blob: ab74d4583c418425eae156479b7ff35f7237e7c0 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
4 *
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
7 *
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
9 * written by Manish Lachwani (lachwani@pmc-sierra.com)
10 *
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
12 *
13 * Copyright (C) 2004-2005 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
15 *
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
32 */
33#include <linux/init.h>
34#include <linux/dma-mapping.h>
35#include <linux/tcp.h>
36#include <linux/udp.h>
37#include <linux/etherdevice.h>
38
39#include <linux/bitops.h>
40#include <linux/delay.h>
41#include <linux/ethtool.h>
42#include <asm/io.h>
43#include <asm/types.h>
44#include <asm/pgtable.h>
45#include <asm/system.h>
46#include <asm/delay.h>
47#include "mv643xx_eth.h"
48
49/*
50 * The first part is the high level driver of the gigE ethernet ports.
51 */
52
53/* Constants */
54#define VLAN_HLEN 4
55#define FCS_LEN 4
56#define WRAP NET_IP_ALIGN + ETH_HLEN + VLAN_HLEN + FCS_LEN
57#define RX_SKB_SIZE ((dev->mtu + WRAP + 7) & ~0x7)
58
59#define INT_CAUSE_UNMASK_ALL 0x0007ffff
60#define INT_CAUSE_UNMASK_ALL_EXT 0x0011ffff
61#ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
62#define INT_CAUSE_MASK_ALL 0x00000000
63#define INT_CAUSE_CHECK_BITS INT_CAUSE_UNMASK_ALL
64#define INT_CAUSE_CHECK_BITS_EXT INT_CAUSE_UNMASK_ALL_EXT
65#endif
66
67#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
68#define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1)
69#else
70#define MAX_DESCS_PER_SKB 1
71#endif
72
73#define PHY_WAIT_ITERATIONS 1000 /* 1000 iterations * 10uS = 10mS max */
74#define PHY_WAIT_MICRO_SECONDS 10
75
76/* Static function declarations */
77static int eth_port_link_is_up(unsigned int eth_port_num);
78static void eth_port_uc_addr_get(struct net_device *dev,
79 unsigned char *MacAddr);
80static int mv643xx_eth_real_open(struct net_device *);
81static int mv643xx_eth_real_stop(struct net_device *);
82static int mv643xx_eth_change_mtu(struct net_device *, int);
83static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
84static void eth_port_init_mac_tables(unsigned int eth_port_num);
85#ifdef MV643XX_NAPI
86static int mv643xx_poll(struct net_device *dev, int *budget);
87#endif
88static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
89static int ethernet_phy_detect(unsigned int eth_port_num);
90static struct ethtool_ops mv643xx_ethtool_ops;
91
92static char mv643xx_driver_name[] = "mv643xx_eth";
93static char mv643xx_driver_version[] = "1.0";
94
95static void __iomem *mv643xx_eth_shared_base;
96
97/* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
98static spinlock_t mv643xx_eth_phy_lock = SPIN_LOCK_UNLOCKED;
99
100static inline u32 mv_read(int offset)
101{
Al Virodc074a82005-04-25 07:55:58 -0700102 void __iomem *reg_base;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700103
104 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
105
106 return readl(reg_base + offset);
107}
108
109static inline void mv_write(int offset, u32 data)
110{
Al Virodc074a82005-04-25 07:55:58 -0700111 void __iomem *reg_base;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700112
113 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
114 writel(data, reg_base + offset);
115}
116
117/*
118 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
119 *
120 * Input : pointer to ethernet interface network device structure
121 * new mtu size
122 * Output : 0 upon success, -EINVAL upon failure
123 */
124static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
125{
126 struct mv643xx_private *mp = netdev_priv(dev);
127 unsigned long flags;
128
129 spin_lock_irqsave(&mp->lock, flags);
130
131 if ((new_mtu > 9500) || (new_mtu < 64)) {
132 spin_unlock_irqrestore(&mp->lock, flags);
133 return -EINVAL;
134 }
135
136 dev->mtu = new_mtu;
137 /*
138 * Stop then re-open the interface. This will allocate RX skb's with
139 * the new MTU.
140 * There is a possible danger that the open will not successed, due
141 * to memory is full, which might fail the open function.
142 */
143 if (netif_running(dev)) {
144 if (mv643xx_eth_real_stop(dev))
145 printk(KERN_ERR
146 "%s: Fatal error on stopping device\n",
147 dev->name);
148 if (mv643xx_eth_real_open(dev))
149 printk(KERN_ERR
150 "%s: Fatal error on opening device\n",
151 dev->name);
152 }
153
154 spin_unlock_irqrestore(&mp->lock, flags);
155 return 0;
156}
157
158/*
159 * mv643xx_eth_rx_task
160 *
161 * Fills / refills RX queue on a certain gigabit ethernet port
162 *
163 * Input : pointer to ethernet interface network device structure
164 * Output : N/A
165 */
166static void mv643xx_eth_rx_task(void *data)
167{
168 struct net_device *dev = (struct net_device *)data;
169 struct mv643xx_private *mp = netdev_priv(dev);
170 struct pkt_info pkt_info;
171 struct sk_buff *skb;
172
173 if (test_and_set_bit(0, &mp->rx_task_busy))
174 panic("%s: Error in test_set_bit / clear_bit", dev->name);
175
176 while (mp->rx_ring_skbs < (mp->rx_ring_size - 5)) {
177 skb = dev_alloc_skb(RX_SKB_SIZE);
178 if (!skb)
179 break;
180 mp->rx_ring_skbs++;
181 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
182 pkt_info.byte_cnt = RX_SKB_SIZE;
183 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, RX_SKB_SIZE,
184 DMA_FROM_DEVICE);
185 pkt_info.return_info = skb;
186 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
187 printk(KERN_ERR
188 "%s: Error allocating RX Ring\n", dev->name);
189 break;
190 }
191 skb_reserve(skb, 2);
192 }
193 clear_bit(0, &mp->rx_task_busy);
194 /*
195 * If RX ring is empty of SKB, set a timer to try allocating
196 * again in a later time .
197 */
198 if ((mp->rx_ring_skbs == 0) && (mp->rx_timer_flag == 0)) {
199 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
200 /* After 100mSec */
201 mp->timeout.expires = jiffies + (HZ / 10);
202 add_timer(&mp->timeout);
203 mp->rx_timer_flag = 1;
204 }
205#ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
206 else {
207 /* Return interrupts */
208 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(mp->port_num),
209 INT_CAUSE_UNMASK_ALL);
210 }
211#endif
212}
213
214/*
215 * mv643xx_eth_rx_task_timer_wrapper
216 *
217 * Timer routine to wake up RX queue filling task. This function is
218 * used only in case the RX queue is empty, and all alloc_skb has
219 * failed (due to out of memory event).
220 *
221 * Input : pointer to ethernet interface network device structure
222 * Output : N/A
223 */
224static void mv643xx_eth_rx_task_timer_wrapper(unsigned long data)
225{
226 struct net_device *dev = (struct net_device *)data;
227 struct mv643xx_private *mp = netdev_priv(dev);
228
229 mp->rx_timer_flag = 0;
230 mv643xx_eth_rx_task((void *)data);
231}
232
233/*
234 * mv643xx_eth_update_mac_address
235 *
236 * Update the MAC address of the port in the address table
237 *
238 * Input : pointer to ethernet interface network device structure
239 * Output : N/A
240 */
241static void mv643xx_eth_update_mac_address(struct net_device *dev)
242{
243 struct mv643xx_private *mp = netdev_priv(dev);
244 unsigned int port_num = mp->port_num;
245
246 eth_port_init_mac_tables(port_num);
247 memcpy(mp->port_mac_addr, dev->dev_addr, 6);
248 eth_port_uc_addr_set(port_num, mp->port_mac_addr);
249}
250
251/*
252 * mv643xx_eth_set_rx_mode
253 *
254 * Change from promiscuos to regular rx mode
255 *
256 * Input : pointer to ethernet interface network device structure
257 * Output : N/A
258 */
259static void mv643xx_eth_set_rx_mode(struct net_device *dev)
260{
261 struct mv643xx_private *mp = netdev_priv(dev);
262 u32 config_reg;
263
264 config_reg = ethernet_get_config_reg(mp->port_num);
265 if (dev->flags & IFF_PROMISC)
266 config_reg |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
267 else
268 config_reg &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
269 ethernet_set_config_reg(mp->port_num, config_reg);
270}
271
272/*
273 * mv643xx_eth_set_mac_address
274 *
275 * Change the interface's mac address.
276 * No special hardware thing should be done because interface is always
277 * put in promiscuous mode.
278 *
279 * Input : pointer to ethernet interface network device structure and
280 * a pointer to the designated entry to be added to the cache.
281 * Output : zero upon success, negative upon failure
282 */
283static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
284{
285 int i;
286
287 for (i = 0; i < 6; i++)
288 /* +2 is for the offset of the HW addr type */
289 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
290 mv643xx_eth_update_mac_address(dev);
291 return 0;
292}
293
294/*
295 * mv643xx_eth_tx_timeout
296 *
297 * Called upon a timeout on transmitting a packet
298 *
299 * Input : pointer to ethernet interface network device structure.
300 * Output : N/A
301 */
302static void mv643xx_eth_tx_timeout(struct net_device *dev)
303{
304 struct mv643xx_private *mp = netdev_priv(dev);
305
306 printk(KERN_INFO "%s: TX timeout ", dev->name);
307
308 /* Do the reset outside of interrupt context */
309 schedule_work(&mp->tx_timeout_task);
310}
311
312/*
313 * mv643xx_eth_tx_timeout_task
314 *
315 * Actual routine to reset the adapter when a timeout on Tx has occurred
316 */
317static void mv643xx_eth_tx_timeout_task(struct net_device *dev)
318{
319 struct mv643xx_private *mp = netdev_priv(dev);
320
321 netif_device_detach(dev);
322 eth_port_reset(mp->port_num);
323 eth_port_start(mp);
324 netif_device_attach(dev);
325}
326
327/*
328 * mv643xx_eth_free_tx_queue
329 *
330 * Input : dev - a pointer to the required interface
331 *
332 * Output : 0 if was able to release skb , nonzero otherwise
333 */
334static int mv643xx_eth_free_tx_queue(struct net_device *dev,
335 unsigned int eth_int_cause_ext)
336{
337 struct mv643xx_private *mp = netdev_priv(dev);
338 struct net_device_stats *stats = &mp->stats;
339 struct pkt_info pkt_info;
340 int released = 1;
341
342 if (!(eth_int_cause_ext & (BIT0 | BIT8)))
343 return released;
344
345 spin_lock(&mp->lock);
346
347 /* Check only queue 0 */
348 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
349 if (pkt_info.cmd_sts & BIT0) {
350 printk("%s: Error in TX\n", dev->name);
351 stats->tx_errors++;
352 }
353
354 /*
355 * If return_info is different than 0, release the skb.
356 * The case where return_info is not 0 is only in case
357 * when transmitted a scatter/gather packet, where only
358 * last skb releases the whole chain.
359 */
360 if (pkt_info.return_info) {
361 if (skb_shinfo(pkt_info.return_info)->nr_frags)
362 dma_unmap_page(NULL, pkt_info.buf_ptr,
363 pkt_info.byte_cnt,
364 DMA_TO_DEVICE);
365 else
366 dma_unmap_single(NULL, pkt_info.buf_ptr,
367 pkt_info.byte_cnt,
368 DMA_TO_DEVICE);
369
370 dev_kfree_skb_irq(pkt_info.return_info);
371 released = 0;
372
373 /*
374 * Decrement the number of outstanding skbs counter on
375 * the TX queue.
376 */
377 if (mp->tx_ring_skbs == 0)
378 panic("ERROR - TX outstanding SKBs"
379 " counter is corrupted");
380 mp->tx_ring_skbs--;
381 } else
382 dma_unmap_page(NULL, pkt_info.buf_ptr,
383 pkt_info.byte_cnt, DMA_TO_DEVICE);
384 }
385
386 spin_unlock(&mp->lock);
387
388 return released;
389}
390
391/*
392 * mv643xx_eth_receive
393 *
394 * This function is forward packets that are received from the port's
395 * queues toward kernel core or FastRoute them to another interface.
396 *
397 * Input : dev - a pointer to the required interface
398 * max - maximum number to receive (0 means unlimted)
399 *
400 * Output : number of served packets
401 */
402#ifdef MV643XX_NAPI
403static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
404#else
405static int mv643xx_eth_receive_queue(struct net_device *dev)
406#endif
407{
408 struct mv643xx_private *mp = netdev_priv(dev);
409 struct net_device_stats *stats = &mp->stats;
410 unsigned int received_packets = 0;
411 struct sk_buff *skb;
412 struct pkt_info pkt_info;
413
414#ifdef MV643XX_NAPI
Dale Farnsworthb1dd9ca2005-09-01 09:59:23 -0700415 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700416#else
417 while (eth_port_receive(mp, &pkt_info) == ETH_OK) {
418#endif
419 mp->rx_ring_skbs--;
420 received_packets++;
Dale Farnsworthb1dd9ca2005-09-01 09:59:23 -0700421
Linus Torvalds1da177e2005-04-16 15:20:36 -0700422 /* Update statistics. Note byte count includes 4 byte CRC count */
423 stats->rx_packets++;
424 stats->rx_bytes += pkt_info.byte_cnt;
425 skb = pkt_info.return_info;
426 /*
427 * In case received a packet without first / last bits on OR
428 * the error summary bit is on, the packets needs to be dropeed.
429 */
430 if (((pkt_info.cmd_sts
431 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
432 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
433 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
434 stats->rx_dropped++;
435 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
436 ETH_RX_LAST_DESC)) !=
437 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
438 if (net_ratelimit())
439 printk(KERN_ERR
440 "%s: Received packet spread "
441 "on multiple descriptors\n",
442 dev->name);
443 }
444 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
445 stats->rx_errors++;
446
447 dev_kfree_skb_irq(skb);
448 } else {
449 /*
450 * The -4 is for the CRC in the trailer of the
451 * received packet
452 */
453 skb_put(skb, pkt_info.byte_cnt - 4);
454 skb->dev = dev;
455
456 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
457 skb->ip_summed = CHECKSUM_UNNECESSARY;
458 skb->csum = htons(
459 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
460 }
461 skb->protocol = eth_type_trans(skb, dev);
462#ifdef MV643XX_NAPI
463 netif_receive_skb(skb);
464#else
465 netif_rx(skb);
466#endif
467 }
468 }
469
470 return received_packets;
471}
472
473/*
474 * mv643xx_eth_int_handler
475 *
476 * Main interrupt handler for the gigbit ethernet ports
477 *
478 * Input : irq - irq number (not used)
479 * dev_id - a pointer to the required interface's data structure
480 * regs - not used
481 * Output : N/A
482 */
483
484static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id,
485 struct pt_regs *regs)
486{
487 struct net_device *dev = (struct net_device *)dev_id;
488 struct mv643xx_private *mp = netdev_priv(dev);
489 u32 eth_int_cause, eth_int_cause_ext = 0;
490 unsigned int port_num = mp->port_num;
491
492 /* Read interrupt cause registers */
493 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
494 INT_CAUSE_UNMASK_ALL;
495
496 if (eth_int_cause & BIT1)
497 eth_int_cause_ext = mv_read(
498 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
499 INT_CAUSE_UNMASK_ALL_EXT;
500
501#ifdef MV643XX_NAPI
502 if (!(eth_int_cause & 0x0007fffd)) {
503 /* Dont ack the Rx interrupt */
504#endif
505 /*
506 * Clear specific ethernet port intrerrupt registers by
507 * acknowleding relevant bits.
508 */
509 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num),
510 ~eth_int_cause);
511 if (eth_int_cause_ext != 0x0)
512 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG
513 (port_num), ~eth_int_cause_ext);
514
515 /* UDP change : We may need this */
516 if ((eth_int_cause_ext & 0x0000ffff) &&
517 (mv643xx_eth_free_tx_queue(dev, eth_int_cause_ext) == 0) &&
518 (mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
519 netif_wake_queue(dev);
520#ifdef MV643XX_NAPI
521 } else {
522 if (netif_rx_schedule_prep(dev)) {
523 /* Mask all the interrupts */
524 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0);
525 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG
526 (port_num), 0);
527 __netif_rx_schedule(dev);
528 }
529#else
530 if (eth_int_cause & (BIT2 | BIT11))
531 mv643xx_eth_receive_queue(dev, 0);
532
533 /*
534 * After forwarded received packets to upper layer, add a task
535 * in an interrupts enabled context that refills the RX ring
536 * with skb's.
537 */
538#ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
539 /* Unmask all interrupts on ethernet port */
540 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
541 INT_CAUSE_MASK_ALL);
542 queue_task(&mp->rx_task, &tq_immediate);
543 mark_bh(IMMEDIATE_BH);
544#else
545 mp->rx_task.func(dev);
546#endif
547#endif
548 }
549 /* PHY status changed */
550 if (eth_int_cause_ext & (BIT16 | BIT20)) {
551 if (eth_port_link_is_up(port_num)) {
552 netif_carrier_on(dev);
553 netif_wake_queue(dev);
554 /* Start TX queue */
555 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG
556 (port_num), 1);
557 } else {
558 netif_carrier_off(dev);
559 netif_stop_queue(dev);
560 }
561 }
562
563 /*
564 * If no real interrupt occured, exit.
565 * This can happen when using gigE interrupt coalescing mechanism.
566 */
567 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
568 return IRQ_NONE;
569
570 return IRQ_HANDLED;
571}
572
573#ifdef MV643XX_COAL
574
575/*
576 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
577 *
578 * DESCRIPTION:
579 * This routine sets the RX coalescing interrupt mechanism parameter.
580 * This parameter is a timeout counter, that counts in 64 t_clk
581 * chunks ; that when timeout event occurs a maskable interrupt
582 * occurs.
583 * The parameter is calculated using the tClk of the MV-643xx chip
584 * , and the required delay of the interrupt in usec.
585 *
586 * INPUT:
587 * unsigned int eth_port_num Ethernet port number
588 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
589 * unsigned int delay Delay in usec
590 *
591 * OUTPUT:
592 * Interrupt coalescing mechanism value is set in MV-643xx chip.
593 *
594 * RETURN:
595 * The interrupt coalescing value set in the gigE port.
596 *
597 */
598static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
599 unsigned int t_clk, unsigned int delay)
600{
601 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
602
603 /* Set RX Coalescing mechanism */
604 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
605 ((coal & 0x3fff) << 8) |
606 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
607 & 0xffc000ff));
608
609 return coal;
610}
611#endif
612
613/*
614 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
615 *
616 * DESCRIPTION:
617 * This routine sets the TX coalescing interrupt mechanism parameter.
618 * This parameter is a timeout counter, that counts in 64 t_clk
619 * chunks ; that when timeout event occurs a maskable interrupt
620 * occurs.
621 * The parameter is calculated using the t_cLK frequency of the
622 * MV-643xx chip and the required delay in the interrupt in uSec
623 *
624 * INPUT:
625 * unsigned int eth_port_num Ethernet port number
626 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
627 * unsigned int delay Delay in uSeconds
628 *
629 * OUTPUT:
630 * Interrupt coalescing mechanism value is set in MV-643xx chip.
631 *
632 * RETURN:
633 * The interrupt coalescing value set in the gigE port.
634 *
635 */
636static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
637 unsigned int t_clk, unsigned int delay)
638{
639 unsigned int coal;
640 coal = ((t_clk / 1000000) * delay) / 64;
641 /* Set TX Coalescing mechanism */
642 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
643 coal << 4);
644 return coal;
645}
646
647/*
648 * mv643xx_eth_open
649 *
650 * This function is called when openning the network device. The function
651 * should initialize all the hardware, initialize cyclic Rx/Tx
652 * descriptors chain and buffers and allocate an IRQ to the network
653 * device.
654 *
655 * Input : a pointer to the network device structure
656 *
657 * Output : zero of success , nonzero if fails.
658 */
659
660static int mv643xx_eth_open(struct net_device *dev)
661{
662 struct mv643xx_private *mp = netdev_priv(dev);
663 unsigned int port_num = mp->port_num;
664 int err;
665
666 spin_lock_irq(&mp->lock);
667
668 err = request_irq(dev->irq, mv643xx_eth_int_handler,
Benjamin Herrenschmidt16b81752005-04-16 15:24:30 -0700669 SA_SHIRQ | SA_SAMPLE_RANDOM, dev->name, dev);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700670
671 if (err) {
672 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
673 port_num);
674 err = -EAGAIN;
675 goto out;
676 }
677
678 if (mv643xx_eth_real_open(dev)) {
679 printk("%s: Error opening interface\n", dev->name);
680 err = -EBUSY;
681 goto out_free;
682 }
683
684 spin_unlock_irq(&mp->lock);
685
686 return 0;
687
688out_free:
689 free_irq(dev->irq, dev);
690
691out:
692 spin_unlock_irq(&mp->lock);
693
694 return err;
695}
696
697/*
698 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
699 *
700 * DESCRIPTION:
701 * This function prepares a Rx chained list of descriptors and packet
702 * buffers in a form of a ring. The routine must be called after port
703 * initialization routine and before port start routine.
704 * The Ethernet SDMA engine uses CPU bus addresses to access the various
705 * devices in the system (i.e. DRAM). This function uses the ethernet
706 * struct 'virtual to physical' routine (set by the user) to set the ring
707 * with physical addresses.
708 *
709 * INPUT:
710 * struct mv643xx_private *mp Ethernet Port Control srtuct.
711 *
712 * OUTPUT:
713 * The routine updates the Ethernet port control struct with information
714 * regarding the Rx descriptors and buffers.
715 *
716 * RETURN:
717 * None.
718 */
719static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
720{
721 volatile struct eth_rx_desc *p_rx_desc;
722 int rx_desc_num = mp->rx_ring_size;
723 int i;
724
725 /* initialize the next_desc_ptr links in the Rx descriptors ring */
726 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
727 for (i = 0; i < rx_desc_num; i++) {
728 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
729 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
730 }
731
732 /* Save Rx desc pointer to driver struct. */
733 mp->rx_curr_desc_q = 0;
734 mp->rx_used_desc_q = 0;
735
736 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
737
738 /* Add the queue to the list of RX queues of this port */
739 mp->port_rx_queue_command |= 1;
740}
741
742/*
743 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
744 *
745 * DESCRIPTION:
746 * This function prepares a Tx chained list of descriptors and packet
747 * buffers in a form of a ring. The routine must be called after port
748 * initialization routine and before port start routine.
749 * The Ethernet SDMA engine uses CPU bus addresses to access the various
750 * devices in the system (i.e. DRAM). This function uses the ethernet
751 * struct 'virtual to physical' routine (set by the user) to set the ring
752 * with physical addresses.
753 *
754 * INPUT:
755 * struct mv643xx_private *mp Ethernet Port Control srtuct.
756 *
757 * OUTPUT:
758 * The routine updates the Ethernet port control struct with information
759 * regarding the Tx descriptors and buffers.
760 *
761 * RETURN:
762 * None.
763 */
764static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
765{
766 int tx_desc_num = mp->tx_ring_size;
767 struct eth_tx_desc *p_tx_desc;
768 int i;
769
770 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
771 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
772 for (i = 0; i < tx_desc_num; i++) {
773 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
774 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
775 }
776
777 mp->tx_curr_desc_q = 0;
778 mp->tx_used_desc_q = 0;
779#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
780 mp->tx_first_desc_q = 0;
781#endif
782
783 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
784
785 /* Add the queue to the list of Tx queues of this port */
786 mp->port_tx_queue_command |= 1;
787}
788
789/* Helper function for mv643xx_eth_open */
790static int mv643xx_eth_real_open(struct net_device *dev)
791{
792 struct mv643xx_private *mp = netdev_priv(dev);
793 unsigned int port_num = mp->port_num;
794 unsigned int size;
795
796 /* Stop RX Queues */
797 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
798
799 /* Clear the ethernet port interrupts */
800 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
801 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
802
803 /* Unmask RX buffer and TX end interrupt */
804 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
805 INT_CAUSE_UNMASK_ALL);
806
807 /* Unmask phy and link status changes interrupts */
808 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
809 INT_CAUSE_UNMASK_ALL_EXT);
810
811 /* Set the MAC Address */
812 memcpy(mp->port_mac_addr, dev->dev_addr, 6);
813
814 eth_port_init(mp);
815
816 INIT_WORK(&mp->rx_task, (void (*)(void *))mv643xx_eth_rx_task, dev);
817
818 memset(&mp->timeout, 0, sizeof(struct timer_list));
819 mp->timeout.function = mv643xx_eth_rx_task_timer_wrapper;
820 mp->timeout.data = (unsigned long)dev;
821
822 mp->rx_task_busy = 0;
823 mp->rx_timer_flag = 0;
824
825 /* Allocate RX and TX skb rings */
826 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
827 GFP_KERNEL);
828 if (!mp->rx_skb) {
829 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
830 return -ENOMEM;
831 }
832 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
833 GFP_KERNEL);
834 if (!mp->tx_skb) {
835 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
836 kfree(mp->rx_skb);
837 return -ENOMEM;
838 }
839
840 /* Allocate TX ring */
841 mp->tx_ring_skbs = 0;
842 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
843 mp->tx_desc_area_size = size;
844
845 if (mp->tx_sram_size) {
846 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
847 mp->tx_sram_size);
848 mp->tx_desc_dma = mp->tx_sram_addr;
849 } else
850 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
851 &mp->tx_desc_dma,
852 GFP_KERNEL);
853
854 if (!mp->p_tx_desc_area) {
855 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
856 dev->name, size);
857 kfree(mp->rx_skb);
858 kfree(mp->tx_skb);
859 return -ENOMEM;
860 }
861 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
862 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
863
864 ether_init_tx_desc_ring(mp);
865
866 /* Allocate RX ring */
867 mp->rx_ring_skbs = 0;
868 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
869 mp->rx_desc_area_size = size;
870
871 if (mp->rx_sram_size) {
872 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
873 mp->rx_sram_size);
874 mp->rx_desc_dma = mp->rx_sram_addr;
875 } else
876 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
877 &mp->rx_desc_dma,
878 GFP_KERNEL);
879
880 if (!mp->p_rx_desc_area) {
881 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
882 dev->name, size);
883 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
884 dev->name);
885 if (mp->rx_sram_size)
886 iounmap(mp->p_rx_desc_area);
887 else
888 dma_free_coherent(NULL, mp->tx_desc_area_size,
889 mp->p_tx_desc_area, mp->tx_desc_dma);
890 kfree(mp->rx_skb);
891 kfree(mp->tx_skb);
892 return -ENOMEM;
893 }
894 memset((void *)mp->p_rx_desc_area, 0, size);
895
896 ether_init_rx_desc_ring(mp);
897
898 mv643xx_eth_rx_task(dev); /* Fill RX ring with skb's */
899
900 eth_port_start(mp);
901
902 /* Interrupt Coalescing */
903
904#ifdef MV643XX_COAL
905 mp->rx_int_coal =
906 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
907#endif
908
909 mp->tx_int_coal =
910 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
911
912 netif_start_queue(dev);
913
914 return 0;
915}
916
917static void mv643xx_eth_free_tx_rings(struct net_device *dev)
918{
919 struct mv643xx_private *mp = netdev_priv(dev);
920 unsigned int port_num = mp->port_num;
921 unsigned int curr;
922
923 /* Stop Tx Queues */
924 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
925
926 /* Free outstanding skb's on TX rings */
927 for (curr = 0; mp->tx_ring_skbs && curr < mp->tx_ring_size; curr++) {
928 if (mp->tx_skb[curr]) {
929 dev_kfree_skb(mp->tx_skb[curr]);
930 mp->tx_ring_skbs--;
931 }
932 }
933 if (mp->tx_ring_skbs)
934 printk("%s: Error on Tx descriptor free - could not free %d"
935 " descriptors\n", dev->name, mp->tx_ring_skbs);
936
937 /* Free TX ring */
938 if (mp->tx_sram_size)
939 iounmap(mp->p_tx_desc_area);
940 else
941 dma_free_coherent(NULL, mp->tx_desc_area_size,
942 mp->p_tx_desc_area, mp->tx_desc_dma);
943}
944
945static void mv643xx_eth_free_rx_rings(struct net_device *dev)
946{
947 struct mv643xx_private *mp = netdev_priv(dev);
948 unsigned int port_num = mp->port_num;
949 int curr;
950
951 /* Stop RX Queues */
952 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
953
954 /* Free preallocated skb's on RX rings */
955 for (curr = 0; mp->rx_ring_skbs && curr < mp->rx_ring_size; curr++) {
956 if (mp->rx_skb[curr]) {
957 dev_kfree_skb(mp->rx_skb[curr]);
958 mp->rx_ring_skbs--;
959 }
960 }
961
962 if (mp->rx_ring_skbs)
963 printk(KERN_ERR
964 "%s: Error in freeing Rx Ring. %d skb's still"
965 " stuck in RX Ring - ignoring them\n", dev->name,
966 mp->rx_ring_skbs);
967 /* Free RX ring */
968 if (mp->rx_sram_size)
969 iounmap(mp->p_rx_desc_area);
970 else
971 dma_free_coherent(NULL, mp->rx_desc_area_size,
972 mp->p_rx_desc_area, mp->rx_desc_dma);
973}
974
975/*
976 * mv643xx_eth_stop
977 *
978 * This function is used when closing the network device.
979 * It updates the hardware,
980 * release all memory that holds buffers and descriptors and release the IRQ.
981 * Input : a pointer to the device structure
982 * Output : zero if success , nonzero if fails
983 */
984
985/* Helper function for mv643xx_eth_stop */
986
987static int mv643xx_eth_real_stop(struct net_device *dev)
988{
989 struct mv643xx_private *mp = netdev_priv(dev);
990 unsigned int port_num = mp->port_num;
991
992 netif_carrier_off(dev);
993 netif_stop_queue(dev);
994
995 mv643xx_eth_free_tx_rings(dev);
996 mv643xx_eth_free_rx_rings(dev);
997
998 eth_port_reset(mp->port_num);
999
1000 /* Disable ethernet port interrupts */
1001 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1002 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1003
1004 /* Mask RX buffer and TX end interrupt */
1005 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0);
1006
1007 /* Mask phy and link status changes interrupts */
1008 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num), 0);
1009
1010 return 0;
1011}
1012
1013static int mv643xx_eth_stop(struct net_device *dev)
1014{
1015 struct mv643xx_private *mp = netdev_priv(dev);
1016
1017 spin_lock_irq(&mp->lock);
1018
1019 mv643xx_eth_real_stop(dev);
1020
1021 free_irq(dev->irq, dev);
1022 spin_unlock_irq(&mp->lock);
1023
1024 return 0;
1025}
1026
1027#ifdef MV643XX_NAPI
1028static void mv643xx_tx(struct net_device *dev)
1029{
1030 struct mv643xx_private *mp = netdev_priv(dev);
1031 struct pkt_info pkt_info;
1032
1033 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
1034 if (pkt_info.return_info) {
1035 if (skb_shinfo(pkt_info.return_info)->nr_frags)
1036 dma_unmap_page(NULL, pkt_info.buf_ptr,
1037 pkt_info.byte_cnt,
1038 DMA_TO_DEVICE);
1039 else
1040 dma_unmap_single(NULL, pkt_info.buf_ptr,
1041 pkt_info.byte_cnt,
1042 DMA_TO_DEVICE);
1043
1044 dev_kfree_skb_irq(pkt_info.return_info);
1045
1046 if (mp->tx_ring_skbs)
1047 mp->tx_ring_skbs--;
1048 } else
1049 dma_unmap_page(NULL, pkt_info.buf_ptr,
1050 pkt_info.byte_cnt, DMA_TO_DEVICE);
1051 }
1052
1053 if (netif_queue_stopped(dev) &&
1054 mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB)
1055 netif_wake_queue(dev);
1056}
1057
1058/*
1059 * mv643xx_poll
1060 *
1061 * This function is used in case of NAPI
1062 */
1063static int mv643xx_poll(struct net_device *dev, int *budget)
1064{
1065 struct mv643xx_private *mp = netdev_priv(dev);
1066 int done = 1, orig_budget, work_done;
1067 unsigned int port_num = mp->port_num;
1068 unsigned long flags;
1069
1070#ifdef MV643XX_TX_FAST_REFILL
1071 if (++mp->tx_clean_threshold > 5) {
1072 spin_lock_irqsave(&mp->lock, flags);
1073 mv643xx_tx(dev);
1074 mp->tx_clean_threshold = 0;
1075 spin_unlock_irqrestore(&mp->lock, flags);
1076 }
1077#endif
1078
1079 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1080 != (u32) mp->rx_used_desc_q) {
1081 orig_budget = *budget;
1082 if (orig_budget > dev->quota)
1083 orig_budget = dev->quota;
1084 work_done = mv643xx_eth_receive_queue(dev, orig_budget);
1085 mp->rx_task.func(dev);
1086 *budget -= work_done;
1087 dev->quota -= work_done;
1088 if (work_done >= orig_budget)
1089 done = 0;
1090 }
1091
1092 if (done) {
1093 spin_lock_irqsave(&mp->lock, flags);
1094 __netif_rx_complete(dev);
1095 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1096 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1097 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
1098 INT_CAUSE_UNMASK_ALL);
1099 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
1100 INT_CAUSE_UNMASK_ALL_EXT);
1101 spin_unlock_irqrestore(&mp->lock, flags);
1102 }
1103
1104 return done ? 0 : 1;
1105}
1106#endif
1107
1108/*
1109 * mv643xx_eth_start_xmit
1110 *
1111 * This function is queues a packet in the Tx descriptor for
1112 * required port.
1113 *
1114 * Input : skb - a pointer to socket buffer
1115 * dev - a pointer to the required port
1116 *
1117 * Output : zero upon success
1118 */
1119static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1120{
1121 struct mv643xx_private *mp = netdev_priv(dev);
1122 struct net_device_stats *stats = &mp->stats;
1123 ETH_FUNC_RET_STATUS status;
1124 unsigned long flags;
1125 struct pkt_info pkt_info;
1126
1127 if (netif_queue_stopped(dev)) {
1128 printk(KERN_ERR
1129 "%s: Tried sending packet when interface is stopped\n",
1130 dev->name);
1131 return 1;
1132 }
1133
1134 /* This is a hard error, log it. */
1135 if ((mp->tx_ring_size - mp->tx_ring_skbs) <=
1136 (skb_shinfo(skb)->nr_frags + 1)) {
1137 netif_stop_queue(dev);
1138 printk(KERN_ERR
1139 "%s: Bug in mv643xx_eth - Trying to transmit when"
1140 " queue full !\n", dev->name);
1141 return 1;
1142 }
1143
1144 /* Paranoid check - this shouldn't happen */
1145 if (skb == NULL) {
1146 stats->tx_dropped++;
1147 printk(KERN_ERR "mv64320_eth paranoid check failed\n");
1148 return 1;
1149 }
1150
1151 spin_lock_irqsave(&mp->lock, flags);
1152
1153 /* Update packet info data structure -- DMA owned, first last */
1154#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1155 if (!skb_shinfo(skb)->nr_frags) {
1156linear:
1157 if (skb->ip_summed != CHECKSUM_HW) {
Dale Farnsworth26006362005-08-22 15:53:29 -07001158 /* Errata BTS #50, IHL must be 5 if no HW checksum */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001159 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
Dale Farnsworth26006362005-08-22 15:53:29 -07001160 ETH_TX_FIRST_DESC |
1161 ETH_TX_LAST_DESC |
1162 5 << ETH_TX_IHL_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001163 pkt_info.l4i_chk = 0;
1164 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001165
1166 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
Dale Farnsworth26006362005-08-22 15:53:29 -07001167 ETH_TX_FIRST_DESC |
1168 ETH_TX_LAST_DESC |
1169 ETH_GEN_TCP_UDP_CHECKSUM |
1170 ETH_GEN_IP_V_4_CHECKSUM |
1171 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001172 /* CPU already calculated pseudo header checksum. */
1173 if (skb->nh.iph->protocol == IPPROTO_UDP) {
1174 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1175 pkt_info.l4i_chk = skb->h.uh->check;
1176 } else if (skb->nh.iph->protocol == IPPROTO_TCP)
1177 pkt_info.l4i_chk = skb->h.th->check;
1178 else {
1179 printk(KERN_ERR
1180 "%s: chksum proto != TCP or UDP\n",
1181 dev->name);
1182 spin_unlock_irqrestore(&mp->lock, flags);
1183 return 1;
1184 }
1185 }
1186 pkt_info.byte_cnt = skb->len;
1187 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1188 DMA_TO_DEVICE);
1189 pkt_info.return_info = skb;
1190 mp->tx_ring_skbs++;
1191 status = eth_port_send(mp, &pkt_info);
1192 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1193 printk(KERN_ERR "%s: Error on transmitting packet\n",
1194 dev->name);
1195 stats->tx_bytes += pkt_info.byte_cnt;
1196 } else {
1197 unsigned int frag;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001198
1199 /* Since hardware can't handle unaligned fragments smaller
1200 * than 9 bytes, if we find any, we linearize the skb
1201 * and start again. When I've seen it, it's always been
1202 * the first frag (probably near the end of the page),
1203 * but we check all frags to be safe.
1204 */
1205 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1206 skb_frag_t *fragp;
1207
1208 fragp = &skb_shinfo(skb)->frags[frag];
1209 if (fragp->size <= 8 && fragp->page_offset & 0x7) {
1210 skb_linearize(skb, GFP_ATOMIC);
1211 printk(KERN_DEBUG "%s: unaligned tiny fragment"
1212 "%d of %d, fixed\n",
1213 dev->name, frag,
1214 skb_shinfo(skb)->nr_frags);
1215 goto linear;
1216 }
1217 }
1218
1219 /* first frag which is skb header */
1220 pkt_info.byte_cnt = skb_headlen(skb);
1221 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
1222 skb_headlen(skb),
1223 DMA_TO_DEVICE);
1224 pkt_info.l4i_chk = 0;
1225 pkt_info.return_info = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001226
Dale Farnsworth26006362005-08-22 15:53:29 -07001227 if (skb->ip_summed != CHECKSUM_HW)
1228 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1229 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1230 5 << ETH_TX_IHL_SHIFT;
1231 else {
1232 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1233 ETH_GEN_TCP_UDP_CHECKSUM |
1234 ETH_GEN_IP_V_4_CHECKSUM |
1235 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001236 /* CPU already calculated pseudo header checksum. */
1237 if (skb->nh.iph->protocol == IPPROTO_UDP) {
1238 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1239 pkt_info.l4i_chk = skb->h.uh->check;
1240 } else if (skb->nh.iph->protocol == IPPROTO_TCP)
1241 pkt_info.l4i_chk = skb->h.th->check;
1242 else {
1243 printk(KERN_ERR
1244 "%s: chksum proto != TCP or UDP\n",
1245 dev->name);
1246 spin_unlock_irqrestore(&mp->lock, flags);
1247 return 1;
1248 }
1249 }
1250
1251 status = eth_port_send(mp, &pkt_info);
1252 if (status != ETH_OK) {
1253 if ((status == ETH_ERROR))
1254 printk(KERN_ERR
1255 "%s: Error on transmitting packet\n",
1256 dev->name);
1257 if (status == ETH_QUEUE_FULL)
1258 printk("Error on Queue Full \n");
1259 if (status == ETH_QUEUE_LAST_RESOURCE)
1260 printk("Tx resource error \n");
1261 }
1262 stats->tx_bytes += pkt_info.byte_cnt;
1263
1264 /* Check for the remaining frags */
1265 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1266 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1267 pkt_info.l4i_chk = 0x0000;
1268 pkt_info.cmd_sts = 0x00000000;
1269
1270 /* Last Frag enables interrupt and frees the skb */
1271 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1272 pkt_info.cmd_sts |= ETH_TX_ENABLE_INTERRUPT |
1273 ETH_TX_LAST_DESC;
1274 pkt_info.return_info = skb;
1275 mp->tx_ring_skbs++;
1276 } else {
1277 pkt_info.return_info = 0;
1278 }
1279 pkt_info.l4i_chk = 0;
1280 pkt_info.byte_cnt = this_frag->size;
1281
1282 pkt_info.buf_ptr = dma_map_page(NULL, this_frag->page,
1283 this_frag->page_offset,
1284 this_frag->size,
1285 DMA_TO_DEVICE);
1286
1287 status = eth_port_send(mp, &pkt_info);
1288
1289 if (status != ETH_OK) {
1290 if ((status == ETH_ERROR))
1291 printk(KERN_ERR "%s: Error on "
1292 "transmitting packet\n",
1293 dev->name);
1294
1295 if (status == ETH_QUEUE_LAST_RESOURCE)
1296 printk("Tx resource error \n");
1297
1298 if (status == ETH_QUEUE_FULL)
1299 printk("Queue is full \n");
1300 }
1301 stats->tx_bytes += pkt_info.byte_cnt;
1302 }
1303 }
1304#else
1305 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT | ETH_TX_FIRST_DESC |
1306 ETH_TX_LAST_DESC;
1307 pkt_info.l4i_chk = 0;
1308 pkt_info.byte_cnt = skb->len;
1309 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1310 DMA_TO_DEVICE);
1311 pkt_info.return_info = skb;
1312 mp->tx_ring_skbs++;
1313 status = eth_port_send(mp, &pkt_info);
1314 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1315 printk(KERN_ERR "%s: Error on transmitting packet\n",
1316 dev->name);
1317 stats->tx_bytes += pkt_info.byte_cnt;
1318#endif
1319
1320 /* Check if TX queue can handle another skb. If not, then
1321 * signal higher layers to stop requesting TX
1322 */
1323 if (mp->tx_ring_size <= (mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
1324 /*
1325 * Stop getting skb's from upper layers.
1326 * Getting skb's from upper layers will be enabled again after
1327 * packets are released.
1328 */
1329 netif_stop_queue(dev);
1330
1331 /* Update statistics and start of transmittion time */
1332 stats->tx_packets++;
1333 dev->trans_start = jiffies;
1334
1335 spin_unlock_irqrestore(&mp->lock, flags);
1336
1337 return 0; /* success */
1338}
1339
1340/*
1341 * mv643xx_eth_get_stats
1342 *
1343 * Returns a pointer to the interface statistics.
1344 *
1345 * Input : dev - a pointer to the required interface
1346 *
1347 * Output : a pointer to the interface's statistics
1348 */
1349
1350static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1351{
1352 struct mv643xx_private *mp = netdev_priv(dev);
1353
1354 return &mp->stats;
1355}
1356
1357/*/
1358 * mv643xx_eth_probe
1359 *
1360 * First function called after registering the network device.
1361 * It's purpose is to initialize the device as an ethernet device,
1362 * fill the ethernet device structure with pointers * to functions,
1363 * and set the MAC address of the interface
1364 *
1365 * Input : struct device *
1366 * Output : -ENOMEM if failed , 0 if success
1367 */
1368static int mv643xx_eth_probe(struct device *ddev)
1369{
1370 struct platform_device *pdev = to_platform_device(ddev);
1371 struct mv643xx_eth_platform_data *pd;
1372 int port_num = pdev->id;
1373 struct mv643xx_private *mp;
1374 struct net_device *dev;
1375 u8 *p;
1376 struct resource *res;
1377 int err;
1378
1379 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1380 if (!dev)
1381 return -ENOMEM;
1382
1383 dev_set_drvdata(ddev, dev);
1384
1385 mp = netdev_priv(dev);
1386
1387 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1388 BUG_ON(!res);
1389 dev->irq = res->start;
1390
1391 mp->port_num = port_num;
1392
1393 dev->open = mv643xx_eth_open;
1394 dev->stop = mv643xx_eth_stop;
1395 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1396 dev->get_stats = mv643xx_eth_get_stats;
1397 dev->set_mac_address = mv643xx_eth_set_mac_address;
1398 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1399
1400 /* No need to Tx Timeout */
1401 dev->tx_timeout = mv643xx_eth_tx_timeout;
1402#ifdef MV643XX_NAPI
1403 dev->poll = mv643xx_poll;
1404 dev->weight = 64;
1405#endif
1406
1407 dev->watchdog_timeo = 2 * HZ;
1408 dev->tx_queue_len = mp->tx_ring_size;
1409 dev->base_addr = 0;
1410 dev->change_mtu = mv643xx_eth_change_mtu;
1411 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1412
1413#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1414#ifdef MAX_SKB_FRAGS
1415 /*
1416 * Zero copy can only work if we use Discovery II memory. Else, we will
1417 * have to map the buffers to ISA memory which is only 16 MB
1418 */
1419 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_HW_CSUM;
1420#endif
1421#endif
1422
1423 /* Configure the timeout task */
1424 INIT_WORK(&mp->tx_timeout_task,
1425 (void (*)(void *))mv643xx_eth_tx_timeout_task, dev);
1426
1427 spin_lock_init(&mp->lock);
1428
1429 /* set default config values */
1430 eth_port_uc_addr_get(dev, dev->dev_addr);
1431 mp->port_config = MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE;
1432 mp->port_config_extend = MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE;
1433 mp->port_sdma_config = MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE;
1434 mp->port_serial_control = MV643XX_ETH_PORT_SERIAL_CONTROL_DEFAULT_VALUE;
1435 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1436 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1437
1438 pd = pdev->dev.platform_data;
1439 if (pd) {
1440 if (pd->mac_addr != NULL)
1441 memcpy(dev->dev_addr, pd->mac_addr, 6);
1442
1443 if (pd->phy_addr || pd->force_phy_addr)
1444 ethernet_phy_set(port_num, pd->phy_addr);
1445
1446 if (pd->port_config || pd->force_port_config)
1447 mp->port_config = pd->port_config;
1448
1449 if (pd->port_config_extend || pd->force_port_config_extend)
1450 mp->port_config_extend = pd->port_config_extend;
1451
1452 if (pd->port_sdma_config || pd->force_port_sdma_config)
1453 mp->port_sdma_config = pd->port_sdma_config;
1454
1455 if (pd->port_serial_control || pd->force_port_serial_control)
1456 mp->port_serial_control = pd->port_serial_control;
1457
1458 if (pd->rx_queue_size)
1459 mp->rx_ring_size = pd->rx_queue_size;
1460
1461 if (pd->tx_queue_size)
1462 mp->tx_ring_size = pd->tx_queue_size;
1463
1464 if (pd->tx_sram_size) {
1465 mp->tx_sram_size = pd->tx_sram_size;
1466 mp->tx_sram_addr = pd->tx_sram_addr;
1467 }
1468
1469 if (pd->rx_sram_size) {
1470 mp->rx_sram_size = pd->rx_sram_size;
1471 mp->rx_sram_addr = pd->rx_sram_addr;
1472 }
1473 }
1474
1475 err = ethernet_phy_detect(port_num);
1476 if (err) {
1477 pr_debug("MV643xx ethernet port %d: "
1478 "No PHY detected at addr %d\n",
1479 port_num, ethernet_phy_get(port_num));
1480 return err;
1481 }
1482
1483 err = register_netdev(dev);
1484 if (err)
1485 goto out;
1486
1487 p = dev->dev_addr;
1488 printk(KERN_NOTICE
1489 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1490 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1491
1492 if (dev->features & NETIF_F_SG)
1493 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1494
1495 if (dev->features & NETIF_F_IP_CSUM)
1496 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1497 dev->name);
1498
1499#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1500 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1501#endif
1502
1503#ifdef MV643XX_COAL
1504 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1505 dev->name);
1506#endif
1507
1508#ifdef MV643XX_NAPI
1509 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1510#endif
1511
1512 return 0;
1513
1514out:
1515 free_netdev(dev);
1516
1517 return err;
1518}
1519
1520static int mv643xx_eth_remove(struct device *ddev)
1521{
1522 struct net_device *dev = dev_get_drvdata(ddev);
1523
1524 unregister_netdev(dev);
1525 flush_scheduled_work();
1526
1527 free_netdev(dev);
1528 dev_set_drvdata(ddev, NULL);
1529 return 0;
1530}
1531
1532static int mv643xx_eth_shared_probe(struct device *ddev)
1533{
1534 struct platform_device *pdev = to_platform_device(ddev);
1535 struct resource *res;
1536
1537 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1538
1539 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1540 if (res == NULL)
1541 return -ENODEV;
1542
1543 mv643xx_eth_shared_base = ioremap(res->start,
1544 MV643XX_ETH_SHARED_REGS_SIZE);
1545 if (mv643xx_eth_shared_base == NULL)
1546 return -ENOMEM;
1547
1548 return 0;
1549
1550}
1551
1552static int mv643xx_eth_shared_remove(struct device *ddev)
1553{
1554 iounmap(mv643xx_eth_shared_base);
1555 mv643xx_eth_shared_base = NULL;
1556
1557 return 0;
1558}
1559
1560static struct device_driver mv643xx_eth_driver = {
1561 .name = MV643XX_ETH_NAME,
1562 .bus = &platform_bus_type,
1563 .probe = mv643xx_eth_probe,
1564 .remove = mv643xx_eth_remove,
1565};
1566
1567static struct device_driver mv643xx_eth_shared_driver = {
1568 .name = MV643XX_ETH_SHARED_NAME,
1569 .bus = &platform_bus_type,
1570 .probe = mv643xx_eth_shared_probe,
1571 .remove = mv643xx_eth_shared_remove,
1572};
1573
1574/*
1575 * mv643xx_init_module
1576 *
1577 * Registers the network drivers into the Linux kernel
1578 *
1579 * Input : N/A
1580 *
1581 * Output : N/A
1582 */
1583static int __init mv643xx_init_module(void)
1584{
1585 int rc;
1586
1587 rc = driver_register(&mv643xx_eth_shared_driver);
1588 if (!rc) {
1589 rc = driver_register(&mv643xx_eth_driver);
1590 if (rc)
1591 driver_unregister(&mv643xx_eth_shared_driver);
1592 }
1593 return rc;
1594}
1595
1596/*
1597 * mv643xx_cleanup_module
1598 *
1599 * Registers the network drivers into the Linux kernel
1600 *
1601 * Input : N/A
1602 *
1603 * Output : N/A
1604 */
1605static void __exit mv643xx_cleanup_module(void)
1606{
1607 driver_unregister(&mv643xx_eth_driver);
1608 driver_unregister(&mv643xx_eth_shared_driver);
1609}
1610
1611module_init(mv643xx_init_module);
1612module_exit(mv643xx_cleanup_module);
1613
1614MODULE_LICENSE("GPL");
1615MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1616 " and Dale Farnsworth");
1617MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1618
1619/*
1620 * The second part is the low level driver of the gigE ethernet ports.
1621 */
1622
1623/*
1624 * Marvell's Gigabit Ethernet controller low level driver
1625 *
1626 * DESCRIPTION:
1627 * This file introduce low level API to Marvell's Gigabit Ethernet
1628 * controller. This Gigabit Ethernet Controller driver API controls
1629 * 1) Operations (i.e. port init, start, reset etc').
1630 * 2) Data flow (i.e. port send, receive etc').
1631 * Each Gigabit Ethernet port is controlled via
1632 * struct mv643xx_private.
1633 * This struct includes user configuration information as well as
1634 * driver internal data needed for its operations.
1635 *
1636 * Supported Features:
1637 * - This low level driver is OS independent. Allocating memory for
1638 * the descriptor rings and buffers are not within the scope of
1639 * this driver.
1640 * - The user is free from Rx/Tx queue managing.
1641 * - This low level driver introduce functionality API that enable
1642 * the to operate Marvell's Gigabit Ethernet Controller in a
1643 * convenient way.
1644 * - Simple Gigabit Ethernet port operation API.
1645 * - Simple Gigabit Ethernet port data flow API.
1646 * - Data flow and operation API support per queue functionality.
1647 * - Support cached descriptors for better performance.
1648 * - Enable access to all four DRAM banks and internal SRAM memory
1649 * spaces.
1650 * - PHY access and control API.
1651 * - Port control register configuration API.
1652 * - Full control over Unicast and Multicast MAC configurations.
1653 *
1654 * Operation flow:
1655 *
1656 * Initialization phase
1657 * This phase complete the initialization of the the
1658 * mv643xx_private struct.
1659 * User information regarding port configuration has to be set
1660 * prior to calling the port initialization routine.
1661 *
1662 * In this phase any port Tx/Rx activity is halted, MIB counters
1663 * are cleared, PHY address is set according to user parameter and
1664 * access to DRAM and internal SRAM memory spaces.
1665 *
1666 * Driver ring initialization
1667 * Allocating memory for the descriptor rings and buffers is not
1668 * within the scope of this driver. Thus, the user is required to
1669 * allocate memory for the descriptors ring and buffers. Those
1670 * memory parameters are used by the Rx and Tx ring initialization
1671 * routines in order to curve the descriptor linked list in a form
1672 * of a ring.
1673 * Note: Pay special attention to alignment issues when using
1674 * cached descriptors/buffers. In this phase the driver store
1675 * information in the mv643xx_private struct regarding each queue
1676 * ring.
1677 *
1678 * Driver start
1679 * This phase prepares the Ethernet port for Rx and Tx activity.
1680 * It uses the information stored in the mv643xx_private struct to
1681 * initialize the various port registers.
1682 *
1683 * Data flow:
1684 * All packet references to/from the driver are done using
1685 * struct pkt_info.
1686 * This struct is a unified struct used with Rx and Tx operations.
1687 * This way the user is not required to be familiar with neither
1688 * Tx nor Rx descriptors structures.
1689 * The driver's descriptors rings are management by indexes.
1690 * Those indexes controls the ring resources and used to indicate
1691 * a SW resource error:
1692 * 'current'
1693 * This index points to the current available resource for use. For
1694 * example in Rx process this index will point to the descriptor
1695 * that will be passed to the user upon calling the receive
1696 * routine. In Tx process, this index will point to the descriptor
1697 * that will be assigned with the user packet info and transmitted.
1698 * 'used'
1699 * This index points to the descriptor that need to restore its
1700 * resources. For example in Rx process, using the Rx buffer return
1701 * API will attach the buffer returned in packet info to the
1702 * descriptor pointed by 'used'. In Tx process, using the Tx
1703 * descriptor return will merely return the user packet info with
1704 * the command status of the transmitted buffer pointed by the
1705 * 'used' index. Nevertheless, it is essential to use this routine
1706 * to update the 'used' index.
1707 * 'first'
1708 * This index supports Tx Scatter-Gather. It points to the first
1709 * descriptor of a packet assembled of multiple buffers. For
1710 * example when in middle of Such packet we have a Tx resource
1711 * error the 'curr' index get the value of 'first' to indicate
1712 * that the ring returned to its state before trying to transmit
1713 * this packet.
1714 *
1715 * Receive operation:
1716 * The eth_port_receive API set the packet information struct,
1717 * passed by the caller, with received information from the
1718 * 'current' SDMA descriptor.
1719 * It is the user responsibility to return this resource back
1720 * to the Rx descriptor ring to enable the reuse of this source.
1721 * Return Rx resource is done using the eth_rx_return_buff API.
1722 *
1723 * Transmit operation:
1724 * The eth_port_send API supports Scatter-Gather which enables to
1725 * send a packet spanned over multiple buffers. This means that
1726 * for each packet info structure given by the user and put into
1727 * the Tx descriptors ring, will be transmitted only if the 'LAST'
1728 * bit will be set in the packet info command status field. This
1729 * API also consider restriction regarding buffer alignments and
1730 * sizes.
1731 * The user must return a Tx resource after ensuring the buffer
1732 * has been transmitted to enable the Tx ring indexes to update.
1733 *
1734 * BOARD LAYOUT
1735 * This device is on-board. No jumper diagram is necessary.
1736 *
1737 * EXTERNAL INTERFACE
1738 *
1739 * Prior to calling the initialization routine eth_port_init() the user
1740 * must set the following fields under mv643xx_private struct:
1741 * port_num User Ethernet port number.
1742 * port_mac_addr[6] User defined port MAC address.
1743 * port_config User port configuration value.
1744 * port_config_extend User port config extend value.
1745 * port_sdma_config User port SDMA config value.
1746 * port_serial_control User port serial control value.
1747 *
1748 * This driver data flow is done using the struct pkt_info which
1749 * is a unified struct for Rx and Tx operations:
1750 *
1751 * byte_cnt Tx/Rx descriptor buffer byte count.
1752 * l4i_chk CPU provided TCP Checksum. For Tx operation
1753 * only.
1754 * cmd_sts Tx/Rx descriptor command status.
1755 * buf_ptr Tx/Rx descriptor buffer pointer.
1756 * return_info Tx/Rx user resource return information.
1757 */
1758
1759/* defines */
1760/* SDMA command macros */
1761#define ETH_ENABLE_TX_QUEUE(eth_port) \
1762 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(eth_port), 1)
1763
1764/* locals */
1765
1766/* PHY routines */
1767static int ethernet_phy_get(unsigned int eth_port_num);
1768static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1769
1770/* Ethernet Port routines */
1771static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
1772 int option);
1773
1774/*
1775 * eth_port_init - Initialize the Ethernet port driver
1776 *
1777 * DESCRIPTION:
1778 * This function prepares the ethernet port to start its activity:
1779 * 1) Completes the ethernet port driver struct initialization toward port
1780 * start routine.
1781 * 2) Resets the device to a quiescent state in case of warm reboot.
1782 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1783 * 4) Clean MAC tables. The reset status of those tables is unknown.
1784 * 5) Set PHY address.
1785 * Note: Call this routine prior to eth_port_start routine and after
1786 * setting user values in the user fields of Ethernet port control
1787 * struct.
1788 *
1789 * INPUT:
1790 * struct mv643xx_private *mp Ethernet port control struct
1791 *
1792 * OUTPUT:
1793 * See description.
1794 *
1795 * RETURN:
1796 * None.
1797 */
1798static void eth_port_init(struct mv643xx_private *mp)
1799{
1800 mp->port_rx_queue_command = 0;
1801 mp->port_tx_queue_command = 0;
1802
1803 mp->rx_resource_err = 0;
1804 mp->tx_resource_err = 0;
1805
1806 eth_port_reset(mp->port_num);
1807
1808 eth_port_init_mac_tables(mp->port_num);
1809
1810 ethernet_phy_reset(mp->port_num);
1811}
1812
1813/*
1814 * eth_port_start - Start the Ethernet port activity.
1815 *
1816 * DESCRIPTION:
1817 * This routine prepares the Ethernet port for Rx and Tx activity:
1818 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1819 * has been initialized a descriptor's ring (using
1820 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1821 * 2. Initialize and enable the Ethernet configuration port by writing to
1822 * the port's configuration and command registers.
1823 * 3. Initialize and enable the SDMA by writing to the SDMA's
1824 * configuration and command registers. After completing these steps,
1825 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1826 *
1827 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1828 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1829 * and ether_init_rx_desc_ring for Rx queues).
1830 *
1831 * INPUT:
1832 * struct mv643xx_private *mp Ethernet port control struct
1833 *
1834 * OUTPUT:
1835 * Ethernet port is ready to receive and transmit.
1836 *
1837 * RETURN:
1838 * None.
1839 */
1840static void eth_port_start(struct mv643xx_private *mp)
1841{
1842 unsigned int port_num = mp->port_num;
1843 int tx_curr_desc, rx_curr_desc;
1844
1845 /* Assignment of Tx CTRP of given queue */
1846 tx_curr_desc = mp->tx_curr_desc_q;
1847 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1848 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1849
1850 /* Assignment of Rx CRDP of given queue */
1851 rx_curr_desc = mp->rx_curr_desc_q;
1852 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1853 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1854
1855 /* Add the assigned Ethernet address to the port's address table */
1856 eth_port_uc_addr_set(port_num, mp->port_mac_addr);
1857
1858 /* Assign port configuration and command. */
1859 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num), mp->port_config);
1860
1861 mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1862 mp->port_config_extend);
1863
1864
1865 /* Increase the Rx side buffer size if supporting GigE */
1866 if (mp->port_serial_control & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
1867 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1868 (mp->port_serial_control & 0xfff1ffff) | (0x5 << 17));
1869 else
1870 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1871 mp->port_serial_control);
1872
1873 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1874 mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num)) |
1875 MV643XX_ETH_SERIAL_PORT_ENABLE);
1876
1877 /* Assign port SDMA configuration */
1878 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1879 mp->port_sdma_config);
1880
1881 /* Enable port Rx. */
1882 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
1883 mp->port_rx_queue_command);
1884}
1885
1886/*
1887 * eth_port_uc_addr_set - This function Set the port Unicast address.
1888 *
1889 * DESCRIPTION:
1890 * This function Set the port Ethernet MAC address.
1891 *
1892 * INPUT:
1893 * unsigned int eth_port_num Port number.
1894 * char * p_addr Address to be set
1895 *
1896 * OUTPUT:
1897 * Set MAC address low and high registers. also calls eth_port_uc_addr()
1898 * To set the unicast table with the proper information.
1899 *
1900 * RETURN:
1901 * N/A.
1902 *
1903 */
1904static void eth_port_uc_addr_set(unsigned int eth_port_num,
1905 unsigned char *p_addr)
1906{
1907 unsigned int mac_h;
1908 unsigned int mac_l;
1909
1910 mac_l = (p_addr[4] << 8) | (p_addr[5]);
1911 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1912 (p_addr[3] << 0);
1913
1914 mv_write(MV643XX_ETH_MAC_ADDR_LOW(eth_port_num), mac_l);
1915 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(eth_port_num), mac_h);
1916
1917 /* Accept frames of this address */
1918 eth_port_uc_addr(eth_port_num, p_addr[5], ACCEPT_MAC_ADDR);
1919
1920 return;
1921}
1922
1923/*
1924 * eth_port_uc_addr_get - This function retrieves the port Unicast address
1925 * (MAC address) from the ethernet hw registers.
1926 *
1927 * DESCRIPTION:
1928 * This function retrieves the port Ethernet MAC address.
1929 *
1930 * INPUT:
1931 * unsigned int eth_port_num Port number.
1932 * char *MacAddr pointer where the MAC address is stored
1933 *
1934 * OUTPUT:
1935 * Copy the MAC address to the location pointed to by MacAddr
1936 *
1937 * RETURN:
1938 * N/A.
1939 *
1940 */
1941static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *p_addr)
1942{
1943 struct mv643xx_private *mp = netdev_priv(dev);
1944 unsigned int mac_h;
1945 unsigned int mac_l;
1946
1947 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(mp->port_num));
1948 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(mp->port_num));
1949
1950 p_addr[0] = (mac_h >> 24) & 0xff;
1951 p_addr[1] = (mac_h >> 16) & 0xff;
1952 p_addr[2] = (mac_h >> 8) & 0xff;
1953 p_addr[3] = mac_h & 0xff;
1954 p_addr[4] = (mac_l >> 8) & 0xff;
1955 p_addr[5] = mac_l & 0xff;
1956}
1957
1958/*
1959 * eth_port_uc_addr - This function Set the port unicast address table
1960 *
1961 * DESCRIPTION:
1962 * This function locates the proper entry in the Unicast table for the
1963 * specified MAC nibble and sets its properties according to function
1964 * parameters.
1965 *
1966 * INPUT:
1967 * unsigned int eth_port_num Port number.
1968 * unsigned char uc_nibble Unicast MAC Address last nibble.
1969 * int option 0 = Add, 1 = remove address.
1970 *
1971 * OUTPUT:
1972 * This function add/removes MAC addresses from the port unicast address
1973 * table.
1974 *
1975 * RETURN:
1976 * true is output succeeded.
1977 * false if option parameter is invalid.
1978 *
1979 */
1980static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
1981 int option)
1982{
1983 unsigned int unicast_reg;
1984 unsigned int tbl_offset;
1985 unsigned int reg_offset;
1986
1987 /* Locate the Unicast table entry */
1988 uc_nibble = (0xf & uc_nibble);
1989 tbl_offset = (uc_nibble / 4) * 4; /* Register offset from unicast table base */
1990 reg_offset = uc_nibble % 4; /* Entry offset within the above register */
1991
1992 switch (option) {
1993 case REJECT_MAC_ADDR:
1994 /* Clear accepts frame bit at given unicast DA table entry */
1995 unicast_reg = mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
1996 (eth_port_num) + tbl_offset));
1997
1998 unicast_reg &= (0x0E << (8 * reg_offset));
1999
2000 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2001 (eth_port_num) + tbl_offset), unicast_reg);
2002 break;
2003
2004 case ACCEPT_MAC_ADDR:
2005 /* Set accepts frame bit at unicast DA filter table entry */
2006 unicast_reg =
2007 mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2008 (eth_port_num) + tbl_offset));
2009
2010 unicast_reg |= (0x01 << (8 * reg_offset));
2011
2012 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2013 (eth_port_num) + tbl_offset), unicast_reg);
2014
2015 break;
2016
2017 default:
2018 return 0;
2019 }
2020
2021 return 1;
2022}
2023
2024/*
2025 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2026 *
2027 * DESCRIPTION:
2028 * Go through all the DA filter tables (Unicast, Special Multicast &
2029 * Other Multicast) and set each entry to 0.
2030 *
2031 * INPUT:
2032 * unsigned int eth_port_num Ethernet Port number.
2033 *
2034 * OUTPUT:
2035 * Multicast and Unicast packets are rejected.
2036 *
2037 * RETURN:
2038 * None.
2039 */
2040static void eth_port_init_mac_tables(unsigned int eth_port_num)
2041{
2042 int table_index;
2043
2044 /* Clear DA filter unicast table (Ex_dFUT) */
2045 for (table_index = 0; table_index <= 0xC; table_index += 4)
2046 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2047 (eth_port_num) + table_index), 0);
2048
2049 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2050 /* Clear DA filter special multicast table (Ex_dFSMT) */
2051 mv_write((MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2052 (eth_port_num) + table_index), 0);
2053 /* Clear DA filter other multicast table (Ex_dFOMT) */
2054 mv_write((MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2055 (eth_port_num) + table_index), 0);
2056 }
2057}
2058
2059/*
2060 * eth_clear_mib_counters - Clear all MIB counters
2061 *
2062 * DESCRIPTION:
2063 * This function clears all MIB counters of a specific ethernet port.
2064 * A read from the MIB counter will reset the counter.
2065 *
2066 * INPUT:
2067 * unsigned int eth_port_num Ethernet Port number.
2068 *
2069 * OUTPUT:
2070 * After reading all MIB counters, the counters resets.
2071 *
2072 * RETURN:
2073 * MIB counter value.
2074 *
2075 */
2076static void eth_clear_mib_counters(unsigned int eth_port_num)
2077{
2078 int i;
2079
2080 /* Perform dummy reads from MIB counters */
2081 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2082 i += 4)
2083 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2084}
2085
2086static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2087{
2088 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2089}
2090
2091static void eth_update_mib_counters(struct mv643xx_private *mp)
2092{
2093 struct mv643xx_mib_counters *p = &mp->mib_counters;
2094 int offset;
2095
2096 p->good_octets_received +=
2097 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2098 p->good_octets_received +=
2099 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2100
2101 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2102 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2103 offset += 4)
2104 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2105
2106 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2107 p->good_octets_sent +=
2108 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2109
2110 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2111 offset <= ETH_MIB_LATE_COLLISION;
2112 offset += 4)
2113 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2114}
2115
2116/*
2117 * ethernet_phy_detect - Detect whether a phy is present
2118 *
2119 * DESCRIPTION:
2120 * This function tests whether there is a PHY present on
2121 * the specified port.
2122 *
2123 * INPUT:
2124 * unsigned int eth_port_num Ethernet Port number.
2125 *
2126 * OUTPUT:
2127 * None
2128 *
2129 * RETURN:
2130 * 0 on success
2131 * -ENODEV on failure
2132 *
2133 */
2134static int ethernet_phy_detect(unsigned int port_num)
2135{
2136 unsigned int phy_reg_data0;
2137 int auto_neg;
2138
2139 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2140 auto_neg = phy_reg_data0 & 0x1000;
2141 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2142 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2143
2144 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2145 if ((phy_reg_data0 & 0x1000) == auto_neg)
2146 return -ENODEV; /* change didn't take */
2147
2148 phy_reg_data0 ^= 0x1000;
2149 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2150 return 0;
2151}
2152
2153/*
2154 * ethernet_phy_get - Get the ethernet port PHY address.
2155 *
2156 * DESCRIPTION:
2157 * This routine returns the given ethernet port PHY address.
2158 *
2159 * INPUT:
2160 * unsigned int eth_port_num Ethernet Port number.
2161 *
2162 * OUTPUT:
2163 * None.
2164 *
2165 * RETURN:
2166 * PHY address.
2167 *
2168 */
2169static int ethernet_phy_get(unsigned int eth_port_num)
2170{
2171 unsigned int reg_data;
2172
2173 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2174
2175 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2176}
2177
2178/*
2179 * ethernet_phy_set - Set the ethernet port PHY address.
2180 *
2181 * DESCRIPTION:
2182 * This routine sets the given ethernet port PHY address.
2183 *
2184 * INPUT:
2185 * unsigned int eth_port_num Ethernet Port number.
2186 * int phy_addr PHY address.
2187 *
2188 * OUTPUT:
2189 * None.
2190 *
2191 * RETURN:
2192 * None.
2193 *
2194 */
2195static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2196{
2197 u32 reg_data;
2198 int addr_shift = 5 * eth_port_num;
2199
2200 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2201 reg_data &= ~(0x1f << addr_shift);
2202 reg_data |= (phy_addr & 0x1f) << addr_shift;
2203 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2204}
2205
2206/*
2207 * ethernet_phy_reset - Reset Ethernet port PHY.
2208 *
2209 * DESCRIPTION:
2210 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2211 *
2212 * INPUT:
2213 * unsigned int eth_port_num Ethernet Port number.
2214 *
2215 * OUTPUT:
2216 * The PHY is reset.
2217 *
2218 * RETURN:
2219 * None.
2220 *
2221 */
2222static void ethernet_phy_reset(unsigned int eth_port_num)
2223{
2224 unsigned int phy_reg_data;
2225
2226 /* Reset the PHY */
2227 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2228 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2229 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2230}
2231
2232/*
2233 * eth_port_reset - Reset Ethernet port
2234 *
2235 * DESCRIPTION:
2236 * This routine resets the chip by aborting any SDMA engine activity and
2237 * clearing the MIB counters. The Receiver and the Transmit unit are in
2238 * idle state after this command is performed and the port is disabled.
2239 *
2240 * INPUT:
2241 * unsigned int eth_port_num Ethernet Port number.
2242 *
2243 * OUTPUT:
2244 * Channel activity is halted.
2245 *
2246 * RETURN:
2247 * None.
2248 *
2249 */
2250static void eth_port_reset(unsigned int port_num)
2251{
2252 unsigned int reg_data;
2253
2254 /* Stop Tx port activity. Check port Tx activity. */
2255 reg_data = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num));
2256
2257 if (reg_data & 0xFF) {
2258 /* Issue stop command for active channels only */
2259 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
2260 (reg_data << 8));
2261
2262 /* Wait for all Tx activity to terminate. */
2263 /* Check port cause register that all Tx queues are stopped */
2264 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2265 & 0xFF)
2266 udelay(10);
2267 }
2268
2269 /* Stop Rx port activity. Check port Rx activity. */
2270 reg_data = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num));
2271
2272 if (reg_data & 0xFF) {
2273 /* Issue stop command for active channels only */
2274 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
2275 (reg_data << 8));
2276
2277 /* Wait for all Rx activity to terminate. */
2278 /* Check port cause register that all Rx queues are stopped */
2279 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2280 & 0xFF)
2281 udelay(10);
2282 }
2283
2284 /* Clear all MIB counters */
2285 eth_clear_mib_counters(port_num);
2286
2287 /* Reset the Enable bit in the Configuration Register */
2288 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2289 reg_data &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
2290 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2291}
2292
2293/*
2294 * ethernet_set_config_reg - Set specified bits in configuration register.
2295 *
2296 * DESCRIPTION:
2297 * This function sets specified bits in the given ethernet
2298 * configuration register.
2299 *
2300 * INPUT:
2301 * unsigned int eth_port_num Ethernet Port number.
2302 * unsigned int value 32 bit value.
2303 *
2304 * OUTPUT:
2305 * The set bits in the value parameter are set in the configuration
2306 * register.
2307 *
2308 * RETURN:
2309 * None.
2310 *
2311 */
2312static void ethernet_set_config_reg(unsigned int eth_port_num,
2313 unsigned int value)
2314{
2315 unsigned int eth_config_reg;
2316
2317 eth_config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_REG(eth_port_num));
2318 eth_config_reg |= value;
2319 mv_write(MV643XX_ETH_PORT_CONFIG_REG(eth_port_num), eth_config_reg);
2320}
2321
2322static int eth_port_autoneg_supported(unsigned int eth_port_num)
2323{
2324 unsigned int phy_reg_data0;
2325
2326 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data0);
2327
2328 return phy_reg_data0 & 0x1000;
2329}
2330
2331static int eth_port_link_is_up(unsigned int eth_port_num)
2332{
2333 unsigned int phy_reg_data1;
2334
2335 eth_port_read_smi_reg(eth_port_num, 1, &phy_reg_data1);
2336
2337 if (eth_port_autoneg_supported(eth_port_num)) {
2338 if (phy_reg_data1 & 0x20) /* auto-neg complete */
2339 return 1;
2340 } else if (phy_reg_data1 & 0x4) /* link up */
2341 return 1;
2342
2343 return 0;
2344}
2345
2346/*
2347 * ethernet_get_config_reg - Get the port configuration register
2348 *
2349 * DESCRIPTION:
2350 * This function returns the configuration register value of the given
2351 * ethernet port.
2352 *
2353 * INPUT:
2354 * unsigned int eth_port_num Ethernet Port number.
2355 *
2356 * OUTPUT:
2357 * None.
2358 *
2359 * RETURN:
2360 * Port configuration register value.
2361 */
2362static unsigned int ethernet_get_config_reg(unsigned int eth_port_num)
2363{
2364 unsigned int eth_config_reg;
2365
2366 eth_config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_EXTEND_REG
2367 (eth_port_num));
2368 return eth_config_reg;
2369}
2370
2371/*
2372 * eth_port_read_smi_reg - Read PHY registers
2373 *
2374 * DESCRIPTION:
2375 * This routine utilize the SMI interface to interact with the PHY in
2376 * order to perform PHY register read.
2377 *
2378 * INPUT:
2379 * unsigned int port_num Ethernet Port number.
2380 * unsigned int phy_reg PHY register address offset.
2381 * unsigned int *value Register value buffer.
2382 *
2383 * OUTPUT:
2384 * Write the value of a specified PHY register into given buffer.
2385 *
2386 * RETURN:
2387 * false if the PHY is busy or read data is not in valid state.
2388 * true otherwise.
2389 *
2390 */
2391static void eth_port_read_smi_reg(unsigned int port_num,
2392 unsigned int phy_reg, unsigned int *value)
2393{
2394 int phy_addr = ethernet_phy_get(port_num);
2395 unsigned long flags;
2396 int i;
2397
2398 /* the SMI register is a shared resource */
2399 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2400
2401 /* wait for the SMI register to become available */
2402 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2403 if (i == PHY_WAIT_ITERATIONS) {
2404 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2405 goto out;
2406 }
2407 udelay(PHY_WAIT_MICRO_SECONDS);
2408 }
2409
2410 mv_write(MV643XX_ETH_SMI_REG,
2411 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2412
2413 /* now wait for the data to be valid */
2414 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2415 if (i == PHY_WAIT_ITERATIONS) {
2416 printk("mv643xx PHY read timeout, port %d\n", port_num);
2417 goto out;
2418 }
2419 udelay(PHY_WAIT_MICRO_SECONDS);
2420 }
2421
2422 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2423out:
2424 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2425}
2426
2427/*
2428 * eth_port_write_smi_reg - Write to PHY registers
2429 *
2430 * DESCRIPTION:
2431 * This routine utilize the SMI interface to interact with the PHY in
2432 * order to perform writes to PHY registers.
2433 *
2434 * INPUT:
2435 * unsigned int eth_port_num Ethernet Port number.
2436 * unsigned int phy_reg PHY register address offset.
2437 * unsigned int value Register value.
2438 *
2439 * OUTPUT:
2440 * Write the given value to the specified PHY register.
2441 *
2442 * RETURN:
2443 * false if the PHY is busy.
2444 * true otherwise.
2445 *
2446 */
2447static void eth_port_write_smi_reg(unsigned int eth_port_num,
2448 unsigned int phy_reg, unsigned int value)
2449{
2450 int phy_addr;
2451 int i;
2452 unsigned long flags;
2453
2454 phy_addr = ethernet_phy_get(eth_port_num);
2455
2456 /* the SMI register is a shared resource */
2457 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2458
2459 /* wait for the SMI register to become available */
2460 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2461 if (i == PHY_WAIT_ITERATIONS) {
2462 printk("mv643xx PHY busy timeout, port %d\n",
2463 eth_port_num);
2464 goto out;
2465 }
2466 udelay(PHY_WAIT_MICRO_SECONDS);
2467 }
2468
2469 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2470 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2471out:
2472 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2473}
2474
2475/*
2476 * eth_port_send - Send an Ethernet packet
2477 *
2478 * DESCRIPTION:
2479 * This routine send a given packet described by p_pktinfo parameter. It
2480 * supports transmitting of a packet spaned over multiple buffers. The
2481 * routine updates 'curr' and 'first' indexes according to the packet
2482 * segment passed to the routine. In case the packet segment is first,
2483 * the 'first' index is update. In any case, the 'curr' index is updated.
2484 * If the routine get into Tx resource error it assigns 'curr' index as
2485 * 'first'. This way the function can abort Tx process of multiple
2486 * descriptors per packet.
2487 *
2488 * INPUT:
2489 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2490 * struct pkt_info *p_pkt_info User packet buffer.
2491 *
2492 * OUTPUT:
2493 * Tx ring 'curr' and 'first' indexes are updated.
2494 *
2495 * RETURN:
2496 * ETH_QUEUE_FULL in case of Tx resource error.
2497 * ETH_ERROR in case the routine can not access Tx desc ring.
2498 * ETH_QUEUE_LAST_RESOURCE if the routine uses the last Tx resource.
2499 * ETH_OK otherwise.
2500 *
2501 */
2502#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
2503/*
2504 * Modified to include the first descriptor pointer in case of SG
2505 */
2506static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2507 struct pkt_info *p_pkt_info)
2508{
2509 int tx_desc_curr, tx_desc_used, tx_first_desc, tx_next_desc;
2510 struct eth_tx_desc *current_descriptor;
2511 struct eth_tx_desc *first_descriptor;
2512 u32 command;
2513
2514 /* Do not process Tx ring in case of Tx ring resource error */
2515 if (mp->tx_resource_err)
2516 return ETH_QUEUE_FULL;
2517
2518 /*
2519 * The hardware requires that each buffer that is <= 8 bytes
2520 * in length must be aligned on an 8 byte boundary.
2521 */
2522 if (p_pkt_info->byte_cnt <= 8 && p_pkt_info->buf_ptr & 0x7) {
2523 printk(KERN_ERR
2524 "mv643xx_eth port %d: packet size <= 8 problem\n",
2525 mp->port_num);
2526 return ETH_ERROR;
2527 }
2528
2529 /* Get the Tx Desc ring indexes */
2530 tx_desc_curr = mp->tx_curr_desc_q;
2531 tx_desc_used = mp->tx_used_desc_q;
2532
2533 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2534
2535 tx_next_desc = (tx_desc_curr + 1) % mp->tx_ring_size;
2536
2537 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2538 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2539 current_descriptor->l4i_chk = p_pkt_info->l4i_chk;
2540 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2541
2542 command = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC |
2543 ETH_BUFFER_OWNED_BY_DMA;
2544 if (command & ETH_TX_FIRST_DESC) {
2545 tx_first_desc = tx_desc_curr;
2546 mp->tx_first_desc_q = tx_first_desc;
2547 first_descriptor = current_descriptor;
2548 mp->tx_first_command = command;
2549 } else {
2550 tx_first_desc = mp->tx_first_desc_q;
2551 first_descriptor = &mp->p_tx_desc_area[tx_first_desc];
2552 BUG_ON(first_descriptor == NULL);
2553 current_descriptor->cmd_sts = command;
2554 }
2555
2556 if (command & ETH_TX_LAST_DESC) {
2557 wmb();
2558 first_descriptor->cmd_sts = mp->tx_first_command;
2559
2560 wmb();
2561 ETH_ENABLE_TX_QUEUE(mp->port_num);
2562
2563 /*
2564 * Finish Tx packet. Update first desc in case of Tx resource
2565 * error */
2566 tx_first_desc = tx_next_desc;
2567 mp->tx_first_desc_q = tx_first_desc;
2568 }
2569
2570 /* Check for ring index overlap in the Tx desc ring */
2571 if (tx_next_desc == tx_desc_used) {
2572 mp->tx_resource_err = 1;
2573 mp->tx_curr_desc_q = tx_first_desc;
2574
2575 return ETH_QUEUE_LAST_RESOURCE;
2576 }
2577
2578 mp->tx_curr_desc_q = tx_next_desc;
2579
2580 return ETH_OK;
2581}
2582#else
2583static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2584 struct pkt_info *p_pkt_info)
2585{
2586 int tx_desc_curr;
2587 int tx_desc_used;
2588 struct eth_tx_desc *current_descriptor;
2589 unsigned int command_status;
2590
2591 /* Do not process Tx ring in case of Tx ring resource error */
2592 if (mp->tx_resource_err)
2593 return ETH_QUEUE_FULL;
2594
2595 /* Get the Tx Desc ring indexes */
2596 tx_desc_curr = mp->tx_curr_desc_q;
2597 tx_desc_used = mp->tx_used_desc_q;
2598 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2599
2600 command_status = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC;
2601 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2602 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2603 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2604
2605 /* Set last desc with DMA ownership and interrupt enable. */
2606 wmb();
2607 current_descriptor->cmd_sts = command_status |
2608 ETH_BUFFER_OWNED_BY_DMA | ETH_TX_ENABLE_INTERRUPT;
2609
2610 wmb();
2611 ETH_ENABLE_TX_QUEUE(mp->port_num);
2612
2613 /* Finish Tx packet. Update first desc in case of Tx resource error */
2614 tx_desc_curr = (tx_desc_curr + 1) % mp->tx_ring_size;
2615
2616 /* Update the current descriptor */
2617 mp->tx_curr_desc_q = tx_desc_curr;
2618
2619 /* Check for ring index overlap in the Tx desc ring */
2620 if (tx_desc_curr == tx_desc_used) {
2621 mp->tx_resource_err = 1;
2622 return ETH_QUEUE_LAST_RESOURCE;
2623 }
2624
2625 return ETH_OK;
2626}
2627#endif
2628
2629/*
2630 * eth_tx_return_desc - Free all used Tx descriptors
2631 *
2632 * DESCRIPTION:
2633 * This routine returns the transmitted packet information to the caller.
2634 * It uses the 'first' index to support Tx desc return in case a transmit
2635 * of a packet spanned over multiple buffer still in process.
2636 * In case the Tx queue was in "resource error" condition, where there are
2637 * no available Tx resources, the function resets the resource error flag.
2638 *
2639 * INPUT:
2640 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2641 * struct pkt_info *p_pkt_info User packet buffer.
2642 *
2643 * OUTPUT:
2644 * Tx ring 'first' and 'used' indexes are updated.
2645 *
2646 * RETURN:
2647 * ETH_ERROR in case the routine can not access Tx desc ring.
2648 * ETH_RETRY in case there is transmission in process.
2649 * ETH_END_OF_JOB if the routine has nothing to release.
2650 * ETH_OK otherwise.
2651 *
2652 */
2653static ETH_FUNC_RET_STATUS eth_tx_return_desc(struct mv643xx_private *mp,
2654 struct pkt_info *p_pkt_info)
2655{
2656 int tx_desc_used;
2657#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
2658 int tx_busy_desc = mp->tx_first_desc_q;
2659#else
2660 int tx_busy_desc = mp->tx_curr_desc_q;
2661#endif
2662 struct eth_tx_desc *p_tx_desc_used;
2663 unsigned int command_status;
2664
2665 /* Get the Tx Desc ring indexes */
2666 tx_desc_used = mp->tx_used_desc_q;
2667
2668 p_tx_desc_used = &mp->p_tx_desc_area[tx_desc_used];
2669
2670 /* Sanity check */
2671 if (p_tx_desc_used == NULL)
2672 return ETH_ERROR;
2673
2674 /* Stop release. About to overlap the current available Tx descriptor */
2675 if (tx_desc_used == tx_busy_desc && !mp->tx_resource_err)
2676 return ETH_END_OF_JOB;
2677
2678 command_status = p_tx_desc_used->cmd_sts;
2679
2680 /* Still transmitting... */
2681 if (command_status & (ETH_BUFFER_OWNED_BY_DMA))
2682 return ETH_RETRY;
2683
2684 /* Pass the packet information to the caller */
2685 p_pkt_info->cmd_sts = command_status;
2686 p_pkt_info->return_info = mp->tx_skb[tx_desc_used];
2687 mp->tx_skb[tx_desc_used] = NULL;
2688
2689 /* Update the next descriptor to release. */
2690 mp->tx_used_desc_q = (tx_desc_used + 1) % mp->tx_ring_size;
2691
2692 /* Any Tx return cancels the Tx resource error status */
2693 mp->tx_resource_err = 0;
2694
2695 return ETH_OK;
2696}
2697
2698/*
2699 * eth_port_receive - Get received information from Rx ring.
2700 *
2701 * DESCRIPTION:
2702 * This routine returns the received data to the caller. There is no
2703 * data copying during routine operation. All information is returned
2704 * using pointer to packet information struct passed from the caller.
2705 * If the routine exhausts Rx ring resources then the resource error flag
2706 * is set.
2707 *
2708 * INPUT:
2709 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2710 * struct pkt_info *p_pkt_info User packet buffer.
2711 *
2712 * OUTPUT:
2713 * Rx ring current and used indexes are updated.
2714 *
2715 * RETURN:
2716 * ETH_ERROR in case the routine can not access Rx desc ring.
2717 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2718 * ETH_END_OF_JOB if there is no received data.
2719 * ETH_OK otherwise.
2720 */
2721static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2722 struct pkt_info *p_pkt_info)
2723{
2724 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2725 volatile struct eth_rx_desc *p_rx_desc;
2726 unsigned int command_status;
2727
2728 /* Do not process Rx ring in case of Rx ring resource error */
2729 if (mp->rx_resource_err)
2730 return ETH_QUEUE_FULL;
2731
2732 /* Get the Rx Desc ring 'curr and 'used' indexes */
2733 rx_curr_desc = mp->rx_curr_desc_q;
2734 rx_used_desc = mp->rx_used_desc_q;
2735
2736 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2737
2738 /* The following parameters are used to save readings from memory */
2739 command_status = p_rx_desc->cmd_sts;
2740 rmb();
2741
2742 /* Nothing to receive... */
2743 if (command_status & (ETH_BUFFER_OWNED_BY_DMA))
2744 return ETH_END_OF_JOB;
2745
2746 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2747 p_pkt_info->cmd_sts = command_status;
2748 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2749 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2750 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2751
2752 /* Clean the return info field to indicate that the packet has been */
2753 /* moved to the upper layers */
2754 mp->rx_skb[rx_curr_desc] = NULL;
2755
2756 /* Update current index in data structure */
2757 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2758 mp->rx_curr_desc_q = rx_next_curr_desc;
2759
2760 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2761 if (rx_next_curr_desc == rx_used_desc)
2762 mp->rx_resource_err = 1;
2763
2764 return ETH_OK;
2765}
2766
2767/*
2768 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2769 *
2770 * DESCRIPTION:
2771 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
2772 * next 'used' descriptor and attached the returned buffer to it.
2773 * In case the Rx ring was in "resource error" condition, where there are
2774 * no available Rx resources, the function resets the resource error flag.
2775 *
2776 * INPUT:
2777 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2778 * struct pkt_info *p_pkt_info Information on returned buffer.
2779 *
2780 * OUTPUT:
2781 * New available Rx resource in Rx descriptor ring.
2782 *
2783 * RETURN:
2784 * ETH_ERROR in case the routine can not access Rx desc ring.
2785 * ETH_OK otherwise.
2786 */
2787static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2788 struct pkt_info *p_pkt_info)
2789{
2790 int used_rx_desc; /* Where to return Rx resource */
2791 volatile struct eth_rx_desc *p_used_rx_desc;
2792
2793 /* Get 'used' Rx descriptor */
2794 used_rx_desc = mp->rx_used_desc_q;
2795 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2796
2797 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2798 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2799 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2800
2801 /* Flush the write pipe */
2802
2803 /* Return the descriptor to DMA ownership */
2804 wmb();
2805 p_used_rx_desc->cmd_sts =
2806 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
2807 wmb();
2808
2809 /* Move the used descriptor pointer to the next descriptor */
2810 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
2811
2812 /* Any Rx return cancels the Rx resource error status */
2813 mp->rx_resource_err = 0;
2814
2815 return ETH_OK;
2816}
2817
2818/************* Begin ethtool support *************************/
2819
2820struct mv643xx_stats {
2821 char stat_string[ETH_GSTRING_LEN];
2822 int sizeof_stat;
2823 int stat_offset;
2824};
2825
2826#define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
2827 offsetof(struct mv643xx_private, m)
2828
2829static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
2830 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
2831 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
2832 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
2833 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
2834 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
2835 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
2836 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
2837 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
2838 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
2839 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
2840 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
2841 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
2842 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
2843 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
2844 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
2845 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
2846 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
2847 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
2848 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
2849 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
2850 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
2851 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
2852 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
2853 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
2854 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
2855 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
2856 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
2857 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
2858 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
2859 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
2860 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
2861 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
2862 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
2863 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
2864 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
2865 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
2866 { "collision", MV643XX_STAT(mib_counters.collision) },
2867 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
2868};
2869
2870#define MV643XX_STATS_LEN \
2871 sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
2872
2873static int
2874mv643xx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
2875{
2876 struct mv643xx_private *mp = netdev->priv;
2877 int port_num = mp->port_num;
2878 int autoneg = eth_port_autoneg_supported(port_num);
2879 int mode_10_bit;
2880 int auto_duplex;
2881 int half_duplex = 0;
2882 int full_duplex = 0;
2883 int auto_speed;
2884 int speed_10 = 0;
2885 int speed_100 = 0;
2886 int speed_1000 = 0;
2887
2888 u32 pcs = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2889 u32 psr = mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num));
2890
2891 mode_10_bit = psr & MV643XX_ETH_PORT_STATUS_MODE_10_BIT;
2892
2893 if (mode_10_bit) {
2894 ecmd->supported = SUPPORTED_10baseT_Half;
2895 } else {
2896 ecmd->supported = (SUPPORTED_10baseT_Half |
2897 SUPPORTED_10baseT_Full |
2898 SUPPORTED_100baseT_Half |
2899 SUPPORTED_100baseT_Full |
2900 SUPPORTED_1000baseT_Full |
2901 (autoneg ? SUPPORTED_Autoneg : 0) |
2902 SUPPORTED_TP);
2903
2904 auto_duplex = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX);
2905 auto_speed = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII);
2906
2907 ecmd->advertising = ADVERTISED_TP;
2908
2909 if (autoneg) {
2910 ecmd->advertising |= ADVERTISED_Autoneg;
2911
2912 if (auto_duplex) {
2913 half_duplex = 1;
2914 full_duplex = 1;
2915 } else {
2916 if (pcs & MV643XX_ETH_SET_FULL_DUPLEX_MODE)
2917 full_duplex = 1;
2918 else
2919 half_duplex = 1;
2920 }
2921
2922 if (auto_speed) {
2923 speed_10 = 1;
2924 speed_100 = 1;
2925 speed_1000 = 1;
2926 } else {
2927 if (pcs & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
2928 speed_1000 = 1;
2929 else if (pcs & MV643XX_ETH_SET_MII_SPEED_TO_100)
2930 speed_100 = 1;
2931 else
2932 speed_10 = 1;
2933 }
2934
2935 if (speed_10 & half_duplex)
2936 ecmd->advertising |= ADVERTISED_10baseT_Half;
2937 if (speed_10 & full_duplex)
2938 ecmd->advertising |= ADVERTISED_10baseT_Full;
2939 if (speed_100 & half_duplex)
2940 ecmd->advertising |= ADVERTISED_100baseT_Half;
2941 if (speed_100 & full_duplex)
2942 ecmd->advertising |= ADVERTISED_100baseT_Full;
2943 if (speed_1000)
2944 ecmd->advertising |= ADVERTISED_1000baseT_Full;
2945 }
2946 }
2947
2948 ecmd->port = PORT_TP;
2949 ecmd->phy_address = ethernet_phy_get(port_num);
2950
2951 ecmd->transceiver = XCVR_EXTERNAL;
2952
2953 if (netif_carrier_ok(netdev)) {
2954 if (mode_10_bit)
2955 ecmd->speed = SPEED_10;
2956 else {
2957 if (psr & MV643XX_ETH_PORT_STATUS_GMII_1000)
2958 ecmd->speed = SPEED_1000;
2959 else if (psr & MV643XX_ETH_PORT_STATUS_MII_100)
2960 ecmd->speed = SPEED_100;
2961 else
2962 ecmd->speed = SPEED_10;
2963 }
2964
2965 if (psr & MV643XX_ETH_PORT_STATUS_FULL_DUPLEX)
2966 ecmd->duplex = DUPLEX_FULL;
2967 else
2968 ecmd->duplex = DUPLEX_HALF;
2969 } else {
2970 ecmd->speed = -1;
2971 ecmd->duplex = -1;
2972 }
2973
2974 ecmd->autoneg = autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
2975 return 0;
2976}
2977
2978static void
2979mv643xx_get_drvinfo(struct net_device *netdev,
2980 struct ethtool_drvinfo *drvinfo)
2981{
2982 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
2983 strncpy(drvinfo->version, mv643xx_driver_version, 32);
2984 strncpy(drvinfo->fw_version, "N/A", 32);
2985 strncpy(drvinfo->bus_info, "mv643xx", 32);
2986 drvinfo->n_stats = MV643XX_STATS_LEN;
2987}
2988
2989static int
2990mv643xx_get_stats_count(struct net_device *netdev)
2991{
2992 return MV643XX_STATS_LEN;
2993}
2994
2995static void
2996mv643xx_get_ethtool_stats(struct net_device *netdev,
2997 struct ethtool_stats *stats, uint64_t *data)
2998{
2999 struct mv643xx_private *mp = netdev->priv;
3000 int i;
3001
3002 eth_update_mib_counters(mp);
3003
3004 for(i = 0; i < MV643XX_STATS_LEN; i++) {
3005 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
3006 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
3007 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
3008 }
3009}
3010
3011static void
3012mv643xx_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
3013{
3014 int i;
3015
3016 switch(stringset) {
3017 case ETH_SS_STATS:
3018 for (i=0; i < MV643XX_STATS_LEN; i++) {
3019 memcpy(data + i * ETH_GSTRING_LEN,
3020 mv643xx_gstrings_stats[i].stat_string,
3021 ETH_GSTRING_LEN);
3022 }
3023 break;
3024 }
3025}
3026
3027static struct ethtool_ops mv643xx_ethtool_ops = {
3028 .get_settings = mv643xx_get_settings,
3029 .get_drvinfo = mv643xx_get_drvinfo,
3030 .get_link = ethtool_op_get_link,
3031 .get_sg = ethtool_op_get_sg,
3032 .set_sg = ethtool_op_set_sg,
3033 .get_strings = mv643xx_get_strings,
3034 .get_stats_count = mv643xx_get_stats_count,
3035 .get_ethtool_stats = mv643xx_get_ethtool_stats,
3036};
3037
3038/************* End ethtool support *************************/