses of operators and the number |
| 2656 | * of destinations (RXOR support only Q-parity calculations) |
| 2657 | */ |
| 2658 | set_bit(PPC440SPE_DESC_WXOR, &op); |
| 2659 | if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) { |
| 2660 | /* no active RXOR; |
| 2661 | * do RXOR if: |
| 2662 | * - there are more than 1 source, |
| 2663 | * - len is aligned on 512-byte boundary, |
| 2664 | * - source addresses fit to one of 4 possible regions. |
| 2665 | */ |
| 2666 | if (src_cnt > 1 && |
| 2667 | !(len & MQ0_CF2H_RXOR_BS_MASK) && |
| 2668 | (src[0] + len) == src[1]) { |
| 2669 | /* may do RXOR R1 R2 */ |
| 2670 | set_bit(PPC440SPE_DESC_RXOR, &op); |
| 2671 | if (src_cnt != 2) { |
| 2672 | /* may try to enhance region of RXOR */ |
| 2673 | if ((src[1] + len) == src[2]) { |
| 2674 | /* do RXOR R1 R2 R3 */ |
| 2675 | set_bit(PPC440SPE_DESC_RXOR123, |
| 2676 | &op); |
| 2677 | } else if ((src[1] + len * 2) == src[2]) { |
| 2678 | /* do RXOR R1 R2 R4 */ |
| 2679 | set_bit(PPC440SPE_DESC_RXOR124, &op); |
| 2680 | } else if ((src[1] + len * 3) == src[2]) { |
| 2681 | /* do RXOR R1 R2 R5 */ |
| 2682 | set_bit(PPC440SPE_DESC_RXOR125, |
| 2683 | &op); |
| 2684 | } else { |
| 2685 | /* do RXOR R1 R2 */ |
| 2686 | set_bit(PPC440SPE_DESC_RXOR12, |
| 2687 | &op); |
| 2688 | } |
| 2689 | } else { |
| 2690 | /* do RXOR R1 R2 */ |
| 2691 | set_bit(PPC440SPE_DESC_RXOR12, &op); |
| 2692 | } |
| 2693 | } |
| 2694 | |
| 2695 | if (!test_bit(PPC440SPE_DESC_RXOR, &op)) { |
| 2696 | /* can not do this operation with RXOR */ |
| 2697 | clear_bit(PPC440SPE_RXOR_RUN, |
| 2698 | &ppc440spe_rxor_state); |
| 2699 | } else { |
| 2700 | /* can do; set block size right now */ |
| 2701 | ppc440spe_desc_set_rxor_block_size(len); |
| 2702 | } |
| 2703 | } |
| 2704 | |
| 2705 | /* Number of necessary slots depends on operation type selected */ |
| 2706 | if (!test_bit(PPC440SPE_DESC_RXOR, &op)) { |
| 2707 | /* This is a WXOR only chain. Need descriptors for each |
| 2708 | * source to GF-XOR them with WXOR, and need descriptors |
| 2709 | * for each destination to zero them with WXOR |
| 2710 | */ |
| 2711 | slot_cnt = src_cnt; |
| 2712 | |
| 2713 | if (flags & DMA_PREP_ZERO_P) { |
| 2714 | slot_cnt++; |
| 2715 | set_bit(PPC440SPE_ZERO_P, &op); |
| 2716 | } |
| 2717 | if (flags & DMA_PREP_ZERO_Q) { |
| 2718 | slot_cnt++; |
| 2719 | set_bit(PPC440SPE_ZERO_Q, &op); |
| 2720 | } |
| 2721 | } else { |
| 2722 | /* Need 1/2 descriptor for RXOR operation, and |
| 2723 | * need (src_cnt - (2 or 3)) for WXOR of sources |
| 2724 | * remained (if any) |
| 2725 | */ |
| 2726 | slot_cnt = dst_cnt; |
| 2727 | |
| 2728 | if (flags & DMA_PREP_ZERO_P) |
| 2729 | set_bit(PPC440SPE_ZERO_P, &op); |
| 2730 | if (flags & DMA_PREP_ZERO_Q) |
| 2731 | set_bit(PPC440SPE_ZERO_Q, &op); |
| 2732 | |
| 2733 | if (test_bit(PPC440SPE_DESC_RXOR12, &op)) |
| 2734 | slot_cnt += src_cnt - 2; |
| 2735 | else |
| 2736 | slot_cnt += src_cnt - 3; |
| 2737 | |
| 2738 | /* Thus we have either RXOR only chain or |
| 2739 | * mixed RXOR/WXOR |
| 2740 | */ |
| 2741 | if (slot_cnt == dst_cnt) |
| 2742 | /* RXOR only chain */ |
| 2743 | clear_bit(PPC440SPE_DESC_WXOR, &op); |
| 2744 | } |
| 2745 | |
| 2746 | spin_lock_bh(&ppc440spe_chan->lock); |
| 2747 | /* for both RXOR/WXOR each descriptor occupies one slot */ |
| 2748 | sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); |
| 2749 | if (sw_desc) { |
| 2750 | ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt, |
| 2751 | flags, op); |
| 2752 | |
| 2753 | /* setup dst/src/mult */ |
| 2754 | pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n", |
| 2755 | __func__, dst[0], dst[1]); |
| 2756 | ppc440spe_adma_pq_set_dest(sw_desc, dst, flags); |
| 2757 | while (src_cnt--) { |
| 2758 | ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt], |
| 2759 | src_cnt); |
| 2760 | |
| 2761 | /* NOTE: "Multi = 0 is equivalent to = 1" as it |
| 2762 | * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf |
| 2763 | * doesn't work for RXOR with DMA0/1! Instead, multi=0 |
| 2764 | * leads to zeroing source data after RXOR. |
| 2765 | * So, for P case set-up mult=1 explicitly. |
| 2766 | */ |
| 2767 | if (!(flags & DMA_PREP_PQ_DISABLE_Q)) |
| 2768 | mult = scf[src_cnt]; |
| 2769 | ppc440spe_adma_pq_set_src_mult(sw_desc, |
| 2770 | mult, src_cnt, dst_cnt - 1); |
| 2771 | } |
| 2772 | |
| 2773 | /* Setup byte count foreach slot just allocated */ |
| 2774 | sw_desc->async_tx.flags = flags; |
| 2775 | list_for_each_entry(iter, &sw_desc->group_list, |
| 2776 | chain_node) { |
| 2777 | ppc440spe_desc_set_byte_count(iter, |
| 2778 | ppc440spe_chan, len); |
| 2779 | iter->unmap_len = len; |
| 2780 | } |
| 2781 | } |
| 2782 | spin_unlock_bh(&ppc440spe_chan->lock); |
| 2783 | |
| 2784 | return sw_desc; |
| 2785 | } |
| 2786 | |
| 2787 | static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq( |
| 2788 | struct ppc440spe_adma_chan *ppc440spe_chan, |
| 2789 | dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt, |
| 2790 | const unsigned char *scf, size_t len, unsigned long flags) |
| 2791 | { |
| 2792 | int slot_cnt, descs_per_op; |
| 2793 | struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter; |
| 2794 | unsigned long op = 0; |
| 2795 | unsigned char mult = 1; |
| 2796 | |
| 2797 | BUG_ON(!dst_cnt); |
| 2798 | /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n", |
| 2799 | __func__, dst_cnt, src_cnt, len);*/ |
| 2800 | |
| 2801 | spin_lock_bh(&ppc440spe_chan->lock); |
| 2802 | descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len); |
| 2803 | if (descs_per_op < 0) { |
| 2804 | spin_unlock_bh(&ppc440spe_chan->lock); |
| 2805 | return NULL; |
| 2806 | } |
| 2807 | |
| 2808 | /* depending on number of sources we have 1 or 2 RXOR chains */ |
| 2809 | slot_cnt = descs_per_op * dst_cnt; |
| 2810 | |
| 2811 | sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1); |
| 2812 | if (sw_desc) { |
| 2813 | op = slot_cnt; |
| 2814 | sw_desc->async_tx.flags = flags; |
| 2815 | list_for_each_entry(iter, &sw_desc->group_list, chain_node) { |
| 2816 | ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt, |
| 2817 | --op ? 0 : flags); |
| 2818 | ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, |
| 2819 | len); |
| 2820 | iter->unmap_len = len; |
| 2821 | |
| 2822 | ppc440spe_init_rxor_cursor(&(iter->rxor_cursor)); |
| 2823 | iter->rxor_cursor.len = len; |
| 2824 | iter->descs_per_op = descs_per_op; |
| 2825 | } |
| 2826 | op = 0; |
| 2827 | list_for_each_entry(iter, &sw_desc->group_list, chain_node) { |
| 2828 | op++; |
| 2829 | if (op % descs_per_op == 0) |
| 2830 | ppc440spe_adma_init_dma2rxor_slot(iter, src, |
| 2831 | src_cnt); |
| 2832 | if (likely(!list_is_last(&iter->chain_node, |
| 2833 | &sw_desc->group_list))) { |
| 2834 | /* set 'next' pointer */ |
| 2835 | iter->hw_next = |
| 2836 | list_entry(iter->chain_node.next, |
| 2837 | struct ppc440spe_adma_desc_slot, |
| 2838 | chain_node); |
| 2839 | ppc440spe_xor_set_link(iter, iter->hw_next); |
| 2840 | } else { |
| 2841 | /* this is the last descriptor. */ |
| 2842 | iter->hw_next = NULL; |
| 2843 | } |
| 2844 | } |
| 2845 | |
| 2846 | /* fixup head descriptor */ |
| 2847 | sw_desc->dst_cnt = dst_cnt; |
| 2848 | if (flags & DMA_PREP_ZERO_P) |
| 2849 | set_bit(PPC440SPE_ZERO_P, &sw_desc->flags); |
| 2850 | if (flags & DMA_PREP_ZERO_Q) |
| 2851 | set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags); |
| 2852 | |
| 2853 | /* setup dst/src/mult */ |
| 2854 | ppc440spe_adma_pq_set_dest(sw_desc, dst, flags); |
| 2855 | |
| 2856 | while (src_cnt--) { |
| 2857 | /* handle descriptors (if dst_cnt == 2) inside |
| 2858 | * the ppc440spe_adma_pq_set_srcxxx() functions |
| 2859 | */ |
| 2860 | ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt], |
| 2861 | src_cnt); |
| 2862 | if (!(flags & DMA_PREP_PQ_DISABLE_Q)) |
| 2863 | mult = scf[src_cnt]; |
| 2864 | ppc440spe_adma_pq_set_src_mult(sw_desc, |
| 2865 | mult, src_cnt, dst_cnt - 1); |
| 2866 | } |
| 2867 | } |
| 2868 | spin_unlock_bh(&ppc440spe_chan->lock); |
| 2869 | ppc440spe_desc_set_rxor_block_size(len); |
| 2870 | return sw_desc; |
| 2871 | } |
| 2872 | |
| 2873 | /** |
| 2874 | * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation |
| 2875 | */ |
| 2876 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq( |
| 2877 | struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, |
| 2878 | unsigned int src_cnt, const unsigned char *scf, |
| 2879 | size_t len, unsigned long flags) |
| 2880 | { |
| 2881 | struct ppc440spe_adma_chan *ppc440spe_chan; |
| 2882 | struct ppc440spe_adma_desc_slot *sw_desc = NULL; |
| 2883 | int dst_cnt = 0; |
| 2884 | |
| 2885 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| 2886 | |
| 2887 | ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id, |
| 2888 | dst, src, src_cnt)); |
| 2889 | BUG_ON(!len); |
| 2890 | BUG_ON(unlikely(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT)); |
| 2891 | BUG_ON(!src_cnt); |
| 2892 | |
| 2893 | if (src_cnt == 1 && dst[1] == src[0]) { |
| 2894 | dma_addr_t dest[2]; |
| 2895 | |
| 2896 | /* dst[1] is real destination (Q) */ |
| 2897 | dest[0] = dst[1]; |
| 2898 | /* this is the page to multicast source data to */ |
| 2899 | dest[1] = ppc440spe_chan->qdest; |
| 2900 | sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan, |
| 2901 | dest, 2, src, src_cnt, scf, len, flags); |
| 2902 | return sw_desc ? &sw_desc->async_tx : NULL; |
| 2903 | } |
| 2904 | |
| 2905 | if (src_cnt == 2 && dst[1] == src[1]) { |
| 2906 | sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan, |
| 2907 | &dst[1], src, 2, scf, len, flags); |
| 2908 | return sw_desc ? &sw_desc->async_tx : NULL; |
| 2909 | } |
| 2910 | |
| 2911 | if (!(flags & DMA_PREP_PQ_DISABLE_P)) { |
| 2912 | BUG_ON(!dst[0]); |
| 2913 | dst_cnt++; |
| 2914 | flags |= DMA_PREP_ZERO_P; |
| 2915 | } |
| 2916 | |
| 2917 | if (!(flags & DMA_PREP_PQ_DISABLE_Q)) { |
| 2918 | BUG_ON(!dst[1]); |
| 2919 | dst_cnt++; |
| 2920 | flags |= DMA_PREP_ZERO_Q; |
| 2921 | } |
| 2922 | |
| 2923 | BUG_ON(!dst_cnt); |
| 2924 | |
| 2925 | dev_dbg(ppc440spe_chan->device->common.dev, |
| 2926 | "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n", |
| 2927 | ppc440spe_chan->device->id, __func__, src_cnt, len, |
| 2928 | flags & DMA_PREP_INTERRUPT ? 1 : 0); |
| 2929 | |
| 2930 | switch (ppc440spe_chan->device->id) { |
| 2931 | case PPC440SPE_DMA0_ID: |
| 2932 | case PPC440SPE_DMA1_ID: |
| 2933 | sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan, |
| 2934 | dst, dst_cnt, src, src_cnt, scf, |
| 2935 | len, flags); |
| 2936 | break; |
| 2937 | |
| 2938 | case PPC440SPE_XOR_ID: |
| 2939 | sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan, |
| 2940 | dst, dst_cnt, src, src_cnt, scf, |
| 2941 | len, flags); |
| 2942 | break; |
| 2943 | } |
| 2944 | |
| 2945 | return sw_desc ? &sw_desc->async_tx : NULL; |
| 2946 | } |
| 2947 | |
| 2948 | /** |
| 2949 | * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for |
| 2950 | * a PQ_ZERO_SUM operation |
| 2951 | */ |
| 2952 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum( |
| 2953 | struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, |
| 2954 | unsigned int src_cnt, const unsigned char *scf, size_t len, |
| 2955 | enum sum_check_flags *pqres, unsigned long flags) |
| 2956 | { |
| 2957 | struct ppc440spe_adma_chan *ppc440spe_chan; |
| 2958 | struct ppc440spe_adma_desc_slot *sw_desc, *iter; |
| 2959 | dma_addr_t pdest, qdest; |
| 2960 | int slot_cnt, slots_per_op, idst, dst_cnt; |
| 2961 | |
| 2962 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| 2963 | |
| 2964 | if (flags & DMA_PREP_PQ_DISABLE_P) |
| 2965 | pdest = 0; |
| 2966 | else |
| 2967 | pdest = pq[0]; |
| 2968 | |
| 2969 | if (flags & DMA_PREP_PQ_DISABLE_Q) |
| 2970 | qdest = 0; |
| 2971 | else |
| 2972 | qdest = pq[1]; |
| 2973 | |
| 2974 | ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id, |
| 2975 | src, src_cnt, scf)); |
| 2976 | |
| 2977 | /* Always use WXOR for P/Q calculations (two destinations). |
| 2978 | * Need 1 or 2 extra slots to verify results are zero. |
| 2979 | */ |
| 2980 | idst = dst_cnt = (pdest && qdest) ? 2 : 1; |
| 2981 | |
| 2982 | /* One additional slot per destination to clone P/Q |
| 2983 | * before calculation (we have to preserve destinations). |
| 2984 | */ |
| 2985 | slot_cnt = src_cnt + dst_cnt * 2; |
| 2986 | slots_per_op = 1; |
| 2987 | |
| 2988 | spin_lock_bh(&ppc440spe_chan->lock); |
| 2989 | sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, |
| 2990 | slots_per_op); |
| 2991 | if (sw_desc) { |
| 2992 | ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt); |
| 2993 | |
| 2994 | /* Setup byte count for each slot just allocated */ |
| 2995 | sw_desc->async_tx.flags = flags; |
| 2996 | list_for_each_entry(iter, &sw_desc->group_list, chain_node) { |
| 2997 | ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, |
| 2998 | len); |
| 2999 | iter->unmap_len = len; |
| 3000 | } |
| 3001 | |
| 3002 | if (pdest) { |
| 3003 | struct dma_cdb *hw_desc; |
| 3004 | struct ppc440spe_adma_chan *chan; |
| 3005 | |
| 3006 | iter = sw_desc->group_head; |
| 3007 | chan = to_ppc440spe_adma_chan(iter->async_tx.chan); |
| 3008 | memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); |
| 3009 | iter->hw_next = list_entry(iter->chain_node.next, |
| 3010 | struct ppc440spe_adma_desc_slot, |
| 3011 | chain_node); |
| 3012 | hw_desc = iter->hw_desc; |
| 3013 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| 3014 | iter->src_cnt = 0; |
| 3015 | iter->dst_cnt = 0; |
| 3016 | ppc440spe_desc_set_dest_addr(iter, chan, 0, |
| 3017 | ppc440spe_chan->pdest, 0); |
| 3018 | ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest); |
| 3019 | ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, |
| 3020 | len); |
| 3021 | iter->unmap_len = 0; |
| 3022 | /* override pdest to preserve original P */ |
| 3023 | pdest = ppc440spe_chan->pdest; |
| 3024 | } |
| 3025 | if (qdest) { |
| 3026 | struct dma_cdb *hw_desc; |
| 3027 | struct ppc440spe_adma_chan *chan; |
| 3028 | |
| 3029 | iter = list_first_entry(&sw_desc->group_list, |
| 3030 | struct ppc440spe_adma_desc_slot, |
| 3031 | chain_node); |
| 3032 | chan = to_ppc440spe_adma_chan(iter->async_tx.chan); |
| 3033 | |
| 3034 | if (pdest) { |
| 3035 | iter = list_entry(iter->chain_node.next, |
| 3036 | struct ppc440spe_adma_desc_slot, |
| 3037 | chain_node); |
| 3038 | } |
| 3039 | |
| 3040 | memset(iter->hw_desc, 0, sizeof(struct dma_cdb)); |
| 3041 | iter->hw_next = list_entry(iter->chain_node.next, |
| 3042 | struct ppc440spe_adma_desc_slot, |
| 3043 | chain_node); |
| 3044 | hw_desc = iter->hw_desc; |
| 3045 | hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2; |
| 3046 | iter->src_cnt = 0; |
| 3047 | iter->dst_cnt = 0; |
| 3048 | ppc440spe_desc_set_dest_addr(iter, chan, 0, |
| 3049 | ppc440spe_chan->qdest, 0); |
| 3050 | ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest); |
| 3051 | ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, |
| 3052 | len); |
| 3053 | iter->unmap_len = 0; |
| 3054 | /* override qdest to preserve original Q */ |
| 3055 | qdest = ppc440spe_chan->qdest; |
| 3056 | } |
| 3057 | |
| 3058 | /* Setup destinations for P/Q ops */ |
| 3059 | ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest); |
| 3060 | |
| 3061 | /* Setup zero QWORDs into DCHECK CDBs */ |
| 3062 | idst = dst_cnt; |
| 3063 | list_for_each_entry_reverse(iter, &sw_desc->group_list, |
| 3064 | chain_node) { |
| 3065 | /* |
| 3066 | * The last CDB corresponds to Q-parity check, |
| 3067 | * the one before last CDB corresponds |
| 3068 | * P-parity check |
| 3069 | */ |
| 3070 | if (idst == DMA_DEST_MAX_NUM) { |
| 3071 | if (idst == dst_cnt) { |
| 3072 | set_bit(PPC440SPE_DESC_QCHECK, |
| 3073 | &iter->flags); |
| 3074 | } else { |
| 3075 | set_bit(PPC440SPE_DESC_PCHECK, |
| 3076 | &iter->flags); |
| 3077 | } |
| 3078 | } else { |
| 3079 | if (qdest) { |
| 3080 | set_bit(PPC440SPE_DESC_QCHECK, |
| 3081 | &iter->flags); |
| 3082 | } else { |
| 3083 | set_bit(PPC440SPE_DESC_PCHECK, |
| 3084 | &iter->flags); |
| 3085 | } |
| 3086 | } |
| 3087 | iter->xor_check_result = pqres; |
| 3088 | |
| 3089 | /* |
| 3090 | * set it to zero, if check fail then result will |
| 3091 | * be updated |
| 3092 | */ |
| 3093 | *iter->xor_check_result = 0; |
| 3094 | ppc440spe_desc_set_dcheck(iter, ppc440spe_chan, |
| 3095 | ppc440spe_qword); |
| 3096 | |
| 3097 | if (!(--dst_cnt)) |
| 3098 | break; |
| 3099 | } |
| 3100 | |
| 3101 | /* Setup sources and mults for P/Q ops */ |
| 3102 | list_for_each_entry_continue_reverse(iter, &sw_desc->group_list, |
| 3103 | chain_node) { |
| 3104 | struct ppc440spe_adma_chan *chan; |
| 3105 | u32 mult_dst; |
| 3106 | |
| 3107 | chan = to_ppc440spe_adma_chan(iter->async_tx.chan); |
| 3108 | ppc440spe_desc_set_src_addr(iter, chan, 0, |
| 3109 | DMA_CUED_XOR_HB, |
| 3110 | src[src_cnt - 1]); |
| 3111 | if (qdest) { |
| 3112 | mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 : |
| 3113 | DMA_CDB_SG_DST1; |
| 3114 | ppc440spe_desc_set_src_mult(iter, chan, |
| 3115 | DMA_CUED_MULT1_OFF, |
| 3116 | mult_dst, |
| 3117 | scf[src_cnt - 1]); |
| 3118 | } |
| 3119 | if (!(--src_cnt)) |
| 3120 | break; |
| 3121 | } |
| 3122 | } |
| 3123 | spin_unlock_bh(&ppc440spe_chan->lock); |
| 3124 | return sw_desc ? &sw_desc->async_tx : NULL; |
| 3125 | } |
| 3126 | |
| 3127 | /** |
| 3128 | * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for |
| 3129 | * XOR ZERO_SUM operation |
| 3130 | */ |
| 3131 | static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum( |
| 3132 | struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, |
| 3133 | size_t len, enum sum_check_flags *result, unsigned long flags) |
| 3134 | { |
| 3135 | struct dma_async_tx_descriptor *tx; |
| 3136 | dma_addr_t pq[2]; |
| 3137 | |
| 3138 | /* validate P, disable Q */ |
| 3139 | pq[0] = src[0]; |
| 3140 | pq[1] = 0; |
| 3141 | flags |= DMA_PREP_PQ_DISABLE_Q; |
| 3142 | |
| 3143 | tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1], |
| 3144 | src_cnt - 1, 0, len, |
| 3145 | result, flags); |
| 3146 | return tx; |
| 3147 | } |
| 3148 | |
| 3149 | /** |
| 3150 | * ppc440spe_adma_set_dest - set destination address into descriptor |
| 3151 | */ |
| 3152 | static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc, |
| 3153 | dma_addr_t addr, int index) |
| 3154 | { |
| 3155 | struct ppc440spe_adma_chan *chan; |
| 3156 | |
| 3157 | BUG_ON(index >= sw_desc->dst_cnt); |
| 3158 | |
| 3159 | chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); |
| 3160 | |
| 3161 | switch (chan->device->id) { |
| 3162 | case PPC440SPE_DMA0_ID: |
| 3163 | case PPC440SPE_DMA1_ID: |
| 3164 | /* to do: support transfers lengths > |
| 3165 | * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT |
| 3166 | */ |
| 3167 | ppc440spe_desc_set_dest_addr(sw_desc->group_head, |
| 3168 | chan, 0, addr, index); |
| 3169 | break; |
| 3170 | case PPC440SPE_XOR_ID: |
| 3171 | sw_desc = ppc440spe_get_group_entry(sw_desc, index); |
| 3172 | ppc440spe_desc_set_dest_addr(sw_desc, |
| 3173 | chan, 0, addr, index); |
| 3174 | break; |
| 3175 | } |
| 3176 | } |
| 3177 | |
| 3178 | static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter, |
| 3179 | struct ppc440spe_adma_chan *chan, dma_addr_t addr) |
| 3180 | { |
| 3181 | /* To clear destinations update the descriptor |
| 3182 | * (P or Q depending on index) as follows: |
| 3183 | * addr is destination (0 corresponds to SG2): |
| 3184 | */ |
| 3185 | ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0); |
| 3186 | |
| 3187 | /* ... and the addr is source: */ |
| 3188 | ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr); |
| 3189 | |
| 3190 | /* addr is always SG2 then the mult is always DST1 */ |
| 3191 | ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF, |
| 3192 | DMA_CDB_SG_DST1, 1); |
| 3193 | } |
| 3194 | |
| 3195 | /** |
| 3196 | * ppc440spe_adma_pq_set_dest - set destination address into descriptor |
| 3197 | * for the PQXOR operation |
| 3198 | */ |
| 3199 | static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc, |
| 3200 | dma_addr_t *addrs, unsigned long flags) |
| 3201 | { |
| 3202 | struct ppc440spe_adma_desc_slot *iter; |
| 3203 | struct ppc440spe_adma_chan *chan; |
| 3204 | dma_addr_t paddr, qaddr; |
| 3205 | dma_addr_t addr = 0, ppath, qpath; |
| 3206 | int index = 0, i; |
| 3207 | |
| 3208 | chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); |
| 3209 | |
| 3210 | if (flags & DMA_PREP_PQ_DISABLE_P) |
| 3211 | paddr = 0; |
| 3212 | else |
| 3213 | paddr = addrs[0]; |
| 3214 | |
| 3215 | if (flags & DMA_PREP_PQ_DISABLE_Q) |
| 3216 | qaddr = 0; |
| 3217 | else |
| 3218 | qaddr = addrs[1]; |
| 3219 | |
| 3220 | if (!paddr || !qaddr) |
| 3221 | addr = paddr ? paddr : qaddr; |
| 3222 | |
| 3223 | switch (chan->device->id) { |
| 3224 | case PPC440SPE_DMA0_ID: |
| 3225 | case PPC440SPE_DMA1_ID: |
| 3226 | /* walk through the WXOR source list and set P/Q-destinations |
| 3227 | * for each slot: |
| 3228 | */ |
| 3229 | if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { |
| 3230 | /* This is WXOR-only chain; may have 1/2 zero descs */ |
| 3231 | if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) |
| 3232 | index++; |
| 3233 | if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) |
| 3234 | index++; |
| 3235 | |
| 3236 | iter = ppc440spe_get_group_entry(sw_desc, index); |
| 3237 | if (addr) { |
| 3238 | /* one destination */ |
| 3239 | list_for_each_entry_from(iter, |
| 3240 | &sw_desc->group_list, chain_node) |
| 3241 | ppc440spe_desc_set_dest_addr(iter, chan, |
| 3242 | DMA_CUED_XOR_BASE, addr, 0); |
| 3243 | } else { |
| 3244 | /* two destinations */ |
| 3245 | list_for_each_entry_from(iter, |
| 3246 | &sw_desc->group_list, chain_node) { |
| 3247 | ppc440spe_desc_set_dest_addr(iter, chan, |
| 3248 | DMA_CUED_XOR_BASE, paddr, 0); |
| 3249 | ppc440spe_desc_set_dest_addr(iter, chan, |
| 3250 | DMA_CUED_XOR_BASE, qaddr, 1); |
| 3251 | } |
| 3252 | } |
| 3253 | |
| 3254 | if (index) { |
| 3255 | /* To clear destinations update the descriptor |
| 3256 | * (1st,2nd, or both depending on flags) |
| 3257 | */ |
| 3258 | index = 0; |
| 3259 | if (test_bit(PPC440SPE_ZERO_P, |
| 3260 | &sw_desc->flags)) { |
| 3261 | iter = ppc440spe_get_group_entry( |
| 3262 | sw_desc, index++); |
| 3263 | ppc440spe_adma_pq_zero_op(iter, chan, |
| 3264 | paddr); |
| 3265 | } |
| 3266 | |
| 3267 | if (test_bit(PPC440SPE_ZERO_Q, |
| 3268 | &sw_desc->flags)) { |
| 3269 | iter = ppc440spe_get_group_entry( |
| 3270 | sw_desc, index++); |
| 3271 | ppc440spe_adma_pq_zero_op(iter, chan, |
| 3272 | qaddr); |
| 3273 | } |
| 3274 | |
| 3275 | return; |
| 3276 | } |
| 3277 | } else { |
| 3278 | /* This is RXOR-only or RXOR/WXOR mixed chain */ |
| 3279 | |
| 3280 | /* If we want to include destination into calculations, |
| 3281 | * then make dest addresses cued with mult=1 (XOR). |
| 3282 | */ |
| 3283 | ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ? |
| 3284 | DMA_CUED_XOR_HB : |
| 3285 | DMA_CUED_XOR_BASE | |
| 3286 | (1 << DMA_CUED_MULT1_OFF); |
| 3287 | qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ? |
| 3288 | DMA_CUED_XOR_HB : |
| 3289 | DMA_CUED_XOR_BASE | |
| 3290 | (1 << DMA_CUED_MULT1_OFF); |
| 3291 | |
| 3292 | /* Setup destination(s) in RXOR slot(s) */ |
| 3293 | iter = ppc440spe_get_group_entry(sw_desc, index++); |
| 3294 | ppc440spe_desc_set_dest_addr(iter, chan, |
| 3295 | paddr ? ppath : qpath, |
| 3296 | paddr ? paddr : qaddr, 0); |
| 3297 | if (!addr) { |
| 3298 | /* two destinations */ |
| 3299 | iter = ppc440spe_get_group_entry(sw_desc, |
| 3300 | index++); |
| 3301 | ppc440spe_desc_set_dest_addr(iter, chan, |
| 3302 | qpath, qaddr, 0); |
| 3303 | } |
| 3304 | |
| 3305 | if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) { |
| 3306 | /* Setup destination(s) in remaining WXOR |
| 3307 | * slots |
| 3308 | */ |
| 3309 | iter = ppc440spe_get_group_entry(sw_desc, |
| 3310 | index); |
| 3311 | if (addr) { |
| 3312 | /* one destination */ |
| 3313 | list_for_each_entry_from(iter, |
| 3314 | &sw_desc->group_list, |
| 3315 | chain_node) |
| 3316 | ppc440spe_desc_set_dest_addr( |
| 3317 | iter, chan, |
| 3318 | DMA_CUED_XOR_BASE, |
| 3319 | addr, 0); |
| 3320 | |
| 3321 | } else { |
| 3322 | /* two destinations */ |
| 3323 | list_for_each_entry_from(iter, |
| 3324 | &sw_desc->group_list, |
| 3325 | chain_node) { |
| 3326 | ppc440spe_desc_set_dest_addr( |
| 3327 | iter, chan, |
| 3328 | DMA_CUED_XOR_BASE, |
| 3329 | paddr, 0); |
| 3330 | ppc440spe_desc_set_dest_addr( |
| 3331 | iter, chan, |
| 3332 | DMA_CUED_XOR_BASE, |
| 3333 | qaddr, 1); |
| 3334 | } |
| 3335 | } |
| 3336 | } |
| 3337 | |
| 3338 | } |
| 3339 | break; |
| 3340 | |
| 3341 | case PPC440SPE_XOR_ID: |
| 3342 | /* DMA2 descriptors have only 1 destination, so there are |
| 3343 | * two chains - one for each dest. |
| 3344 | * If we want to include destination into calculations, |
| 3345 | * then make dest addresses cued with mult=1 (XOR). |
| 3346 | */ |
| 3347 | ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ? |
| 3348 | DMA_CUED_XOR_HB : |
| 3349 | DMA_CUED_XOR_BASE | |
| 3350 | (1 << DMA_CUED_MULT1_OFF); |
| 3351 | |
| 3352 | qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ? |
| 3353 | DMA_CUED_XOR_HB : |
| 3354 | DMA_CUED_XOR_BASE | |
| 3355 | (1 << DMA_CUED_MULT1_OFF); |
| 3356 | |
| 3357 | iter = ppc440spe_get_group_entry(sw_desc, 0); |
| 3358 | for (i = 0; i < sw_desc->descs_per_op; i++) { |
| 3359 | ppc440spe_desc_set_dest_addr(iter, chan, |
| 3360 | paddr ? ppath : qpath, |
| 3361 | paddr ? paddr : qaddr, 0); |
| 3362 | iter = list_entry(iter->chain_node.next, |
| 3363 | struct ppc440spe_adma_desc_slot, |
| 3364 | chain_node); |
| 3365 | } |
| 3366 | |
| 3367 | if (!addr) { |
| 3368 | /* Two destinations; setup Q here */ |
| 3369 | iter = ppc440spe_get_group_entry(sw_desc, |
| 3370 | sw_desc->descs_per_op); |
| 3371 | for (i = 0; i < sw_desc->descs_per_op; i++) { |
| 3372 | ppc440spe_desc_set_dest_addr(iter, |
| 3373 | chan, qpath, qaddr, 0); |
| 3374 | iter = list_entry(iter->chain_node.next, |
| 3375 | struct ppc440spe_adma_desc_slot, |
| 3376 | chain_node); |
| 3377 | } |
| 3378 | } |
| 3379 | |
| 3380 | break; |
| 3381 | } |
| 3382 | } |
| 3383 | |
| 3384 | /** |
| 3385 | * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor |
| 3386 | * for the PQ_ZERO_SUM operation |
| 3387 | */ |
| 3388 | static void ppc440spe_adma_pqzero_sum_set_dest( |
| 3389 | struct ppc440spe_adma_desc_slot *sw_desc, |
| 3390 | dma_addr_t paddr, dma_addr_t qaddr) |
| 3391 | { |
| 3392 | struct ppc440spe_adma_desc_slot *iter, *end; |
| 3393 | struct ppc440spe_adma_chan *chan; |
| 3394 | dma_addr_t addr = 0; |
| 3395 | int idx; |
| 3396 | |
| 3397 | chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); |
| 3398 | |
| 3399 | /* walk through the WXOR source list and set P/Q-destinations |
| 3400 | * for each slot |
| 3401 | */ |
| 3402 | idx = (paddr && qaddr) ? 2 : 1; |
| 3403 | /* set end */ |
| 3404 | list_for_each_entry_reverse(end, &sw_desc->group_list, |
| 3405 | chain_node) { |
| 3406 | if (!(--idx)) |
| 3407 | break; |
| 3408 | } |
| 3409 | /* set start */ |
| 3410 | idx = (paddr && qaddr) ? 2 : 1; |
| 3411 | iter = ppc440spe_get_group_entry(sw_desc, idx); |
| 3412 | |
| 3413 | if (paddr && qaddr) { |
| 3414 | /* two destinations */ |
| 3415 | list_for_each_entry_from(iter, &sw_desc->group_list, |
| 3416 | chain_node) { |
| 3417 | if (unlikely(iter == end)) |
| 3418 | break; |
| 3419 | ppc440spe_desc_set_dest_addr(iter, chan, |
| 3420 | DMA_CUED_XOR_BASE, paddr, 0); |
| 3421 | ppc440spe_desc_set_dest_addr(iter, chan, |
| 3422 | DMA_CUED_XOR_BASE, qaddr, 1); |
| 3423 | } |
| 3424 | } else { |
| 3425 | /* one destination */ |
| 3426 | addr = paddr ? paddr : qaddr; |
| 3427 | list_for_each_entry_from(iter, &sw_desc->group_list, |
| 3428 | chain_node) { |
| 3429 | if (unlikely(iter == end)) |
| 3430 | break; |
| 3431 | ppc440spe_desc_set_dest_addr(iter, chan, |
| 3432 | DMA_CUED_XOR_BASE, addr, 0); |
| 3433 | } |
| 3434 | } |
| 3435 | |
| 3436 | /* The remaining descriptors are DATACHECK. These have no need in |
| 3437 | * destination. Actually, these destinations are used there |
| 3438 | * as sources for check operation. So, set addr as source. |
| 3439 | */ |
| 3440 | ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr); |
| 3441 | |
| 3442 | if (!addr) { |
| 3443 | end = list_entry(end->chain_node.next, |
| 3444 | struct ppc440spe_adma_desc_slot, chain_node); |
| 3445 | ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr); |
| 3446 | } |
| 3447 | } |
| 3448 | |
| 3449 | /** |
| 3450 | * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor |
| 3451 | */ |
| 3452 | static inline void ppc440spe_desc_set_xor_src_cnt( |
| 3453 | struct ppc440spe_adma_desc_slot *desc, |
| 3454 | int src_cnt) |
| 3455 | { |
| 3456 | struct xor_cb *hw_desc = desc->hw_desc; |
| 3457 | |
| 3458 | hw_desc->cbc &= ~XOR_CDCR_OAC_MSK; |
| 3459 | hw_desc->cbc |= src_cnt; |
| 3460 | } |
| 3461 | |
| 3462 | /** |
| 3463 | * ppc440spe_adma_pq_set_src - set source address into descriptor |
| 3464 | */ |
| 3465 | static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc, |
| 3466 | dma_addr_t addr, int index) |
| 3467 | { |
| 3468 | struct ppc440spe_adma_chan *chan; |
| 3469 | dma_addr_t haddr = 0; |
| 3470 | struct ppc440spe_adma_desc_slot *iter = NULL; |
| 3471 | |
| 3472 | chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); |
| 3473 | |
| 3474 | switch (chan->device->id) { |
| 3475 | case PPC440SPE_DMA0_ID: |
| 3476 | case PPC440SPE_DMA1_ID: |
| 3477 | /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain |
| 3478 | */ |
| 3479 | if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { |
| 3480 | /* RXOR-only or RXOR/WXOR operation */ |
| 3481 | int iskip = test_bit(PPC440SPE_DESC_RXOR12, |
| 3482 | &sw_desc->flags) ? 2 : 3; |
| 3483 | |
| 3484 | if (index == 0) { |
| 3485 | /* 1st slot (RXOR) */ |
| 3486 | /* setup sources region (R1-2-3, R1-2-4, |
| 3487 | * or R1-2-5) |
| 3488 | */ |
| 3489 | if (test_bit(PPC440SPE_DESC_RXOR12, |
| 3490 | &sw_desc->flags)) |
| 3491 | haddr = DMA_RXOR12 << |
| 3492 | DMA_CUED_REGION_OFF; |
| 3493 | else if (test_bit(PPC440SPE_DESC_RXOR123, |
| 3494 | &sw_desc->flags)) |
| 3495 | haddr = DMA_RXOR123 << |
| 3496 | DMA_CUED_REGION_OFF; |
| 3497 | else if (test_bit(PPC440SPE_DESC_RXOR124, |
| 3498 | &sw_desc->flags)) |
| 3499 | haddr = DMA_RXOR124 << |
| 3500 | DMA_CUED_REGION_OFF; |
| 3501 | else if (test_bit(PPC440SPE_DESC_RXOR125, |
| 3502 | &sw_desc->flags)) |
| 3503 | haddr = DMA_RXOR125 << |
| 3504 | DMA_CUED_REGION_OFF; |
| 3505 | else |
| 3506 | BUG(); |
| 3507 | haddr |= DMA_CUED_XOR_BASE; |
| 3508 | iter = ppc440spe_get_group_entry(sw_desc, 0); |
| 3509 | } else if (index < iskip) { |
| 3510 | /* 1st slot (RXOR) |
| 3511 | * shall actually set source address only once |
| 3512 | * instead of first <iskip> |
| 3513 | */ |
| 3514 | iter = NULL; |
| 3515 | } else { |
| 3516 | /* 2nd/3d and next slots (WXOR); |
| 3517 | * skip first slot with RXOR |
| 3518 | */ |
| 3519 | haddr = DMA_CUED_XOR_HB; |
| 3520 | iter = ppc440spe_get_group_entry(sw_desc, |
| 3521 | index - iskip + sw_desc->dst_cnt); |
| 3522 | } |
| 3523 | } else { |
| 3524 | int znum = 0; |
| 3525 | |
| 3526 | /* WXOR-only operation; skip first slots with |
| 3527 | * zeroing destinations |
| 3528 | */ |
| 3529 | if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) |
| 3530 | znum++; |
| 3531 | if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) |
| 3532 | znum++; |
| 3533 | |
| 3534 | haddr = DMA_CUED_XOR_HB; |
| 3535 | iter = ppc440spe_get_group_entry(sw_desc, |
| 3536 | index + znum); |
| 3537 | } |
| 3538 | |
| 3539 | if (likely(iter)) { |
| 3540 | ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr); |
| 3541 | |
| 3542 | if (!index && |
| 3543 | test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) && |
| 3544 | sw_desc->dst_cnt == 2) { |
| 3545 | /* if we have two destinations for RXOR, then |
| 3546 | * setup source in the second descr too |
| 3547 | */ |
| 3548 | iter = ppc440spe_get_group_entry(sw_desc, 1); |
| 3549 | ppc440spe_desc_set_src_addr(iter, chan, 0, |
| 3550 | haddr, addr); |
| 3551 | } |
| 3552 | } |
| 3553 | break; |
| 3554 | |
| 3555 | case PPC440SPE_XOR_ID: |
| 3556 | /* DMA2 may do Biskup */ |
| 3557 | iter = sw_desc->group_head; |
| 3558 | if (iter->dst_cnt == 2) { |
| 3559 | /* both P & Q calculations required; set P src here */ |
| 3560 | ppc440spe_adma_dma2rxor_set_src(iter, index, addr); |
| 3561 | |
| 3562 | /* this is for Q */ |
| 3563 | iter = ppc440spe_get_group_entry(sw_desc, |
| 3564 | sw_desc->descs_per_op); |
| 3565 | } |
| 3566 | ppc440spe_adma_dma2rxor_set_src(iter, index, addr); |
| 3567 | break; |
| 3568 | } |
| 3569 | } |
| 3570 | |
| 3571 | /** |
| 3572 | * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor |
| 3573 | */ |
| 3574 | static void ppc440spe_adma_memcpy_xor_set_src( |
| 3575 | struct ppc440spe_adma_desc_slot *sw_desc, |
| 3576 | dma_addr_t addr, int index) |
| 3577 | { |
| 3578 | struct ppc440spe_adma_chan *chan; |
| 3579 | |
| 3580 | chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); |
| 3581 | sw_desc = sw_desc->group_head; |
| 3582 | |
| 3583 | if (likely(sw_desc)) |
| 3584 | ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr); |
| 3585 | } |
| 3586 | |
| 3587 | /** |
| 3588 | * ppc440spe_adma_dma2rxor_inc_addr - |
| 3589 | */ |
| 3590 | static void ppc440spe_adma_dma2rxor_inc_addr( |
| 3591 | struct ppc440spe_adma_desc_slot *desc, |
| 3592 | struct ppc440spe_rxor *cursor, int index, int src_cnt) |
| 3593 | { |
| 3594 | cursor->addr_count++; |
| 3595 | if (index == src_cnt - 1) { |
| 3596 | ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count); |
| 3597 | } else if (cursor->addr_count == XOR_MAX_OPS) { |
| 3598 | ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count); |
| 3599 | cursor->addr_count = 0; |
| 3600 | cursor->desc_count++; |
| 3601 | } |
| 3602 | } |
| 3603 | |
| 3604 | /** |
| 3605 | * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB |
| 3606 | */ |
| 3607 | static int ppc440spe_adma_dma2rxor_prep_src( |
| 3608 | struct ppc440spe_adma_desc_slot *hdesc, |
| 3609 | struct ppc440spe_rxor *cursor, int index, |
| 3610 | int src_cnt, u32 addr) |
| 3611 | { |
| 3612 | int rval = 0; |
| 3613 | u32 sign; |
| 3614 | struct ppc440spe_adma_desc_slot *desc = hdesc; |
| 3615 | int i; |
| 3616 | |
| 3617 | for (i = 0; i < cursor->desc_count; i++) { |
| 3618 | desc = list_entry(hdesc->chain_node.next, |
| 3619 | struct ppc440spe_adma_desc_slot, |
| 3620 | chain_node); |
| 3621 | } |
| 3622 | |
| 3623 | switch (cursor->state) { |
| 3624 | case 0: |
| 3625 | if (addr == cursor->addrl + cursor->len) { |
| 3626 | /* direct RXOR */ |
| 3627 | cursor->state = 1; |
| 3628 | cursor->xor_count++; |
| 3629 | if (index == src_cnt-1) { |
| 3630 | ppc440spe_rxor_set_region(desc, |
| 3631 | cursor->addr_count, |
| 3632 | DMA_RXOR12 << DMA_CUED_REGION_OFF); |
| 3633 | ppc440spe_adma_dma2rxor_inc_addr( |
| 3634 | desc, cursor, index, src_cnt); |
| 3635 | } |
| 3636 | } else if (cursor->addrl == addr + cursor->len) { |
| 3637 | /* reverse RXOR */ |
| 3638 | cursor->state = 1; |
| 3639 | cursor->xor_count++; |
| 3640 | set_bit(cursor->addr_count, &desc->reverse_flags[0]); |
| 3641 | if (index == src_cnt-1) { |
| 3642 | ppc440spe_rxor_set_region(desc, |
| 3643 | cursor->addr_count, |
| 3644 | DMA_RXOR12 << DMA_CUED_REGION_OFF); |
| 3645 | ppc440spe_adma_dma2rxor_inc_addr( |
| 3646 | desc, cursor, index, src_cnt); |
| 3647 | } |
| 3648 | } else { |
| 3649 | printk(KERN_ERR "Cannot build " |
| 3650 | "DMA2 RXOR command block.\n"); |
| 3651 | BUG(); |
| 3652 | } |
| 3653 | break; |
| 3654 | case 1: |
| 3655 | sign = test_bit(cursor->addr_count, |
| 3656 | desc->reverse_flags) |
| 3657 | ? -1 : 1; |
| 3658 | if (index == src_cnt-2 || (sign == -1 |
| 3659 | && addr != cursor->addrl - 2*cursor->len)) { |
| 3660 | cursor->state = 0; |
| 3661 | cursor->xor_count = 1; |
| 3662 | cursor->addrl = addr; |
| 3663 | ppc440spe_rxor_set_region(desc, |
| 3664 | cursor->addr_count, |
| 3665 | DMA_RXOR12 << DMA_CUED_REGION_OFF); |
| 3666 | ppc440spe_adma_dma2rxor_inc_addr( |
| 3667 | desc, cursor, index, src_cnt); |
| 3668 | } else if (addr == cursor->addrl + 2*sign*cursor->len) { |
| 3669 | cursor->state = 2; |
| 3670 | cursor->xor_count = 0; |
| 3671 | ppc440spe_rxor_set_region(desc, |
| 3672 | cursor->addr_count, |
| 3673 | DMA_RXOR123 << DMA_CUED_REGION_OFF); |
| 3674 | if (index == src_cnt-1) { |
| 3675 | ppc440spe_adma_dma2rxor_inc_addr( |
| 3676 | desc, cursor, index, src_cnt); |
| 3677 | } |
| 3678 | } else if (addr == cursor->addrl + 3*cursor->len) { |
| 3679 | cursor->state = 2; |
| 3680 | cursor->xor_count = 0; |
| 3681 | ppc440spe_rxor_set_region(desc, |
| 3682 | cursor->addr_count, |
| 3683 | DMA_RXOR124 << DMA_CUED_REGION_OFF); |
| 3684 | if (index == src_cnt-1) { |
| 3685 | ppc440spe_adma_dma2rxor_inc_addr( |
| 3686 | desc, cursor, index, src_cnt); |
| 3687 | } |
| 3688 | } else if (addr == cursor->addrl + 4*cursor->len) { |
| 3689 | cursor->state = 2; |
| 3690 | cursor->xor_count = 0; |
| 3691 | ppc440spe_rxor_set_region(desc, |
| 3692 | cursor->addr_count, |
| 3693 | DMA_RXOR125 << DMA_CUED_REGION_OFF); |
| 3694 | if (index == src_cnt-1) { |
| 3695 | ppc440spe_adma_dma2rxor_inc_addr( |
| 3696 | desc, cursor, index, src_cnt); |
| 3697 | } |
| 3698 | } else { |
| 3699 | cursor->state = 0; |
| 3700 | cursor->xor_count = 1; |
| 3701 | cursor->addrl = addr; |
| 3702 | ppc440spe_rxor_set_region(desc, |
| 3703 | cursor->addr_count, |
| 3704 | DMA_RXOR12 << DMA_CUED_REGION_OFF); |
| 3705 | ppc440spe_adma_dma2rxor_inc_addr( |
| 3706 | desc, cursor, index, src_cnt); |
| 3707 | } |
| 3708 | break; |
| 3709 | case 2: |
| 3710 | cursor->state = 0; |
| 3711 | cursor->addrl = addr; |
| 3712 | cursor->xor_count++; |
| 3713 | if (index) { |
| 3714 | ppc440spe_adma_dma2rxor_inc_addr( |
| 3715 | desc, cursor, index, src_cnt); |
| 3716 | } |
| 3717 | break; |
| 3718 | } |
| 3719 | |
| 3720 | return rval; |
| 3721 | } |
| 3722 | |
| 3723 | /** |
| 3724 | * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that |
| 3725 | * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call |
| 3726 | */ |
| 3727 | static void ppc440spe_adma_dma2rxor_set_src( |
| 3728 | struct ppc440spe_adma_desc_slot *desc, |
| 3729 | int index, dma_addr_t addr) |
| 3730 | { |
| 3731 | struct xor_cb *xcb = desc->hw_desc; |
| 3732 | int k = 0, op = 0, lop = 0; |
| 3733 | |
| 3734 | /* get the RXOR operand which corresponds to index addr */ |
| 3735 | while (op <= index) { |
| 3736 | lop = op; |
| 3737 | if (k == XOR_MAX_OPS) { |
| 3738 | k = 0; |
| 3739 | desc = list_entry(desc->chain_node.next, |
| 3740 | struct ppc440spe_adma_desc_slot, chain_node); |
| 3741 | xcb = desc->hw_desc; |
| 3742 | |
| 3743 | } |
| 3744 | if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) == |
| 3745 | (DMA_RXOR12 << DMA_CUED_REGION_OFF)) |
| 3746 | op += 2; |
| 3747 | else |
| 3748 | op += 3; |
| 3749 | } |
| 3750 | |
| 3751 | BUG_ON(k < 1); |
| 3752 | |
| 3753 | if (test_bit(k-1, desc->reverse_flags)) { |
| 3754 | /* reverse operand order; put last op in RXOR group */ |
| 3755 | if (index == op - 1) |
| 3756 | ppc440spe_rxor_set_src(desc, k - 1, addr); |
| 3757 | } else { |
| 3758 | /* direct operand order; put first op in RXOR group */ |
| 3759 | if (index == lop) |
| 3760 | ppc440spe_rxor_set_src(desc, k - 1, addr); |
| 3761 | } |
| 3762 | } |
| 3763 | |
| 3764 | /** |
| 3765 | * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that |
| 3766 | * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call |
| 3767 | */ |
| 3768 | static void ppc440spe_adma_dma2rxor_set_mult( |
| 3769 | struct ppc440spe_adma_desc_slot *desc, |
| 3770 | int index, u8 mult) |
| 3771 | { |
| 3772 | struct xor_cb *xcb = desc->hw_desc; |
| 3773 | int k = 0, op = 0, lop = 0; |
| 3774 | |
| 3775 | /* get the RXOR operand which corresponds to index mult */ |
| 3776 | while (op <= index) { |
| 3777 | lop = op; |
| 3778 | if (k == XOR_MAX_OPS) { |
| 3779 | k = 0; |
| 3780 | desc = list_entry(desc->chain_node.next, |
| 3781 | struct ppc440spe_adma_desc_slot, |
| 3782 | chain_node); |
| 3783 | xcb = desc->hw_desc; |
| 3784 | |
| 3785 | } |
| 3786 | if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) == |
| 3787 | (DMA_RXOR12 << DMA_CUED_REGION_OFF)) |
| 3788 | op += 2; |
| 3789 | else |
| 3790 | op += 3; |
| 3791 | } |
| 3792 | |
| 3793 | BUG_ON(k < 1); |
| 3794 | if (test_bit(k-1, desc->reverse_flags)) { |
| 3795 | /* reverse order */ |
| 3796 | ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult); |
| 3797 | } else { |
| 3798 | /* direct order */ |
| 3799 | ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult); |
| 3800 | } |
| 3801 | } |
| 3802 | |
| 3803 | /** |
| 3804 | * ppc440spe_init_rxor_cursor - |
| 3805 | */ |
| 3806 | static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor) |
| 3807 | { |
| 3808 | memset(cursor, 0, sizeof(struct ppc440spe_rxor)); |
| 3809 | cursor->state = 2; |
| 3810 | } |
| 3811 | |
| 3812 | /** |
| 3813 | * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into |
| 3814 | * descriptor for the PQXOR operation |
| 3815 | */ |
| 3816 | static void ppc440spe_adma_pq_set_src_mult( |
| 3817 | struct ppc440spe_adma_desc_slot *sw_desc, |
| 3818 | unsigned char mult, int index, int dst_pos) |
| 3819 | { |
| 3820 | struct ppc440spe_adma_chan *chan; |
| 3821 | u32 mult_idx, mult_dst; |
| 3822 | struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL; |
| 3823 | |
| 3824 | chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan); |
| 3825 | |
| 3826 | switch (chan->device->id) { |
| 3827 | case PPC440SPE_DMA0_ID: |
| 3828 | case PPC440SPE_DMA1_ID: |
| 3829 | if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) { |
| 3830 | int region = test_bit(PPC440SPE_DESC_RXOR12, |
| 3831 | &sw_desc->flags) ? 2 : 3; |
| 3832 | |
| 3833 | if (index < region) { |
| 3834 | /* RXOR multipliers */ |
| 3835 | iter = ppc440spe_get_group_entry(sw_desc, |
| 3836 | sw_desc->dst_cnt - 1); |
| 3837 | if (sw_desc->dst_cnt == 2) |
| 3838 | iter1 = ppc440spe_get_group_entry( |
| 3839 | sw_desc, 0); |
| 3840 | |
| 3841 | mult_idx = DMA_CUED_MULT1_OFF + (index << 3); |
| 3842 | mult_dst = DMA_CDB_SG_SRC; |
| 3843 | } else { |
| 3844 | /* WXOR multiplier */ |
| 3845 | iter = ppc440spe_get_group_entry(sw_desc, |
| 3846 | index - region + |
| 3847 | sw_desc->dst_cnt); |
| 3848 | mult_idx = DMA_CUED_MULT1_OFF; |
| 3849 | mult_dst = dst_pos ? DMA_CDB_SG_DST2 : |
| 3850 | DMA_CDB_SG_DST1; |
| 3851 | } |
| 3852 | } else { |
| 3853 | int znum = 0; |
| 3854 | |
| 3855 | /* WXOR-only; |
| 3856 | * skip first slots with destinations (if ZERO_DST has |
| 3857 | * place) |
| 3858 | */ |
| 3859 | if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags)) |
| 3860 | znum++; |
| 3861 | if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags)) |
| 3862 | znum++; |
| 3863 | |
| 3864 | iter = ppc440spe_get_group_entry(sw_desc, index + znum); |
| 3865 | mult_idx = DMA_CUED_MULT1_OFF; |
| 3866 | mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1; |
| 3867 | } |
| 3868 | |
| 3869 | if (likely(iter)) { |
| 3870 | ppc440spe_desc_set_src_mult(iter, chan, |
| 3871 | mult_idx, mult_dst, mult); |
| 3872 | |
| 3873 | if (unlikely(iter1)) { |
| 3874 | /* if we have two destinations for RXOR, then |
| 3875 | * we've just set Q mult. Set-up P now. |
| 3876 | */ |
| 3877 | ppc440spe_desc_set_src_mult(iter1, chan, |
| 3878 | mult_idx, mult_dst, 1); |
| 3879 | } |
| 3880 | |
| 3881 | } |
| 3882 | break; |
| 3883 | |
| 3884 | case PPC440SPE_XOR_ID: |
| 3885 | iter = sw_desc->group_head; |
| 3886 | if (sw_desc->dst_cnt == 2) { |
| 3887 | /* both P & Q calculations required; set P mult here */ |
| 3888 | ppc440spe_adma_dma2rxor_set_mult(iter, index, 1); |
| 3889 | |
| 3890 | /* and then set Q mult */ |
| 3891 | iter = ppc440spe_get_group_entry(sw_desc, |
| 3892 | sw_desc->descs_per_op); |
| 3893 | } |
| 3894 | ppc440spe_adma_dma2rxor_set_mult(iter, index, mult); |
| 3895 | break; |
| 3896 | } |
| 3897 | } |
| 3898 | |
| 3899 | /** |
| 3900 | * ppc440spe_adma_free_chan_resources - free the resources allocated |
| 3901 | */ |
| 3902 | static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan) |
| 3903 | { |
| 3904 | struct ppc440spe_adma_chan *ppc440spe_chan; |
| 3905 | struct ppc440spe_adma_desc_slot *iter, *_iter; |
| 3906 | int in_use_descs = 0; |
| 3907 | |
| 3908 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| 3909 | ppc440spe_adma_slot_cleanup(ppc440spe_chan); |
| 3910 | |
| 3911 | spin_lock_bh(&ppc440spe_chan->lock); |
| 3912 | list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain, |
| 3913 | chain_node) { |
| 3914 | in_use_descs++; |
| 3915 | list_del(&iter->chain_node); |
| 3916 | } |
| 3917 | list_for_each_entry_safe_reverse(iter, _iter, |
| 3918 | &ppc440spe_chan->all_slots, slot_node) { |
| 3919 | list_del(&iter->slot_node); |
| 3920 | kfree(iter); |
| 3921 | ppc440spe_chan->slots_allocated--; |
| 3922 | } |
| 3923 | ppc440spe_chan->last_used = NULL; |
| 3924 | |
| 3925 | dev_dbg(ppc440spe_chan->device->common.dev, |
| 3926 | "ppc440spe adma%d %s slots_allocated %d\n", |
| 3927 | ppc440spe_chan->device->id, |
| 3928 | __func__, ppc440spe_chan->slots_allocated); |
| 3929 | spin_unlock_bh(&ppc440spe_chan->lock); |
| 3930 | |
| 3931 | /* one is ok since we left it on there on purpose */ |
| 3932 | if (in_use_descs > 1) |
| 3933 | printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n", |
| 3934 | in_use_descs - 1); |
| 3935 | } |
| 3936 | |
| 3937 | /** |
| 3938 | * ppc440spe_adma_is_complete - poll the status of an ADMA transaction |
| 3939 | * @chan: ADMA channel handle |
| 3940 | * @cookie: ADMA transaction identifier |
| 3941 | */ |
| 3942 | static enum dma_status ppc440spe_adma_is_complete(struct dma_chan *chan, |
| 3943 | dma_cookie_t cookie, dma_cookie_t *done, dma_cookie_t *used) |
| 3944 | { |
| 3945 | struct ppc440spe_adma_chan *ppc440spe_chan; |
| 3946 | dma_cookie_t last_used; |
| 3947 | dma_cookie_t last_complete; |
| 3948 | enum dma_status ret; |
| 3949 | |
| 3950 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| 3951 | last_used = chan->cookie; |
| 3952 | last_complete = ppc440spe_chan->completed_cookie; |
| 3953 | |
| 3954 | if (done) |
| 3955 | *done = last_complete; |
| 3956 | if (used) |
| 3957 | *used = last_used; |
| 3958 | |
| 3959 | ret = dma_async_is_complete(cookie, last_complete, last_used); |
| 3960 | if (ret == DMA_SUCCESS) |
| 3961 | return ret; |
| 3962 | |
| 3963 | ppc440spe_adma_slot_cleanup(ppc440spe_chan); |
| 3964 | |
| 3965 | last_used = chan->cookie; |
| 3966 | last_complete = ppc440spe_chan->completed_cookie; |
| 3967 | |
| 3968 | if (done) |
| 3969 | *done = last_complete; |
| 3970 | if (used) |
| 3971 | *used = last_used; |
| 3972 | |
| 3973 | return dma_async_is_complete(cookie, last_complete, last_used); |
| 3974 | } |
| 3975 | |
| 3976 | /** |
| 3977 | * ppc440spe_adma_eot_handler - end of transfer interrupt handler |
| 3978 | */ |
| 3979 | static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data) |
| 3980 | { |
| 3981 | struct ppc440spe_adma_chan *chan = data; |
| 3982 | |
| 3983 | dev_dbg(chan->device->common.dev, |
| 3984 | "ppc440spe adma%d: %s\n", chan->device->id, __func__); |
| 3985 | |
| 3986 | tasklet_schedule(&chan->irq_tasklet); |
| 3987 | ppc440spe_adma_device_clear_eot_status(chan); |
| 3988 | |
| 3989 | return IRQ_HANDLED; |
| 3990 | } |
| 3991 | |
| 3992 | /** |
| 3993 | * ppc440spe_adma_err_handler - DMA error interrupt handler; |
| 3994 | * do the same things as a eot handler |
| 3995 | */ |
| 3996 | static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data) |
| 3997 | { |
| 3998 | struct ppc440spe_adma_chan *chan = data; |
| 3999 | |
| 4000 | dev_dbg(chan->device->common.dev, |
| 4001 | "ppc440spe adma%d: %s\n", chan->device->id, __func__); |
| 4002 | |
| 4003 | tasklet_schedule(&chan->irq_tasklet); |
| 4004 | ppc440spe_adma_device_clear_eot_status(chan); |
| 4005 | |
| 4006 | return IRQ_HANDLED; |
| 4007 | } |
| 4008 | |
| 4009 | /** |
| 4010 | * ppc440spe_test_callback - called when test operation has been done |
| 4011 | */ |
| 4012 | static void ppc440spe_test_callback(void *unused) |
| 4013 | { |
| 4014 | complete(&ppc440spe_r6_test_comp); |
| 4015 | } |
| 4016 | |
| 4017 | /** |
| 4018 | * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w |
| 4019 | */ |
| 4020 | static void ppc440spe_adma_issue_pending(struct dma_chan *chan) |
| 4021 | { |
| 4022 | struct ppc440spe_adma_chan *ppc440spe_chan; |
| 4023 | |
| 4024 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| 4025 | dev_dbg(ppc440spe_chan->device->common.dev, |
| 4026 | "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id, |
| 4027 | __func__, ppc440spe_chan->pending); |
| 4028 | |
| 4029 | if (ppc440spe_chan->pending) { |
| 4030 | ppc440spe_chan->pending = 0; |
| 4031 | ppc440spe_chan_append(ppc440spe_chan); |
| 4032 | } |
| 4033 | } |
| 4034 | |
| 4035 | /** |
| 4036 | * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines |
| 4037 | * use FIFOs (as opposite to chains used in XOR) so this is a XOR |
| 4038 | * specific operation) |
| 4039 | */ |
| 4040 | static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan) |
| 4041 | { |
| 4042 | struct ppc440spe_adma_desc_slot *sw_desc, *group_start; |
| 4043 | dma_cookie_t cookie; |
| 4044 | int slot_cnt, slots_per_op; |
| 4045 | |
| 4046 | dev_dbg(chan->device->common.dev, |
| 4047 | "ppc440spe adma%d: %s\n", chan->device->id, __func__); |
| 4048 | |
| 4049 | spin_lock_bh(&chan->lock); |
| 4050 | slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op); |
| 4051 | sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op); |
| 4052 | if (sw_desc) { |
| 4053 | group_start = sw_desc->group_head; |
| 4054 | list_splice_init(&sw_desc->group_list, &chan->chain); |
| 4055 | async_tx_ack(&sw_desc->async_tx); |
| 4056 | ppc440spe_desc_init_null_xor(group_start); |
| 4057 | |
| 4058 | cookie = chan->common.cookie; |
| 4059 | cookie++; |
| 4060 | if (cookie <= 1) |
| 4061 | cookie = 2; |
| 4062 | |
| 4063 | /* initialize the completed cookie to be less than |
| 4064 | * the most recently used cookie |
| 4065 | */ |
| 4066 | chan->completed_cookie = cookie - 1; |
| 4067 | chan->common.cookie = sw_desc->async_tx.cookie = cookie; |
| 4068 | |
| 4069 | /* channel should not be busy */ |
| 4070 | BUG_ON(ppc440spe_chan_is_busy(chan)); |
| 4071 | |
| 4072 | /* set the descriptor address */ |
| 4073 | ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc); |
| 4074 | |
| 4075 | /* run the descriptor */ |
| 4076 | ppc440spe_chan_run(chan); |
| 4077 | } else |
| 4078 | printk(KERN_ERR "ppc440spe adma%d" |
| 4079 | " failed to allocate null descriptor\n", |
| 4080 | chan->device->id); |
| 4081 | spin_unlock_bh(&chan->lock); |
| 4082 | } |
| 4083 | |
| 4084 | /** |
| 4085 | * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully. |
| 4086 | * For this we just perform one WXOR operation with the same source |
| 4087 | * and destination addresses, the GF-multiplier is 1; so if RAID-6 |
| 4088 | * capabilities are enabled then we'll get src/dst filled with zero. |
| 4089 | */ |
| 4090 | static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan) |
| 4091 | { |
| 4092 | struct ppc440spe_adma_desc_slot *sw_desc, *iter; |
| 4093 | struct page *pg; |
| 4094 | char *a; |
| 4095 | dma_addr_t dma_addr, addrs[2]; |
| 4096 | unsigned long op = 0; |
| 4097 | int rval = 0; |
| 4098 | |
| 4099 | set_bit(PPC440SPE_DESC_WXOR, &op); |
| 4100 | |
| 4101 | pg = alloc_page(GFP_KERNEL); |
| 4102 | if (!pg) |
| 4103 | return -ENOMEM; |
| 4104 | |
| 4105 | spin_lock_bh(&chan->lock); |
| 4106 | sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1); |
| 4107 | if (sw_desc) { |
| 4108 | /* 1 src, 1 dsr, int_ena, WXOR */ |
| 4109 | ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op); |
| 4110 | list_for_each_entry(iter, &sw_desc->group_list, chain_node) { |
| 4111 | ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE); |
| 4112 | iter->unmap_len = PAGE_SIZE; |
| 4113 | } |
| 4114 | } else { |
| 4115 | rval = -EFAULT; |
| 4116 | spin_unlock_bh(&chan->lock); |
| 4117 | goto exit; |
| 4118 | } |
| 4119 | spin_unlock_bh(&chan->lock); |
| 4120 | |
| 4121 | /* Fill the test page with ones */ |
| 4122 | memset(page_address(pg), 0xFF, PAGE_SIZE); |
| 4123 | dma_addr = dma_map_page(chan->device->dev, pg, 0, |
| 4124 | PAGE_SIZE, DMA_BIDIRECTIONAL); |
| 4125 | |
| 4126 | /* Setup addresses */ |
| 4127 | ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0); |
| 4128 | ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0); |
| 4129 | addrs[0] = dma_addr; |
| 4130 | addrs[1] = 0; |
| 4131 | ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q); |
| 4132 | |
| 4133 | async_tx_ack(&sw_desc->async_tx); |
| 4134 | sw_desc->async_tx.callback = ppc440spe_test_callback; |
| 4135 | sw_desc->async_tx.callback_param = NULL; |
| 4136 | |
| 4137 | init_completion(&ppc440spe_r6_test_comp); |
| 4138 | |
| 4139 | ppc440spe_adma_tx_submit(&sw_desc->async_tx); |
| 4140 | ppc440spe_adma_issue_pending(&chan->common); |
| 4141 | |
| 4142 | wait_for_completion(&ppc440spe_r6_test_comp); |
| 4143 | |
| 4144 | /* Now check if the test page is zeroed */ |
| 4145 | a = page_address(pg); |
| 4146 | if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) { |
| 4147 | /* page is zero - RAID-6 enabled */ |
| 4148 | rval = 0; |
| 4149 | } else { |
| 4150 | /* RAID-6 was not enabled */ |
| 4151 | rval = -EINVAL; |
| 4152 | } |
| 4153 | exit: |
| 4154 | __free_page(pg); |
| 4155 | return rval; |
| 4156 | } |
| 4157 | |
| 4158 | static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev) |
| 4159 | { |
| 4160 | switch (adev->id) { |
| 4161 | case PPC440SPE_DMA0_ID: |
| 4162 | case PPC440SPE_DMA1_ID: |
| 4163 | dma_cap_set(DMA_MEMCPY, adev->common.cap_mask); |
| 4164 | dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask); |
| 4165 | dma_cap_set(DMA_MEMSET, adev->common.cap_mask); |
| 4166 | dma_cap_set(DMA_PQ, adev->common.cap_mask); |
| 4167 | dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask); |
| 4168 | dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask); |
| 4169 | break; |
| 4170 | case PPC440SPE_XOR_ID: |
| 4171 | dma_cap_set(DMA_XOR, adev->common.cap_mask); |
| 4172 | dma_cap_set(DMA_PQ, adev->common.cap_mask); |
| 4173 | dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask); |
| 4174 | adev->common.cap_mask = adev->common.cap_mask; |
| 4175 | break; |
| 4176 | } |
| 4177 | |
| 4178 | /* Set base routines */ |
| 4179 | adev->common.device_alloc_chan_resources = |
| 4180 | ppc440spe_adma_alloc_chan_resources; |
| 4181 | adev->common.device_free_chan_resources = |
| 4182 | ppc440spe_adma_free_chan_resources; |
| 4183 | adev->common.device_is_tx_complete = ppc440spe_adma_is_complete; |
| 4184 | adev->common.device_issue_pending = ppc440spe_adma_issue_pending; |
| 4185 | |
| 4186 | /* Set prep routines based on capability */ |
| 4187 | if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) { |
| 4188 | adev->common.device_prep_dma_memcpy = |
| 4189 | ppc440spe_adma_prep_dma_memcpy; |
| 4190 | } |
| 4191 | if (dma_has_cap(DMA_MEMSET, adev->common.cap_mask)) { |
| 4192 | adev->common.device_prep_dma_memset = |
| 4193 | ppc440spe_adma_prep_dma_memset; |
| 4194 | } |
| 4195 | if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) { |
| 4196 | adev->common.max_xor = XOR_MAX_OPS; |
| 4197 | adev->common.device_prep_dma_xor = |
| 4198 | ppc440spe_adma_prep_dma_xor; |
| 4199 | } |
| 4200 | if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) { |
| 4201 | switch (adev->id) { |
| 4202 | case PPC440SPE_DMA0_ID: |
| 4203 | dma_set_maxpq(&adev->common, |
| 4204 | DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0); |
| 4205 | break; |
| 4206 | case PPC440SPE_DMA1_ID: |
| 4207 | dma_set_maxpq(&adev->common, |
| 4208 | DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0); |
| 4209 | break; |
| 4210 | case PPC440SPE_XOR_ID: |
| 4211 | adev->common.max_pq = XOR_MAX_OPS * 3; |
| 4212 | break; |
| 4213 | } |
| 4214 | adev->common.device_prep_dma_pq = |
| 4215 | ppc440spe_adma_prep_dma_pq; |
| 4216 | } |
| 4217 | if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) { |
| 4218 | switch (adev->id) { |
| 4219 | case PPC440SPE_DMA0_ID: |
| 4220 | adev->common.max_pq = DMA0_FIFO_SIZE / |
| 4221 | sizeof(struct dma_cdb); |
| 4222 | break; |
| 4223 | case PPC440SPE_DMA1_ID: |
| 4224 | adev->common.max_pq = DMA1_FIFO_SIZE / |
| 4225 | sizeof(struct dma_cdb); |
| 4226 | break; |
| 4227 | } |
| 4228 | adev->common.device_prep_dma_pq_val = |
| 4229 | ppc440spe_adma_prep_dma_pqzero_sum; |
| 4230 | } |
| 4231 | if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) { |
| 4232 | switch (adev->id) { |
| 4233 | case PPC440SPE_DMA0_ID: |
| 4234 | adev->common.max_xor = DMA0_FIFO_SIZE / |
| 4235 | sizeof(struct dma_cdb); |
| 4236 | break; |
| 4237 | case PPC440SPE_DMA1_ID: |
| 4238 | adev->common.max_xor = DMA1_FIFO_SIZE / |
| 4239 | sizeof(struct dma_cdb); |
| 4240 | break; |
| 4241 | } |
| 4242 | adev->common.device_prep_dma_xor_val = |
| 4243 | ppc440spe_adma_prep_dma_xor_zero_sum; |
| 4244 | } |
| 4245 | if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) { |
| 4246 | adev->common.device_prep_dma_interrupt = |
| 4247 | ppc440spe_adma_prep_dma_interrupt; |
| 4248 | } |
| 4249 | pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: " |
| 4250 | "( %s%s%s%s%s%s%s)\n", |
| 4251 | dev_name(adev->dev), |
| 4252 | dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "", |
| 4253 | dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "", |
| 4254 | dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "", |
| 4255 | dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "", |
| 4256 | dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "", |
| 4257 | dma_has_cap(DMA_MEMSET, adev->common.cap_mask) ? "memset " : "", |
| 4258 | dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : ""); |
| 4259 | } |
| 4260 | |
| 4261 | static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev, |
| 4262 | struct ppc440spe_adma_chan *chan, |
| 4263 | int *initcode) |
| 4264 | { |
| 4265 | struct device_node *np; |
| 4266 | int ret; |
| 4267 | |
| 4268 | np = container_of(adev->dev, struct of_device, dev)->node; |
| 4269 | if (adev->id != PPC440SPE_XOR_ID) { |
| 4270 | adev->err_irq = irq_of_parse_and_map(np, 1); |
| 4271 | if (adev->err_irq == NO_IRQ) { |
| 4272 | dev_warn(adev->dev, "no err irq resource?\n"); |
| 4273 | *initcode = PPC_ADMA_INIT_IRQ2; |
| 4274 | adev->err_irq = -ENXIO; |
| 4275 | } else |
| 4276 | atomic_inc(&ppc440spe_adma_err_irq_ref); |
| 4277 | } else { |
| 4278 | adev->err_irq = -ENXIO; |
| 4279 | } |
| 4280 | |
| 4281 | adev->irq = irq_of_parse_and_map(np, 0); |
| 4282 | if (adev->irq == NO_IRQ) { |
| 4283 | dev_err(adev->dev, "no irq resource\n"); |
| 4284 | *initcode = PPC_ADMA_INIT_IRQ1; |
| 4285 | ret = -ENXIO; |
| 4286 | goto err_irq_map; |
| 4287 | } |
| 4288 | dev_dbg(adev->dev, "irq %d, err irq %d\n", |
| 4289 | adev->irq, adev->err_irq); |
| 4290 | |
| 4291 | ret = request_irq(adev->irq, ppc440spe_adma_eot_handler, |
| 4292 | 0, dev_driver_string(adev->dev), chan); |
| 4293 | if (ret) { |
| 4294 | dev_err(adev->dev, "can't request irq %d\n", |
| 4295 | adev->irq); |
| 4296 | *initcode = PPC_ADMA_INIT_IRQ1; |
| 4297 | ret = -EIO; |
| 4298 | goto err_req1; |
| 4299 | } |
| 4300 | |
| 4301 | /* only DMA engines have a separate error IRQ |
| 4302 | * so it's Ok if err_irq < 0 in XOR engine case. |
| 4303 | */ |
| 4304 | if (adev->err_irq > 0) { |
| 4305 | /* both DMA engines share common error IRQ */ |
| 4306 | ret = request_irq(adev->err_irq, |
| 4307 | ppc440spe_adma_err_handler, |
| 4308 | IRQF_SHARED, |
| 4309 | dev_driver_string(adev->dev), |
| 4310 | chan); |
| 4311 | if (ret) { |
| 4312 | dev_err(adev->dev, "can't request irq %d\n", |
| 4313 | adev->err_irq); |
| 4314 | *initcode = PPC_ADMA_INIT_IRQ2; |
| 4315 | ret = -EIO; |
| 4316 | goto err_req2; |
| 4317 | } |
| 4318 | } |
| 4319 | |
| 4320 | if (adev->id == PPC440SPE_XOR_ID) { |
| 4321 | /* enable XOR engine interrupts */ |
| 4322 | iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT | |
| 4323 | XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT, |
| 4324 | &adev->xor_reg->ier); |
| 4325 | } else { |
| 4326 | u32 mask, enable; |
| 4327 | |
| 4328 | np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe"); |
| 4329 | if (!np) { |
| 4330 | pr_err("%s: can't find I2O device tree node\n", |
| 4331 | __func__); |
| 4332 | ret = -ENODEV; |
| 4333 | goto err_req2; |
| 4334 | } |
| 4335 | adev->i2o_reg = of_iomap(np, 0); |
| 4336 | if (!adev->i2o_reg) { |
| 4337 | pr_err("%s: failed to map I2O registers\n", __func__); |
| 4338 | of_node_put(np); |
| 4339 | ret = -EINVAL; |
| 4340 | goto err_req2; |
| 4341 | } |
| 4342 | of_node_put(np); |
| 4343 | /* Unmask 'CS FIFO Attention' interrupts and |
| 4344 | * enable generating interrupts on errors |
| 4345 | */ |
| 4346 | enable = (adev->id == PPC440SPE_DMA0_ID) ? |
| 4347 | ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) : |
| 4348 | ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM); |
| 4349 | mask = ioread32(&adev->i2o_reg->iopim) & enable; |
| 4350 | iowrite32(mask, &adev->i2o_reg->iopim); |
| 4351 | } |
| 4352 | return 0; |
| 4353 | |
| 4354 | err_req2: |
| 4355 | free_irq(adev->irq, chan); |
| 4356 | err_req1: |
| 4357 | irq_dispose_mapping(adev->irq); |
| 4358 | err_irq_map: |
| 4359 | if (adev->err_irq > 0) { |
| 4360 | if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) |
| 4361 | irq_dispose_mapping(adev->err_irq); |
| 4362 | } |
| 4363 | return ret; |
| 4364 | } |
| 4365 | |
| 4366 | static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev, |
| 4367 | struct ppc440spe_adma_chan *chan) |
| 4368 | { |
| 4369 | u32 mask, disable; |
| 4370 | |
| 4371 | if (adev->id == PPC440SPE_XOR_ID) { |
| 4372 | /* disable XOR engine interrupts */ |
| 4373 | mask = ioread32be(&adev->xor_reg->ier); |
| 4374 | mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT | |
| 4375 | XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT); |
| 4376 | iowrite32be(mask, &adev->xor_reg->ier); |
| 4377 | } else { |
| 4378 | /* disable DMAx engine interrupts */ |
| 4379 | disable = (adev->id == PPC440SPE_DMA0_ID) ? |
| 4380 | (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) : |
| 4381 | (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM); |
| 4382 | mask = ioread32(&adev->i2o_reg->iopim) | disable; |
| 4383 | iowrite32(mask, &adev->i2o_reg->iopim); |
| 4384 | } |
| 4385 | free_irq(adev->irq, chan); |
| 4386 | irq_dispose_mapping(adev->irq); |
| 4387 | if (adev->err_irq > 0) { |
| 4388 | free_irq(adev->err_irq, chan); |
| 4389 | if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) { |
| 4390 | irq_dispose_mapping(adev->err_irq); |
| 4391 | iounmap(adev->i2o_reg); |
| 4392 | } |
| 4393 | } |
| 4394 | } |
| 4395 | |
| 4396 | /** |
| 4397 | * ppc440spe_adma_probe - probe the asynch device |
| 4398 | */ |
| 4399 | static int __devinit ppc440spe_adma_probe(struct of_device *ofdev, |
| 4400 | const struct of_device_id *match) |
| 4401 | { |
| 4402 | struct device_node *np = ofdev->node; |
| 4403 | struct resource res; |
| 4404 | struct ppc440spe_adma_device *adev; |
| 4405 | struct ppc440spe_adma_chan *chan; |
| 4406 | struct ppc_dma_chan_ref *ref, *_ref; |
| 4407 | int ret = 0, initcode = PPC_ADMA_INIT_OK; |
| 4408 | const u32 *idx; |
| 4409 | int len; |
| 4410 | void *regs; |
| 4411 | u32 id, pool_size; |
| 4412 | |
| 4413 | if (of_device_is_compatible(np, "amcc,xor-accelerator")) { |
| 4414 | id = PPC440SPE_XOR_ID; |
| 4415 | /* As far as the XOR engine is concerned, it does not |
| 4416 | * use FIFOs but uses linked list. So there is no dependency |
| 4417 | * between pool size to allocate and the engine configuration. |
| 4418 | */ |
| 4419 | pool_size = PAGE_SIZE << 1; |
| 4420 | } else { |
| 4421 | /* it is DMA0 or DMA1 */ |
| 4422 | idx = of_get_property(np, "cell-index", &len); |
| 4423 | if (!idx || (len != sizeof(u32))) { |
| 4424 | dev_err(&ofdev->dev, "Device node %s has missing " |
| 4425 | "or invalid cell-index property\n", |
| 4426 | np->full_name); |
| 4427 | return -EINVAL; |
| 4428 | } |
| 4429 | id = *idx; |
| 4430 | /* DMA0,1 engines use FIFO to maintain CDBs, so we |
| 4431 | * should allocate the pool accordingly to size of this |
| 4432 | * FIFO. Thus, the pool size depends on the FIFO depth: |
| 4433 | * how much CDBs pointers the FIFO may contain then so |
| 4434 | * much CDBs we should provide in the pool. |
| 4435 | * That is |
| 4436 | * CDB size = 32B; |
| 4437 | * CDBs number = (DMA0_FIFO_SIZE >> 3); |
| 4438 | * Pool size = CDBs number * CDB size = |
| 4439 | * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2. |
| 4440 | */ |
| 4441 | pool_size = (id == PPC440SPE_DMA0_ID) ? |
| 4442 | DMA0_FIFO_SIZE : DMA1_FIFO_SIZE; |
| 4443 | pool_size <<= 2; |
| 4444 | } |
| 4445 | |
| 4446 | if (of_address_to_resource(np, 0, &res)) { |
| 4447 | dev_err(&ofdev->dev, "failed to get memory resource\n"); |
| 4448 | initcode = PPC_ADMA_INIT_MEMRES; |
| 4449 | ret = -ENODEV; |
| 4450 | goto out; |
| 4451 | } |
| 4452 | |
| 4453 | if (!request_mem_region(res.start, resource_size(&res), |
| 4454 | dev_driver_string(&ofdev->dev))) { |
| 4455 | dev_err(&ofdev->dev, "failed to request memory region " |
| 4456 | "(0x%016llx-0x%016llx)\n", |
| 4457 | (u64)res.start, (u64)res.end); |
| 4458 | initcode = PPC_ADMA_INIT_MEMREG; |
| 4459 | ret = -EBUSY; |
| 4460 | goto out; |
| 4461 | } |
| 4462 | |
| 4463 | /* create a device */ |
| 4464 | adev = kzalloc(sizeof(*adev), GFP_KERNEL); |
| 4465 | if (!adev) { |
| 4466 | dev_err(&ofdev->dev, "failed to allocate device\n"); |
| 4467 | initcode = PPC_ADMA_INIT_ALLOC; |
| 4468 | ret = -ENOMEM; |
| 4469 | goto err_adev_alloc; |
| 4470 | } |
| 4471 | |
| 4472 | adev->id = id; |
| 4473 | adev->pool_size = pool_size; |
| 4474 | /* allocate coherent memory for hardware descriptors */ |
| 4475 | adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev, |
| 4476 | adev->pool_size, &adev->dma_desc_pool, |
| 4477 | GFP_KERNEL); |
| 4478 | if (adev->dma_desc_pool_virt == NULL) { |
| 4479 | dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent " |
| 4480 | "memory for hardware descriptors\n", |
| 4481 | adev->pool_size); |
| 4482 | initcode = PPC_ADMA_INIT_COHERENT; |
| 4483 | ret = -ENOMEM; |
| 4484 | goto err_dma_alloc; |
| 4485 | } |
| 4486 | dev_dbg(&ofdev->dev, "allocted descriptor pool virt 0x%p phys 0x%llx\n", |
| 4487 | adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool); |
| 4488 | |
| 4489 | regs = ioremap(res.start, resource_size(&res)); |
| 4490 | if (!regs) { |
| 4491 | dev_err(&ofdev->dev, "failed to ioremap regs!\n"); |
| 4492 | goto err_regs_alloc; |
| 4493 | } |
| 4494 | |
| 4495 | if (adev->id == PPC440SPE_XOR_ID) { |
| 4496 | adev->xor_reg = regs; |
| 4497 | /* Reset XOR */ |
| 4498 | iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr); |
| 4499 | iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr); |
| 4500 | } else { |
| 4501 | size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ? |
| 4502 | DMA0_FIFO_SIZE : DMA1_FIFO_SIZE; |
| 4503 | adev->dma_reg = regs; |
| 4504 | /* DMAx_FIFO_SIZE is defined in bytes, |
| 4505 | * <fsiz> - is defined in number of CDB pointers (8byte). |
| 4506 | * DMA FIFO Length = CSlength + CPlength, where |
| 4507 | * CSlength = CPlength = (fsiz + 1) * 8. |
| 4508 | */ |
| 4509 | iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2), |
| 4510 | &adev->dma_reg->fsiz); |
| 4511 | /* Configure DMA engine */ |
| 4512 | iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN, |
| 4513 | &adev->dma_reg->cfg); |
| 4514 | /* Clear Status */ |
| 4515 | iowrite32(~0, &adev->dma_reg->dsts); |
| 4516 | } |
| 4517 | |
| 4518 | adev->dev = &ofdev->dev; |
| 4519 | adev->common.dev = &ofdev->dev; |
| 4520 | INIT_LIST_HEAD(&adev->common.channels); |
| 4521 | dev_set_drvdata(&ofdev->dev, adev); |
| 4522 | |
| 4523 | /* create a channel */ |
| 4524 | chan = kzalloc(sizeof(*chan), GFP_KERNEL); |
| 4525 | if (!chan) { |
| 4526 | dev_err(&ofdev->dev, "can't allocate channel structure\n"); |
| 4527 | initcode = PPC_ADMA_INIT_CHANNEL; |
| 4528 | ret = -ENOMEM; |
| 4529 | goto err_chan_alloc; |
| 4530 | } |
| 4531 | |
| 4532 | spin_lock_init(&chan->lock); |
| 4533 | INIT_LIST_HEAD(&chan->chain); |
| 4534 | INIT_LIST_HEAD(&chan->all_slots); |
| 4535 | chan->device = adev; |
| 4536 | chan->common.device = &adev->common; |
| 4537 | list_add_tail(&chan->common.device_node, &adev->common.channels); |
| 4538 | tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet, |
| 4539 | (unsigned long)chan); |
| 4540 | |
| 4541 | /* allocate and map helper pages for async validation or |
| 4542 | * async_mult/async_sum_product operations on DMA0/1. |
| 4543 | */ |
| 4544 | if (adev->id != PPC440SPE_XOR_ID) { |
| 4545 | chan->pdest_page = alloc_page(GFP_KERNEL); |
| 4546 | chan->qdest_page = alloc_page(GFP_KERNEL); |
| 4547 | if (!chan->pdest_page || |
| 4548 | !chan->qdest_page) { |
| 4549 | if (chan->pdest_page) |
| 4550 | __free_page(chan->pdest_page); |
| 4551 | if (chan->qdest_page) |
| 4552 | __free_page(chan->qdest_page); |
| 4553 | ret = -ENOMEM; |
| 4554 | goto err_page_alloc; |
| 4555 | } |
| 4556 | chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0, |
| 4557 | PAGE_SIZE, DMA_BIDIRECTIONAL); |
| 4558 | chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0, |
| 4559 | PAGE_SIZE, DMA_BIDIRECTIONAL); |
| 4560 | } |
| 4561 | |
| 4562 | ref = kmalloc(sizeof(*ref), GFP_KERNEL); |
| 4563 | if (ref) { |
| 4564 | ref->chan = &chan->common; |
| 4565 | INIT_LIST_HEAD(&ref->node); |
| 4566 | list_add_tail(&ref->node, &ppc440spe_adma_chan_list); |
| 4567 | } else { |
| 4568 | dev_err(&ofdev->dev, "failed to allocate channel reference!\n"); |
| 4569 | ret = -ENOMEM; |
| 4570 | goto err_ref_alloc; |
| 4571 | } |
| 4572 | |
| 4573 | ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode); |
| 4574 | if (ret) |
| 4575 | goto err_irq; |
| 4576 | |
| 4577 | ppc440spe_adma_init_capabilities(adev); |
| 4578 | |
| 4579 | ret = dma_async_device_register(&adev->common); |
| 4580 | if (ret) { |
| 4581 | initcode = PPC_ADMA_INIT_REGISTER; |
| 4582 | dev_err(&ofdev->dev, "failed to register dma device\n"); |
| 4583 | goto err_dev_reg; |
| 4584 | } |
| 4585 | |
| 4586 | goto out; |
| 4587 | |
| 4588 | err_dev_reg: |
| 4589 | ppc440spe_adma_release_irqs(adev, chan); |
| 4590 | err_irq: |
| 4591 | list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) { |
| 4592 | if (chan == to_ppc440spe_adma_chan(ref->chan)) { |
| 4593 | list_del(&ref->node); |
| 4594 | kfree(ref); |
| 4595 | } |
| 4596 | } |
| 4597 | err_ref_alloc: |
| 4598 | if (adev->id != PPC440SPE_XOR_ID) { |
| 4599 | dma_unmap_page(&ofdev->dev, chan->pdest, |
| 4600 | PAGE_SIZE, DMA_BIDIRECTIONAL); |
| 4601 | dma_unmap_page(&ofdev->dev, chan->qdest, |
| 4602 | PAGE_SIZE, DMA_BIDIRECTIONAL); |
| 4603 | __free_page(chan->pdest_page); |
| 4604 | __free_page(chan->qdest_page); |
| 4605 | } |
| 4606 | err_page_alloc: |
| 4607 | kfree(chan); |
| 4608 | err_chan_alloc: |
| 4609 | if (adev->id == PPC440SPE_XOR_ID) |
| 4610 | iounmap(adev->xor_reg); |
| 4611 | else |
| 4612 | iounmap(adev->dma_reg); |
| 4613 | err_regs_alloc: |
| 4614 | dma_free_coherent(adev->dev, adev->pool_size, |
| 4615 | adev->dma_desc_pool_virt, |
| 4616 | adev->dma_desc_pool); |
| 4617 | err_dma_alloc: |
| 4618 | kfree(adev); |
| 4619 | err_adev_alloc: |
| 4620 | release_mem_region(res.start, resource_size(&res)); |
| 4621 | out: |
| 4622 | if (id < PPC440SPE_ADMA_ENGINES_NUM) |
| 4623 | ppc440spe_adma_devices[id] = initcode; |
| 4624 | |
| 4625 | return ret; |
| 4626 | } |
| 4627 | |
| 4628 | /** |
| 4629 | * ppc440spe_adma_remove - remove the asynch device |
| 4630 | */ |
| 4631 | static int __devexit ppc440spe_adma_remove(struct of_device *ofdev) |
| 4632 | { |
| 4633 | struct ppc440spe_adma_device *adev = dev_get_drvdata(&ofdev->dev); |
| 4634 | struct device_node *np = ofdev->node; |
| 4635 | struct resource res; |
| 4636 | struct dma_chan *chan, *_chan; |
| 4637 | struct ppc_dma_chan_ref *ref, *_ref; |
| 4638 | struct ppc440spe_adma_chan *ppc440spe_chan; |
| 4639 | |
| 4640 | dev_set_drvdata(&ofdev->dev, NULL); |
| 4641 | if (adev->id < PPC440SPE_ADMA_ENGINES_NUM) |
| 4642 | ppc440spe_adma_devices[adev->id] = -1; |
| 4643 | |
| 4644 | dma_async_device_unregister(&adev->common); |
| 4645 | |
| 4646 | list_for_each_entry_safe(chan, _chan, &adev->common.channels, |
| 4647 | device_node) { |
| 4648 | ppc440spe_chan = to_ppc440spe_adma_chan(chan); |
| 4649 | ppc440spe_adma_release_irqs(adev, ppc440spe_chan); |
| 4650 | tasklet_kill(&ppc440spe_chan->irq_tasklet); |
| 4651 | if (adev->id != PPC440SPE_XOR_ID) { |
| 4652 | dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest, |
| 4653 | PAGE_SIZE, DMA_BIDIRECTIONAL); |
| 4654 | dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest, |
| 4655 | PAGE_SIZE, DMA_BIDIRECTIONAL); |
| 4656 | __free_page(ppc440spe_chan->pdest_page); |
| 4657 | __free_page(ppc440spe_chan->qdest_page); |
| 4658 | } |
| 4659 | list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, |
| 4660 | node) { |
| 4661 | if (ppc440spe_chan == |
| 4662 | to_ppc440spe_adma_chan(ref->chan)) { |
| 4663 | list_del(&ref->node); |
| 4664 | kfree(ref); |
| 4665 | } |
| 4666 | } |
| 4667 | list_del(&chan->device_node); |
| 4668 | kfree(ppc440spe_chan); |
| 4669 | } |
| 4670 | |
| 4671 | dma_free_coherent(adev->dev, adev->pool_size, |
| 4672 | adev->dma_desc_pool_virt, adev->dma_desc_pool); |
| 4673 | if (adev->id == PPC440SPE_XOR_ID) |
| 4674 | iounmap(adev->xor_reg); |
| 4675 | else |
| 4676 | iounmap(adev->dma_reg); |
| 4677 | of_address_to_resource(np, 0, &res); |
| 4678 | release_mem_region(res.start, resource_size(&res)); |
| 4679 | kfree(adev); |
| 4680 | return 0; |
| 4681 | } |
| 4682 | |
| 4683 | /* |
| 4684 | * /sys driver interface to enable h/w RAID-6 capabilities |
| 4685 | * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/ |
| 4686 | * directory are "devices", "enable" and "poly". |
| 4687 | * "devices" shows available engines. |
| 4688 | * "enable" is used to enable RAID-6 capabilities or to check |
| 4689 | * whether these has been activated. |
| 4690 | * "poly" allows setting/checking used polynomial (for PPC440SPe only). |
| 4691 | */ |
| 4692 | |
| 4693 | static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf) |
| 4694 | { |
| 4695 | ssize_t size = 0; |
| 4696 | int i; |
| 4697 | |
| 4698 | for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) { |
| 4699 | if (ppc440spe_adma_devices[i] == -1) |
| 4700 | continue; |
| 4701 | size += snprintf(buf + size, PAGE_SIZE - size, |
| 4702 | "PPC440SP(E)-ADMA.%d: %s\n", i, |
| 4703 | ppc_adma_errors[ppc440spe_adma_devices[i]]); |
| 4704 | } |
| 4705 | return size; |
| 4706 | } |
| 4707 | |
| 4708 | static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf) |
| 4709 | { |
| 4710 | return snprintf(buf, PAGE_SIZE, |
| 4711 | "PPC440SP(e) RAID-6 capabilities are %sABLED.\n", |
| 4712 | ppc440spe_r6_enabled ? "EN" : "DIS"); |
| 4713 | } |
| 4714 | |
| 4715 | static ssize_t store_ppc440spe_r6enable(struct device_driver *dev, |
| 4716 | const char *buf, size_t count) |
| 4717 | { |
| 4718 | unsigned long val; |
| 4719 | |
| 4720 | if (!count || count > 11) |
| 4721 | return -EINVAL; |
| 4722 | |
| 4723 | if (!ppc440spe_r6_tchan) |
| 4724 | return -EFAULT; |
| 4725 | |
| 4726 | /* Write a key */ |
| 4727 | sscanf(buf, "%lx", &val); |
| 4728 | dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val); |
| 4729 | isync(); |
| 4730 | |
| 4731 | /* Verify whether it really works now */ |
| 4732 | if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) { |
| 4733 | pr_info("PPC440SP(e) RAID-6 has been activated " |
| 4734 | "successfully\n"); |
| 4735 | ppc440spe_r6_enabled = 1; |
| 4736 | } else { |
| 4737 | pr_info("PPC440SP(e) RAID-6 hasn't been activated!" |
| 4738 | " Error key ?\n"); |
| 4739 | ppc440spe_r6_enabled = 0; |
| 4740 | } |
| 4741 | return count; |
| 4742 | } |
| 4743 | |
| 4744 | static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf) |
| 4745 | { |
| 4746 | ssize_t size = 0; |
| 4747 | u32 reg; |
| 4748 | |
| 4749 | #ifdef CONFIG_440SP |
| 4750 | /* 440SP has fixed polynomial */ |
| 4751 | reg = 0x4d; |
| 4752 | #else |
| 4753 | reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL); |
| 4754 | reg >>= MQ0_CFBHL_POLY; |
| 4755 | reg &= 0xFF; |
| 4756 | #endif |
| 4757 | |
| 4758 | size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver " |
| 4759 | "uses 0x1%02x polynomial.\n", reg); |
| 4760 | return size; |
| 4761 | } |
| 4762 | |
| 4763 | static ssize_t store_ppc440spe_r6poly(struct device_driver *dev, |
| 4764 | const char *buf, size_t count) |
| 4765 | { |
| 4766 | unsigned long reg, val; |
| 4767 | |
| 4768 | #ifdef CONFIG_440SP |
| 4769 | /* 440SP uses default 0x14D polynomial only */ |
| 4770 | return -EINVAL; |
| 4771 | #endif |
| 4772 | |
| 4773 | if (!count || count > 6) |
| 4774 | return -EINVAL; |
| 4775 | |
| 4776 | /* e.g., 0x14D or 0x11D */ |
| 4777 | sscanf(buf, "%lx", &val); |
| 4778 | |
| 4779 | if (val & ~0x1FF) |
| 4780 | return -EINVAL; |
| 4781 | |
| 4782 | val &= 0xFF; |
| 4783 | reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL); |
| 4784 | reg &= ~(0xFF << MQ0_CFBHL_POLY); |
| 4785 | reg |= val << MQ0_CFBHL_POLY; |
| 4786 | dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg); |
| 4787 | |
| 4788 | return count; |
| 4789 | } |
| 4790 | |
| 4791 | static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL); |
| 4792 | static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable, |
| 4793 | store_ppc440spe_r6enable); |
| 4794 | static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly, |
| 4795 | store_ppc440spe_r6poly); |
| 4796 | |
| 4797 | /* |
| 4798 | * Common initialisation for RAID engines; allocate memory for |
| 4799 | * DMAx FIFOs, perform configuration common for all DMA engines. |
| 4800 | * Further DMA engine specific configuration is done at probe time. |
| 4801 | */ |
| 4802 | static int ppc440spe_configure_raid_devices(void) |
| 4803 | { |
| 4804 | struct device_node *np; |
| 4805 | struct resource i2o_res; |
| 4806 | struct i2o_regs __iomem *i2o_reg; |
| 4807 | dcr_host_t i2o_dcr_host; |
| 4808 | unsigned int dcr_base, dcr_len; |
| 4809 | int i, ret; |
| 4810 | |
| 4811 | np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe"); |
| 4812 | if (!np) { |
| 4813 | pr_err("%s: can't find I2O device tree node\n", |
| 4814 | __func__); |
| 4815 | return -ENODEV; |
| 4816 | } |
| 4817 | |
| 4818 | if (of_address_to_resource(np, 0, &i2o_res)) { |
| 4819 | of_node_put(np); |
| 4820 | return -EINVAL; |
| 4821 | } |
| 4822 | |
| 4823 | i2o_reg = of_iomap(np, 0); |
| 4824 | if (!i2o_reg) { |
| 4825 | pr_err("%s: failed to map I2O registers\n", __func__); |
| 4826 | of_node_put(np); |
| 4827 | return -EINVAL; |
| 4828 | } |
| 4829 | |
| 4830 | /* Get I2O DCRs base */ |
| 4831 | dcr_base = dcr_resource_start(np, 0); |
| 4832 | dcr_len = dcr_resource_len(np, 0); |
| 4833 | if (!dcr_base && !dcr_len) { |
| 4834 | pr_err("%s: can't get DCR registers base/len!\n", |
| 4835 | np->full_name); |
| 4836 | of_node_put(np); |
| 4837 | iounmap(i2o_reg); |
| 4838 | return -ENODEV; |
| 4839 | } |
| 4840 | |
| 4841 | i2o_dcr_host = dcr_map(np, dcr_base, dcr_len); |
| 4842 | if (!DCR_MAP_OK(i2o_dcr_host)) { |
| 4843 | pr_err("%s: failed to map DCRs!\n", np->full_name); |
| 4844 | of_node_put(np); |
| 4845 | iounmap(i2o_reg); |
| 4846 | return -ENODEV; |
| 4847 | } |
| 4848 | of_node_put(np); |
| 4849 | |
| 4850 | /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share |
| 4851 | * the base address of FIFO memory space. |
| 4852 | * Actually we need twice more physical memory than programmed in the |
| 4853 | * <fsiz> register (because there are two FIFOs for each DMA: CP and CS) |
| 4854 | */ |
| 4855 | ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1, |
| 4856 | GFP_KERNEL); |
| 4857 | if (!ppc440spe_dma_fifo_buf) { |
| 4858 | pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__); |
| 4859 | iounmap(i2o_reg); |
| 4860 | dcr_unmap(i2o_dcr_host, dcr_len); |
| 4861 | return -ENOMEM; |
| 4862 | } |
| 4863 | |
| 4864 | /* |
| 4865 | * Configure h/w |
| 4866 | */ |
| 4867 | /* Reset I2O/DMA */ |
| 4868 | mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA); |
| 4869 | mtdcri(SDR0, DCRN_SDR0_SRST, 0); |
| 4870 | |
| 4871 | /* Setup the base address of mmaped registers */ |
| 4872 | dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32)); |
| 4873 | dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) | |
| 4874 | I2O_REG_ENABLE); |
| 4875 | dcr_unmap(i2o_dcr_host, dcr_len); |
| 4876 | |
| 4877 | /* Setup FIFO memory space base address */ |
| 4878 | iowrite32(0, &i2o_reg->ifbah); |
| 4879 | iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal); |
| 4880 | |
| 4881 | /* set zero FIFO size for I2O, so the whole |
| 4882 | * ppc440spe_dma_fifo_buf is used by DMAs. |
| 4883 | * DMAx_FIFOs will be configured while probe. |
| 4884 | */ |
| 4885 | iowrite32(0, &i2o_reg->ifsiz); |
| 4886 | iounmap(i2o_reg); |
| 4887 | |
| 4888 | /* To prepare WXOR/RXOR functionality we need access to |
| 4889 | * Memory Queue Module DCRs (finally it will be enabled |
| 4890 | * via /sys interface of the ppc440spe ADMA driver). |
| 4891 | */ |
| 4892 | np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe"); |
| 4893 | if (!np) { |
| 4894 | pr_err("%s: can't find MQ device tree node\n", |
| 4895 | __func__); |
| 4896 | ret = -ENODEV; |
| 4897 | goto out_free; |
| 4898 | } |
| 4899 | |
| 4900 | /* Get MQ DCRs base */ |
| 4901 | dcr_base = dcr_resource_start(np, 0); |
| 4902 | dcr_len = dcr_resource_len(np, 0); |
| 4903 | if (!dcr_base && !dcr_len) { |
| 4904 | pr_err("%s: can't get DCR registers base/len!\n", |
| 4905 | np->full_name); |
| 4906 | ret = -ENODEV; |
| 4907 | goto out_mq; |
| 4908 | } |
| 4909 | |
| 4910 | ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len); |
| 4911 | if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) { |
| 4912 | pr_err("%s: failed to map DCRs!\n", np->full_name); |
| 4913 | ret = -ENODEV; |
| 4914 | goto out_mq; |
| 4915 | } |
| 4916 | of_node_put(np); |
| 4917 | ppc440spe_mq_dcr_len = dcr_len; |
| 4918 | |
| 4919 | /* Set HB alias */ |
| 4920 | dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB); |
| 4921 | |
| 4922 | /* Set: |
| 4923 | * - LL transaction passing limit to 1; |
| 4924 | * - Memory controller cycle limit to 1; |
| 4925 | * - Galois Polynomial to 0x14d (default) |
| 4926 | */ |
| 4927 | dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, |
| 4928 | (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) | |
| 4929 | (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY)); |
| 4930 | |
| 4931 | atomic_set(&ppc440spe_adma_err_irq_ref, 0); |
| 4932 | for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) |
| 4933 | ppc440spe_adma_devices[i] = -1; |
| 4934 | |
| 4935 | return 0; |
| 4936 | |
| 4937 | out_mq: |
| 4938 | of_node_put(np); |
| 4939 | out_free: |
| 4940 | kfree(ppc440spe_dma_fifo_buf); |
| 4941 | return ret; |
| 4942 | } |
| 4943 | |
Márton Németh | 4b1cf1f | 2010-02-02 23:41:06 -0700 | [diff] [blame] | 4944 | static const struct of_device_id ppc440spe_adma_of_match[] __devinitconst = { |
Anatolij Gustschin | 12458ea | 2009-12-11 21:24:44 -0700 | [diff] [blame] | 4945 | { .compatible = "ibm,dma-440spe", }, |
| 4946 | { .compatible = "amcc,xor-accelerator", }, |
| 4947 | {}, |
| 4948 | }; |
| 4949 | MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match); |
| 4950 | |
| 4951 | static struct of_platform_driver ppc440spe_adma_driver = { |
| 4952 | .match_table = ppc440spe_adma_of_match, |
| 4953 | .probe = ppc440spe_adma_probe, |
| 4954 | .remove = __devexit_p(ppc440spe_adma_remove), |
| 4955 | .driver = { |
| 4956 | .name = "PPC440SP(E)-ADMA", |
| 4957 | .owner = THIS_MODULE, |
| 4958 | }, |
| 4959 | }; |
| 4960 | |
| 4961 | static __init int ppc440spe_adma_init(void) |
| 4962 | { |
| 4963 | int ret; |
| 4964 | |
| 4965 | ret = ppc440spe_configure_raid_devices(); |
| 4966 | if (ret) |
| 4967 | return ret; |
| 4968 | |
| 4969 | ret = of_register_platform_driver(&ppc440spe_adma_driver); |
| 4970 | if (ret) { |
| 4971 | pr_err("%s: failed to register platform driver\n", |
| 4972 | __func__); |
| 4973 | goto out_reg; |
| 4974 | } |
| 4975 | |
| 4976 | /* Initialization status */ |
| 4977 | ret = driver_create_file(&ppc440spe_adma_driver.driver, |
| 4978 | &driver_attr_devices); |
| 4979 | if (ret) |
| 4980 | goto out_dev; |
| 4981 | |
| 4982 | /* RAID-6 h/w enable entry */ |
| 4983 | ret = driver_create_file(&ppc440spe_adma_driver.driver, |
| 4984 | &driver_attr_enable); |
| 4985 | if (ret) |
| 4986 | goto out_en; |
| 4987 | |
| 4988 | /* GF polynomial to use */ |
| 4989 | ret = driver_create_file(&ppc440spe_adma_driver.driver, |
| 4990 | &driver_attr_poly); |
| 4991 | if (!ret) |
| 4992 | return ret; |
| 4993 | |
| 4994 | driver_remove_file(&ppc440spe_adma_driver.driver, |
| 4995 | &driver_attr_enable); |
| 4996 | out_en: |
| 4997 | driver_remove_file(&ppc440spe_adma_driver.driver, |
| 4998 | &driver_attr_devices); |
| 4999 | out_dev: |
| 5000 | /* User will not be able to enable h/w RAID-6 */ |
| 5001 | pr_err("%s: failed to create RAID-6 driver interface\n", |
| 5002 | __func__); |
| 5003 | of_unregister_platform_driver(&ppc440spe_adma_driver); |
| 5004 | out_reg: |
| 5005 | dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len); |
| 5006 | kfree(ppc440spe_dma_fifo_buf); |
| 5007 | return ret; |
| 5008 | } |
| 5009 | |
| 5010 | static void __exit ppc440spe_adma_exit(void) |
| 5011 | { |
| 5012 | driver_remove_file(&ppc440spe_adma_driver.driver, |
| 5013 | &driver_attr_poly); |
| 5014 | driver_remove_file(&ppc440spe_adma_driver.driver, |
| 5015 | &driver_attr_enable); |
| 5016 | driver_remove_file(&ppc440spe_adma_driver.driver, |
| 5017 | &driver_attr_devices); |
| 5018 | of_unregister_platform_driver(&ppc440spe_adma_driver); |
| 5019 | dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len); |
| 5020 | kfree(ppc440spe_dma_fifo_buf); |
| 5021 | } |
| 5022 | |
| 5023 | arch_initcall(ppc440spe_adma_init); |
| 5024 | module_exit(ppc440spe_adma_exit); |
| 5025 | |
| 5026 | MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>"); |
| 5027 | MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver"); |
| 5028 | MODULE_LICENSE("GPL"); |